
Iterative Machine Learning (IterML) for
Effective Parameter Pruning and Tuning in Accelerators

Xuewen Cui
Virginia Tech

Blacksburg, Virginia
xuewenc@vt.edu

Wu-chun Feng
Virginia Tech

Blacksburg, Virginia
wfeng@vt.edu

ABSTRACT
With the rise of accelerators (e.g., GPUs, FPGAs, and APUs) in com-
puting systems, the parallel computing community needs better
tools and mechanisms with which to productively extract perfor-
mance. While modern compilers provide flags to activate different
optimizations to improve performance, the effectiveness of such
automated optimization depends on the algorithm and its map-
ping to the underlying accelerator architecture. Currently, however,
extracting the best performance from an algorithm on an accel-
erator requires significant expertise and manual effort to exploit
both spatial and temporal sharing of computing resources in or-
der to improve overall performance. In particular, maximizing the
performance on an algorithm on an accelerator requires extensive
hyperparameter (e.g., thread-block size) selection and tuning. Given
the myriad of hyperparameter dimensions to optimize across, the
search space of optimizations is generally extremely large, making it
infeasible to exhaustively evaluate each optimization configuration.

This paper proposes an approach that uses statistical analysis
with iterative machine learning (IterML) to prune and tune hyper-
parameters to achieve better performance. During each iteration,
we leverage machine-learning (ML) models to provide pruning and
tuning guidance for the subsequent iterations. We evaluate our
IterML approach on the selection of the GPU thread-block size
across many benchmarks running on an NVIDIA P100 or V100
GPU. The experimental results show that our IterML approach can
significantly reduce (i.e., improve) the search effort by 40% to 80%.

CCS CONCEPTS
• Computing methodologies → Discrete space search; Machine
learning approaches; • General and reference→ Performance;
• Software and its engineering→ Software performance.

KEYWORDS
GPU, performance, thread block, machine learning, random forest,
classification and regression trees (CART), support vector machine
(SVM), multi-layer perceptron (MLP), k-nearest neighbor (KNN)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CF ’19, April 30-May 2, 2019, Alghero, Italy
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6685-4/19/05. . . $15.00
https://doi.org/10.1145/3310273.3321563

ACM Reference Format:
Xuewen Cui and Wu-chun Feng. 2019. Iterative Machine Learning (IterML)
for Effective Parameter Pruning and Tuning in Accelerators. In Proceedings
of the 16th conference on Computing Frontiers (CF ’19), April 30-May 2, 2019,
Alghero, Italy. ACM, New York, NY, USA, Article 4, 8 pages. https://doi.org/
10.1145/3310273.3321563

1 INTRODUCTION
Systems with accelerators, particularly GPUs, are becoming in-
creasingly prominent on the Top500 [3] as well as in embedded
high-performance computing (HPC) systems, like those found in
smartphones and smart cars. In such heterogeneous systems, the
host CPU manages the execution context while the computation is
typically offloaded to the accelerators, like GPUs. Leveraging accel-
erators not only enables high performance, but it also improves en-
ergy efficiency [15]. However, extracting the optimal performance
and energy efficiency from these accelerators can be extraordinarily
difficult for a software developer [7]. Thus, developers need simpler
abstractions and underlying mechanisms to program these acceler-
ators [2, 12] as well as significant domain knowledge to tune the
performance of the code on these accelerators [5, 6].

Because accelerator architectures expose many software and
hardware parameters for developers to tune to achieve optimal
performance, the different combinations of parameters typically
result in a large search space, making it infeasible for developers
to exhaustively test each combination of parameters. Furthermore,
choosing the wrong combination of parameters can result in severe
performance degradation. Obviously, efficiently finding the optimal
parameter settings would be ideal [8]. As such, this paper presents
IterML, our iterative parameter pruning and tuning approach with
machine-learning (ML) models. During each iteration, we use ML
models to assist with pruning (and tuning) the rest of the search
space by their predicted performance. To demonstrate the efficacy
of IterML, we apply it across 10 benchmarks and run them on
NVIDIA P100 and V100 GPUs. The experimental results show that
our IterML approach can significantly reduce the search space by
40%-80%, when compared to the exhaustive random search.

We make the following research contributions:
• The design of an iterative machine-learning (IterML) ap-
proach that automatically determines nearly optimal param-
eter settings for the GPU thread-block size to achieve high
performance.

• An empirical study that demonstrates how our IterML ap-
proach consistently delivers better search speed over the
non-iterative ML methods and nearly achieves optimal per-
formance while sampling only 1.5% of the search space on
average and, in turn, reducing the search effort by 40%-80%.

