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Abstract—For decades, computing speeds seemingly doubled
every 24 months by increasing the clock speed and giving
software a ”free ride” to better performance. This free ride,
however, effectively ended by the mid-to-late 2000s. With clock
speeds having plateaued and computational horsepower instead
increasing due to increasing the number of cores per processor,
the vision for parallel computing, which started more than 40
years ago, is revolution that has now ubiquitously arrived. In
addition to traditional supercomputing clusters, parallel comput-
ing with multiple cores can be found in desktops, laptops, and
even mobile phones. This ubiquitous parallelism in hardware
presents at least two major challenges: (1) difficulty in easily
extracting parallel performance via current software abstractions
and (2) difficulty in delivering correctness — as even without
parallelism, software defects already account for up to 40
percent of system failures. Consequently, this paper presents
preliminary research that reduces the learning curve to parallel
programming by introducing such concepts into a visual (but
serial) programming language called Snap!. Furthermore, the
proposed visual abstractions automatically generate parallel code
for the end user so as to better ensure that the resulting (text-
based) code is correct.
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I. INTRODUCTION

As complex (or higher-order) reasoning skills are now driving
advanced economies, as shown in Figure 1), manual tasks and
routine cognitive tasks are being increasingly automated. As a result,
higher-order skills requiring complex reasoning and communication
must become a major focus of educational strategies. Indeed, the
College Board, in partnership with NSF, recently announced the fall
2016 launch of their new Advanced Placement Computer Science
Principles course. In development since 2009 with funding from NSF,
the AP Computer Science Principles course ”is designed to broaden
the number and diversity of students who participate in computing”
and to empower them to ”develop skills that will be critical to the
jobs of today and tomorrow” [1], [2].

Many of these higher-order reasoning skills can be acquired in
the context of computing. Because computing has emerged as a third
pillar of science, complementing the traditional pillars of theory and
experimentation, it can accelerate discovery and innovation and create
a fundamental change in how research, development, and technology
transfer in the sciences, engineering, business, humanities, and arts
will be conducted in the 21st century. For example, in a study
conducted by the U.S. Council of Competitiveness in 2004, 97% of
surveyed U.S. businesses noted that they could not exist or compete
without the innovative use of high-performance parallel computing

Fig. 1. Technological Changes Affecting U.S. Workforce Skills.

(HPC) [3]. Unfortunately, those same companies lament the dearth of
a trained workforce that is familiar with parallel computing concepts.

More recently, we have seen parallel computing become ubiq-
uitous. For decades and until the mid-to-late 2000s, computing
speeds seemingly doubled every 24 months by increasing the clock
speed and giving software a ”free ride” to better performance. With
clock speeds having plateaued and computational horsepower instead
increasing due to increasing the number of cores per processor,
parallel computing is now the norm. In addition to traditional super-
computing clusters, parallel computing with multiple cores can be
found in desktops, laptops, and even mobile phones. This ubiquitous
parallelism in hardware presents at least two major challenges:
(1) difficulty in easily extracting parallel performance via current
software abstractions and (2) difficulty in delivering correctness —
as even without parallelism, software defects already account for up
to 40 percent of system failures. To address these challenges, we turn
to block-based programming environments.

Block-based programming environments, such as Scratch [4]
and Snap! [5], have been used effectively as powerful educational
aids to introduce beginners to computing. We see the broad appeal
of these environments due to the following two features. First,
block-based languages have a very low barrier to entry. That is,
students with no prior programming experience can quickly grasp the
skills required to build programs that capture their interest, thereby
motivating them to keep learning how to program. Second, block-
based programming scales well with respect to students’ ages and
their level of programming experience. Block-based languages are
expressive enough to support the ingenuity of quite advanced students
of computing, while still providing enough basic blocks to provide
a rewarding programming experience to novices. It is because of
these properties of block-based languages that we see them as fertile
ground for introducing parallel computing concepts to a wide range
of computing students.

