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Abstract—Projecting a high-dimensional dataset onto a lower
dimensional space can improve the efficiency of knowledge
discovery and facilitate real-time data analysis. One technique
for dimension reduction, weighted multi-dimensional scaling
(WMDS), approximately preserves pairwise weighted distances
during the transformation; but its O(f(n)d) algorithm impedes
real-time performance on large datasets.

Thus, we present CLARET, our fast and portable parallel
WMDS tool that combines algorithmic concepts adapted and
extended from the stochastic force-based MDS (SF-MDS)
and Glimmer. To further improve CLARET’s performance
for real-time data analysis, we propose a preprocessing step
that computes approximate weighted Euclidean distances by
combining a novel data mapping called stretching and Johnson
Lindestrauss’ lemma in O(log d) time in place of the original
O(d) time. This preprocessing step reduces the complexity of
WMDS from O(f(n)d) to O(f(n) log d), which for large d is a
significant computational gain. Finally, we present a case study
of CLARET by integrating it into an interactive visualization
tool called V2PI to facilitate real-time analytics. To ensure
the quality of the projections, we propose a geometric shape
matching-based alignment process and a quality metric.

Keywords-multi-dimensional scaling (MDS), weighted multi-
dimensional scaling (WMDS), OpenCL, visual analytics

I. INTRODUCTION

The representation of complex scientific data often ma-
terializes into points in high-dimensional space. Statistical
methods for analyzing these high-dimensional data points
are computationally expensive, rendering it infeasible to
draw any statistical inferences in a reasonable amount
of time. Dimension reduction is an essential computa-
tional method for making the data comprehensible. Multi-
dimensional scaling (MDS) and its extension, weighted MDS
(WMDS), are popular approaches for dimension reduction.

A. MDS in Science and Visualization

MDS is a tool of choice for many applications. Psycholo-
gists use MDS to study the relationship between different
stimuli, where each stimulus is a multi-dimensional data
point [1]. Biologists use MDS for many applications, in-
cluding sequence alignment, protein substructure search, and
RNA microarray analysis [2].

For visual analytics, high-dimensional data points are
projected onto two- or three-dimensional space so that
scientists can more easily explore these points. Sometimes,
the users inject their domain knowledge through various
interactions. This domain knowledge is then utilized to refine

the visualization. WMDS introduces weights on different
dimensions to enable users to explore a space of projections.
For example, Leman et al. [3] used WMDS to create 2D-
embedding by translating visual interactions into dimen-
sional weights.

B. MDS for Real-time Visual Analytics

For interactive and real-time visual analytics, it is imper-
ative that MDS runs in real-time on available computing
devices. Python Scikit MDS uses the SMACOF [4] method,
which requires computing n2/2 pairwise distances. This
approach is problematic because storing n2/2 distances in
memory can slow down overall system performance. For a
dataset of size 683×9, Scikit-MDS [5] takes 30−50 seconds.
So, it is not suitable for real-time interactive visualization.
The same is true for virtually every sequential MDS method.
While parallelized GPU implementations of MDS exist, they
require NVIDIA GPU cards. We aim to develop a fast and
portable MDS implementation that can run in parallel on
available parallel hardware, such as multi-core CPUs, MICs,
or GPU cards made by any vendor.

C. Our Contribution

We created Claret, a parallelized and portable force-based
WMDS. We ported and extended Chalmer’s stochastic force-
based MDS (SF-MDS) [6] to OpenCL, which runs on
various platforms, including multi-core CPUs, GPUs, and
FPGAs. To support the incremental nature of interactive
visualization, we then extended Glimmer’s multi-level algo-
rithm to use our OpenCL-based stochastic force calculation.

For high-dimensional data points, the weighted Euclidean
distance computation is a bottleneck even for parallel hard-
ware. We prove that with a combination of a new map-
ping of data points (Stretching) and Johnson Lindenstrauss’
lemma [7] that we can preserve weighted Euclidean dis-
tances and expedite distance computation.

To enable stable visualizations over time, we propose a
method to quantify the quality of a layout, compare two
embeddings quantitatively, and align embeddings.

