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ABSTRACT
A so�ware-based approach to achieve high performance within a

power budget o�en involves dynamic voltage and frequency scal-

ing (DVFS). �us, accurately predicting the power consumption of

an application at di�erent DVFS levels (or more generally, di�er-

ent processor con�gurations) is paramount for the energy-e�cient

functioning of a high-performance computing (HPC) system. �e

increasing prevalence of graphics processing units (GPUs) in HPC

systems presents new challenges in power management, and ma-

chine learning presents an unique way to improve the so�ware-

based power management of these systems. As such, we explore the

problem of GPU power prediction at di�erent DVFS states via ma-

chine learning. Speci�cally, we propose a new ensemble technique

that incorporates three machine-learning techniques — sequen-

tial minimal optimization regression, simple linear regression, and

decision tree — to reduce the mean absolute error (MAE) to 3.5%.

1 INTRODUCTION
Power and energy e�ciency have emerged as �rst-order design

constraints in high-performance computing (HPC) systems. For the

DOE, an exascale supercomputer needs to operate under 20 MW [4].

�e increasing prevalence of dark silicon [10] and emerging hardware-
overprovisioned supercomputers have made it harder to safely oper-

ate these systems under their respective power budgets. �is has

necessitated the introduction of power-management systems such

as Intel’s Running Average Power Limit (RAPL) [7] and research

prototypes [6, 19] that are capable of enforcing strict power caps.
Central to such a power-management system is the ability to pre-

dict the power consumption of an application at di�erent processor

con�gurations (e.g., DVFS states) so as to con�gure the system for

best performance while ensuring that power caps are not violated.
While many models for DVFS-based power prediction have been

proposed [9], two emerging trends motivate the need for our work.

First, graphics processing units (GPUs) are increasingly common

in HPC. �e latest ranking of the Top500 supercomputers has 101

GPU-accelerated systems [1]. Second, recent advances in machine

learning (ML) have necessitated a re-examination of data-driven

modeling in many areas of computing, including system design. As

such, we investigate the applicability of several machine-learning
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(ML) techniques in predicting the power consumed by a GPU at

di�erent voltage-frequency se�ings (or P-states). Our contributions

in this paper include the following:

• Accurate power prediction of a GPU at di�erent DVFS states. We

explore eight (8) prediction techniques to predict the GPU’s

power consumption at di�erent DVFS states.

• Statistically rigorous comparison of di�erent machine-learning
techniques. Unlike previous studies that only compare the mean
error of a few modeling techniques, we use Tukey’s HSD test to

compare multiple approaches in a statistically rigorous manner.

• Design of an ensemble approach for GPU power prediction. We are

among the �rst to propose and evaluate di�erent ensemble de-

signs of machine-learning (ML) techniques for DVFS prediction.

2 MOTIVATION
Our paper seeks to predict the power consumption of an application

at di�erent system con�gurations (i.e., DVFS states). As such, we

motivate the importance of doing so through use cases, and we

articulate the challenges to be tackled.

Power Capping. Modern computing systems can draw more

power than they can safely sustain. To illustrate the need for power

capping, we show the power pro�le of an application on a processor

running at three di�erent frequencies (f 1, f 2, f 3) in Fig. 1. With

an enforced power cap of 120W, a conservative approach would set

the machine at f 2 to guarantee that the power cap is never violated.
However, if a power predictor can accurately predict the power at

di�erent frequencies, the power management system can operate

at f 3 for phase I, f 2 for phase II, and back to f 3 for phase III.
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Figure 1: Power consumption at di�erent frequencies

Energy-Performance Trade-o� Analysis. �e energy cost of

operating today’s HPC systems is about 25% of the acquisition

cost [11]. Reliable prediction of power and performance can enable

judicious trade-o�s between energy and performance to lower the

total cost of operation (TCO). An alternative approach is to exhaus-

tively explore the con�guration space for the ideal frequency for an
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application. However, with numerous con�guration options avail-

able in today’s HPC system, the energy cost of �nding the correct

con�guration itself could exceed the energy cost of running the

application. �us, automatically predicting power consumption at

di�erent con�guration points via modeling becomes indispensable.