To address the need of improving the teaching of parallel comput-
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ing concepts, we seek to add explicit parallel abstractions to block-
based programming languages. The thesis of this research is that the
teaching of parallel computing does not need to be postponed until
students have mastered the fundamentals of sequential programming.
In fact, at this point, it may be too late to groom students to think truly
in parallel. Instead, we posit that explicit parallel abstractions, such
as producer-consumer, should be viewed as fundamental to program-
ming as the for loop. By exposing explicit parallel programming via
key language abstractions, we aim to harmoniously introduce students
to parallel computing from the very start.

The rest of the paper is organized as follows. Section II covers
background including discussion of the Snap! programming en-
vironment and concurrency paradigms. Section III presents work
we’ve done to demonstrate the viability of this approach. Finally,
in Section V we present our conclusions and future work.

II. BACKGROUND

Snap!, based on the Scratch programming language developed at
MIT, is a ”drag-and-drop” visual programming environment in which
end users build programs that control the behavior of actors called
Sprites. Snap!’s look and feel is very similar to that of Scratch.
However, whereas Scratch was originally written in Smalltalk as a
standalone application, Snap! is written in JavaScript to run in a web
browser. Snap! also includes several key features and capabilities not
found in Scratch that we introduce later in this section.

Figure 2 shows what the Snap! interface looks like. The white
stage area in the upper right of the interface is where the sprites
appear and display their output. A typical Snap! project consists of
multiple sprites along with their scripts which specify their actions.
Each sprite has its own collection of scripts that appears in the scripts
area in the center of the interface. The interface always points to a
current sprite whose scripts are the ones displayed for editing. The
user switches between sprites to edit each one in turn. In the example
shown in Figure 2, the project consists of two sprites, a cat and a
bat, with the bat being the current sprite with a program consisting
of two separate scripts.

Fig. 2. The Snap! Graphical User Interface.

Users create programs by dragging blocks from the palette area on
the left side of the interface and assembling them in the scripts area.
The blocks in the palette are grouped by category, with one category
of blocks being displayed at a time according to the current selection.
The color, style, and shape of the blocks determine how they may
be assembled to create valid programs. Blocks ”snap” together and
nest inside each other to form scripts, and each sprite can contain
any number of scripts that collectively determine its behavior when
the project is run. The bat sprite has two scripts that are shown in
Figures 3 and 4. One script is for translating the sprite across the stage
and the other is for continually toggling the appearance of the bat
between wings up and wings down. When the user runs the project

Fig. 3. Move process. Fig. 4. Flap wings pro-
cess.

by clicking on the green start button, both scripts run simultaneously
and the bat appears to ”fly” across the stage flapping its wings. This
is depicted in Figure 5 as a series of visual time steps.

Fig. 5. Bat sprite appearing to fly across the stage.

This form of parallelism is referred to as concurrency. Because
JavaScript is single-threaded, the illusion of parallelism in Snap!
is achieved through multi-tasking. Multi-tasking is a technique for
executing all active processes one at a time in an interleaved fashion
with only a single thread of control. When a Snap! project is run,
all processes that match the criteria for starting, in this case, those
scripts beginning with a “when green flag clicked” block,
are added to the process queue by Snap!’s thread manager. Each
process executes for a short amount of time called a time slice before
yielding to the next process and waiting for its next allotted time
slice. Because the computer can switch rapidly from one process to
the next, this gives the illusion of parallel execution. In this manner,
the interleaved execution of the bat scripts results in the visual effect
of a bat flapping its wings as it flies across the stage.

This concurrent programming model exemplifies a form of implicit
parallelism, as the creation and execution of Snap! processes is
automatically managed by the underlying Snap! implementation,
the details of which are all hidden, without the end user having
to be aware of any kind of parallel constructs. Although Snap! is
inherently concurrent, it does not teach or promote explicit parallel
programming. In addition, because the entire execution of Snap!
scripts occurs within its single browser thread, computationally
expensive scripts can slow down the execution of Snap! programs,
as well as render the browser unresponsive.