II. BACKGROUND

Dimension-reduction tools preserve some essence of the
high-dimensional data such as the pairwise dissimilarity and
variance. Popular dimension-reduction techniques include
principal component analysis (PCA), multi-dimensional
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scaling (MDS), and linear discriminant analysis (LDA).
PCA [8] reduces the dimension of the data by choosing
directions along which the total variance of projected data
points is maximized. MDS [9] preserves pairwise dis-
tances, which is a measure of dissimilarity. Weighted multi-
dimensional scaling (WMDS) preserves pairwise weighted
distances. LDA [10] finds a linear combination of features
to reduce the dimension, and it preserves the class discrim-
ination between points.

Assume there are n points in IRd and they are rep-
resented as a collection of n d-dimensional vectors. W
is a d-dimensional weight vector. The projection of these
high-dimensional data points onto 2D space, L is n
two dimensional vectors. H,W , L can be written as{h1,1 . . . h1,d}...
{hn,1 . . . hn,d}

,

w1

...
wd

, and

{l1,1, l1,2}...
{ln,1, ln,2}

.

MDS projects data by minimizing some variant of a stress
measure, as depicted in equation 1.

n∑
i=1

n∑
j=i+1

(√√√√ d∑
k=1

(hi,k − hj,k)2 −

√√√√ 2∑
k=1

(li,k − lj,k)2
)2

(1)
WMDS, on the other hand, preserves weighted high-

dimensional distances between points in a low-dimensional
space. It minimizes a slightly different stress function, which
uses W while computing high-dimensional distances. Stress
for WMDS is defined as follows:
n∑

i=1

n∑
j=i+1

(√√√√ d∑
k=1

(hi,k − hj,k)2wk −

√√√√ 2∑
k=1

(li,k − lj,k)2
)2

(2)

A formal definition of WMDS follows:

Definition II.1 (WMDS). Given high-dimensional data H,
and a dimensional weight vector W , find a two-dimensional
embedding L that minimizes the stress in equation 2.

III. RELATED WORK

We present the state of the art of MDS tools, focusing
mainly on GPU-based tools. We also briefly discuss random
projection and layout matching.

A. Force-Directed MDS

We can view the projection of high-dimensional points
onto low-dimensional space as a layout optimization prob-
lem. Minimizing the stress function narrows the difference
between the high-dimensional distance and low-dimensional
distance for all pairs. If we start with an initial random
layout, i.e. 2D projection, and guide the points to move
around while lowering the difference between distances in
two spaces, it will eventually converge to the optimal layout.

In the n-body problem, every point exerts forces on
all other n − 1 points depending on some measure such
as mass and distance in the gravitational force field and
charge and distance in the electrostatic force field. In layout
computation, a given point needs to move towards or further
from any other point in the embedding. The amount of
these movements depends on how closely their distance
in the current layout matches with their high-dimensional
counterpart. If we are to attach a force between these two
points, it should be proportional to the difference between
these two distances.

Thus, the layout computation problem maps to an n-
body problem when we apply a force between two points i
and j proportional to the measure, LD(i, j)−HD(i, j). If
LD(i, j)−HD(i, j) < 0, the force is repulsive and it will
move the two points apart. If LD(i, j)−HD(i, j) > 0, the
force is attractive and this will move the two points closer.
For the ith point, the total experienced force is

Fi =
∑
j 6=i

K × (LD(i, j)−HD(i, j))

Here K is a constant that we can tune for the dataset and
simulation environment. Once we compute force for a point
in 2D, we can estimate acceleration, which is proportional to
the force. This acceleration can be used to calculate current
velocity, and in turn, the point’s next position. Velocity is
updated using v = v0 + a × δt, and the next position is
updated using x = x0 + v × δt. Here, δt is simulation
step. 〈v0, x0〉 and 〈v, x〉 are the velocity and position at the
beginning and at the end of the current timestamp.

Force computation at each step is a O(n2) operation since
we have to compute O(n2) distances in 2D. This estimate
also assumes that we pre-compute all the high-dimensional
distances; otherwise, this computation becomes O(n2 × d)
operations.

