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Despite decades of research, effective treatments for most cancers remain elusive. One reason is that 
different instances of cancer result from different combinations of multiple genetic mutations (hits). 
Therefore, treatments that may be effective in some cases are not effective in others. We previously 
developed an algorithm for identifying combinations of carcinogenic genes with mutations (multi-hit 
combinations), which could suggest a likely cause for individual instances of cancer. Most cancers are 
estimated to require three or more hits. However, the computational complexity of the algorithm 
scales exponentially with the number of hits, making it impractical for identifying combinations of 
more than two hits. To identify combinations of greater than two hits, we used a compressed binary 
matrix representation, and optimized the algorithm for parallel execution on an NVIDIA V100 graphics 
processing unit (GPU). With these enhancements, the optimized GPU implementation was on average 
an estimated 12,144 times faster than the original integer matrix based CPU implementation, for the 
3-hit algorithm, allowing us to identify 3-hit combinations. The 3-hit combinations identified using a 
training set were able to differentiate between tumor and normal samples in a separate test set with 
90% overall sensitivity and 93% overall specificity. We illustrate how the distribution of mutations in 
tumor and normal samples in the multi-hit gene combinations can suggest potential driver mutations 
for further investigation. With experimental validation, these combinations may provide insight into 
the etiology of cancer and a rational basis for targeted combination therapy.

Cancer is one of the leading causes of death in the US with a projected 606,880 deaths in 20191. Despite signifi-
cant progress, effective treatment in advanced cases remain elusive, with most progress coming from prevention 
and early detection2,3. One of many possible reasons is that, although cancer is known to be caused primarily by 
multiple genetic mutations4–9, we cannot in general determine the specific combination of mutations responsible 
for a given instance of cancer10,11. Knowing the specific combination of hits in individual cases would allow us to 
develop more effective targeted combination therapies10,11. Although there are other factor that may contribute 
to cancer growth, such as tumor microenvironment, epigenetic modifications, gene fusion, germline defects, etc., 
the focus of this work is on somatic mutations12–18.

Current computational approaches search for cancer genes and mutations that increase cancer risk (the prob-
ability of getting cancer)18–29. In addition to other considerations, these methods search for genes that are signifi-
cantly more frequently mutated in tumor samples compared to an estimated background mutation rate. However, 
mutations in any one of these genes by themselves do not always result in cancer, suggesting that carcinogenesis 
may require additional mutations, as illustrated by the following exmples. Germline mutations in BRCA genes 
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increase the risk of breast cancer. Although 72% of women with this mutation are likely to be diagnosed with 
breast cancer by age 80, the other 28% of women are unlikely to get the disease4. In addition, none of the women 
with this inherited mutation are likely to get cancer before age 20, suggesting that additional genetic defects (hits) 
may be required for carcinogenesis. Similarly, individuals with APC mutations have a 7% risk of developing famil-
ial adenomatous polyposis, representing colon cancer predisposition, by age 21, which increases to a 99% risk by 
age 805. The Li Fraumeni syndrome is another example where germline P53 mutations are associated with early 
onset cancer predisposition (e.g. soft tissue and bone sarcomas). However, cancer penetrance is less than 20% for 
children while approaching 80% by age 70, indicating that multiple hits are required for carcinogenesis6–8. The 
classic example for the multi-hit hypothesis is the study of retinoblastoma by Knudson9. The study showed that 
mutations in a single copy of the RB1 gene increases the risk of retinoblastoma, but a second mutation in the other 
copy of the gene is required for carcinogenesis. Mathematical models based on cancer incidence and mutation 
data suggest that combinations of two–eight oncogenic mutations are required for carcinogenesis, depending 
on cancer type30–37. In vitro studies have investigated the role of combinations of multiple genetic defects38–40. 
However, these studies consider known combinations, and are not designed to discover novel combinations.

Unlike computational approaches that search for driver mutations and cancer genes that increase the risk of 
cancer18–29, we previously developed an approach that explicitly searches for combinations of genes with muta-
tions that are likely to be the cause of specific instances of cancer41. A set of 2-hit combinations identified by the 
algorithm was able to differentiate between tumor and normal tissue samples with 90% overall sensitivity and 
93% overall specificity. Here, we extend the algorithm to identify combinations of three or more hits, since most 
cancers are estimated to require more than two hits30–37. However, the computational complexity of the algorithm, 
which is O G C N N( ( ))h

t n× × + , limits the combinations that can be practically identified to 2-hit ( =h 2) com-
binations, where G 20000≈  is the number of genes with mutations in the input data, C is the number of combi-
nations identified by the algorithm, Nt is the number of input tumor samples, Nn is the number of input normal 
samples, and h is the number of hits. For example, it took 39 minutes to calculate a set of 2-hit combination for 
breast cancer (BRCA) using 911 tumor samples from the cancer genome atlas (TCGA). The algorithm was run on 
an Intel Xeon E5-2630 2.1 GHz central processing unit (CPU) with 256 GB memory. We estimate (as described in 
Methods) that it will take 253 days to calculate a set of 3-hit ( =h 3) combinations for BRCA, without any addi-
tional optimization or parallelization.

The goal of this work is to optimize the multi-hit algorithm to identify combinations of more than two hits 
in a practical time frame (<1 month). Achieving this level of speedup requires parallel execution across a large 
number of processors. Graphical processing units (GPUs) with thousands of processors are a natural choice for 
massively parallel processing42. However, GPUs have three key limitations that must be addressed to achieve 
significant speedup. (1) Speed of memory access is significantly slower on GPUs compared to CPUs, e.g. on the 
Intel Xeon E5-2630 CPU L1 and L2 cache access require 4 and 11 cycles respectively43, compared to 28 and 193 
cycles for the NVIDIA V100 GPU44. Therefore, speedup from parallelization will be offset by slower memory 
access for algorithms that require access to a large amount of data from memory. (2) GPUs have limited amount 
of accessible memory, e.g. 32GB for the NVIDIA V100, compared to 1.5TB for Intel Xeon E5-263045. (3) On 
NVIDIA GPUs, divergent branching during execution will result in unbalanced processor load, which also limits 
the achievable speedup from parallelization46–50. To address these GPU limitations, we employed two general 
strategies. (1) We used a compressed binary representation for the Gene-Sample Mutation matrix (described 
in Methods), which reduced memory requirement by 16-fold and resulted in an average 10 fold speedup (see 
Results). (2) We restructured and optimized the algorithm for parallel execution on a NVIDIA Tesla V100 PCIe 
graphical processing unit by minimizing divergent branching in addition to other optimizations described in 
the Methods section. The compressed binary representation alone resulted in a 0.4–18 fold speedup for the 2-hit 
algorithm, compared to the original integer matrix, depending on cancer type. This additional speedup, and the 
associated increase in software complexity, was not necessary for the identification of 2-hit combinations, and 
insufficient by itself for the identification of 3-hit combinations on the CPU. However, the optimized GPU imple-
mentation combined with the compressed binary representation was 0.7–224 times faster than the original CPU 
based integer matrix implementation, for the 2-hit algorithm, depending on cancer type. The 3-hit algorithm 
was an estimated 29–33,690 times faster for the optimized GPU implementation compared to the original CPU 
implementation. For the breast cancer samples mentioned above, we were able to compute a set of 3-hit combina-
tions in 23 minutes with the optimized GPU implementation compared to the estimated 253 days for the original 
CPU implementation. The set of 3-hit combinations identified using a randomly partitioned training set was 
able to differentiate between tumor and normal samples in separate test data with overall sensitivity of 90% (95% 
confidence interval (CI) = 88–91%) and overall specificity of 93% (95% CI = 92–94%). Despite this relatively 
high accuracy, the multi-hit gene combinations identified by our algorithm may not represent cancer genes (see 
Discussion). Further experimental validation will be required to determine if mutations within these genes may 
play a role in cancer genesis or progression.

