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Abstract With the rise of graphics processing units
(GPUs), the parallel computing community needs bet-
ter tools to productively extract performance from the
GPU. While modern compilers provide flags to acti-
vate di↵erent optimizations to improve performance,
the e↵ectiveness of such automated optimization has
been limited at best. As a consequence, extracting the
best performance from an algorithm on a GPU requires
significant expertise and manual e↵ort to exploit both
spatial and temporal sharing of computing resources.
In particular, maximizing the performance of an al-
gorithm on a GPU requires extensive hyperparame-
ter (e.g., thread-block size) selection and tuning. Given
the myriad of hyperparameter dimensions to optimize
across, the search space of optimizations is extremely
large, making it infeasible to exhaustively evaluate.

This paper proposes an approach that uses statisti-
cal analysis with iterative machine learning (IterML) to
prune and tune hyperparameters to achieve better per-
formance. During each iteration, we leverage machine-
learning models to guide the pruning and tuning for
subsequent iterations. We evaluate our IterML approach
on the GPU thread-block size across many benchmarks
running on an NVIDIA P100 or V100 GPU. Our ex-
perimental results show that our automated IterML
approach reduces search e↵ort by 40% to 80% when
compared to traditional (non-iterative) ML and that
the performance of our (unmodified) GPU applications
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can improve significantly — between 67% and 95% —
simply by changing the thread-block size.

Keywords GPU, performance, thread block, machine
learning, random forest, classification and regression
trees (CART), support vector machine (SVM), multi-
layer perceptron (MLP), k-nearest neighbor (KNN)

1 Introduction

Heterogeneous computing with accelerators, particularly
GPUs, has become increasingly prominent in the Top500
List [3] as well as in embedded high-performance com-
puting (HPC) systems, like those found in smartphones
and smart cars. In such systems, the host CPU manages
the execution context while computation is o✏oaded
to an accelerator. Leveraging accelerators not only en-
ables high performance, but it also improves energy ef-
ficiency [14]. However, extracting the optimal perfor-
mance and energy e�ciency from these accelerators can
be extraordinarily di�cult for a software developer [7].
Thus, developers need simpler abstractions and under-
lying mechanisms to program these accelerators [2,11]
as well as significant domain knowledge to tune the per-
formance of the code on these accelerators [5,6].

Because heterogeneous architectures with accelera-
tors expose many software and hardware parameters
for developers to tune to achieve optimal performance,
the di↵erent combinations of parameters result in an
enormous search space, making it infeasible for devel-
opers to exhaustively test each combination of param-
eters. Furthermore, choosing the wrong combination of
parameters can result in severe performance degrada-
tion. As such, this paper presents IterML, our iterative
parameter pruning and tuning approach with machine
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learning (ML). During each iteration, we use ML mod-
els to assist with the pruning (and tuning) of the search
space by their predicted performance. In all, our re-
search contributions are as follows:

– The design of an iterative machine-learning (IterML)
approach that automatically determines nearly op-
timal parameter settings for the GPU thread-block
size to achieve high performance.

– An empirical study that illustrates how our IterML
approach consistently delivers better search speed
over non-iterative ML methods and achieves nearly
optimal performance while sampling only 1.5% of
the search space on average and, in turn, reduc-
ing the search e↵ort by 40%-80%. In addition, when
compared to the PGI 17.5 compiler, IterML also
delivers about a 50% improvement in performance
by automatically identifying a nearly optimal GPU
thread-block size.

The rest of the paper is organized as follows. In §2,
we motivate the need for this research and present re-
lated work. Then, §3 describes the design of our iter-
ative machine-learning (IterML) approach, followed by
case studies that make use of IterML in §4. Next, §5
presents our experimental results. Finally, §6 outlines
future work, and §7 concludes our work.

2 Motivation and Background

We first present a motivating example to illustrate the
importance of parameter tuning in heterogeneous com-
puting, followed by a brief discussion on related work.