We can compute forces, velocities, and positions of n
points independently. There are multiple implementations
that use spring-force simulation as a means to perform MDS.
Since we can map MDS to an n-body problem, a well-
studied and optimized problem in GPU computing, we take
this approach as the core of Claret.

B. Stochastic Force-based MDS(SF-MDS)

Force-based MDS can be computed in parallel using many
cores; however, the computation workload per thread is still
large. Assuming we have n parallel threads at our disposal,
the ith thread will compute Fi which is a summation of
forces exerted by the n − 1 other points. For large n, each
thread might take a long time to finish its computation.

Chalmers et al. [6] made an observation that we can per-
form force simulation with much less effort using two small
representative sets from the n−1 points. In their algorithm,
they maintain two sets, a "near set" of size sn and a "random
set" of size sr. The near-set gradually converges to contain
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the nearest sn points the while random set always picks sr
new points at every simulation step. The near-set expedites
convergence by providing local structure information, and
the random set helps the embedding by enforcing global
structure. The sizes used by Chalmers’ algorithm are 14 and
10, respectively, which were determined empirically. Though
Chalmers’ version is a sequential one, we can leverage the
fact that n-body simulation can be performed in parallel,
and reduce the per-thread workload to a constant amount.
This observation also helps us with the stress computation.
Instead of adding O(n2) differences, we can add O(n)
distances to approximate the stress.

C. GPU-based MDS

Several realizations of GPU-based MDS exist. The field
of bioinformatics has produced quite a few GPU-based
MDS tools in CUDA, a NVIDIA-specific GPU program-
ming language. Fester et al. [11] implemented a CUDA
version of HiT-MDS by employing reduction to add a
large group of numbers and computing multi-dimensional
distances in parallel. CUDA-based fast multidimensional
scaling (CFMDS) [2] dynamically decides whether to run
MDS on the entire dataset or divide the data into chunks
that can fit into the global memory of the NVIDIA GPU
card depending on the input size.

D. Multi-level SF: Glimmer

Glimmer by Ingram et al. [12] uses stochastic force
as the base algorithm for their force-based MDS, and
they implemented this on a GPU using OpenGL, pri-
marily a graphics programming language. One major
contribution of their work is that they optimize the
layout at multiple levels. Glimmer divides the dataset
into logbn levels, data ranges in these levels are
[0,max(MIN_SIZE, n

blogb n )], . . . , (
n
b2 ,

n
b ], (

n
b , n], where

b is a constant called the decimation factor. Glimmer uses
three operators at each level: restrict, relax, and interpolate.
The restrict operator samples points for that range. Relax
runs stochastic force to find optimal embedding for all points
up to the previous level. Interpolate uses all relaxed points
up to the previous level to sample the near and random set
to run stochastic force on the data at the current level. In the
last level, relaxing all data produces the final embedding.

IV. CLARET

To develop Claret, we parallelize the sequential MDS
algorithm SF-MDS and port the parallelized version into
parallel hardware using OpenCL. Claret also uses Glimmer’s
multi-level approach to obtain faster convergence.

Continuing from sub-section III-B, SF-MDS is a linear
approximation of force-based MDS. Instead of computing
force from all n−1 points, SF-MDS uses two small subsets
to do so. At every iteration, the near set is updated by
choosing the sn nearest points (according to their high

dimensional distances from the point under consideration)
from pivot_size = sn+sr pivot points. We summarize SF-
MDS in Algorithm 1, where f() and g() are linear functions
to allow tuning simulation parameters.