The remainder of this manuscript is organized as follows. In the Results section, we describe the speedup 
achieved by the optimized parallel implementation, the breakdown of the contribution of different optimiza-
tions, and the accuracy of the multi-hit combinations identified. In the Discussion section, we illustrate how 
the distribution of somatic mutations in tumor and normal samples in the gene combinations can be used to 
identify potential driver mutations for further investigation. Our approach and results are summarized in the 
Conclusions. In the Methods section, we describe the multi-hit algorithm, the compressed binary representation 
of the input matrix, the mapping of the algorithm to the GPU, and its optimization for parallel execution.
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Results
Cancer is estimated to be caused by a combination of a small number of (two to eight) genetic mutations (hits)30–37.  
We had previously developed an algorithm for identifying a set of 2-hit combinations of genes with mutations, 
that was able to differentiate between tumor and normal samples with high sensitivity and specificity41. Due to its 
computational complexity the algorithm is impractical for identifying more than two hits41.

To identify combinations of more than two hits, we restructured and optimized the algorithm for parallel 
execution on a GPU, as described in the Methods section. These modifications can be grouped into two broad 
categories: compressed binary matrix representation and GPU parallelization.

The compressed binary matrix optimization and GPU parallelization resulted in an average speedup of 
12,144x for the 3-hit algorithm, relative to the original integer matrix based CPU implementation. With this 
speedup, we were able to identify 3-hit combinations for the 32 cancer types for which data was available in 
TCGA. In addition, we were able to identify 4-hit combinations for 14 cancer types for which the run time was 
less than 15 days. The accuracy of the 3-hit combinations was found to be comparable to the 2-hit combinations, 
with overall sensitivity of 90% (95% CI = 88–91%) and average specificity of 93% (95% CI = 92–94%).

Optimization and parallelization reduces run time for the 2-hit algorithm. Figure 1(a) shows that 
the run time for identifying 2-hit combinations ranges from 5–33 sec for the optimized GPU implementation 
compared to 7–223 sec for the compressed binary CPU implementation and 3–3,723 sec for the original matrix 
CPU implementation. The optimized GPU implementation of the 2-hit algorithm is on average 68 times faster 
than the original CPU implementation, with the speedup ranging from 0.7–224x (Fig. 1(b)). However, due to the 
relatively large fixed data load time, these speedup numbers understate the effect of the optimization and paral-
lelization described in the Methods. On average, the data load time for the 2-hit optimized GPU implementation 
is 85% of the total run time. The speedup values for the 3-hit algorithm, where the above average data load times 
are 14% of total run time for the optimized GPU implementation, is more closely representative of the effect of 
optimization and parallelization. Detailed run times for each cancer type, with a breakdown of the data load time, 
for different implementations of the 2-hit algorithm are shown in Supplementary Table S2.

Run time reduction permits identification of 3-hit combination. Figure 2(a) shows that the run 
time for identifying 3-hit combinations ranges from 4 sec to 23 min for the optimized GPU implementation com-
pared to 46 sec to 10 days for the compressed binary CPU implementation. For the original integer matrix CPU 
implementation, the run time ranges from 110 sec to an estimated 282 days. The optimized 3-hit algorithm on 
the GPU results in an estimated 29 –33,690 fold speedup compared to the estimated time for the original matrix 
based CPU implementation (Fig. 2(b)), with an average 12,144 fold estimated speedup. Detailed run times and 
speedup for each cancer type for different implementations of the 3-hit algorithm are shown in Supplementary 
Information Tables S4 and S5.

Figure 1. Comparison of different implementations of the multi-hit algorithm for identifying 2-hit 
combinations. (a) Run time for the original matrix implementation on the CPU ranges from 3–3723 sec 
compared to 7–223 sec for the compressed binary CPU implementation and 5–33 sec for the optimized GPU 
implementation. (b) Speedup is on average 10-fold for the compressed binary CPU implementation and 68-fold 
for the optimized GPU implementation compared to the original matrix CPU implementation. Names for the 
cancer types shown along the x-axis are listed in Table S1.
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Run time reduction permits identification of some 4-hit combination. With the reduction in run 
time resulting from the optimization and parallelization described in the Methods section below, we were able to 
identify 4-hit combinations for some cancer types. For cancer types where the number of genes with mutations 

<G 19000, it takes less than 15 days to identify 4-hit combinations. Detailed run times for these cancer types are 
shown in Supplementary Information Table S6. To identify 4-hit combinations for all cancer types, additional 
optimization and parallelization across multiple GPUs will be required, which will be presented in a separate 
forthcoming study.

Contribution of optimization techniques to overall speedup. The speedup reported above results 
from five key enhancements: compressed binary representation of the Gene-Sample Mutation matrices, parallel 
execution across multiple GPU cores, removal of branch and bound logic, computation of a single two-gene 
combination per thread, and mapping upper triangular matrix of two-gene combinations to thread index. See 
Methods section below. The breakdown of the contribution due to each of these enhancements is shown in 
Fig. 3. The speedup contribution of each enhancement is calculated as the difference in average speedup for the 
implementation of each enhancement compared to the original matrix CPU implementation See Supplementary 
Tables S3 and S5. On average, the largest contribution to speedup for the 2-hit algorithm is due to GPU paralleli-
zation (Fig. 3(a)). The largest contribution for the 3-hit algorithm is due to mapping GPU threads to the upper 
triangular matrix of two-gene combinations (Fig. 3(b)). The contribution due to the first three factors – com-
pressed binary representation, GPU parallelization and removal of branch and bound logic – is roughly consistent 
between the 2-hit and 3-hit algorithms. However, the enhancements for a single two-gene combination per thread 
and upper triangular thread mapping slow down the 2-hit algorithm. This is because, for the 2-hit algorithm, 
speedup due to higher processor utilization from these enhancements are offset by the additional operations and 
global memory access required to implement these modifications.

Multi-hit combinations differentiate between tumor and normal samples with high accuracy.  
The 3-hit combinations identified using a 75% randomly selected Training set identified an average of 7 com-
binations per cancer type with a total of 335 unique genes, compared to 8 combinations per cancer type with a 
total of 310 unique genes for the 2-hit combinations. The identified combinations are listed in Supplementary 
Tables S7–S9. The 3-hit combinations were able to differentiate between tumor and normal samples in a separate 
Test set with overall sensitivity of 90% (95% CI = 88–91%) and overall specificity of 93% (95% CI = 92–94%), as 
shown in Fig. 4(b). This was comparable to the overall sensitivity and specificity for 2-hit combinations with sen-
sitivity = 90% (95% CI = 89–92%) and specificity = 94% (95% CI = 93–95%), as shown in Fig. 4(a). The difference 
in average sensitivity and specificity between 2- and 3-hit combinations was −6% (95% CI = −13.5–+1.5%) and 
−1% (95% CI = −3.6–+1.6%) respectively, with corresponding p-values of 0.12 and 0.44 respectively. Accuracy 
values are listed in Supplementary Tables S10 and S11. Since we did not see any improvement in accuracy for 3-hit 

Figure 2. Comparison of different implementations of the multi-hit algorithm for identifying 3-hit 
combinations. (a) Run time for the original matrix CPU implementation ranges from 110 sec to an estimated 
282 days, compared to 46 sec to 10 days for the compressed binary CPU implementation and 4 sec to 23 min 
for the optimized GPU implementation. Run times for the original matrix CPU implementation requiring over 
30 days were estimated as described in Methods. (b) Speedup for the compressed binary CPU implementation 
ranged from 2x–28x, and from 29x–33,690x for the optimized GPU implementation. Names for the cancer 
types shown along the x-axis are listed in Table S1.
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combinations compared to 2-hit combinations, we speculate that additional accuracy improvement will require 
examining individual mutations within genes, as discussed below.