2.1 Motivating Example

Figure 1 shows a performance heatmap of our lid-driven
cavity (LDC) code,1 where the GPU thread-block size
is varied (i.e., blockDim.x ⇥ blockDim.y  512) when
running on an NVIDIA V100 GPU. The x- and y-
dimensions are limited to 64, and each thread block con-
tains at most 512 threads. We observe that the perfor-
mance varies significantly across di↵erent thread-block
sizes. At the ideal thread-block size of 4x32 for this

code on this GPU, the V100 achieves 893.3 GFLOPS.
On the other hand, the performance can be 33% worse
at 597.6 GFLOPS if the default thread-block size of the
PGI 17.5 OpenACC compiler for this LDC code is cho-
sen, namely 64x4. This 64x4 thread-block size only de-
livers approximately 67% of the optimal performance.

1 A well-known computational fluid dynamics (CFD) prob-
lem for viscous incompressible fluid flow.
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Fig. 1 Performance of a Lid-Driven Cavity Code with Vary-
ing GPU Thread-Block Size on an NVIDIA V100 GPU
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Fig. 2 Performance of the 2D Convolution Benchmark with
Varying GPU Thread-Block Size on an NVIDIA V100 GPU

In addition, exhaustively generating the performance
heatmap in Figure 1 is tedious and time-consuming.

Figure 2 shows the performance heatmap of a two-
dimensional (2D) convolution benchmark. This heat-
map looks significantly di↵erent from that in Figure 1.
Thus, di↵erent codes on the same GPU can produce
widely di↵erent performance characteristics, relative to
GPU thread-block size.

Furthermore, the GPU thread-block size is just one
parameter that can be tuned; there are many other po-
tential parameters that could be tuned, e.g., GPU block
size, degree of loop unrolling, register usage limitation,
and so on. These assortment of parameters massively
increase the search space, making it infeasible to ex-
haustively enumerate every combination. Thus, there
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exists a need for a simpler and more e�cient approach
to identify ideal parameter settings for (near-)optimal
performance.

2.2 Related Work

In [1,18,13], the authors auto-tune the performance of
a particular algorithm or application on an accelerator,
like the GPU. However, their auto-tuning still requires
extensive expertise (or intuition) to manually select the
key parameters as well as the compiler flags. To address
this problem, we propose an approach that automati-
cally identifies a much smaller (pruned) search space
that contains a (near-)optimal setting, which can then
be searched. Specifically, given a large search space, our
iterative machine-learning (IterML) approach gathers
information during each iteration, builds models, and
finds the best interaction between the parameters and
performance. This, in turn, provides automated guid-
ance as to how to tune performance in the context of a
large parameter search space.

Various statistical or machine-learning (ML) meth-
ods have been applied to help with auto-tuning pa-
rameters to get better performance. In [9], the authors
propose a linear regression model to predict processor
performance based on micro-architectural parameters,
but it requires a large amount of processor profiling
data as input to build the linear model. In [12], deep-
reinforcement learning is used to find the optimal val-
ues of tunable parameters in computer systems — from
a simple client-server system to a large data center.
While this approach can be deployed into a produc-
tion system to collect training data and suggest tun-
ing actions during the system’s daily operation, it re-
quires the system to be mostly static, which is not ap-
plicable to new algorithms or libraries that targe new
devices like GPUs. While there exist pheromone mod-
els based on the profiling data of GPUs [4,17], they
require large training sets across many programs and
with a wide variety of performance counters. More-
over, they require developers to have intimate knowl-
edge about the programs. Other related research fo-
cuses on designing coding machines to handle the pro-
gramming tasks [10]. In contrast, our goal is to help
developers productively tune their programs to achieve
near-optimal performance with the least amount of ef-
fort and domain knowledge.

3 Approach and Design

Here we articulate the approach and design of our itera-
tive machine learning (IterML), including the selection

of the parameter search space, the iterative machine-
learning (pruning) algorithm itself, and the regression
models to predict the rest of the search space.

3.1 Choosing the Parameter Search Space

For microbenchmarks or libraries, a set of hyperparam-
eters that define the dimensions of the tuning search
space must be identified. The hyperparameters may
(1) relate to software (e.g., input partition chunks and
thread count) or hardware (e.g., active core count, GPU
thread-block size, and compiler optimization options)
and (2) be either binary in nature (e.g., turning on/o↵
a compiler flag) or multi-valued across a range (e.g.,
thread-block size or number of partition chunks). Our
iterative machine-learning (IterML) approach builds knowl-
edge based on machine-learning (ML) models as it uses
samples from one iteration to then look for potentially
better samples in subsequent iterations.