Algorithm 1 Force Based MDS

Require: highD[n × d], lowD[n × 2], velocity[n × 2],
force[n× 2] , pivots[n][pivot_size]

1: while converge() 6= true do
2: for i = 0→ n do
3: near_set← pivots[i][0 . . . near_set_size]
4: random_set← randomindices
5: my_pivots← near_set ∪ random_set
6: for j = 0→ pivot_size do
7: k ← my_pivots[j]
8: hDistance[k]← dist(highD[i], highD[k])
9: lDistance[k]← dist(lowD[i], lowD[k])

10: force+ = f
(
hDistance[k]−lDistance[k]

)
11: sort my_pivots based on hDistance
12: a← g

(
force

)
13: velocity[i]← velocity[i] + at
14: lowD[i]← lowD[i] + velocity[i]× t
15: pivots[i]← my_pivots

We want to parallelize algorithm 1 for efficient implemen-
tation and fast execution on any OpenCL supported devices.
In OpenCL architecture, we have two types of computing
devices: host and device. The host is usually a CPU which
can launch parallel programs into devices and act as the
moderator and controller. The host has host memory, and
the device has a hierarchy of memory consisting of global
memory, constant memory, and local memory. We load the
input data into host memory; the host program then launches
parallel programs in SIMD fashion into computing units of
one or more devices.

Given the sequential algorithm as depicted in algorithm 1,
the goal is to develop a parallel program that achieves similar
functionalities and can run on any computing device having
the parallel computing architecture specified by the OpenCL
standard.

A. Porting SF-MDS to GPU using OpenCL
Any n-body problem can be parallelized across n points.

Every point experience force from all other (or in the case
of SF-MDS, a subset of) points which are frozen in time and
space. At the beginning of every iteration, each point sees the
same configuration (〈position, velocity, . . . 〉) of points. In
SF-MDS, every point experiences force from pivot_size =
O(1) other points. So, we don’t unroll the loop for iterations
over time; instead, we unroll/parallelize the outer for loop
in line 2 as every point can be processed independently in
a given duration of δt.

So, every iteration for every point runs in O(1) = O(n)/n
time. The code block consisting from line 3 through line 15
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computes the force and updates the position for a given
point. We can take this block and put it inside a computing
unit, namely thread, to take care of individual points in
parallel. Algorithm 2 shows a high-level OpenCL kernel of
Claret. At every iteration, n such kernels are launched to
update the positions of n points in parallel.

Algorithm 2 Claret Kernel

1: gid← get_global_id(0)
2:
3: //copy data from global memory
4: near_set← pivots[i][0 . . . near_set_size]
5: random_set← randomindices
6: my_pivots← near_set ∪ random_set
7: v0 ← velocity[gid]
8: x0 ← lowD[gid]
9:

10: //compute force using pivot points
11: for j = 0→ pivot_size do
12: k ← my_pivots[j]
13: hDistance[j]← dist(highD[gid], highD[k])
14: lDistance[j]← dist(lowD[gid], lowD[k])
15: δv ← v0 − velocity[k]
16: force+ = f

(
hDistance[k]− lDistance[k], δv

)
17: sort my_pivots based on hDistance
18: globalSynchronization()
19:
20: //update velocity and position
21: a← g

(
force

)
22: v ← v0 + at
23: x← x0 + v × t
24: //copy data back to global memory
25: velocity[gid]← v
26: lowD[gid]← x
27: pivots[gid]← my_pivots
28: globalSynchronization()
29:
30: //Compute low dimensional distances
31: for j = 0→ pivot_size do
32: k ← my_pivots[j]
33: lDistance[j]← dist(lowD[gid], lowD[k])

There are some implementation/porting challenges which
can cripple the performance on different accelerators in
OpenCL programming paradigm. We address some of these
issues in the remaining part of this section.

B. Memory and Data Management

Solving an n-body problem for large data requires storing
a significant amount of data in memory, efficient access to
that memory, and minimal data transfer between the host
and device.

Storing data into memory: We give an estimate of
the in-memory data storage requirement during a single
iteration in table I. For the purpose of demonstration, we
set pivot_size to 8.

Buffer Purpose Size Type
highD high dimensional data n× d float
lowD 2D projection n× 2 float
pivot_indices Near and Random index n× 8 unsigned int
hd_distances HD distances to pivots n× 8 float
ld_distances LD distances to pivots n× 8 float

Table I: The comprehensive list of required memory.

