A GENERAL SECURITY INFRASTRUCTURE FOR WIRELESS
COMMUNICATION

W. FENG

Los Alamos National Laboratory, P.O. Box 1663, Los Alamos NM 87545, USA
E-mail: feng@lanl.gov

J. AL-MUHTADI
University of lllinois at Urbana-Champaign, 1304 W. Springfield Ave., Urbana, IL 61801,
USA

E-mail: almuhtad@uiuc.edu

The convergence of mobile technology with Intemet coanectivity promises to revolutionize
the way we access services, run applications, and perform daily activities. However, security
in wircless environments still suffers from weaknesses, vulnerabilities, and exposures to
cyber-threats. We briefly examine limitations in existing wircless security schemes and
present a general-purpose security infrastructure that overcomes these shoricomings.

1 Introduction

Mobile computing will revolutionize the way we access services and use computing.
The major advances in mobile devices and wireless networking have converged to
enhance global interconnectivity and to enable the idea of ubiquitous computing
where mobile users can access services, run programs, utilize resources, and harvest
computing power anytime and anywhere. This new generation of ubiquitous and
mobile computing enables the delivery of integrated services and multimedia-
enabled applications that are no longer bound by time or location barriers. These
types of capabilities are among the major driving forces for the 3™ Generation (3G)
of wireless communication and beyond [15].

Although wireless communication provides greater flexibility and mobility,
such features often come at the expense of security. This is because wireless
communication relies on an open and public transmission media over which eaves-
dropping, unauthorized access, user tracking, and other security threats can be
carried out more effectively in comparison with wired networks. Further, since
wireless devices carry significantly less processing power and memory than their
wired counterparts, they are often considered easier targets to launch security attacks
against.

To fully realize the potential of 3G mobile devices and beyond, we must
address the perceived lack of security that exists in current wireless technologics. In

203

204

this paper, we explore the problems and shortcomings in existing wireless security
technologies and propose a general-purpose infrastructure to overcome the limit-
ations, and thus, secure wireless communication more effectively. We refer to our
infrastructure as IRIS: Inter-Realm Infrastructure for Security.

2 Existing Technologies

The Wireless Application Protocol (WAP) [17] is an industry-initiated standard for
delivering information and services to wireless devices such as mobile phones and
handheld devices. WAP defines a set of protocols at the network, transport, session,
and application layers. Among the defined protocols is the Wireless Transport
Layer Security (WTLS), which provides critical security services for mobile de-
vices. WTLS is based on TLS [5] but is optimized for wireless networks. To pro-
vide Internet connectivity, a WAP gateway operates between the wired and wireless
networks. The WAP gateway translates between the WAP protocol, which is opti-
mized for low bandwidth and restricted resources, and the TCP/IP protocol.

iMode [2](8] is a wireless Internet service that uses proprietary protocols owned
by NTT DoCoMo of Japan. iMode has successfully implemented and deployed
TLS (Transport Layer Security, also known as SSLv4) over wireless, enabling
iMode compliant devices to communicate securely with Internet servers.

The 3™ generation mobile system UMTS (Universal Mobile Telecommu-
nication System) [15] focuses on designing an “all-IP” architecture for voice comm-
unication and Internet connectivity. The specification of UMTS suggests the
deployment of mobile IP as the communication protocol for this architecture [16].
As a result, IP security (IPsec) [9] will be used to secure network communication.

2.1 Lack of Reconfiguration

As different generations of mobile communication come and go, mobile devices
with significantly different capabilities will continue to co-exist. Imposing a fixed
security standard (or protocol) for securing wireless communication leads to systems
that are inflexible. Additionally, such systems become vulnerable or even unusable
whenever a security flaw is discovered in the protocol or in one of the employed
cryptographic algorithms, e.g., GSM's AS5/1 encryption algorithm (3] and the 128-
bit version of WEP, which is employed in wireless LANs [14]. Lastly, many
existing approaches offer security as an all-or-nothing option.

For the above reasons, wireless communication needs security services that can
be dynamically reconfigured allowing them to adapt to different scenarios, security
requirements, and computing resources. Therefore, instead of having a single
security protocol that is hardwired into the device, support for multiple security
protocols yields greater flexibility and compatibility. Our approach provides a thin

205

middleware layer that allows applications and services to invoke the needed security
services in a general fashion.