Design Space Exploration. �e ability to accurately estimate

power and performance at di�erent hardware con�gurations can

accelerate design-space exploration, e.g., estimating power con-

sumption when the L2 cache size is doubled (and hence, its uti-

lization level is halved for an application) while keeping all other

architectural aspects the same. Low-level power estimation tech-

niques are generally too slow for fast design-space pruning. �us,

research into o�-line high-level prediction techniques can lead to

cheaper and faster design-space exploration.

Challenges. Previous work, which modeled GPU power con-

sumption at di�erent DVFS states via ML, operated only at the level

of a GPU kernel [18]. While our ML approach di�ers along three

di�erent fronts: (1) modeling parameters, (2) breadth of techniques

evaluated, and (3) target metrics modeled, the most fundamental

di�erence is the level of problem formulation. While previous work

tries to predict the power consumption of individual GPU kernels

only, we tackle the more challenging problem of predicting the

power consumption of an application as a whole. In [18], the indi-

vidual kernels can exhibit irregular scaling properties with respect

to frequencies. �is scaling behavior gets more complex when an

application has several kernels, each of which is scheduled in paral-

lel and has di�erent computational and memory bounds. �us, this

paper aims to capture the complex interaction of frequencies and

resource utilization levels with respect to performance and power.

3 METHODOLOGY
Fig. 2 outlines our approach, which consists of a training phase and

a testing phase, as described below, followed by details on our data

collection, modeling techniques, and evaluation methods.

Training 
Applications

Run multiple times at 
different configurations

PC 1 PC 2 … PC n Power

Training data set

Model construction

Test 
Applications

Run once at reference 
configuration

Performance counters 
and power Performance counters from 

reference configuration

Predicted power

Target 
Configuration

GPU

ML/Statistical Model

Training Phase Testing Phase

Figure 2: Overview of our approach

Training Phase. We run our training applications, shown in

Table 1, on an NVIDIA �adro P4000 GPU and collect the average

power consumption and several performance counters at di�erent

con�gurations. For the �adro P4000, there exist 288 possible

combinations of GPU core frequency and memory frequency. �us,

in the training phase, each application must be run a few hundred

times to collect the necessary data for modeling; this data collection

is only a one-time cost. �is data is then fed as input to the machine-

learning model, which is initially tuned with the training data itself.

Table 1: Training Applications

Source Applications
SHOC Device Memory, Sort, Scan, SpMV, Reduction

Rodinia Hu�man, HotSpot

CUDA SDK Matrix Multiplication, Transpose, Radix Sort, Interval,

Line of Sight, Merge Sort

Testing Phase. A�er the model is constructed, it is tested using a

di�erent set of applications, as noted in Table 2. We collect perfor-

mance counters for the test applications on a reference con�gura-

tion and predict the power consumption at any target con�guration

using our machine-learning model.

Table 2: Test Applications

Source Applications
SHOC FFT, MaxFlops, BFS, Triad

Rodinia Stream Cluster, Gaussian

CUDA SDK �ad Tree, Scalar Product, Image Segment, Eigen Values

3.1 Data Collection
During the training phase, we pro�le the target GPU’s power con-

sumption every 100ms using its built-in power meter via nvprof.
During both the training and testing phases, we pro�le the uti-

lization level of the following units using nvprof: (1) DRAM, (2)

instruction issue slot, (3) L2 cache, (4) texture cache, (5) texture

unit, (6) special functional unit (SFU), (7) load/store unit, (8) control

unit, (9) single-precision (SP) unit, and (10) double-precision (DP)

unit. �ese performance counters represent every major compo-

nent within the GPU except the register �le, which does not have an

explicit performance counter, associated with it, but its utilization

should track the utilization of other units.