Discussion
Not all mutations within a cancer gene are oncogenic22,23,25,28. However, to make the problem of identifying 
multi-hit combinations tractable, the algorithm searched through all possible gene combinations, instead of all 
possible combinations of mutations. In the tumor sample data used, there were over 400,000 unique somatic 
mutations across ~20,000 genes. It is theoretically possible to search all possible combinations of 400,000 protein 
altering somatic mutations instead of combinations of 20,000 genes with somatic mutations. However, searching 

Figure 3. Average contribution of optimizations and parallelization to speedup. Breakdown of contributions 
due to compressed binary representation, GPU parallelization, removal of branch and bound logic, single two-
gene combination per thread, and mapping of upper triangular (UT) gene combination to a sequential thread 
ID. (a) Breakdown of 2-hit speedup. (b) Breakdown of 3-hit combinations. Contribution due to compressed 
binary representation is 15x for 3-hits which is not visible in the scale of the figure.

Figure 4. Accuracy of 2- and 3-hit combinations. (a) Sensitivity varies from 63–100% for 2-hit combinations, 
and from 50–100% for 3-hit combinations, excluding KICH for which there were only a total of 9 tumor 
samples. (b) Specificity varies from 79–100% for 2-hit combinations, and from 78–100% for 3-hit combinations. 
Sensitivity and specificity were calculated on a randomly selected 25% Test data set. Error bars represent 95% 
CI. Cancer types with relatively large 95% CI (CHOL, DLBC, KICH, KIRP, MESO and UCS) are due to small 
sample size (total of 44, 43, 9, 88, 69 and 46 samples respectively).
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all possible combinations of 400,000 mutations would increase the computational complexity for identifying 3-hit 
combinations by over six orders of magnitude, making the problem computationally intractable. In addition, 
since there can be multiple different carcinogenic mutations within a gene, combinations of individual mutations 
will occur less frequently than combinations of genes with mutations, further increasing the challenge of identi-
fying carcinogenic combinations within this much larger set of possible combinations. Therefore, we chose to first 
focus on combinations of genes with mutations. Mutations within these gene combinations can then be examined 
to identify potential driver mutations for further investigation, as illustrated below.

Consider for example, the 2- and 3-hit combinations identified for ovarian serous cystadenocarci-
noma (OV) (Figs. 5 and 6). The most commonly occurring 2- and 3-hit combination are TP53+KCNB1 and 
TP53+KCNB1+TTN respectively. Mutations in TP53 and KCNB1 occur in 279 of 317 OV tumor samples and 
mutations in TP53, KCNB1 and TTN occur in 271 of 317 OV tumor samples. The distribution of protein altering 
somatic mutations in TP53, KCNB1 and TTN for the 271 OV tumor samples containing mutations in all three 
genes are shown in Figs. 7(a), 8(a) and 9(a), respectively. The distribution of protein altering somatic mutations 
in TP53, KCNB1 and TTN for 333 normal samples are shown in Figs. 7(b), 8(b) and 9(b), respectively. The differ-
ence in the frequency of individual mutations between tumor and normal samples may suggest potential driver 
mutations for further investigation.

The TP53 gene codes for the Tumor Protein P53. Mutations in TP53, a tumor suppressor gene, have been 
extensively implicated in many cancers, including OV51–56. In the 271 OV tumor samples containing the 
TP53+KCNB1+TTN 3-hit combination, TP53 contains on average 1.8 protein altering somatic mutations per 
sample, compared to 0.15 mutations per sample in normal samples, with clear differences in the distribution 
of these mutations (Fig. 7). The three most frequently occurring mutations in the tumor samples (amino acid 
positions R248, R273, and R175) are potential driver mutations, since they rarely occur in normal tissue (Fig. 7). 
The mutation frequency at R248, R273 and R175 are 0.08, 0.07 and 0.06 per tumor sample, compared to 0.00 per 
normal sample (p-value < 0.0001 for the difference in proportions). In fact, previous studies have shown that the 
R248W, R273H and R175H mutations not only cause a loss of P53-based tumor suppressor activity, but also result 

Figure 5. 2-hit combinations identified for ovarian serous cystadenocarcinoma (OV). The outer circle shows 
individual chromosomes with corresponding ideograms shown in the inner circle. Genes that comprise 2-hit 
combinations are labeled inside the circle. Each 2-hit combination is identified by differently colored lines 
connecting two genes. The red line represents the gene combination discussed in further detail. This image was  
generated using RCircos87.
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in genomic instability causing gain of oncogenic activity57–59. On the other hand the two most frequently mutated 
amino acid positions in normal samples, T377 and T378, are likely to be passenger mutations. Normal tissue 
mutation frequencies of 0.07 and 0.05 per normal sample are comparable to tumor tissue mutation frequencies of 
0.04 and 0.05 per tumor sample for T377 and T378, respectively (Fig. 7).

The KBNB1 gene codes for the Potassium Voltage-Gated Channel Subfamily B Member 1 protein. KCNB1 
has been previously identified as a prognostic factor in gliomas due to its tumor suppressor function60. It contains 
on average 2.14 protein altering somatic mutations per tumor sample in the 271 OV samples containing the 
TP53+KCNB1+TTN 3-hit combination, compared to 0.03 mutations per normal sample (p-value < 0.0001) 
(Fig. 8). The two most frequently occurring mutations at K776 and R736 are potential driver mutations worthy 
of further investigation. The mutation frequencies at these positions are 1.37 and 0.41 per tumor sample com-
pared to 0.00 and 0.003 per normal sample, respectively (Fig. 8). Although KCNB1 has been extensively studied, 
primarily in the context of epilepsy61–66, these studies do not include either of the two mutations identified here. 
These two mutations occur in the unstructured C-terminus cytoplasmic tail region of this transmembrane potas-
sium channel protein61,66. Further in vitro investigation will be required to understand how these mutations may 
affect the expression, structure or function of this protein, to determine if these could be driver mutations.

The TTN gene codes for the Titin protein of striated muscle. TTN expression level has been previously iden-
tified as prognositc marker for Ewing’s sarcoma67, and TTN mutations have been associated with several myo-
pathies68–72. Titin is a large protein consisting of 34,350 amino acids, with a correspondingly large number of 
mutations, 15.37 protein altering somatic mutations per tumor sample and 3.98 mutations per normal sample, on 
average (Fig. 9). Three of the most frequent mutations in TTN in tumor samples, C21862G, E1656G and T2963P, 
occur more frequently in tumor samples compared to normal samples, suggesting that these may be potential 
driver mutations that should be investigated further. The mutation frequencies at these amino acid positions are 
0.17, 0.20 and 0.20 per tumor sample, compared to 0.06, 0.003, and 0.03 per normal tissue sample, respectively 
(Fig. 9). Although TTN mutations have been extensively studied, primarily in the context of myopathies69–72, 
these studies do not include any of the three mutations identified here.

Figure 6. 3-hit combinations identified for ovarian serous cystadenocarcinoma (OV). The outer circle shows 
individual chromosomes with corresponding ideograms shown in the inner circle. Genes that comprise 3-hit 
combinations are labeled inside the circle. Each 3-hit combination is identified by differently colored lines 
connecting three genes. The red line represents the gene combination discussed in further detail. This image was 
generated using RCircos87.
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The above only provide a starting point for further investigation. The positive selection implied by the higher 
mutation frequencies seen above are confounded by several factors, including tumor microenvironment, tissue 
and cell type, epigenetic modifications, gene expression and co-expression, etc.12–18. A more detailed analysis of 
the potential driver mutations identified above using available literature, gene expression data, copy number var-
iation, associated pathways, functional annotation, protein localization, etc., could provide additional evidence 
to either support or reject the mutation as a driver mutation. This information can be iteratively incorporated 
into the search algorithm described in Methods. We expect that excluding likely passenger mutations will reduce 
the number of false positives and prioritizing likely driver mutations will reduce false negatives, improving the 
accuracy of the combinations identified. However, this could also potentially limit the discovery of novel genes.