We have to store around (22 + d) × n floating point
numbers in device memory. So, even for an input data as big
as 106×100, the required memory is around 500MB, which
can easily fit in the device memory of modern hardware
accelerators.

Since pre-computing O(n2) distances requires a large
amount of device memory, we compute distances on the fly.
That also helps avoid moving a great deal of data between
the host and device.

Low latency in memory access: We coalesced mem-
ory access so that whenever possible, the compiler can
resort to vector operation. Before the first iteration, we pre-
compute n× pivot_size/2 pivot indices in the range [0, n)
and offload the whole data into device’s global memory.
At every iteration, for every point we generate a random
starting point as si = f(global_id, iteration) and ac-
cess pivot_indices[si . . . si+pivot_size/2] as new random
points.

Minimum Data Transfer: Moving data back and forth
between the host and device is a time-consuming task. So,
we move almost the entirety of the data at the beginning of
the first iteration to device global memory, and then between
iterations, we only fetch a constant sized data from the
device to host.

C. Global Synchronization and Kernel Fusion

At any given iteration of force simulation, every point sees
the same configuration, the same high and low-dimensional
positions. We want to ensure consistent access to global
memory shared by all threads.

In algorithm 2, during a given iteration (same time win-
dow), all threads access lowD 4 times in lines 9, 14, 26,
and 33. Except for the third access, all other accesses are
read accesses. These accesses have a deterministic order,
let’s call them R1, R2, W1, and R3. W1 is a write access
that can create a data race between threads if the threads do
not synchronize before and after this step. So, we put two
global synchronization points in the kernel.

Unfortunately, OpenCL does not directly support global
synchronization. Furthermore, the global synchronization
mechanism offered by Xiao et al. [13] is not viable because
OpenCL cannot globally synchronize across workgroups.
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Instead, we break the workflow of a single thread across
three kernels at the points of required global synchroniza-
tion. Between two kernel calls, control returns to the host,
and thus, all threads get a chance to synchronize globally.

While this approach ensures the correctness of our par-
allelization, the overhead of coming back to CPU is non-
trivial. So, we seam the kernels back together using kernel
fusion through double buffering. We maintain two buffers
for one array, and at any given step, all threads read from
the same buffer and write to the other buffer. This method
ensures W1 does not create any inconsistency in values read
by different threads.

D. Computing Distance in Parallel

Every thread needs to compute pivot_size pairwise dis-
tances, each of them is an O(d) task if computed se-
quentially within the thread. Ideally, each pairwise distance
computation comes down to reducing d values into 1 value.
Each main thread is launching (pivot_size × d) threads
to reduce pivot_size values. This mechanism is known
as dynamic parallelism, and only a handful of GPU cards
support this. Since we do not want to restrict Claret to run on
only a selected few accelerators, we solve this in software.

We can break the kernel into three segments for three
tasks. Each thread will run in parallel to compute pivot
indices and then they will sync. After that, we combine all
threads’ reduction jobs into one big reduction job. Here (n×
pivot_size× d) values will be reduced to (n× pivot_size)
values by (n× pivot_size× d) reduction threads.

Once the reduction threads finish, all distances for all
regular threads are completed and available. Now, each
regular thread can resume computing forces and positions
for the points for which they are responsible.

E. Stress Computation and Convergence

At every iteration, after every point’s position is updated,
we compute stress by a reduction in the accelerator. We
smooth the stress curve by taking moving average, and we
use Cauchy Convergence test for deciding termination. In
each level, the stress starts from a high point and eventually
plateaus.

V. QUANTIFYING LAYOUT SIMILARITY

Embeddings created by different MDS implementations or
the same implementation in different phases might appear
dissimilar. We want to investigate similarity between such
embeddings.

To quantify the similarity between embeddings, we pro-
pose a method based on geometric shape matching. Let point
set P consist of n points in d-dimensional space. Let L1,
L2 be two projections created by MDS. We want to quantify
the similarity between these two.

