Proc. of the 23rd Int’|l Conputer Software & Applications Conf. (COWPSAC 99), Cct. 1999

Dynamic Client-Side Scheduling in a Real-Time CORBA System *

W. Feng
feng@lanl.gov

School of Elec. & Comp. Engg.
1285 Electrical Engg. Bldg.
Purdue University

W. Lafayette, IN 47907

Abstract

CORBA allows objects to communicate, indepen-
dent of the specific techniques, languages, and plat-
forms used to implement the objects. However, due
to the multilevel software layering needed to provide
this independence, CORBA cannot support real-time
applications since it lacks essential quality-of-service
(QoS) features. Recent work on real-time CORBA
includes an off-line scheduled, hard, real-time system
based on rate-monotonic scheduling and an on-line
scheduled, best-effort, real-time system based on the
earliest-deadline-first algorithm. The former provides
QoS guarantees at the expense of run-time scheduling
flexibility while the latter provides the complement. In
this paper, we propose an approach which provides the
advantages of both, that is, QoS guarantees and run-
time scheduling flexibility.

1 Introduction

CORBA is a specification of an architecture and
interface that allows an application to operate on ob-
jects (servers) in a transparent, independent manner,
regardless of platform, operating system or locale con-
siderations. This middleware simplifies and reduces
the cost of application software development by pro-
viding a uniform view of a heterogeneous environment.
The capability of simplifying and reducing the cost
of software development is critical as software cycle
times are getting shorter and shorter for increasingly
complex software. A recent IEEE survey found that
30% of all software development projects are cancelled,
50% are more than 150% over budget, and only 60%
of desired functionality on average is achieved [3].

While CORBA is well-suited for conventional non-
real-time applications, the same cannot be said for
real-time applications. Thus, over the past few years,

*This research was performed while the author was a faculty
member at the University of Illinois at Urbana-Champaign.

Network Engineering, CIC-5
P.O. Box 1663, M.S. B255

Los Alamos National Laboratory
Los Alamos, NM 87545

there has been a movement to standardize middleware
for real-time technologies.

2 Related Work

CORBA provides an environment for programmers
to automate as much of the development process as
possible with maximum code re-use. However, to pro-
vide real-time services, CORBA must be enhanced to
provide specifications for QoS, facilities to enforce QoS
and real-time execution, and better performance.

The work in real-time CORBA has taken two ma-
jor directions: the design of ORBs which can sup-
port hard and soft real-time applications using static
scheduling and the design of ORBs which support dy-
namic scheduling but only with best-effort enforce-
ment of timing constraints in applications. The former
is implemented in a real-time middleware framework
called TAO (The ACE ORB) [4], and the latter is
part of the NRaD/URI real-time CORBA system [1].
While TAO works well for applications like avionics, it
is not as well-suited for real-time applications which
require dynamic admission of clients at run-time or
efficient handling of changing resource requirements.
On the other hand, while the NRaD/URI CORBA
system allows clients to be admitted at run-time, it
makes no guarantees that any of the clients’ deadlines
will be met.

3 Approach

Based on the current state-of-the-art, there ex-
ists no single ORB system that guarantees real-time
performance and supports the dynamic admission of
clients without having to reconfigure the system off-
line. Our approach addresses this void by extending
the TAO system to allow clients to be added (and re-
moved) dynamically via an admissions test at run-time
and would ensure scheduling feasibility.



3.1 Dynamic Clients

To allow new client requests to be handled on-line,
we propose a modification to the real-time scheduling
scheme provided in TAO. In addition to using TAQO’s
Scheduling Service (SS) in a deterministic, static, and
off-line manner for hard real-time applications, we also
instantiate an SS object at run-time for each server
object. This run-time SS object can be viewed as
a scheduling broker [2] for the server object because
it performs schedulability analysis on behalf of the
server object. That is, as with the off-line SS object,
the run-time SS object, or scheduling broker, performs
schedulability analysis on all IDL operations that reg-
ister with it in order to produce a schedule for the
run-time scheduler. If a new request for an IDL opera-
tion on a server object fails the schedulability test, the
client’s request for that IDL operation is rejected. In
short, this extension of TAQ’s SS allows clients’ real-
time tasks to be added to a server object’s run-time
schedule while maintaining real-time performance, i.e.,
meeting deadlines and guaranteeing QoS.

For example, Figure 1 shows a scenario with three
clients, a server, and the server’s scheduling broker.
Before run-time, the off-line SS creates a real-time
schedule for the server based on the QoS parameters of
Clients 1 and 2, as in [4]. At run-time, this schedule is
then used by the server’s run-time scheduler to sched-
ule Client 1 and Client 2 IDL operations (or tasks).
When Client 3 makes a new request for an IDL oper-
ation on the server object, the request must first go
through the scheduling broker for schedulability anal-
ysis in order to see if all the existing IDL operations
from Clients 1 and 2 as well as the new IDL oper-
ations from Client 3 can be scheduled by their dead-
lines. Next, the scheduling broker indicates to Client 3
whether or not it has been admitted to the system with
its current set of QoS parameters. If not, then Client 3
must wait for some of the server’s resources to free up
or modify its QoS parameters and try again. If, on the
other hand, Client 3 is admitted, then the scheduling
broker forwards a new schedule (which accounts for
Client 3’s IDL operations) to the server object for the
run-time scheduler to execute. Once this is done, the
server indicates readiness to Client 3, and at this point,
Client 3 communicates its IDL operations directly to
the server just as Clients 1 and 2 do.

4 Summary

In this short paper, we briefly discussed two end-to-
end quality-of-service frameworks: TAO by Schmidt et
al. and NRaD/URI by Wolfe et al. Both TAO and
NRaD/URI use CORBA to provide a uniform view
of a heterogeneous environment, but they take com-

Proc. of the 23rd Int’|l Conputer Software & Applications Conf. (COWPSAC 99), Cct. 1999

Client 2

Scheduling
Broker

Figure 1: A Run-Time View of the Scheduling Broker

plementary approaches toward realizing a real-time
CORBA. First, TAO uses static real-time schedul-
ing (RM) to meet the hard and soft deadlines of an
avionics system while NRaD/URI uses dynamic real-
time scheduling (EDF) which amounts to a best-effort
approach towards enforcing timing constraints. Sec-
ond, in TAQ, the scheduling is done off-line and is
not amenable to unplanned changes during run-time
whereas the scheduling in NRaD/URI is done on-line
and allows tasks to enter freely without admission con-
trol. Our proposal leverages the advantages of both
approaches and extends the TAO system to handle the
dynamic scheduling and re-configuration of client re-
quests at run time, consequently providing for a more
dynamic system.

References

[1] R. Ginis, V.F. Wolfe, and J. J. Prichard. The de-
sign of an open system with distributed real-time
requirements. In IEEE Real-Time Systems Sym-
posium, 1996.

[2] K. Nahrstedt. Experiences with qos brokerage and
enforcement. In Proceedings of 2nd International
Conference on Multimedia Information Systems,
April 1997.

[3] ObjecTime. Overcoming the crisis in real-time
software. Technical report, White Paper, 1997.

[4] D. C. Schmidt, D. L. Levine, and S. Mungee.
The design of the tao real-time object request bro-
ker. Computer Communications Journal, Summer
1997.