Note that these somatic mutations were calculated using protected whole exome sequencing data from tumor 
samples with matched blood-derived normal samples. For tumor samples, protected somatic mutation data 
(MAF files) were downloaded from the cancer genome atlas (TCGA) with permission. Somatic mutations for 
normal tissue samples with matched blood-derived normal samples were called using the same protocol used by 
TCGA, as described in the methods. Variants called using matched blood-derived normal data identifies signif-
icantly more mutations than the number of variants called without matched blood-derived normal samples, for 
the following reasons73,74. Biopsy specimens contain a mix of tumor and normal tissue cells, tumor-infiltrating 
lymphocytes, and stromal cells. In addition, tumor cells themselves can be genetically diverse. As a result, muta-
tions in a subset of the cell population will present at a relatively low frequency. Using blood derived normal 
samples as a reference allows for the identification of such low frequency variants. Variants that could potentially 
lead to de-identification of donors (~80 million variants) are considered “protected” data in TCGA, and are not 
accessible by tools such as cBioPortal and TCGA queries that are based on “open” access data (~3 million vari-
ants). For example, the protected TCGA MAF files contain 617 protein-altering somatic mutations in TP53 in 317 
OV samples, compared to the 276 somatic mutations reported by cBioPortal using open access data75.

conclusion
Cancer is caused by a combination of a small number of genetic defects (hits), estimated to be in the range of two 
to eight. However, the specific multi-hit combination for each instance of cancer can be different, even for the 
same type of cancer. Existing approaches focused on identifying individual cancer genes can not identify the 
specific multi-hit combination responsible for an individual instance of cancer. We previously developed a 

Figure 7. Distribution of somatic mutations in TP53 in ovarian tumor samples and normal samples. The 
horizontal bar shows amino acid position within the protein, with labels showing known functional domains. 
Vertical lines show the number of samples with protein altering mutations at each amino acid position. The 
most frequently mutated sites for each gene in (a) tumor and (b) normal samples are labeled for comparison. 
Image generated using g3viz88.
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fundamentally different approach focused on identifying multi-hit combinations. Due to the O(Gh) scaling of the 
search algorithm, where G 20000≈  is the number genes and h is the number of hits, we were limited to identify-
ing 2-hit combinations. In this work we present optimization and parallelization techniques that allowed us to 
extend the algorithm to identify 3-hit combinations, and some 4-hit combinations. The 3-hit combinations are 
able to differentiate between tumor and normal samples with overall 90% sensitivity (95% CI = 88–91%) and 93% 
specificity (95% CI = 92–94%). We illustrate how the distribution of somatic mutations in these genes can be used 
to identify potential driver mutations for further investigation. For example, we identified two protein-altering 
somatic mutations in the KCNB1 gene which occur significantly more frequently in TCGA ovarian cancer sam-
ples compared to normal samples (p-value < 0.0001), suggesting that these mutations may be positively selected 
for in ovarian cancer. However, further experimental validation is required to determine if these mutations rep-
resent novel cancer driver mutations, or are simply passenger mutations. The muti-hit combinations identified 
here, with experimental validation, can be used to identify the specific cause of individual instances of cancer, 
allowing for the rational design of more effective targeted combination therapies.

Methods
The multi-hit algorithm identifies combinations of genes with mutations that may represent the potential cause 
for individual instances of cancer. Due to its computational complexity, the algorithm was limited to identifying 
combinations of two hits. To identify combinations of more than two hits, the algorithm was restructured and 
optimized for parallel execution as described below.

The multi-hit algorithm. The problem of identifying a set of multi-hit combinations of genes with muta-
tions that are most likely to be responsible for individual instances of cancer can be mapped to a weighted set 
cover (WSC) problem41. The WSC problem falls into a class of “NP-complete” problems for which there is no 
known polynomial-time solution, but given a solution it can be verified in polynomial time76,77. In addition, 
problems in this class can be mapped to each other in polynomial time, such that if a polynomial time solution 
is found for any one of these problems, all of these problems can be solved in polynomial time78,79. Although 
the WSC problem is computationally intractable for our problem size, a near-optimal approximate solution 
can be found using a greedy algorithm. A greedy algorithm for the WSC problem was adapted for the problem 

Figure 8. Distribution of somatic mutations in KCNB1 in ovarian tumor samples and normal samples. 
The horizontal bar shows amino acid position within the protein, with labels showing known functional 
domains. Vertical lines show the number of samples with protein altering mutations at each amino acid 
position. The most frequently mutated sites for each gene in (a) tumor and (b) normal samples are labeled for 
comparison. This image was generated using g3viz88.
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of identifying a set of multi-hit combinations as previously described41. To summarize, the algorithm iterates 
through the following three steps until all tumor samples have been excluded, as illustrated in Fig. 10.

 1. Compute a weighted accuracy metric Fi for all =i H[1, ] possible h-hit combinations, where H is the 
number of possible combinations. Fi is a combined measure of the specificity and sensitivity with which 
each combination can differentiate between tumor and normal samples in a training set.

F TP TN
N N (1)i

i i

t n

α
=

+
+

where, for a given combination i, TPi is the number of true positives (tumor samples with mutations in the 
gene combination i), TNi is the number of true negatives (normal samples without mutations in the gene 
combination i), Nt is the total number of tumor samples, Nn is the total number of normal samples and 

0 1α = .  is a weighting factor to balance the contribution of sensitivity and specificity to the metric.
 2. Select the combination of hits with the maximum Fi value, and add it to the list of selected multi-hit 

combinations.
 3. Exclude all tumor samples that contain mutations in this combination of genes, from further 

consideration.

The computational complexity of the algorithm is O G C N N( ( ))h
t n× × +  where G is the number of genes 

and C is the number of combinations selected. The input to the algorithm are two Gene-Sample Mutation matri-
ces, a tumor mutation matrix ∈ ×M( ) {0, 1}ij

t G Nt and a normal mutation matrix ∈ ×M( ) {0, 1}ij
n G Nn. Non zero 

values in these binary matrices represent mutations in gene gi, =i G[1, ] within sample sj, =j N[1, ]t  for tumor 
samples and =j N[1, ]n  for normal samples (Fig. 10). In addition, these are sparse matrices with only 2% of the 
elements having a non-zero values. To take advantage of these characteristics of the input matrices, we considered 
two possible alternatives to the matrix representation: indexed array and compressed binary representations, as 
described below.

Figure 9. Distribution of somatic mutations in TTN in ovarian tumor samples and normal samples. The 
horizontal bar shows amino acid position within the protein, with labels showing known functional domains. 
Vertical lines show the number of samples with protein altering mutations at each amino acid position. The 
most frequently mutated sites for each gene in (a) tumor and (b) normal samples are labeled for comparison. 
This image was generated using g3viz88.
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Indexed array data structure. One option for speeding up the above algorithm’s runtime, is to replace the 
Gene-Sample Mutation matrices with an indexed array data structure. The indexed array data structure reduces 
the number of arithmetic operations by excluding samples in the gene that do not have mutations. The data 
structure consists of two arrays. One is a samples array where samples with mutations within each gene are listed 
sequentially. The second is a gene index array, which contains the starting index into the samples array for each 
gene. With the indexed array representation, the algorithm would only examine samples with mutations in the 
genes being considered, instead of all samples. It is more efficient than the original matrix representation since 
samples that do not contain mutations in a gene are not evaluated. On average only 2% of samples have mutations 
for a given gene, therefore, we expected a significant speedup with an indexed list representation However, due to 
an increase in the number of instructions and divergent branches, the speedup using this data structure was less 
than what was achieved using the compressed binary representation described below.

Compressed binary representation. The binary values in the Gene-Sample Mutation matrices permits 
a reduction in memory requirement using a compressed binary representation. In addition, bitwise operations 
can be used with the compressed binary representation to reduce computational cost and divergent branching 
(discussed in section 5.5.2). Figure 11 illustrates how mutations in a group of four samples can be compressed 
into four bits. In the original implementation, each Gene-Sample value was represented as a single 16-bit short 
integer41. For this implementation, we represent groups of 64 samples as a single 64-bit unsigned integer, which 
requires 4-fold fewer vector operations compared to the 16-bit unsigned integer representation. The resulting 
speedup was confirmed experimentally (results not shown). The compressed binary representation also results in 
16-fold reduction in memory since each word of memory stores data for 16 samples, compared to one sample per 
word in the original integer matrix representation.

