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Pipelining vs. Kernel Level Pipelining

Abstract
Heterogeneity	continues	to	increase	in	all	kinds	
of	computing	applications,	with	the	rise	of	
accelerators	such	as	GPUs,	FPGAs,	APUs,	and	
other	co-processors.	
Programming	models,	such	as	CUDA,	OpenACC
and	OpenCL	are	designed	to	offload	compute-
intensive	workloads	to	co-processors	efficiently.	

Motivation	and	Goal
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Environment Setup
Machine1:
CPU: IBM	Power9	processors
GPU: NVIDIA TESLA V100	with	NVLink2
Machine2:
CPU: Intel	Xeon	Gold	6136
GPU: NVIDIA TESLA V100	with	PCI-E
Benchmarks:
1.	2D	Convolution
2.	Generic	Matrix-Matrix	Multiplication
CUDA	Version:	9.0.176

Drawbacks of current popular Kernel	Level	
Pipelining
i. End	user	must	manually	partition	the	task	

to	multiple	sub	kernel	chunks	and	then	
launch	by	multiple	GPU	streams.

ii. Splitting	to	multiple	chunks	may	cause	extra	
function	call	overhead.

iii. Parameters	(#chunks	,#streams,	etc.)	must	
be	well	tuned	to	provide	optimal	
performance

We proposed a new	block-level	pipelining	
extension	for	OpenMP that:
ü Handle	data	transfer	and	computation	inside	

one	kernel	using	different	streaming	
multiprocessors.

ü Trigger	the	computation	using	atomic	
operations	as	long	as	the	data	is	ready	thus	
pipeline	the	data	transfer	and	computation.

Data	Transfer	Bandwidth	Evaluation
CUDA	API
• usually	provides	the	maximum	bandwidth
• no	copy	order	guarantee
• need	to	be	partitioned	to	multiple	separate	calls
• does	not	notify	concurrently	running	kernels

Direct	Kernel	Access
• require	stream	multiprocessors	to	handle	the	copy
• can	control	the	copy	order
• only	one	kernel	launched
• able	to	notify	concurrently	running	kernels

Contiguous	Data	Copy

Non-contiguous	Data	Copy

2D	Convolution

Generic	Matrix-Matrix	Multiplication
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Conclusions
• Direct	Kernel	Access	achieves	the	bandwidth	limit	as	

long	as	enough	GPU	threads	are	engaged.
• Bandwidth	using	traditional	CUDA	copy	APIs	may	

drop	dramatically	if	splitting	to	multiple	chunks,	
especially	for	non-contiguous	data	transfer.

• Our	approach	provides	95%	to	108%	stable	
performance	compared	to	the	best	tuned	results	
with	traditional	kernel	level	pipeline	on	V100	GPUs.
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This	work	was	performed	under	the	auspices	of	the	U.S.	Department	of	Energy	by	Lawrence	Livermore	National	
Laboratory	under	Contract	DE-AC52-07NA27344.	
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