If two embeddings are similar under rotation and trans-
lation, we align them using center of mass and principal

components. First, we compute centers of mass C1, C2 of
L1, L2 respectively. Then, we apply C2 − C1 translation to
L1 so that their centers coincide. L′

1 = L′
1 + C2 − C1. We

compute their first principal components ~v1, ~v2 for L′
1, L2

and the angle θ between ~v1, ~v2. Finally, we apply θ rotation
to L′

1 so that ~v′1 and ~v2 are aligned.
To compute similarity between the layouts L1, L2, we

then pick n corresponding point pairs (pi, qi) where pi ∈ L′
1

and qi ∈ L2. We then compute n Euclidean distances
between points in each pair, and take their average to get
the final score. Formally,

similarity(L1, L2) =
∑

i = 1 → n
pi ∈ L′

1, qi ∈ L2

dist(pi, qi) (3)

The alignment procedure can be used to stabilize 2D
projections in different phases of interactive visualization.

VI. STRETCHED RANDOM PROJECTION

In WMDS, we have to compute O(n2) weighted Eu-
clidean distances in IRd which requires O(n2d) operations.
We propose a way to cut this computation.

A. JL Lemma for Weighted Euclidean Distance

The compute kernels compute pairwise distances on the
fly To reduce global memory usage. Each distance compu-
tation is a O(d) task which can slow down the program for
large d(d ≈ n).

We solve this problem using a result from geometry.
Johnson–Lindenstrauss lemma [7] states that if we project a
high dimensional dataset onto a randomly chosen subspace
of much smaller dimensions, it preserves the Euclidean
distances approximately. Since WMDS requires retaining
weighted Euclidean distances, we extend JL lemma to prove
that similar result can be achieved for weighted Euclidean
distance as well.

Definition VI.1. Given a set of n points in IRd, and a
parameter ε > 0, a projection of P onto a random k-
dimensional linear subspace, a distance ||p − q||2 is ε-
preserved if (1 − ε)||p − q||2 ≤

√
d/k||f(p) − f(q)||2 ≤

(1 + ε)||p− q||2.

Theorem VI.1. Johnson-Lindenstrauss Lemma Let P
be a set of n points in IRd, let ε > 0 be a parameter,
and let k = (1/ε2) log n. Let Q be the projection of
P onto a random k-dimensional linear subspace. Then
all pairwise Euclidean distances in P are ε-preserved by
the corresponding pairwise Euclidean distances in Q with
probability at least 1/2.

Definition VI.2. Given a point set P in IRd and a di-
mensional weight vector W , the weighted Euclidean dis-
tance between two points p, q in P is ||p − q||w2 =(∑k

i=1 wi(xpi − xqi)2
)1/2

.
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Definition VI.3. Stretching p = [xp1, xp2, . . . xpd]
T by W =

[w1, w2, . . . , wd]
T is scaling p by wi along ith dimension for

i ∈ {1, 2, . . . , d} so that p′ = [
√
w1×xp1, . . . ,

√
wd×xpd]T .

Formally, p′ = p⇔©W = [
√
w1 × xp1, . . . ,

√
wd × xpd]T .

A point set P is stretched by W if every point p ∈ P is
stretched by W .

Theorem VI.2. Johnson-Lindenstrauss Lemma for
weighted Euclidean distance Let P be a set of n points
in IRd, W is d-dimensional weight vector, let ε > 0 be a
parameter, and let k = (1/ε2) log n. Let Q be the projection
of P ⇔© W onto a random k-dimension linear subspace.
Then, all pairwise weighted Euclidean distances in P
are ε-preserved by the corresponding pairwise Euclidean
distances in Q with probability at least 1/2.

Proof: Let, p′ = p⇔©W and q′ = q⇔©W . Both, p′ and
q′ are points in IRd and they can be mapped to their objects
p and q. By Theorem VI.1, ||p′ − q′||2 is ε-preserved after
projecting P ⇔©W onto k-dimensional linear subspace.

||p′ − q′||2 = ||p⇔©W − q⇔©W ||2

=
( k∑

i=1

(
√
wixpi −

√
wixqi)

2
)1/2

=
( k∑

i=1

wi(xpi − xqi)2
)1/2

= ||p− q||w2

(4)

According to Theorem VI.1, (1 − ε)||p′ − q′||2 <√
d/k||f(p′)−f(q′)||2 < (1+ ε)||p′− q′||2. We know from

equation 4, ||p′ − q′||2 = ||p− q||w2.
So, (1−ε)||p−q||w2 ≤

√
d/k||f(p′)−f(q′)||2 ≤ (1+ε)||p−

q||w2. Hence, the weighted Euclidean distance between two
points in P are preserved by the corresponding Euclidean
distance in Q with probability at least 1/2.