3.2 Iterative Machine-Learning (IterML) Algorithm
for Pruning and Tuning

In order to quickly and e↵ectively reduce (i.e., prune
and tune) the search space, we propose an iterative
machine-learning (IterML) algorithm, as shown in Al-
gorithm 1. As inputs, the algorithm takes the search

space D, specified by multiple design parameters (e.g.,
thread-block dimension); a pick ratio, which is the sam-
ple ratio that needs to be tested in each iteration; a cut

ratio, which sets the ratio of the space to be pruned
in each iteration; and a model, which is the regression
model used for prediction. Once the pick ratio is se-
lected, the number of samples that we pick to test in
each iteration stays constant. For each iteration, we first
the apply the regression model to the samples. We then
predict the performance of the residual search space and
drop the lowest performing ones by the cut ratio, e.g.,
50%. This process repeats until a stopping criteria is
met. For example, if the cut ratio is 50%, then after
every iteration, the search space is halved, which, in
turn, means that the number of iterations is log2(size
of search space). We may adjust the cut ratio based on
the size of original search space.

Figure 3 shows basic workflows for non-iterative ML
and our iterative ML (IterML) with three iterations. We
observe that a small portion of samples are randomly
chosen in iteration 0 (i.e., iter0). Then the model is
generated to use as a guide for subsequent iterations
for data point selection in the residual search space.
The corresponding performance of these data points are
measured and then utilized to further build models for
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Algorithm 1: Iterative Machine-Learning Al-
gorithm (IterML)
Input : D: search space specified with n design

parameters
Pick ratio: sample ratio taken in each
iteration
Cut ratio: ratio of the space pruned each
iteration
Model: regression model chosen for
prediction

Result: Best parameter combination currently found

initialization;
while while not meeting stopping criteria do

pick sample set S randomly from remaining D,
based on the pick ratio;

gather performance P of S;
build model Mi, based on P;
predict the remaining D based on model Mi;
prune from the remaining D the samples with
low predicted performance by an amount
specified by the cut ratio;

end
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Fig. 3 Comparison of Non-Iterative and Iterative Machine
Learning

next iterations. Finally, the best data point should be
selected as the output result.

3.3 Regression Models

Based on our iterative machine-learning (IterML) ap-
proach, we need to build a model during each iteration
to predict the rest of the search space. We study and
explore the use of the following five popular ML models
to support our IterML algorithm.

Classification and Regression Trees (CART): Deci-
sion trees can be represented as a binary tree, where
each node represents a single input variable (x) and a
split point on that variable (assuming the variable is
numeric). CART is typically fast to train and very fast
to make predictions. It requires no data pre-processing
and can be accurate for a broad range of problems.

K-Nearest Neighbors (KNN): Predictions are made
for a new data point by searching through the entire
training set for the K most similar instances (i.e., neigh-
bors) and summarizing the output variable for those K
instances. We use the mean output variable as the re-
sult for regression problems.

Support Vector Machine (SVM) Regression: SVMs
use a hyperplane to split the input variable space. The
support vector regression (SVR) uses the same princi-
ples as the SVM for classification, with only a few minor
di↵erences. In the case of regression, a margin of toler-
ance (i.e., ") is set in approximation to the SVM, which
would have already requested from the problem.

Random Forest (RF): This type of ensemble ML
algorithm is called bootstrap aggregation or bagging.
Multiple samples of training data are taken; models are
then built for each data sample. When a prediction for
new data needs to be made, each model makes a predic-
tion, and the predictions are averaged to give a better
estimate of the true output value. Combining predic-
tions from these models results in a better estimate of
the true underlying output value.

Multilayer Perceptron (MLP): This is a neural net-
work that connects multiple layers in a directed graph,
which means that the signal path through the nodes
only goes one direction. Each node, apart from the in-
put nodes, has a nonlinear activation function. MLP
utilizes a supervised learning technique called back prop-
agation for training, which has drawn significant inter-
est recently due to its success in deep learning.