In our experimental setup, while power is collected at the ap-

plication level, the performance counters (i.e., utilization levels)

are pro�led at the kernel level by nvprof. �us, we aggregate

the kernel-level utilization metrics into an application-level metric:

Application level utilization o f a resource =∑n
i=1(Resource utilization level o f kerneli ∗Time spent in kerneli )∑n

i=1Time spent in kerneli

3.2 Modeling Techniques
Initially, we study eight di�erent machine-learning techniques —

ZeroR, simple linear regression (SLR), k-nearest neighbors (KNN),
bagging, random forest, sequential minimal optimization regres-

sion (SMOreg), decision tree, and neural networks — to predict

GPU power consumption at di�erent frequencies. �ese techniques

cover a breadth of approaches in predicting continuous variables

and forms the fundamental building blocks in other prediction prob-

lems. We then use these blocks to construct ensemble models, as
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described in §5. While we used R and weka so�ware for evaluating

the accuracy of the various models, we use terminology from weka
for the sake of consistency. While the speci�c parameter values

used for the various approaches are elided due to space constraints,
1

we empirically determined values so as to minimize error within

the training dataset and not the test dataset.

4 SUMMARY OF RESULTS
Fig. 3 shows the mean absolute error (MAE) percentage and the

error bars. SMOreg shows the best accuracy with a MAE at 4.5%, fol-

lowed by REPTree and KNN at 5.5%, SLR at 6.0%, and RandomForest
and Bagging at about 7.5%. NeuralNet performs the worst with a

MAE of 15% due largely to the need for a huge training data set for it

to be an e�ective method. Relative to maximum error, SLR performs

the best with 15% MAE, followed by Bagging at 17% and SMOreg
at 20%. KNN delivers the worst results as it only considers nearest

points for prediction, which can be inaccurate due to the complex

relationships between the predictors and response variables.

Figure 3: Percent prediction errors for di�erent algorithms

Statistical Signi�cance of Results. In order to statistically com-

pare the prediction accuracy of the di�erent ML algorithms, we use

Tukey’s HSD (honest signi�cant di�erence) test. �is test gives us

the pairwise statistical di�erence between the mean error values

predicted by di�erent algorithms.

Fig. 4 presents the results of Tukey’s HSD test. �e bars show the

95% con�dence interval between the lowest and highest estimate

of the di�erence between percentage MAE of algorithm pairs. For

example, for the comparison between ZeroR and SMOreg, we can
say with 95% con�dence that the MAE di�erence between ZeroR
and SMOreg is 2% at the least and 7.5% at the most. When the lines

in this graph cross the zero axis, it means that the di�erence in the

prediction error is not signi�cant enough to say that one method is

be�er than the other (i.e., the result is not statistically signi�cant).

From Fig. 4, we also observe that SMOreg, SLR, KNN, and REPTree
statistically exhibit be�er accuracy than the baseline ZeroR and

that NeuralNet performs worse than every other ML technique.

5 AN ENSEMBLE METHOD FOR GPU POWER
PREDICTION

Because solutions in other areas, e.g., tra�c forecasting [17], deliver

be�er accuracy and more stable results by creating an ensemble

1
�e parameter values can be found in the longer technical report [8].

Figure 4: Tukey HSD con�dence intervals for MAE di�er-
ence between algorithm pairs

methodology, we propose and study such an approach to address

the problem of GPU power prediction.