The specification of HTML5 Web Workers [6] is a way of
addressing some of the problems arising from JavaScript’s single-
threaded nature. Web Workers provide a method for long-running
JavaScript programs to spawn separate background threads that can
utilize the underlying multi-core architecture of the host system,
heretofore ignored by JavaScript programs. These background threads
run independently from any user-interface threads and also indepen-
dently from each other. One limitation of HTML5 Web Workers is
that they cannot be used to perform work on user-interface elements.
However, a situation in which they can prove useful is demonstrated
in the following example.

Figure 6 shows a Snap! block called map that applies the function
supplied in the first input slot to each element of the list supplied in
the second input slot and returns a new list containing the results. The
results of executing this code fragment are shown in Figure 7. Unlike
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Fig. 6. Snap!’s map block.

Fig. 7. Results of map(x 10).

in Scratch, lists and functions are both first-class data elements in
Snap!, a key feature which, among other things, lets them be passed
to and returned from procedures.

The map function executes serially by looping over a list, applying
the supplied function to each list element, and ultimately returning
a new list containing the results. Upon closer inspection of the map
block of Figure 6, we see that it contains the binary multiplication
operator with its first input being empty and its second input
containing the number 10. The empty input signals where the list
inputs are to be inserted into the function. Because the multiplication
function is supplied as an argument to the map function, it would
normally be evaluated first in order to obtain the input value to its
enclosing block, in this case the map block. This is because Snap!’s
default behavior is to evaluate all block arguments first, then evaluate
the block. However, the function itself is the desired input value as
it must be repeatedly evaluated with a different input element from
the list each time. Therefore, the evaluation needs to be delayed until
elements of the list are inserted, and the final results are stored in a
dynamic list. The gray ring around the multiplication block signals
for Snap! to delay the evaluation, hence causing the multiplication
function itself to be treated as the input parameter to map instead of
its value, which would simply evaluate to 0 given the empty input
slot. Having functions as first-class elements allows them to be passed
as arguments to other functions, to be assigned to variables, and to
be returned as results.

This example shows the potential where HTML5 Web Workers
can be utilized within the Snap! environment, as the computation
involves mathematical operators and no user interface elements.
For complex, user-defined computations, our Parallel Snap! can
provide an ideal introduction to parallel programming for beginning
programmers.

In the following section, we discuss the design and implementation
of our parallelized Snap! environment which simultaneously lever-
ages HTML5 Web Workers as well as Snap!’s first-class lists and
procedures, and another key feature, code mapping, that program-
matically translates Snap!’s visual block-based scripts to text-based
code that can be exported and run externally.

III. APPROACH

Our approach to introducing true parallelism to SNAP! draws inspi-
ration from OpenMP [7], [8], an application programming interface
(API) that supports multi-platform, shared-memory, multiprocessing
programming across a multitude of programming languages (e.g., C,
C++, and Fortran), operating systems, and processor architectures.
The OpenMP API consists of a set of compiler directives, library
routines, and environment variables that enable parallel execution at
run time.

OpenMP is a relatively simple, text-based approach that introduces
parallelism into a sequential program. Here is a simple sequential C

program to print out ”hello(0), world(0)”:

void main()
{

int ID = 0;

printf(" hello(%d), ", ID);
printf(" world(%d) \n", ID);

}

By adding a simple directive (or pragma) and a function call to
obtain the thread ID, the following code readily compiles into a
parallel program, where each thread prints out its own ”hello(%d),
world(%d)” message, where %d is the thread ID.

#include omp.h

void main()
{

#pragma omp parallel
{
int ID = omp_get_thread_num();

printf(" hello(%d), ", ID);
printf( world(%d) \n, ID);

}
}

This is in stark contrast to the complexity of other text-based
approaches, such as pthreads.

We seek to emulate the simplicity of text-based OpenMP paral-
lelism using the pragma approach, but with a block-based approach
instead. With our research extensions to Snap!, we introduce new
built-in blocks to support parallelism on the front end, i.e., as a
parallel programming API to the end user, and to generate any
target text-based language on the back-end. We accomplish this by
leveraging Snap!’s built-in code-mapping features to generate the
desired text-based code, which can then be compiled and run on the
target back-end system (including the Snap! environment itself).