The number of samples with mutations in a combination of genes can then be efficiently determined by a 
bitwise AND operation followed by a count of the non-zero bits, as illustrated in Fig. 11. To count the number of 
non-zero bits for the CPU code, we implemented Brian Kernighan’s algorithm80. For the GPU implementation, 
we used the built-in popcll() function to count the number of bits set to 1 in the 64 bit unsigned integer. This 
function was faster than our own implementation of Brian Kernighan’s algorithm (e.g. run time for optimized 

Figure 10. Algorithm for finding multi-hit combinations, illustrated for 2-hit combinations. The cells marked 
with x in the Gene-Sample Mutation matrices represent samples with mutations in the corresponding gene. 
There are = −H G G( 1)/2 possible 2-hit combinations involving two different genes. The algorithm iterates 
through three steps. (1) Eq. (1) is used to calculate Fi for each combination. (2) The combination (ga and gb in 
this example) with the maximum value of Fi, (Fk in this example) is added to the list of selected multi-hit 
combinations. (3) Tumor samples containing mutation in the selected combination of genes are excluded from 
consideration in subsequent iterations of the algorithm. The green shaded columns in the Tumor Gene-Sample 
Mutation matrix represent excluded samples in the iteration shown. The algorithm terminates when all tumor 
samples have been excluded, i.e. “covered” by the set of multi-hit combinations.
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GPU implementation for the 3-hit algorithm for BRCA using popcll(), is 451 sec faster than the run time 
using Kernighan’s algorithm).

For the computation of 2-hit combinations for breast cancer (BRCA), the compressed binary representation 
resulted in a 16-fold speedup on the CPU compared to the original matrix representation, as shown in the Results. 
Since this speedup was considerably larger than the corresponding 4-fold speedup for the indexed array rep-
resentation described above, we did not consider the indexed array structure any further.

Mapping to the NVIDIA Tesla V100 PCIe graphical processing unit (GPU). To further speed up the 
multi-hit algorithm, we restructured the CPU code for parallel execution on one GPU, specifically the NVIDIA 
Tesla V100 PCIe GPU42. The V100 consists of 5376 32-bit floating point cores, 5376 32-bit integer cores, 2688 
64-bit floating point cores, 672 tensor cores and 336 texture units. The cores are partitioned into 84 streaming 
multiprocessors (SM) with 128 KB of shared memory per SM, 6 MB of L2 cache and 32 GB of global memory for 
the GPU. Each SM is further partitioned into four single instruction multiple thread (SIMT) warps, i.e. the same 
instruction is executed on all cores within a warp, with each core running a different thread42. For parallel execu-
tion of the algorithm, we partition the computation of Fmax across multiple threads, where each thread computes 

Figure 11. Compressed binary representation and bitwise operation for determining the number of samples 
with mutations in a combination of two genes. Left: Compressed binary representation of Gene-Sample 
Mutation matrices, illustrated for a 4-bit unsigned integer. si represents the normal or tumor samples shown in 
Fig. 10. Elements with 0 in the matrix indicate that the sample does not contain mutations in the corresponding 
gene, while 1 indicates that the sample does contain a mutation in the corresponding gene. Mutations in four 
samples can be represented by a single 4-bit unsigned integer. Right: Given any two genes gi, gj, the number of 
samples containing mutations in both these genes is determined by a bitwise AND operation for each of the 
integers representing mutations in gi with the corresponding set of integers for gj, and then counting the number 
of non-zero bits.

Figure 12. Mapping the multi-hit CPU algorithm to the GPU, illustrated for the 3-hit algorithm with the 
compressed binary representation (Fig. 11). Each GPU thread computes Fmax

i  for a subset of all possible 
combinations. The results of each thread is stored in GPU global memory. Fmax across all subsets of 
combinations is calculated using parallel reduction81.
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the maximum value of F for a subset of combinations (Fmax
i ) where i G G[1, ( 1)/2]∈ − . For 2-hit combinations, 

each thread processes a single combination, therefore =F Fmax
i i for the combination i, say ga and gb where 

< ≤a b G. For 3-hit combinations Fmax
i  is the maximum value for all 3-hit combinations with two of the hits 

corresponding to 2-hit combination i, i.e. ga, gb and gc where a b c G< < < , as illustrated in Fig. 12. The maxi-
mum value Fmax across all Fmax

i  is then calculated using parallel reduction81.
The sequential implementation of the above algorithm for 3-hit combinations is illustrated in Algorithm 1. 

The for loops in lines 7, 8, and 9, in the sequential algorithm iterates through all possible ( )G
3

 3-hit combina-
tions. Lines 10–14 compute F for one such combination. Lines 16–18 compute overall best combination along 
with it’s Fmax value. The remaining part of the algorithm updates excluded samples.

To run on parallel compute units of a GPU, we modified the above sequential algorithm as illustrated in 
Algorithm 2. We combined the two outer for loops into a single one, which iterates ( )G

2
 times (Line 7). Each 

iteration of this combined for loop can run in parallel on a different GPU compute units. For each of these par-
allel tasks, indexed by λ, there is a sequential for loop (Line 11) which computes the best combination among 
the 3-hit combinations that start with i, j corresponding to the λ (2). The mapping of λ to i and j in lines 7 and 8 
is described below under “Minimizing divergent branches”. At the end of this outer for loop, our parallel algo-
rithm performs a parallel reduction (Line 25) to compute the best combination81. Then the tumor samples cov-
ered by this best combination are added to the covered samples.

This parallelization allows us to run ( )G
2

 parallel tasks with load +O G N N( ( ))t n  instead of ( )G
3

 sequential tasks 

with load O N N( )t n+ .

GPU optimization. The differences between the CPU and GPU architectures make certain coding tech-
niques, that may be appropriate for serial execution on a CPU, sub-optimal or even incorrect for parallel execu-
tion on a GPU. Three critical considerations for minimizing processor latency are: synchronizing update access 
to memory locations shared by multiple processors, divergent branching in a single instruction multiple thread 
(SIMT) architecture, and relative speed of shared memory vs. global memory.

Algorithm 1. Sequential algorithm to compute 3-hit combinations.
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Minimizing GPU synchronization. A straightforward implementation would have a single global memory loca-
tion for Fmax which could be updated by all thread. However, such an implementation would require a synchroni-
zation or locking protocol to maintain cache coherence82. Synchronization of GPU threads to ensure correct 
results introduced significant processor latency and resulted in the GPU implementation running slower than the 
CPU version. We therefore allocate a separate memory location for each thread i to store its Fmax

i  value (Fig. 12), 
avoiding the need for synchronized memory access. We then use parallel reduction to efficiently calculate the 
global Fmax value81.

Minimizing divergent branches. In the SIMT warps used by the GPU within streaming multiprocessors (SM), 
divergent branches introduce significant processor latency46–50. Divergent branches are IF-ELSE and LOOP 
control statements that cause execution along different paths depending on conditional values. Within a warp, all 
possible execution paths are serialized and evaluated42,49,50. Thus, significant latency is introduced due to the exe-
cution of instruction within branches that are not used. In the original integer matrix CPU implementation, 
conditional statements are required to count the number of samples with mutations in a gene combination. In the 
compressed binary implementation, these conditional statements are replaced by a set of bitwise operations, as 
described above (Fig. 11). In addition, the CPU implementation calculates a bound on the maximum possible 
value for Fi for a given combination i. If this value is less than the intermediate value for Fmax (Eq. (1)), subsequent 
processing for the combination is skipped. Although this strategy improved performance on the CPU, eliminating 
this branch and bound logic on the GPU resulted in an additional 6% average speedup for the 2-hit algorithm and 
3-hit algorithm (Supplementary Tables S3 and S5).