B. Computing Distance using Random Projection

To compute pairwise weighted Euclidean distances in P ,
we first compute P ⇔© W . This can be accomplished by
multiplying (n×d)- matrix P with a (d×d) diagonal matrix
WD, where WD[i, i] = wi. P ′ = P ⇔©W = P ×WD.

Then, we will project P ′ onto k-dimensional linear sub-
space by multiplying P ′ with a d × k dimensional random
matrix R. So, the projected point set Q = P ′ × R =
P ×WD ×R.

Once we have computed Q, we will compute pairwise
Euclidean distances in Q, and they will be ε-approximation
of the weighted Euclidean distances in P .

C. Preprocessing Time

Construction of WD takes O(d) time. P ⇔© W takes
O(nd) time since WD is a sparse matrix. R can be a sparse
matrix [14] with only 1/3 non-zero entries. So, the overall

runtime for this preprocessing step is O(n2+n log n+n2×
logn) = O(n2 log n).

For large d, we use this result to create H ′ ∈ IRO(logn)

and then run MDS on H ′. The saved computation in
MDS for the reduced dimension is enough to pay for this
preprocessing step.

VII. RESULT AND DISCUSSION

The two main foci of this undertaking of implementing
WMDS in OpenCL are:

1) to be able to run this on multiple accelerator types.
2) make the runtime fast enough for interactive visual

analytics.
In this section, we will first start with demonstrating

the correctness of our implementation by comparing the
embedding for several datasets produced by Claret against
that of Scikit-MDS and Glimmer. Next, we will show the
runtime performance on various accelerators with different
configurations.

We use a range of datasets from different sources.
1) Cancer: This dataset contains information regarding

breast cancer patients. There are 683 patients each
with 9 features.

2) Shuttle: This dataset is collected from NASA. It con-
tains 43500 data points about shuttle turn correlation,
and each data point has 9 features.

3) Supreme Court Ruling: We constructed two datasets
of size 14000× 20 and 14000× 100 by running topic
analysis on supreme court rulings.

4) Artificial Data: We generate artificial data from 10
20-variate normal distributions. These datasets will
have 10 clusters with 20 dimensions.

A. Layout Validation

We get a similar output irrespective of our choice of the
accelerator for running Claret. We compute embeddings for
the same datasets using Claret on GPU, Scikit-MDS on
CPU and Glimmer on GPU. As we can see in figure 1,
the Claret’s embedding is comparable with the Glimmer
and Scikit-MDS’s embedding. Though the later was only
able to compute embedding for the smallest dataset. These
embeddings are visually similar. We also compared stress of
the embeddings, and the stresses are within ±5% of each
other.

B. Performance Baseline

We want to compare Claret’s performance against a se-
quential MDS tool such as Scikit-MDS. As anticipated in
earlier sections, Scikit-MDS can not compute embeddings
for larger datasets. It ran out of memory for Shuttle and SC
Ruling data even in a system with 8GB of memory. So, we
compare Claret’s performance against that of Scikit-MDS’s
on the Cancer dataset.
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Figure 1: Embeddings produced by Claret(left) and Glim-
mer(right). The embeddings are visually similar as well as
their stresses are within ±5% of each other.

We could run Scikit-MDS only on Cancer dataset (683×
9); it took 15s even with 4 parallel threads. Claret took
310ms. We ran both tools in Xeon-E5 with 4 CPU cores.