Figure 8 introduces our new built-in parallelMap block,
which serves as a visual equivalent to the text-based OpenMP omp
parallel pragma block. This parallelMap block integrates
the visual representation of Snap!’s map block with a back-end
implementation that utilizes explicitly parallel HTML5 Web Workers,
instead of Snap!’s serial execution model. The parallelMap block
looks essentially the same as the original built-in function, but the
underlying implementation makes use of a key feature of Snap!:
codification support.

Fig. 8. ParallelMap function.

Codification support in Snap! is an experimental feature that is
used to translate the visual, block-based programs of Snap! into
any text-based programming language [9]. Figure 9 shows a small
sampling of all the mapping constructs needed to translate Snap!
blocks into JavaScript code.

Figure 10 shows a Snap! implementation of the map example
from Figure 6. In this example, the map operation is written explicitly
in long form so that the code translation is easier to follow.

The Snap! code of block, when executed, automatically trans-
lates the script it points to into the corresponding JavaScript code
shown in Figure 11, according to an internal mapping that the
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Fig. 9. Portion of Snap! to JavaScript code mapping.

Fig. 10. Snap! script to map to JavaScript.

user specifies. The map to JavaScript block at the top of the
script, must be executed first to set the internal code mapping to the
JavaScript programming language so that the subsequent execution
of the code of block does the code translation correctly.

Fig. 11. Code mapping to JavaScript.

To change the back-end language to which the Snap! scripts are
being mapped, i.e., if the user wishes to switch from JavaScript to C,
(s)he simply changes the map to JavaScript block to a map
to C block that contains the mappings appropriate for generating
the C code shown in Figure 12.

It is the mapping to JavaScript capability that we utilize in order

Fig. 12. Code mapping to C.

to generate the back-end code necessary to integrate our solution
with HTML5 Web Workers, permitting true parallel execution using
Snap! as a front end. Parallel.js is a small open-source JavaScript
library that can be integrated into any JavaScript project simply by
loading it in the project’s .html file. Parallel.js provides a simple,
straightforward API to HTML5 Web Workers [10]. Figure 13 shows
how easily the library can be used to create Web Workers.1

Fig. 13. Example code using Parallel.js.

In this example, we wish to take each element of the input list and
return its double, the function for which is supplied as mydouble.
The parallel job p is first created by calling new Parallel and
supplying the list over which the workers are to operate. The optional
argument to the new operator specifies the maximum number of Web
Workers to use, which defaults to the number of cores or 4. In this
example, two Web Workers are spawned upon job creation, with each
worker receiving a copy of the mydouble function and the unique
element of the list upon which it is to operate. When all the workers
complete and the entire list has been processed, the result can be
retrieved in the parallel object’s data property. This example shows
Web Workers operating on a hard-coded function, but with Snap!’s
code mapping feature, we are not limited to hard-coded functions;
Web Workers can be passed any function that the user creates on the
fly in the Snap! interface as long as the translation for each Snap!
block into JavaScript is defined. The underlying system takes care of
the rest.

The new parallelMap block introduced in Figure 8 has an
additional input slot that the user can reveal by clicking on the
rightmost right-facing arrow next to the ”inputs” array. This input
allows the user to specify the number of Web Workers to spawn.
Figure 14 shows two lists corresponding to this example of the
parallelMap block. The one on the left shows the first ten inputs
of the original input list to the fig:parallelMap block in the
example, and the one on the right shows the corresponding elements
of the generated results.

1Only the developer of the parallel Snap! environment needs to be aware
of this; it is otherwise transparent to the end user.
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Fig. 14. Input and output lists for ParallelMap.

Fig. 15. Implementation code for parallelMap.

Figure 15 shows a listing of the code that implements the
parallelMap block. The critical step is to perform the code
mapping to create a dynamic function that can be passed to the
Parallel object. If fewer Workers are created than there are
list elements, the current solution is for Workers, as they become
available, to process the next element in the list.

Our approach to adding explicit parallel constructs to Snap!
utilizes important features of Snap!, such as first-class lists, higher-
order blocks, and code mapping. We integrate HTML5 Web Workers
with the Snap! implementation to allow true parallel execution of
parallel tasks.