4 Experiments

To evaluate our iterative machine-learning (IterML) ap-
proach, we leverage di↵erent ML models while prun-
ing the search space. To demonstrate the e�cacy of
our approach, we focus on the GPU thread-block size

as the hyperparameter of interest. The GPU thread
block is typically composed of an X-dimension and Y-
dimension. Each dimension ranges between 1 and 1024,
inclusive. The product of the two dimensions, which is
the thread number of each GPU thread block, is also
limited by 1024. To identify the GPU thread-block size
that delivers the best (optimal) performance as a ref-
erence point to compare to, we exhaustively test the
performance of di↵erent benchmarks using all the pos-
sible combinations of GPU thread-block size, a process
that takes days to complete. We then demonstrate the
speed and e�cacy of our IterML pruning and tuning
approach on the GPU thread-block size and evaluate
its subsequent performance relative to the optimal per-
formance.
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4.1 Benchmarks Studied

As shown in Table 1, we use nine (9) GPU kernels from
the Polybench suite [16], an OpenACC kernel from the
EPCC benchmark suite [8], and an OpenACC kernel
from our lid-driven cavity (LDC) code to conduct the
our experiments. The kernels use various GPU func-
tional units and exhibit diverse behavior. For CUDA
benchmarks, relevant design parameters are substituted
by C macros so that our design can easily modify and
recompile them. For the OpenACC benchmarks, we
pass variables using the compiler flags to modify the
OpenACC pragma.

Each kernel is executed 10 times and the average
execution time reported. Only the GPU time of each
kernel execution is measured and used, thus excluding
any CPU work, data transfer, or kernel launch over-
head.

Table 1 Benchmarks Used

Benchmark Description

2dconv 2-D convolution
3dconv 3-D convolution
2mm 2 matrix multiplications
3mm 3 matrix multiplications
gemm Matrix-multiply C=alpha.A.B+beta.C
gesummv Scalar, vector and matrix multiplication
mvt Matrix vector product and transpose
syr2k Symmetric rank-2k operations
syrk Symmetric rank-k operations
epcc EPCC 27Stencil benchmark
ldc Lid-driven cavity code

4.2 Hardware Platform

We conduct our experiments on two NVIDIA GPUs:
Tesla P100 and Tesla V100. Our P100-based node con-
tains two 2.4-GHz Intel E5-2680v4 CPUs for a total of
28 CPU cores per node. The V100 node pairs two 3.0-
GHz Intel Skylake Xeon Gold CPUs for a total of 24
cores per node, In addition, there is 384 GB of memory
and two NVIDIA V100 (“Volta”) GPUs per node.

4.3 Dataset Analysis

We measure the performance of 11 benchmarks while
varying the GPU thread-block size. We then generate a
performance heatmap for each benchmark and conduct
a preliminary data analysis. We find that the perfor-
mance distribution of these benchmarks typically fall
into two major categories: clustered or banded.

Clustered. Most of these benchmarks achieve higher
performance when a specific GPU thread-block dimen-
sion gets higher (or lower) values, i.e., “clustered” high
performance. As shown in Figure 2 and Figure 4, we ob-
serve better performance with higher blockX or blockY,
respectively. In Figure 5, we see performance improve-
ment with small blockY values.
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Fig. 4 Performance of the EPCC Benchmark with Varying
GPU Thread-Block Size on an NVIDIA V100 GPU
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Fig. 5 Performance of the MVT Benchmark with Varying
GPU Thread-Block Size on an NVIDIA P100 GPU

Figure 6 shows the SYR2K benchmark on the V100
GPU. Here the highest-performing configurations are
those with a blockX equal to eight (8). The performance
then degrades gradually as one moves away from the
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Fig. 6 Performance of the SYR2K Benchmark with Varying
GPU Thread-Block Size on an NVIDIA V100 GPU

blockX = 8 line. When the performance of a bench-
mark changes gradually along one axis (e.g., blockX or
blockY) like this, we refer it as a “1D Cluster.”

Similarly, there are other benchmarks that deliver
high performance when the product of blockX and blockY
reaches a specific number or range, meaning that the
total number of GPU threads within a thread block
should be limited in order to achieve the best perfor-
mance. Visually, this translates into a “locus” of high
performance, where performance degrades as thread-
block size moves away from the “center of the locus.”
For example, as shown in Figure 1, the best-performing
thread-block configurations occur when the total num-
ber of GPU threads in a thread block is about 128.

Finally, Figure 7 shows that the peak performance
for the GESUMMV benchmark on a V100 GPU occurs
near the lower-left corner of the heatmap, which means
that many GPU thread blocks with a small number
of GPU threads in each thread block delivers the best
performance.