The multi-hit algorithm only considers combinations represented by the upper triangular matrix, i.e. combi-
nations of gi and gj where <i j. In the CPU implementation, processing is limited to the upper triangular matrix 
by loop control conditions. To eliminate these conditional branches, using the formulation from ref. 83, modified 

Algorithm 2. Parallel algorithm to compute 3-hit combinations.
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for upper triangular matrix instead of lower triangular matrix, we map the thread index λ to the upper triangular 
matrix i j<  as follows:

⌊ ⌋λ
λ

= + +
= − −

j
i j j

1/4 2 1/2
( 1)/2 (2)

Using shared memory for parallel reduction. The Fmax
i  values calculated by each GPU thread i is stored in global 

memory (Fig. 12). The maximum value Fmax across all these threads can be calculated using parallel reduction, 
directly in global memory. However, accessing global memory is significantly slower than accessing shared mem-
ory44. Therefore, we divide global memory data into blocks which are copied into shared memory. Parallel reduc-
tion is performed within each block using shared memory to compute the Fmax

j  for block j. The result is copied 
back to a new allocation in global memory. This new allocation is 1024 (the number of virtual threads per block) 
times smaller than the original allocation. This process is repeated with the newly allocated values until the single 
Fmax values has been calculated. The above approach reduced the total global memory used by approximately 50%, 
e.g. 2.87 GB for BRCA compared to 5.75 GB without this approach.

Mutation data. Input data for the algorithm consists of two Gene-Sample Mutation matrices, one for tumor 
samples and another for normal samples. Each element Mij of the matrix is either 1 or 0 depending on if gene i has 
a protein altering (missense, nonsense, insertion or deletion) somatic mutation in sample j, or not. This informa-
tion was calculated from whole exome sequencing data available from The Cancer Genome Atlas (TCGA) data-
base84. Somatic mutation data, calculated using Mutect285, for matched tumor and blood derived normal samples 
was available for download from TCGA in Mutation Annotation Format (MAF). For 333 normal samples with 
matched blood derived normal samples, we calculated somatic mutations using the same Mutect2 protocol. See 
ref. 41 for additional details.

Speedup calculation. Speedup was calculated as t t/ref new where tnew and tref  are the run times for the new 
code and the baseline reference, respectively. Run time was determined using the Linux time command, with 
run time = sys time + user time. For identifying 2-hit combinations, the run time for the original CPU 
implementation41 was used as the baseline reference tref . However, this was not practical for 3-hit combinations 
for cancer types where the run time using the original matrix code was over 30 days. Therefore we estimated the 
run time for cancer types taking over 30 days, based on the actual run times for cancer types requiring less than 
30 days. We assumed that the average ratio of 2-hit vs. 3-hit speedup for the compressed binary CPU implemen-
tation compared to the original matrix CPU implementation is the same for both categories (run time <30 days 
and run time >30 days). For cancer types with run time <30 days, we calculated the average ratio R S SAvg( / )3 2= , 
where S3 is the 3-hit speedup and S2 is the 2-hit speedup, for the CPU compressed binary implementation com-
pared to the CPU original matrix implementation. For cancer types with 3-hit run time >30 days, we estimated 
the run time as ⋅ ⋅R S t cb2 3 , where t cb3  is the 3-hit run time for the compressed binary CPU implementation. See 
Supplementary Table S4 for a list of actual and estimated 3-hit run times.

Accuracy calculation. All available mutation data was randomly partitioned into two subsets, with 75% 
of the data (Training set) used to identify the multi-hit combination using the above algorithm. The remaining 
data (Test set) was used to calculate the sensitivity, specificity, and 95% confidence interval for the identified set 
of combinations’ ability to differentiate between tumor and normal samples. Sensitivity was calculated as TP/Nt, 
where TP is the number of true positives (number of tumor samples containing one of the identified combina-
tions) and Nt is the number of tumor samples. Specificity was calculated as TN/Nn, where TN is the number of 
true negatives (number of normal samples without any of the identified combinations), and Nn is the number of 
normal samples. 95% confidence interval was calculated using the “exact” Clopper-Pearson method86. Overall 
sensitivity and specificity are calculated from the total count of true positives, true negatives, tumor samples, and 
normal samples for all cancer types, using the randomly selected 25% test data set. However, it is important to 
keep in mind that these multi-hit gene combinations may not represent cancer genes. Additional experimental 
validation is required to determine if mutations within these genes may play a role in cancer.

Data availability
All source code for the multi-hit algorithm are available for download from https://bitbucket.org/qaisalhajri/
multihit-gpu-implementation/src/master/.

Received: 29 August 2019; Accepted: 20 January 2020;
Published: xx xx xxxx

References
 1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2019. CA: A Cancer Journal for Clinicians 69, 7–34 (2019).
 2. Colditz, G. A., Wolin, K. Y. & Gehlert, S. Applying what we know to accelerate cancer prevention. Science Translational Medicine 4, 

127rv4–127rv4 (2012).
 3. Maeda, H. & Khatami, M. Analyses of repeated failures in cancer therapy for solid tumors: poor tumor-selective drug delivery, low 

therapeutic efficacy and unsustainable costs. Clin. Transl. Medicine 7, 11 (2018).
 4. Kuchenbaecker, K. B. et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA 

317, 2402–2416 (2017).

Scientific Reports, Vol. 10, 2020

https://doi.org/10.1038/s41598-020-58785-y
https://bitbucket.org/qaisalhajri/multihit-gpu-implementation/src/master/
https://bitbucket.org/qaisalhajri/multihit-gpu-implementation/src/master/


1 6Scientific RepoRtS |         (2020) 10:2022  | https://doi.org/10.1038/s41598-020-58785-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

 5. Jasperson, K. W., Patel, S. G. & Ahnen, D. J. APC-associated polyposis conditions. In GeneReviews[Internet] (University of 
Washington, Seattle, 2017).

 6. Pantziarka, P. Primed for cancer: Li Fraumeni Syndrome and the pre-cancerous niche. ecancermedicalscience 9, 541 (2015).
 7. Guha, T. & Malkin, D. Inherited TP53 mutations and the Li-Fraumeni syndrome. Cold Spring Harb Perspect Med 7, a026187 (2017).
 8. Amadou, A., Waddington Achatz, M. & Hainaut, P. Revisiting tumor patterns and penetrance in germline TP53 mutation carriers: 

temporal phases of Li-Fraumeni syndrome. Curr Opin Oncol 30, 23–29 (2018).
 9. Knudson, A. G. Mutation and cancer: statistical study of retinoblastoma. Proceedings of the National Academy of Sciences 68, 

820–823 (1971).
 10. Al-Lazikani, B., Banerji, U. & Workman, P. Combinatorial drug therapy for cancer in the post-genomic era. Nature Biotechnology 30, 

679 (2012).
 11. Ledford, H. Cocktails for cancer with a measure of immunotherapy. Nature 532, 162–164 (2016).
 12. Stahl, M. et al. Epigenetics in Cancer: A hematological perspective. PLoS Genet 12, e1006193 (2016).
 13. Schneider, G., Rad, R., Saur, D. & Schmidt-Supprian, M. Tissue-specific tumorigenesis: context matters. Nat Rev Cancer 17, 239–53 

(2017).
 14. Almassalha, L. et al. The greater genomic landscape: The heterogeneous evolution of cancer. Cancer Res 76, 5605–9 (2016).
 15. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–58 (2013).
 16. Martincorena, I. et al. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 

880–886 (2015).
 17. Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917 (2018).
 18. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214 (2013).
 19. Tian, R., Basu, M. & Capriotti, E. Contrastrank: a new method for ranking putative cancer driver genes and classification of tumor 

samples. Bioinformatics 30, 572–578 (2014).
 20. Tamborero, D., Gonzalez-Perez, A. & Lopez-Bigas, N. Oncodriveclust: exploiting the positional clustering of somatic mutations to 

identify cancer genes. Bioinformatics 29, 2238–2242 (2013).
 21. Dees, N. D. et al. Music: identifying mutational significance in cancer genomes. Genome Res 22, 1589–1598 (2012).
 22. Kumar, R. D., Swamidass, S. J. & Bose, R. Unsupervised detection of cancer driver mutations with parsimony-guided learning. Nat 