2.2 Security Gaps

Ashley et al. (2] note that security gaps appear when a secure session is terminated
prematurely. Such terminations often occur in wireless communication due to the
multi-mode nature of the communication link between the mobile device and its
final destination, resulting in security gaps that can expose sensitive data. For
example, WAP-enabled devices access Internet services through a WAP gateway.
To enable a “secure™ connection, a session is established between the wireless de-
vice and the WAP gateway using the WTLS protocol, as shown in Figure 1. An
SSL session is then established between the WAP gateway and the application
server providing the requested service. Because of the premature termination and
the re-establishment of the secure session, data resides in an insecure state on the
WAP gateway.

Seame

}" Secure connection -ﬁ' < Sacure connection

Wireless Wired
Network Network
Galaway

Figure 1. The WAP Security Gap.

Because iMode deploys TLS, it is technically possible to establish an end-to-
end secure connection between communicating parties. However, the specifications
of iMode are proprietary, and hence, are not public available. Nevertheless, there is
speculation that iMode also introduces security gaps by establishing two separate
TLS sessions, the first between the mobile device and the iMode server and the
second between the iMode server and the application server [2].

3G's all-IP network for mobile devices calls for the use of IPsec to secure
communications. However, 3G's architecture only uses IPsec between different
network realms and is not truly end-to-end, as shown in Figure 2. Because IPsec
generally operates only between the realm boundaries for institution A and institu-
tion B, security gaps within cach of these realms are introduced.

206

The Internet (with both wired and wireless portions) is divided into different
arcas, each having diverse properties and characteristics such as different link-layer
technologies, media types, security requirements, bandwidth capacities, and so on.
We refer to areas with similar network characteristics as realms (7). Special devices
at the realm boundaries exist to handle the diversities. These devices transparently
fix packet flows between endpoints, handle data transition between realms, and
provide important additional functionality. The added functionality includes (but is
not limited to) mobility support, address translation, packet filtering, and data
compression. Such special devices are referred to as middleboxes. Examples of
middleboxes include WAP gateways, iMode servers, home/foreign agents, firewalls,
proxies, and network address translators (NATs). Unfortunately, all existing
security protocols do not take into account the existence of middleboxes.

Figure 2. Security Gaps in Current [Psec Implementations.

2.3 Communication-Protocol Dependence

Additionally, many existing security protocols depend on a particular commu-
nication protocol. The protocol-dependency limits their portability to other
networking infrastructures. For example, IPsec inherently depends on IP whereas
many wireless environments do not use IP for communication, e.g., WAP and
distributed sensor networks [6).

3 IRIS Architecture

We propose a security infrastructure that incorporates greater flexibility and adapt-
ability, in particular, the ability to capture the dynamics and agility of mobile envi-
ronments. When it comes to security, one size does not fit all. Hence, our proposed
security architecture must be able to adapt to environments with extreme conditions
and scarce resources, ¢.g., distributed sensor networks, and to evolve by providing
additional functionality when more resources become available. The architecture
should also support multiple security mechanisms and negotiate security require-
ments. We base the security services in our IRIS system on available and proven

207

technologies, thereby granting us flexibility and secure interoperability with existing
systems. We, however, plan to enhance these technologies with a component-based
design of a security infrastructure that includes the discovery of middleboxes and the
negotiation of security requirements allowing secure communication over different
realms without the need to introduce security gaps. Figure 3 illustrates the system's
architecture, which is described below.

3.1 The Lightweight Core

IRIS provides a thin and lightweight middleware layer that exports three sets of
APIs that are available for applications’ use: GSS-API (Generic Security Services
API [11]{12], CM-API (Component Management API), and SI-API (Session
Initiation API). These APIs make up the lightweight “core” of the system. This
core can be pre-loaded into all devices. We designed the core to be small enough to
fit into most existing mobile devices. Additional functionality can then be loaded on
demand and plugged into the core. More information about the memory footprint
required by our IRIS prototype implementation will be presented later in this paper.

| l \
} L Ty "‘-'

Plain Soskata \
¥ 4

Loy (oot hbaned)

Figure 3. System Architecture of IRIS.

208

3.2 GSS-API: Generic Security Services API

The GSS-API in IRIS exports a uniform, generic interface for providing security
services from an underlying security mechanism. The underlying security mech-
anism can be any one of the following commonly used, security mechanisms: SPKM
(Simple Public Key Management Protocol), Tiny SESAME [1] (a lightweight
version of a Kerberos extension), or legacy protocols. The GSS-API provides an
interface that is independent from both the underlying security mechanism and the
programming environment. This abstraction enables security mechanisms to be
removed, added, and updated without affecting the applications. Moreover, GSS-
API provides security services that are independent from the communication
protocol suite being used. The GSS-API can be extended to support an arbitrary list
of underlying mechanisms. Further, the extension can take place dynamically such
that the necessary security protocols and cryptographic functions are loaded on
demand. Hence, only the functionality needed at a certain time is loaded. This
method facilitates the incorporation of new security technologies and bug fixes as
they become available.