Banded. The banded performance distribution occurs
for GPU programs that deliver peak performance when
a specific GPU thread-block dimension reaches a spe-
cific number or multiple of it. As the thread-block size
moves away from these specific numbers, performance
degrades significantly. As shown in Figure 8 and Fig-
ure 9, the 2MM and GEMM benchmarks deliver the
best performance only when blockX is a multiple of 16
and 8, respectively. For other values of blockX, the per-
formance achieved is always below 60% of the perfor-
mance achieved when blockX is a multiple of 16 and 8
for the 2MM and GEMM benchmarks, respectively.
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Fig. 7 Performance of the GESUMMV Benchmark with
Varying GPU Thread-Block Size on an NVIDIA V100 GPU
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Fig. 8 Performance of the 2MM Benchmark with Varying
GPU Thread-Block Size on an NVIDIA P100 GPU

Using the performance classifications of “clustered”
and “banded,” Table 2 shows the overall distribution of
application performance when varying the GPU thread-
block size. Interestingly, the performance distribution
across the P100 GPU and V100 GPU is consistent. As a
consequence, this feature might be useful as a guideline
for further experimental work on future accelerators.

4.4 Pruning Procedure

We begin to evaluate our iterative pruning approach af-
ter we collect all the performance data of the 10 bench-
marks and applications by varying the GPU thread-
block size. The pruning approach is implemented in
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Fig. 9 Performance of the GEMM Benchmark with Varying
GPU Thread-Block Size on an NVIDIA V100 GPU

Table 2 Distribution of Application Benchmark Perfor-
mance

P100 V100

Clustered

2dconv
epcc
3dconv
ldc
gesummv
mvt
syrk
syr2k

2dconv
epcc
3dconv
ldc
gesummv
mvt
syrk
syr2k

Banded
2mm
3mm
gemm

2mm
3mm
gemm

Python with the Scikit-learn machine learning (ML)
libraries [15]. We select five (5) commonly used mod-
els to predict the performance based on previous sam-
ples; these models include CART, KNN, SVM, RF, and
MLP, as presented in §3.3. Because the thread-block
search space is relatively modest, we use 0.5 as the cut-
ratio, which means that we drop 50% of the search space
with low predicted performance in each iteration. We
can change this number depending on the scale of the
search space. Each time, we pick a portion of the sam-
ple based on the pick-ratio and keep this sample number
consistent until end. Due to the random selection of the
samples, we repeat this process at least 100 times, thus
drawing a distribution of the results using our iterative
pruning approach. We then compare the result of dif-
ferent models based on this distribution. We normalize
the samples to the result of the baseline, which entirely
randomly selected the samples.

4.5 Case Studies

Here we present multiple case studies to show how the
selection of the GPU thread-block size a↵ects perfor-
mance.

How does the manual selection of the thread-block

size by an experienced developer impact performance?

In real-world GPU coding, developers set the GPU
thread-block size based on their experience. Typically,
the chosen block sizes are 64, 128, and 256.

Figures 10 and 11 show the normalized performance
of benchmarks, where the GPU thread-block size is set
by experienced developers, relative to the optimal per-
formance.

We observe that none of the manually chosen thread-
block sizes provide consistently good performance across
all the benchmarks. In fact, each setting achieves only
20% to 99% of the optimal performance across the bench-
marks.

Is there a universal thread-block size that “rules them

all”?

Figures 12 and 13 show the minimum normalized
performance across all benchmarks tested on the V100
and P100 GPUs, respectively.

For brevity, we only show the cases where the to-
tal number of threads is less than or equal to 512 and
where each dimension is limited to 128. (Note: The un-
shown parts of the graphs produce similar results.) We
observe that all the blocks in the heatmap achieve less
than 30% of optimal performance. This result indicates
that there is no such notion of a universal thread-block
size that can consistently provide good performance for
most applications.

Is the ideal thread-block size for one device good

enough for other devices with similar architectures?

We first identify the thread-block size that achieves
the best performance on one device (e.g., P100) and
then see if that ideal thread-block size for the one de-
vice (e.g., P100) is also good enough for another device
(e.g., V100) with a similar architecture.