Genet 48, 1288–1294 (2016).
 23. Cheng, F., Zhao, J. & Zhao, Z. Advances in computational approaches for prioritizing driver mutations and significantly mutated 

genes in cancer genomes. Briefings in Bioinformatics 17, 642–656 (2015).
 24. Xi, J., Wang, M. & Li, A. Discovering mutated driver genes through a robust and sparse co-regularized matrix factorization 

framework with prior information from mRNA expression patterns and interaction network. BMC Bioinformatics 19, 1–14 (2018).
 25. Pon, J. R. & Marra, M. A. Driver and passenger mutations in cancer. Annual Review of Pathology: Mechanisms of Disease 10, 25–50 

(2015).
 26. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495 (2014).
 27. Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and mutations. Cell 173, 371–385 (2018).
 28. Merid, S. K., Goranskaya, D. & Alexeyenko, A. Distinguishing between driver and passenger mutations in individual cancer 

genomes by network enrichment analysis. BMC Bioinformatics 14, 308 (2014).
 29. Leiserson, M. D., Reyna, M. A. & Raphael, B. J. A weighted exact test for mutually exclusive mutations in cancer. Bioinformatics 32, 

736–745 (2016).
 30. Anandakrishnan, R., Varghese, R. T., Kinney, N. A. & Garner, H. R. Estimating the number of genetic mutations (hits) required for 

carcinogenesis based on the distribution of somatic mutations. PLoS Comput Biol 15, e1006881 (2019).
 31. Tomasetti, C., Marchionni, L., Nowak, M. A., Parmigiani, G. & Vogelstein, B. Only three driver gene mutations are required for the 

development of lung and colorectal cancers. Proc Natl Acad Sci USA 112, 118–123 (2015).
 32. Zhang, X. & Simon, R. Estimating the number of rate limiting genomic changes for human breast cancer. Breast Cancer Res Treat 91, 

121–124 (2005).
 33. Luebeck, E. G. & Moolgavkar, S. H. Multistage carcinogenesis and the incidence of colorectal cancer. Proc Natl Acad Sci USA 99, 

15095–15100 (2002).
 34. Little, M. & Wright, E. A stochastic carcinogenesis model incorporating genomic instability fitted to colon cancer data. Mathematical 

Biosciences 183, 111–134 (2003).
 35. Ashley, D. The two “hit” and multiple “hit” theories of carcinogenesis. Br J Cancer 23, 313 (1969).
 36. Armitage, P. & Doll, R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer 8, 1 (1954).
 37. Nordling, C. A new theory on the cancer-inducing mechanism. Br J Cancer 7, 68 (1953).
 38. Pires, M. M., Hopkins, B. D., Saal, L. H. & Parsons, R. E. Alterations of EGFR, p53 and PTEN that mimic changes found in basal-like 

breast cancer promote transformation of human mammary epithelial cells. Cancer biology & therapy 14, 246–253 (2013).
 39. Usha, L., Dewdney, S. B. & Buckingham, L. E. Tumor screening and DNA testing in the diagnosis of Lynch syndrome. JAMA 316, 

93–94 (2016).
 40. MacPherson, D. & Dyer, M. A. Retinoblastoma: From the two-hit hypothesis to targeted chemotherapy. Cancer Research 67, 

7547–7550 (2007).
 41. Dash, S. et al. Differentiating between cancer and normal tissue samples using multi-hit combinations of genetic mutations. Scientific 

Reports 9, 1005 (2019).
 42. NVIDIA Tesla V100 GPU Architecture: The world’s most advanced datacenter GPU. Tech. Rep., NVIDIA, Also available at https://

images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf (2017).
 43. Jain, T. & Agrawal, T. The haswell microarchitecture-4th generation processor. International Journal of Computer Science and 

Information Technologies 4, 477–480 (2013).
 44. Jia, Z., Maggioni, M., Staiger, B. & Scarpazza, D. P. Dissecting the nvidia volta gpu architecture via microbenchmarking. arXiv 

preprint arXiv:1804.06826 (2018).
 45. Intel. Product specifications: Intel Xeon Processor E5-2630 v4, https://ark.intel.com/content/www/us/en/ark/products/92981/intel-

xeon-processor-e5-2630-v4-25m-cache-2-20-ghz.html, Accessed 2019-12-30 (2017).
 46. NVIDIA. Cuda C++ Best Practices Guide, https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#instruction-

optimization, Accessed 2019-12-30 (2019).
 47. Anandakrishnan, R. et al. Accelerating electrostatic surface potential calculation with multi-scale approximation on graphics 

processing units. Journal of Molecular Graphics and Modelling 28, 904–910 (2010).
 48. Sarbazi-Azad, H. Advances in GPU Research and Practice: A volume in Emerging Trends in Computer Science and Applied Computing, 

chap. 23, 649–705 (Morgan Kaufmann, 2017).
 49. Bertil Schmidt, M. S. C. H. Jorge González-Domínguez. Parallel Programming: Concepts and Practice, 225–285 (Morgan Kaufmann, 

2018).
 50. Sarbazi-Azad, H. Advances in GPU Research and Practice: A volume in Emerging Trends in Computer Science and Applied Computing, 

chap. 9, 543–580 (Morgan Kaufmann, 2017).
 51. Ahmed, A. A. et al. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. The Journal of Pathology 

221, 49–56 (2010).

Scientific Reports, Vol. 10, 2020

https://doi.org/10.1038/s41598-020-58785-y
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://ark.intel.com/content/www/us/en/ark/products/92981/intel-xeon-processor-e5-2630-v4-25m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/92981/intel-xeon-processor-e5-2630-v4-25m-cache-2-20-ghz.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#instruction-optimization
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#instruction-optimization


17Scientific RepoRtS |         (2020) 10:2022  | https://doi.org/10.1038/s41598-020-58785-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

 52. Schildkraut, J. M. et al. Single nucleotide polymorphisms in the TP53 region and susceptibility to invasive epithelial ovarian cancer. 
Cancer Research 69, 2349–2357 (2009).

 53. Eliopoulos, A. G. et al. The control of apoptosis and drug resistance in ovarian cancer: influence of p53 and Bcl-2. Oncogene 11, 
1217–1228 (1995).

 54. Harłiozińska, A. & Bar, J. K. Relationship between p53 and c-erbB-2 overexpression in tissue sections and cyst fluid cells of patients 
with ovarian cancer. Tumor Biology 15, 223–229 (1994).

 55. Goff, B. et al. Overexpression and relationships of HER-2/neu, epidermal growth factor receptor, p53, Ki-67, and tumor necrosis 
factor alpha in epithelial ovarian cancer. European Journal of Gynaecological Oncology 17, 487–492 (1996).

 56. Elbendary, A. A. et al. Relationship between p21 expression and mutation of the p53 tumor suppressor gene in normal and 
malignant ovarian epithelial cells. Clinical Cancer Research 2, 1571–1575 (1996).

 57. Song, H., Hollstein, M. & Xu, Y. p53 gain-of-function cancer mutants induce genetic instability by inactivating atm. Nature Cell 
Biology 9, 573 (2007).

 58. Liu, D., Song, H. & Xu, Y. A common gain of function of p53 cancer mutants in inducing genetic instability. Oncogene 29, 949 
(2010).

 59. Chen, S. et al. Gain-of-function mutant p53 enhances hematopoietic stem cell self-renewal. Blood 124, 260 (2014).
 60. Wang, H.-Y. et al. Role of KCNB1 in the prognosis of gliomas and autophagy modulation. Scientific Reports 7, 14 (2017).
 61. Marini, C. et al. Clinical features and outcome of 6 new patients carrying de novo KCNB1 gene mutations. Neurology Genetics 3, 

e206 (2017).
 62. Miao, P. et al. Genotype and phenotype analysis using an epilepsy-associated gene panel in Chinese pediatric epilepsy patients. 