To support several security mechanisms at once and to be able to query
available mechanisms and load/unload them as necessary, we follow the recom-
mendation of [13] where the GSS implementation consists of two parts: (1) the
GSS-API shim layer, which does not provide any security but exports a standardized
security interface and (2) underlying security mechanisms and supporting crypto-
graphic profiles, which are added to implement the actual security services. SPls
(Service Provider Interfaces) allow the GSS to locate and query the different
security mechanisms and cryptographic functions.

3.3 Loadable Components and the Component Repository

IRIS implements security mechanisms and cryptographic functions as add-on com-
ponents, components that are not part of the pre-loaded lightweight core. Such a
component-based architecture enhances the adaptability of IRIS, allowing it to
unload unnecessary functionality to compensate for shortages in resources and to re-
load that functionality when resources become more available.

IRIS stores the components that implement additional functionality in a com-
ponent repository. To prevent the loading of malicious components, a trusted
certificate authority certifies the repository and digitally signs its components to
prove their authenticity, and hence, protect them against tampering. Mobile devices
can then connect to the repositories to download new functionality or to update their
existing security services.

34 CM-APL: Component Management API

Because the various functionalities (including the security mechanisms and crypto-
graphic libraries) are represented as components, IRIS provides a Component
Management API (CM-API) to facilitate the management, loading, unloading, and
reconfiguration of components as well as the validation of component repositories.
The CM-API exposes an interface for security-aware applications to manage

available components,

The CM-API is also utilized by the GSS-API to load and unload functionality
on demand. End users and applications then use the CM-API to express discre-
tionary security policies by tagging the loadable components as required, preferred,
allowed, or prohibited. This provides end users and applications with flexibility in
defining additional security requirements.

3.5 SI-APL: Session [nitiation APl

The Session Initiation API (SI-API) in IRIS provides a session-layer library for
applications. It can be used for the discovery of middleboxes and for negotiating
security requirements between these middleboxes. We discuss this discovery
process in the next section. This communication session can be based on plain
sockets (in conjunction with GSS-API services to secure transmitted data), or it can
use SSL (or SSL-based) protocols for interoperability with existing systems. The
implementation of such protocols can be loaded dynamically as well.

3.6 Discovery of Middleboxes

IRIS discovers middleboxes by employing a session-signaling protocol, as suggested
in [7]. Requirements for the discovery of middleboxes are addressed in [10]. We
give an overview of how such a protocol works in IRIS. If two endpoints (A and B)
decide to communicate securely, the sender A initiates the session-layer signaling
protocol by sending a special “discover” request along the path to the end
destination (see Figure 4). In this scenario, we assume that endpoint A supports
security mechanism X. Middleboxes along the path reply to the “discover” request
to indicate their presence and their security requirements, if any. In the example
depicted in Figure 4, the first middiebox along the path is a wireless gateway.

The gateway supports mechanisms Y and Z and requires all outbound traffic to
use one of these mechanisms. The gateway responds to the “discover™ request an-
nouncing its existence and the supported security mechanisms (Y and Z). Because
no common mechanisms exist between endpoint A and the gateway, only partial
negotiations take place at this time. Proceeding with the discovery process, even-
tually endpoint B will respond and communicate its presence and supported mech-
anisms (X and V).

210

NAT Gateway Endpoint B
(Mechs: X.Y)

z additional midpoint
security (using Y) |

'o—am-lo-mdumm(mm "

Figure 4. Discovery of Middleboxes.

21

Now, endpoint A can negotiate the establishment of two layers of security: (1)
an end-to-end security session established at endpoint A, using mechanism X, with
the intention to terminate only at endpoint B and (2) an additional midpoint security
session that is established from the wireless gateway to endpoint B, using
mechanism Y, to meet the additional security requirements imposed by the gateway
on outbound traffic. Note that no security gaps are introduced in this scenario.