Table 3 shows how the ideal thread-block size on
the P100 GPU performs on the V100 GPU while Ta-
ble 4 shows the converse. For some benchmarks (e.g.,
2mm), the ideal block size delivers 99% of the optimal
performance. However, there are still some benchmarks
(e.g., syrk) that achieve only 44%-47% of the optimal
performance.

5 Evaluation

We evaluate the total sample ratio needed to achieve
good performance using our iterative pruning and tun-
ing approach. We vary the ML models used for predic-
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Fig. 10 Normalized Performance Across Varying Thread-Block Sizes on the P100 GPU
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Fig. 11 Normalized Performance Across Varying Thread-Block Sizes on the V100 GPU
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Fig. 12 Minimum performance heatmap across all bench-
marks on V100 GPU

tion during each iteration and use random search sam-
pling approach as our baseline. To quantify the good-
ness of the performance compared to the optimal, we
utilize the following two standards:

1. Standard 1: The sample ratio required to achieve
a median that is higher than 95% of optimal perfor-
mance. This means that the result is expected to be
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Fig. 13 Minimum performance heatmap across all bench-
marks on P100 GPU

at least better than 95% of the optimal performance
on average.

2. Standard 2: The sample ratio required to achieve
5-percentile higher than 95% of the optimal per-
formance. Standard 2 is more di�cult standard to
achieve than Standard 1. It means there is at least
a 95% probability to get a result that is better than
95% of the optimal performance.
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Fig. 14 Performance of SYR2K benchmark with random forest (RF) and varying the number of iterations (see legend) using
IterML and the total sample ratio (X-axis) on the V100 GPU

Table 3 P100 ideal thread-block size performance on V100

Benchmark Thread-X Thread-Y Performance
2dconv 512 2 0.974
3dconv 96 2 0.946
2mm 32 32 0.99
3mm 16 48 0.76
gemm 16 48 0.775
gesummv 16 1 0.868
mvt 14 1 0.903
syr2k 16 36 0.751
syrk 32 24 0.473
epcc 1 128 0.968
ldc 16 6 0.954

Table 4 V100 ideal thread-block size performance on P100

Benchmark Thread-X Thread-Y Performance
2dconv 64 5 0.941
3dconv 88 10 0.846
2mm 64 16 0.994
3mm 32 26 0.938
gemm 32 26 0.938
gesummv 6 5 0.675
mvt 8 1 0.883
syr2k 8 124 0.601
syrk 8 124 0.447
epcc 8 64 0.778
ldc 4 32 0.945

Figure 14 shows the box-plot for the performance
of the SYR2K benchmark on a V100 GPU. It is tuned
by our iterative pruning approach using the random

forest model and varying the total sample ratio used.
Each bar in the box-plot consists of at least 500 data
points. The middle line of each bar represents the me-
dian (for Standard 1 ); the lower-bound labels the 5-
percentile (for Standard 2 ). We only show the first three
iterations in this plot since the data set is relatively
small in this case. The red color represents the base-
line results, which randomly selects the potential sam-
ples. We observe that, with the same number of total
samples used, those with more iterations generally pro-
duce better performance. This means our approach per-

forms better with fewer samples in each iteration but

with more iterations. However, some models may re-
quire a certain minimum of samples in order to become
accurate for prediction.

From the plot, we also observe that the light grey
bar (i.e., 3 iterations) with total sample ratio 0.4%
reaches Standard 1, while the baseline (red bar) requires
at least 1%. With a total of 1.2% samples (i.e., 3 itera-
tions of 0.4%), the light bar reaches Standard 2. In this
paper, we generate this box-plot for all the benchmarks
with di↵erent predicting models. We then compare the
median or 5-percentile bar to 0.95 and collect the sam-
ple ratio required by each model to achieve Standard 1

or Standard 2.