5.1 Methodology
To create our ensemble model, we calculate the weighted average of

the “best” base methods. In spite of the simplicity of this approach,

it is more accurate than complex voting mechanisms [17]. �ere

exist many approaches to choose the base methods to construct

the ensemble model (e.g., lowest mean error, lowest maximum

error, and so on). In our approach, we rank the base methods in

increasing order of MAE and progressively add more base methods

to the ensemble. We also investigate unweighted and weighted

averaging of the base methods. For the weighted averages, the

weights are based on the reciprocal values of the MAE of the base

methods. �at is, Ensemble ′s Prediction =∑n
i=1(Alдorithmi Prediction ∗ 1

Alдor ithmiPercentaдeMAE )∑n
i=1

1

Alдor ithmiPercentaдeMAE

�e six ensembles we created and studied are as follows:

• top2: Linear average of predictions made by the two most accu-

rate individual methods – SMOreg and SLR.
• top2 (weighted): Weighted average of the two most accurate

methods (SMOreg and SLR), where the weights are inversely pro-

portional to their respective MAE.

• top3: Linear average of predictions made by the three most

accurate individual methods – SMOreg, SLR, and REPTree.
• top3 (weighted): Weighted average of top three methods

• all: Linear average of all seven methods.

• all (weighted): Weighted average of all seven methods.

5.2 Experimental Results
Fig. 5 shows the prediction accuracy of the various ensembles we

created and compares them against the most accurate base method

(i.e., SMOReg with an average MAE of 4.5% and maximum of 20%).
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We observe that for all the ensemble methods, the MAEs are much

lower than with SMOReg and that the MAE decreases as the number

of base methods increases but only up to a certain point. We obtain

the most accurate results with three base methods, i.e., top3with an
MAE of 3.5% and maximum error of 10.5%. On the right-hand side

of Fig. 5, we see the impact of weighting the base methods based

on their individual accuracy. top3 (weighted) shows an MAE of

3.4% and maximum error of 11%. Weighting the base methods does

not a�ect the results initially when the number of methods is small;

the methods all show similar MAEs (and hence, similar weights).

However, as we include more base methods in the ensemble and

as the accuracy of those methods diverge, calculating a weighted

average of the base methods improved the ensemble’s accuracy.

Figure 5: Percent prediction error for various ensembles.
Note: top2→ SMOreg+SLR, top3→ SMOreg+SLR+REPTree

6 RELATEDWORK
Many statistical and ML techniques have been explored in the past

for power prediction (e.g., linear regression [5], decision trees [12],

clustering techniques [5], support vector machines [13], evolu-

tionary techniques [14], and neural networks [18]), but they have

largely applied to CPUs only (see [9]). Most work on GPU power

modeling [3, 15, 16] focuses on estimating the power consumption

of a GPU in its reference con�guration. Our work predicts the

power consumption across many GPU machine con�gurations – a

signi�cantly harder problem.

Abe et al. [2] worked on a similar problem where they used a

linear regression model to predict the power consumption of a GPU

for di�erent con�gurations. However, their approach only yielded

an average error of over 20% compared to 3.5% for our ensemble

method. Wu et al. [18] used the K-means algorithm and neural

network to predict power consumption of a GPU while achieving

an accuracy comparable to ours. Our work di�ers from theirs in

the following ways: (1) �eir model requires knowledge of power

consumption at a reference point even for the test application,

which we do not need. (2) We predict the power consumption of

applications rather than GPU kernels, which have simpler scaling

curves. (3) Our model requires only a fraction of the data points for

modeling compared to theirs. In addition, we present a statistically

rigorous study of di�erent ML techniques, which is broader than

any other previous study to date (including those done on CPUs).

7 CONCLUSION
We presented a rigorous comparison of di�erent machine-learning

(ML) techniques to predict the power consumption of an appli-

cation at di�erent GPU con�gurations. Our evaluation showed

that SMOreg delivers the best results with a mean error of 4.5%,

and RandomForest delivers the most consistent results at di�erent

frequencies. To further improve the accuracy of prediction, we de-

signed several ensembles approaches from the base ML techniques.

We found that the most accurate ensemble is a combination of the

SMOreg, SLR, and REPTree methods, which reduced the mean abso-

lute error (MAE) prediction from 4.5% to 3.5% and maximum error

from 15% to 11%. In the future, we plan to use our model to improve

the performance of a power-capped heterogeneous system.
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