IV. RELATED WORK

Snap! also includes a form of implicit parallelism through a
feature that enables sprites to spawn clones of themselves that can
operate independently from the parent sprite as well as from each
other. Figure 16 shows the Snap! blocks associated with cloning
as well as the result of running the program shown. We exploit

this native cloning feature of Snap! to create yet another form of
parallelism as explained below.

Fig. 16. Snap! clone blocks.

In related work, Figure 17 shows a parallel concession
stand demo that features another native block we developed
for the Snap! language called parallelForEach. Like the
parallelMap reporter block discussed in the previous section, the
parallelForEach block also operates over elements of an input
list. In this case, however, instead of applying an operator to the list
element, the list element is used as an input value to the script blocks
nested inside the parallelForEach block.

Fig. 17. Snap! interface showing a parallel concessions demo.

The parallelForEach block, shown in closer detail in Fig-
ure 18, operates in two different modes: parallel and sequential. In
parallel mode, which is indicated by the label “in parallel” being
visible, the system spawns clones of the Pitcher sprite to serve drinks
to the waiting cups. The empty input box to the right of the “in
parallel” label of the block allows the user to specify the level of
parallelism, that is, the number of clones that will be spawned to
execute the block. If empty, it defaults to the length of the input list.

During execution, each clone of the Pitcher sprite receives a copy
of the nested script and a different element of the input list to use as
input to the script, which in this case contains the names of the cup
sprites that are awaiting beverage service.

Figures 19 through 21 show subsequent screen shots as the parallel
version of the program progresses. The timer in the upper left shows
the elapsed time.

In this parallel example of the Producer-Consumer paradigm, the
program executes in three seconds using three concurrently executing
clones of the Pitcher sprite that are spawned automatically when the
block process is executed. The capability exemplified in this demo
uses Snap!’s intrinsic cloning feature in a novel way to visually
demonstrate parallel behavior.

By way of contrast, Figures 22 through 24 show what the result
is in sequential mode. Without changing anything else, the user
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Fig. 18. ParallelForEach block in parallel mode.

Fig. 19. Parallel demo at time-step 1.

Fig. 20. Parallel demo at time-step 2.

Fig. 21. Parallel demo at final time-step 3.

Fig. 22. Sequential demo at time-step 3.

can switch the parallelForEach block to sequential mode by
collapsing the parallel input box, as shown in Figure 25. This tells
the underlying system not to spawn clones and that the Pitcher sprite
should execute the script as a normal forEach block by looping over
the input array. In this case, the program takes 12 seconds to execute,
versus the 3 seconds in parallel mode. The parallelForEach
block provides a useful pedagogical tool for visually demonstrating
the benefits of parallelism.

Fig. 23. Sequential demo at time-step 7.

Fig. 24. Sequential demo at time-step 12.

V. CONCLUSIONS AND FUTURE WORK

To address the pedagogical need for parallel computing, particu-
larly in light of its ubiquity, our work seeks to augment the Snap!
visual programming language with capabilities that would enable
the execution of truly parallel processes. We have demonstrated a
new Snap! block that executes in an explicitly parallel fashion. The
implementation allows the user to dynamically specify an operation
of any complexity that can subsequently be translated to the correct
form for any designated back-end system. In the case scenario
demonstrated in this paper, the back-end system is Parallel.js,
which requires a mapping of Snap! blocks to JavaScript.

This same approach can be used to generate the back-end code
for any target system, including those with more sophisticated ar-
chitectures. This would provide a gateway for novice programmers
to learn about and to utilize explicit parallel constructs at an earlier
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Fig. 25. ParallelForEach block in sequential mode.

point in their programming careers than is currently the norm. It is
our position that current parallel constructs in text-based languages
such as C are not at a high enough level of abstraction to be accessible
to the novice user and that such limitations are simply an artificial
barrier that can be overcome through creative solutions. Our use of

Snap! to implement parallelMap successfully demonstrates one
such creative solution and paves the way for many more.
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