Figures 15, 16, 17, and 18 show the normalized to-
tal samples to reach Standard 1 or Standard 2 on the
V100 and P100 GPUs, respectively. Depending on the
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Fig. 15 Normalized sample ratio to achieve Standard 1 on the V100 GPU (lower is better)
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Fig. 16 Normalized sample ratio to achieve Standard 2 on the V100 GPU (lower is better)
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Fig. 17 Normalized sample ratio to achieve Standard 1 on the P100 GPU (lower is better)
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Fig. 18 Normalized sample ratio to achieve Standard 2 on the P100 GPU (lower is better)

performance distribution of di↵erent benchmarks, we
need di↵erent sample ratios to achieve good perfor-

mance. For comparison purposes, we normalized the
number of the samples required by di↵erent models to
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the baseline (denoted as the “non” model, short for non-
iterative ML model). In Figure. 17, we see that CART
and RF models only require ⇠20% samples compared
to baseline. The worst case is 3MM benchmark, which
takes ⇠60% samples while using RF model. Overall, we
observe that in most cases, using our iterative pruning
approach saves approximately 40% to 80% search e↵ort
when choosing the best model. Due to the performance
distribution in some cases, we only need a very small
set of samples to achieve good performance (e.g., epcc).

We also observe that the performance of SVM and
MLP, respectively, are not stable. Sometimes these two
models perform even worse than the baseline, especially
when the sample size is relatively small. We conjecture
that these two models require a certain amount of data
to be e↵ective.

On the other hand, the other three models (CART,
RF, and KNN) always require fewer samples to achieve
good performance. We note that we used a cut-ratio of
50% by default in this case because the search space
(i.e., GPU thread-block size) is relatively small. When
dealing with a larger search space, we may increase
this value to achieve higher search speed. However, this
higher search speed could compromise the search qual-
ity; hence, there is a tradeo↵ here, which we discuss in
our future work.

Figure. 19 shows the box-plot of the overall average
normalized sample required to achieve Standard 1 and
Standard 2 for di↵erent machine-learning (ML) models.
The results are normalized to baseline, which exhaus-
tively randomly chooses the parameter combinations as
samples. We observe that, among the five popular ML
models, random forest (RF) performs better and pro-
duces more stable results than all the other models.
Compared to non-iterative approach (baseline), it saves
⇠ 40% to 80% required samples to achieve good perfor-
mance. Overall, it saves ⇠ 60% required sample, which
only requires ⇠1.5% of the search space on average.

Previously, we categorized the benchmarks into two
groups based on the performance distribution. Figure 20
shows their average raw sample ratio to achieve Stan-
dard 1, which means the performance expectation is
higher than 95% of the optimal. We only compare be-
tween the non-iterative approach and our IterML with
Random Forest model. We see that “The Band” obvi-
ously requires a lot more samples to get good perfor-
mance, which is around 3% on average. Our IterML ap-
proach can significantly reduce the sample ratio , which
is 1.7% on average. For both groups, the IterML always
provide more stable performance than the non-iterative
approach.

In conducting this empirical study on our iterative
machine learning (IterML) algorithm and comparing its

Fig. 19 Comparison of machine-learning (ML) models for
IterML, relative to the normalized sample ratio (lower is bet-
ter)

Fig. 20 Comparison of benchmark performance distribution
group, relative to the raw sample ratio to achieve Standard 1
(lower is better)

performance to that of traditional non-iterative ML, we
note that we used the default model functions provided
by the scikit-learn library.
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6 Future Work

In proposing our iterative machine-learning (IterML)
approach to prune and tune hyperparameters for bet-
ter performance, we utilized five machine-learning (ML)
models for prediction in each iteration and parameter-
ized our IterML approach with the cut-ratio and pick-

ratio. The values for these two ratios should depend on
the tradeo↵ between accuracy and search speed. Thus,
future work encompasses conducting additional exper-
iments to glean more insight as to how to adjust these
two ratios under di↵erent circumstances. At present, we
directly use the default ML model functions from the
Python scikit-learn library. However, these ML models
could benefit from extra hand-tuning to achieve better
prediction results. Thus, we plan to continue studying
and improving these models.

In addition, in this paper, we only evaluated our
IterML approach to tune one system parameter of the
GPU, namely the GPU thread-block size. Therefore, we
plan to study additional parameters of relevance, in-
cluding input data size and compiler flags, for example.
Furthermore, due to the small set of benchmarks used
and due to only using one vendor’s hardware, namely
NVIDIA, we plan to diversify the study further to in-
clude a broader set of benchmarks and greater breadth
of hardware platforms.

7 Conclusion

In this work, we presented our iterative pruning ap-
proach with machine learning models (IterML) to auto-
tune the performance of code running on accelerators,
in particular, NVIDIA GPUs. In each iteration, we used
machine-learning (ML) models to assist with pruning
the rest of the parameter search space. Specifically, we
focused on auto-tuning the GPU thread-block size.