Clinical Genetics 94, 512–520 (2018).
 63. Calhoun, J. D., Vanoye, C. G., Kok, F., George, A. L. & Kearney, J. A. Characterization of a KCNB1 variant associated with autism, 

intellectual disability, and epilepsy. Neurology Genetics 3, e198 (2017).
 64. Latypova, X. et al. Novel kcnb1 mutation associated with non-syndromic intellectual disability. Journal of Human Genetics 62, 569 

(2017).
 65. Thiffault, I. et al. A novel epileptic encephalopathy mutation in KCNB1 disrupts Kv2.1 ion selectivity, expression, and localization. 

Journal of General Physiology 146, 399–410 (2015).
 66. Saitsu, H. et al. De novo KCNB1 mutations in infantile epilepsy inhibit repetitive neuronal firing. Scientific Reports 5, 15199 (2015).
 67. Deng, Y. et al. Slow skeletal muscle troponin t, titin and myosin light chain 3 are candidate prognostic biomarkers for Ewing’s 

sarcoma. Oncology Letters 18, 6431–6442 (2019).
 68. Khan, A. et al. Homozygous missense variant in the TTN gene causing autosomal recessive limb-girdle muscular dystrophy type 10. 

BMC Medical Genetics 20, 166 (2019).
 69. Yu, M. et al. Novel TTN mutations and muscle imaging characteristics in congenital titinopathy. Annals of Clinical and Translational 

Neurology (2019).
 70. Jang, J. Y., Park, Y., Jang, D.-H., Jang, J.-H. & Ryu, J. S. Two novel mutations in TTN of a patient with congenital myopathy: A case 

report. Molecular Genetics & Genomic Medicine (2019).
 71. Corden, B. et al. Association of Titin-truncating genetic variants with life-threatening cardiac arrhythmias in patients with dilated 

cardiomyopathy and implanted defibrillators. JAMA Network Open 2, e196520–e196520 (2019).
 72. Kellermayer, D., Smith, J. E. & Granzier, H. Titin mutations and muscle disease. Pflügers Archiv-European Journal of Physiology 471, 

673–682 (2019).
 73. Spencer, D. et al. Performance of common analysis methods for detecting low-frequency single nucleotide variants in targeted next-

generation sequence data. J Mol Diag 16, 75–88 (2014).
 74. Sandmann, S. et al. Evaluating variant calling tools for non-matched next-generation sequencing data. Sci Rep 7, 43169 (2017).
 75. Cerami, E. et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer 

Discovery 2, 401–404 (2012).
 76. Goldschmidt, O., Hochbaum, D. S. & Yu, G. A modified greedy heuristic for the set covering problem with improved worst case 

bound. Information Processing Letters 48, 305–310 (1993).
 77. Crescenzi, P., Kann, V., Halldórsson, M. & Karpinski, M. A compendium of NP optimization problems, https://www.nada.kth.

se/~viggo/problemlist/compendium.html, Accessed 2019-12-27 (1995).
 78. Hartmanis, J. Computers and intractability: a guide to the theory of NP-completeness. Siam Review 24, 90 (1982).
 79. Anandakrishnan, R. A partition function approximation using elementary symmetric functions. PloS One 7, e51352 (2012).
 80. Kernighan, B. & Ritchie, D. M. The C programming language (Prentice hall, 2017).
 81. Harris, M. Optimizing parallel reduction in CUDA, https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf, 

Accessed 2019-12-27 (2019).
 82. Singh, I., Shriraman, A., Fung, W. W., O’Connor, M. & Aamodt, T. M. Cache coherence for gpu architectures. In 2013 IEEE 19th 

International Symposium on High Performance Computer Architecture (HPCA), 578–590 (IEEE, 2013).
 83. Navarro, C. A. & Hitschfeld, N. Gpu maps for the space of computation in triangular domain problems. In 2014 IEEE Intl Conf on 

High Performance Computing and Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE 11th Intl 
Conf on Embedded Software and Syst (HPCC, CSS, ICESS), 375–382 (IEEE, 2014).

 84. Weinstein, J. et al. The cancer genome atlas pan-cancer analysis project. Nat Genet 48, 1288–1294 (2016).
 85. do Valle, Í. F. et al. Optimized pipeline of mutect and gatk tools to improve the detection of somatic single nucleotide polymorphisms 

in whole-exome sequencing data. BMC Bioinformatics 17, 341 (2016).
 86. Clopper, C. J. & Pearson, E. S. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 404–413 

(1934).
 87. Zhang, H., Meltzer, P. & Davis, S. Rcircos: an R package for Circos 2D track plots. BMC Bioinformatics 14, 244 (2013).
 88. Guo, X. g3viz: Interactively Visualize Genetic Mutation Data using a Lollipop-Diagram, https://github.com/G3viz/g3viz, Accessed 

2019-12-27 (2019).

Acknowledgements
This work was supported by a VCOM Bradly Foundation grant and a VCOM REAP grant.

Author contributions
Q.H., S.D. and R.A. designed the algorithm, implemented the software, analyzed the results and wrote the 
manuscript. R.A., W.F. and H.G. contributed to the research design and manuscript review.

competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-58785-y.

Scientific Reports, Vol. 10, 2020

https://doi.org/10.1038/s41598-020-58785-y
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
https://github.com/G3viz/g3viz
https://doi.org/10.1038/s41598-020-58785-y


1 8Scientific RepoRtS |         (2020) 10:2022  | https://doi.org/10.1038/s41598-020-58785-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

Correspondence and requests for materials should be addressed to R.A.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

Scientific Reports, Vol. 10, 2020

https://doi.org/10.1038/s41598-020-58785-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Identifying multi-hit carcinogenic gene combinations: Scaling up a weighted set cover algorithm using compressed binary mat ...
	Results

	Optimization and parallelization reduces run time for the 2-hit algorithm. 
	Run time reduction permits identification of 3-hit combination. 
	Run time reduction permits identification of some 4-hit combination. 
	Contribution of optimization techniques to overall speedup. 
	Multi-hit combinations differentiate between tumor and normal samples with high accuracy. 

	Discussion

	Conclusion

	Methods

	The multi-hit algorithm. 
	Indexed array data structure. 
	Compressed binary representation. 
	Mapping to the NVIDIA Tesla V100 PCIe graphical processing unit (GPU). 
	GPU optimization. 
	Minimizing GPU synchronization. 
	Minimizing divergent branches. 
	Using shared memory for parallel reduction. 

	Mutation data. 
	Speedup calculation. 
	Accuracy calculation. 

	Acknowledgements

	Figure 1 Comparison of different implementations of the multi-hit algorithm for identifying 2-hit combinations.
	Figure 2 Comparison of different implementations of the multi-hit algorithm for identifying 3-hit combinations.
	Figure 3 Average contribution of optimizations and parallelization to speedup.
	Figure 4 Accuracy of 2- and 3-hit combinations.
	Figure 5 2-hit combinations identified for ovarian serous cystadenocarcinoma (OV).
	Figure 6 3-hit combinations identified for ovarian serous cystadenocarcinoma (OV).
	Figure 7 Distribution of somatic mutations in TP53 in ovarian tumor samples and normal samples.
	Figure 8 Distribution of somatic mutations in KCNB1 in ovarian tumor samples and normal samples.
	Figure 9 Distribution of somatic mutations in TTN in ovarian tumor samples and normal samples.
	Figure 10 Algorithm for finding multi-hit combinations, illustrated for 2-hit combinations.
	Figure 11 Compressed binary representation and bitwise operation for determining the number of samples with mutations in a combination of two genes.
	Figure 12 Mapping the multi-hit CPU algorithm to the GPU, illustrated for the 3-hit algorithm with the compressed binary representation (Fig.
	Algorithm 1 Sequential algorithm to compute 3-hit combinations.
	Algorithm 2 Parallel algorithm to compute 3-hit combinations.