Similarly, networks may be protected by firewalls or proxies that require certain
forms of authentication before network traffic can pass through them. The discovery
protocol can locate such firewalls and negotiate a sufficient GSS-APl-based
authentication mechanism. Figure 4 depicts a scenario in which a NAT gateway
exists somewhere along the path. Likewise, the NAT announces its pres-ence, and
negotiations kick-in during which time the destination IP address and port are
communicated, allowing the NAT gateway to deliver the data to the original
destination without introducing security gaps (e.g., through tunneling).
Alternatively, Realm-Specific IP (RSIP) (4] and similar protocols can be employed
in place of NAT. RSIP is a proposed standard that allows a system to allocate a
global address from a local gateway. The system then uses that global IP for outside
communication but tunnels the traffic to the local gateway. In the reverse direction,
the gateway maintains a table of allocated addresses and tunnels incoming traffic to
the appropriate local system,

4 System Implementation

Our current IRIS prototype is implemented in pure Java, We use Java due to its
cross-platform compatibility and the fact that Java is rapidly gaining ground in the
mobile world. An increasing number of mobile phones and PDAs already support
Java 2 Micro Edition (J2ME), which is a Java 2 platform that targets wireless and
embedded devices.

For this paper, we chose to implement Tiny SESAME [1] as a loadable,
underlying security mechanism. Tiny SESAME itself is component-based and
written in Java, Other security mechanisms can be added ecasily. Loadable security
mechanisms do not need to be ported to Java to be added to IRIS, but they do have
to be wrapped by a “component wrapper” which facilitates the interfacing between
the IRIS core and the loadable components. New cryptographic algorithms are
implemented as Java cryptographic service providers. Table | shows the memory
footprints consumed by the IRIS prototype.

In our current prototype, the component repository is implemented as a
standalone server that resides on a wired network. Components can be queried and
downloaded remotely. Components are digitally signed by a trusted third party as a
protection against malicious code. Since component repositories can be distributed
on a global scale, we use Jini technology from Sun Microsystems, which provides an

212

infrastructure for discovering and delivering services in a distributed computing

environment.
Tuble 1. IRIS Memory Footprint.

IRIS Core 28 KB
Tiny SESAME (core, no security services 31 KB
loaded)
Tiny SESAME (exportable-level security, 80 KB
password-based authentication)
Tiny SESAME (full-crypto library, X.509 271 KB
certificate authentication)

5

Conclusion

The full potential of mobile computing and wireless communication can only be
realized once an adequate, inter-realm security infrastructure is devised and
deployed. We discussed the requirements of such an infrastructure and designed
and implemented an architecture that provides comprehensive security services in a
component-based fashion, providing greater adaptability, customizability and
backward-compatibility.

References

Al-Muhtadi J., Mickunas D., and Campbell R., A Lightweight Reconfigurable
Security Mechanism for 3G Mobile Devices, Int'l Conf. on 3™ Generation
Wireless and Beyond (2001).

Ashley P., Hinton, H. and Vandenwauver M., Wired versus Wireless Security:
The Internet, WAP, and iMode for E-Commerce, /7th Annual Computer
Security Applications Conference (2001).

. Biryukov A. and Shamir A., Real-Time Cryptanalysis of the Alleged A5/1 on a

PC, Preliminary Draft (1999).

Borella M. and Lo J., Realm Specific IP: Framework, Internet Draft <draft-ietf-
nat-rsip-framework-05.txt> (2000). Work in progress.

Dierks T, and Allen C., The TLS Protocol, RFC 2246 (1999).

. Elson J. and Estrin D., Random, Ephemeral Transaction Identifiers in Dynamic

Sensor Networks, 21” Int'l Conf. on Distributed Computing Systems (2001).
Fisk, M. and Feng, W., Interactions of Realm Boundaries and End-to-End
Network Applications, Los Alamos Unclassified Report 00-3631 (2000).

10.
11.
12.
13.

14,

15.
16.

17.

213

iMode, All About iMode Index, NTT DoCoMo, htp://www.nttdocomo.com
J/index.hitml.

Kent S. and Atkinson R., Security Architecture for the Internet Protocol, RFC
2401 (1998).

Lear E., Requirements for Discovering Middleboxes, Internet Draft <draft-
lear-middlebox-discovery-requirements-00.txt> (2001). Work in progress.
Linn J,, Generic Security Service Application Program Interface, RFC 1508
(1993).

Linn J., Generic Security Service Application Program Interface Version 2,
RFC 2078 (1997).

Smith M., A Service Provider API for GSS Mechanisms in Java, Internet Draft
<draft-ietf-cat-gssv2-javabind-spi-02.txt> (1999). Work in progress.
Stubblefield A., Loannidis J., and Rubin A., Using the Fluhrer, Mantin, and
Shamir Attack to Break WEP, AT&T Labs Technical Report TD-4ZCPZZ
(2001).

UMTS, 3 Generation Partnership Project (3GPP, UMTS Specification),
http://www.3gpp.org/.

UMTS, TSG SA, Architecture Working Group, ftp/ftp.3gpp.org/TSG_AS/
WG2_Arch/.

WAP, The WAP Forum, http://www.wapforum.org.