Overall, our experiment results showed that IterML
can significantly reduce the search e↵ort by 40% to 80%
compared to the traditional non-iterative ML approach.
We also showed that the random forest (RF) model,
in particular, better fits our IterML design than other
models like SVM or MLP.

References

1. Choi, J.W., Singh, A., Vuduc, R.W.: Model-driven au-
totuning of sparse matrix-vector multiply on gpus. In:
ACM sigplan notices, vol. 45, pp. 115–126. ACM (2010)

2. Cui, X., Scogland, T.R., de Supinski, B.R., Feng, W.c.:
Directive-based partitioning and pipelining for graphics
processing units. In: Parallel and Distributed Processing
Symposium (IPDPS), 2017 IEEE International, pp. 575–
584. IEEE (2017)

3. Dongarra, J.J., Meuer, H.W., Strohmaier, E.: Top500 Su-
percomputer Sites (1994)

4. Hong, S., Kim, H.: An analytical model for a gpu archi-
tecture with memory-level and thread-level parallelism
awareness. In: ACM SIGARCH Computer Architecture
News, vol. 37, pp. 152–163. ACM (2009)

5. Hou, K., Feng, W.c., Che, S.: Auto-tuning strategies for
parallelizing sparse matrix-vector (spmv) multiplication
on multi-and many-core processors. In: Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW),
2017 IEEE International, pp. 713–722. IEEE (2017)

6. Hou, K., Wang, H., Feng, W.c.: Gpu-unicache: Automatic
code generation of spatial blocking for stencils on gpus.
In: Proceedings of the Computing Frontiers Conference,
pp. 107–116. ACM (2017)

7. Hou, K., Wang, H., Feng, W.c., Vetter, J.S., Lee, S.:
Highly e�cient compensation-based parallelism for wave-
front loops on gpus. In: 2018 IEEE International Paral-
lel and Distributed Processing Symposium (IPDPS), pp.
276–285. IEEE (2018)

8. Johnson, N.: Epcc openacc benchmark suite (2013)
9. Joseph, P., Vaswani, K., Thazhuthaveetil, M.J.: Con-

struction and use of linear regression models for processor
performance analysis. In: High-Performance Computer
Architecture, 2006. The Twelfth International Sympo-
sium on, pp. 99–108. IEEE (2006)

10. Lee, R., Wang, H., Zhang, X.: Software-defined software:
A perspective of machine learning-based software pro-
duction. In: 2018 IEEE 38th International Conference
on Distributed Computing Systems (ICDCS), pp. 1270–
1275. IEEE (2018)

11. Li, W., Jin, G., Cui, X., See, S.: An evaluation of uni-
fied memory technology on nvidia gpus. In: 2015 15th
IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, pp. 1092–1098. IEEE (2015)

12. Li, Y., Chang, K., Bel, O., Miller, E.L., Long, D.D.:
Capes: unsupervised storage performance tuning using
neural network-based deep reinforcement learning. In:
Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis,
p. 42. ACM (2017)

13. Li, Y., Dongarra, J., Tomov, S.: A note on auto-tuning
gemm for gpus. In: International Conference on Compu-
tational Science, pp. 884–892. Springer (2009)

14. Mittal, S., Vetter, J.S.: A survey of methods for analyzing
and improving gpu energy e�ciency. ACM Computing
Surveys (CSUR) 47(2), 19 (2015)

15. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine
learning in python. Journal of machine learning research
12(Oct), 2825–2830 (2011)

16. Pouchet, L.N.: Polybench: The polyhedral bench-
mark suite. URL: http://www. cs. ucla.
edu/pouchet/software/polybench (2012)

17. Ryoo, S., Rodrigues, C.I., Stone, S.S., Baghsorkhi, S.S.,
Ueng, S.Z., Stratton, J.A., Hwu, W.m.W.: Program op-
timization space pruning for a multithreaded gpu. In:
Proceedings of the 6th annual IEEE/ACM international
symposium on Code generation and optimization, pp.
195–204. ACM (2008)

18. Tran, N.P., Lee, M., Choi, J.: Parameter based tuning
model for optimizing performance on gpu. Cluster Com-
puting 20(3), 2133–2142 (2017)

Journal of Signal Processing Systems, April 2021