C. Comparison Against other GPU-based MDS Method

There are several GPU-based MDS tools; CFMDS and
Hit-MDS are implemented in CUDA and Glimmer are
implemented in OpenGL. CFMDS has a dependency on
CULA which is discontinued, and Hit-MDS is implemented
using very old version of CUDA. Osipyan et al. [15]
reported that Glimmer is faster than CFMDS and Hit-MDS.
So, we compare Claret’s performance against Glimmer’s
performance on NVIDIA Titan X GPU card. From Figure 2,
we see that Claret is (3− 9)X faster than Glimmer.
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Figure 2: Claret is 3-9 times faster than Glimmer depending
on the dataset.

We also experimented with artificial data to see whether
the performance is dependent on the values of n. Figure 3
shows the result. Claret’s speedup compared to Glimmer is
in the range 6.28X−1.45X . As the data size increases, the
speedup decreases.

D. Running on Various Accelerators

The crux of our motivation is portability – the ability
to run on many different kinds of hardware. We show that
Claret runs on 4 different accelerators including:
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Figure 3: Layout computation time for Claret and Glimmer.
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Figure 4: Layout computation time in different accelerators

1) 22-core Xeon E5-2637 CPU @3.50GHz by Intel
2) Tesla K80(Kepler) GPU by NVIDIA with 2496 cores
3) Hawaii GPU by AMD
4) Xeon Phi accelerator by Intel with 61 cores
From Figure 4, CPU, and GPU performances are com-

parable because we have used a powerful CPU with 22
cores. The poorer performance on Xeon Phi in contrast
to GPUs suggests that we should take individual core’s
parallelizability and computing power into consideration
when designing parallel tasks.

VIII. CASE STUDY: INTERACTIVE VISUAL ANALYTICS

Visual - Parametric Interaction (V2PI) [3] is a new ap-
proach to human-in-the-loop analytics. Instead of relying on
MDS to produce the visual layout and then allowing users
to tune the weight parameters afterward, V2PI lets users be
part of the visualization creation process. The interaction has
two directions:

1) Forward: Users set the weights for each dimen-
sion/feature by moving sliders. The underlying
WMDS computes the 2D embedding.

2) Inverse: V2PI translates users’ visual feedback into a
set of weights that justifies the user-defined arrange-
ment. These weights are used to re-compute a 2D
embedding of the entire dataset.

As we can see in Figure 5, the user moves two sliders to
change weights of two features, and the resulting projection
is displayed.
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(a) Initial layout (b) t = 0s, moved sliders (c) t = 0.061s, refined layout
Figure 5: A snapshot of Web Andromeda using Claret. User moves the sliders to up-weight two features and within 61ms
Claret recomputes the layout. A new structure emerges in the redrawn layout.

A. Integrating Claret into V2PI

A software named Andromeda [16], [17] facilitates V2PI
interactions. Web Andromeda is a tool implemented in
JavaScript, and an underlying Python back-end drives the
computation. This framework presents a problem with us-
ing Claret as the host code is written in C++. We use
PyOpenCL [18], a Python wrapper library that allows devel-
opers to write host code in Python. Since we do not have to
change the device kernel, we also provide Python host-side
code. With our Python backed host-side code, Claret is then
easily called from Web Andromeda’s python back-end.

B. Performance boost-up by Claret

With Scikit-MDS, a forward interaction for data of size
683×9 took 30−50s. This time is too large for a real-time
application. With Claret, the same interaction took 55ms,
which is well below the typical time that humans perceive as
a delay (100ms is a standard guideline for real-time response
in interactive systems [19]).

IX. CONCLUSION

We presented Claret, a tool for weighted MDS imple-
mented in OpenCL, which outperforms Glimmer, the pre-
viously best performing method designed for GPUs. We
show that Claret is indeed a write-once-run-anywhere tool
and can run on a plethora of devices. Also, we presented a
geometric result claiming that weighted Euclidean distances
can be preserved through stretched-random projection. The
proposed method in this paper for quantification of quality
of an embedding has the potential to make visual analyt-
ics consistent. We have successfully demonstrated Claret’s
portability across various accelerators.

The source code and documentation are available at https:
//github.com/sajal-vt/Claret.
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