CF’19 Alghero, Italy.

https://doi.org/10.1145/3310273.3321563
https://doi.org/10.1145/3310273.3321563
https://doi.org/10.1145/3310273.3321563

The rest of the paper is organized as follows. In §2, we motivate the
need for this research, along with related work. Then, §3 describes
the design of our iterative machine-learning (IterML) approach,
followed by case studies that make use of IterML in §4. Finally, §5
evaluates our experimental results.

2 MOTIVATION AND BACKGROUND
In this section, we first present a motivating example to illustrate
the importance of parameter tuning in heterogeneous computing,
followed by a brief discussion on related work.

2.1 Motivating Example
Figure 1 shows a performance heatmap of our lid-driven cavity
(LDC) code, where the thread-block size (i.e., blockDim.x x block-
Dim.y) is varied, when running on an NVIDIA K20m GPU. The
x- and y-dimensions are limited to 64, and each thread block con-
tains at most 512 threads. We observe that the performance varies
significantly across different thread-block sizes. At the ideal thread-
block size of 8x8 for this code on this GPU, the K20m achieves 103
GFLOPS. On the other hand, the performance can be more than
20% worse at 79 GFLOPS if the wrong thread-block size is chosen.
Unfortunately, due to the size of the search space, identifying the
ideal thread-block size is tedious and time-consuming. Furthermore,
the GPU thread-block size is merely one parameter to be tuning;
there are many other potential parameters that could be tuned, e.g.,
GPU block size, degree of loop unrolling, and so on. These param-
eters significantly increase the search space, making it infeasible
to exhaustively enumerate every combination. Thus, there exists
a need for a simpler and more efficient approach to identify ideal
parameter settings for (near-)optimal performance.

0 8 16 24 32 40 48 56 64

blockDim.x

0

8

16

24

32

40

48

56

64

b
lo

c
k
D

im
.y

<70

73

76

79

82

85

88

91

94

97

100

103
Avg GFLOPS

Figure 1: Performance of a Lid-Driven Cavity Code with
Varying GPU Thread-Block Size on an NVIDIA K20m GPU

2.2 Related Work
In [1, 14, 19], the authors auto-tune the performance of a particu-
lar algorithm or application on an accelerator, like the GPU. The
auto-tuning, however, still requires extensive expertise (or intu-
ition) to manually select the key parameters as well as compiler
flags. To address this problem, we propose an approach that au-
tomatically identifies a smaller (pruned) search space that con-
tains the (near-)optimal setting, which, in turn, can be searched
exhaustively. Specifically, given a large search space, our iterative
machine-learning (IterML) approach gathers information during
each iteration, builds models, and finds the best interaction between
the parameters and the performance. This, in turn, provides auto-
mated guidance as to how to tune performance in the context of a
large parameter search space.

Various statistical or machine-learning (ML) methods have been
applied to help with auto-tuning parameters to get better perfor-
mance. In [10], the authors propose a linear regression model to
predict processor performance based on micro-architectural param-
eters, but it requires a large amount of processor profiling data as
input to build the linear model. In [13], deep-reinforcement learning
is used to find the optimal values of tunable parameters in computer
systems — from a simple client-server system to a large data center.
It can be deployed into a production system to collect training data
and suggest tuning actions during the system’s daily operation.
However, it requires the system to be mostly static, which is not
applicable to new algorithms or libraries targeting new devices
like GPUs. For GPUs, there exist pheromone models based on the
profiling data of GPUs [4, 18] that require large training sets across
various codes and with a wide variety of performance counters.
Moreover, they require developers to have intimate knowledge
about the programs. Other related research focuses on design cod-
ing machines to handle the programming tasks [11].

In contrast, our goal is to help developers productively tune their
algorithms (or benchmarks) to achieve near-optimal performance
with the least amount of effort and domain knowledge.

3 APPROACH AND DESIGN
Here we articulate the approach and design of our iterative machine
learning (IterML), including the selection of the parameter search
space, the iterative machine-learning (pruning) algorithm itself,
and the regression models to predict the rest of the search space.

3.1 Choosing the Parameter Search Space
For microbenchmarks or libraries, a set of hyperparameters that
define the dimensions of the tuning search space must be identified.
The hyperparameters may relate to software (e.g., input partition
chunks and thread count) or to hardware (e.g., active core count,
GPU thread-block size, and compiler optimization options). Pa-
rameters can be either binary in nature (e.g., turning on or off a
compiler flag) or multi-valued across a range (e.g., thread-block size
and number of partition chunks). Our iterative pruning approach
builds knowledge based on machine-learning (ML) models as it
uses samples from one iteration to then look for potentially better
samples in subsequent iterations.

CF’19 Alghero, Italy.

3.2 Iterative Machine-Learning (IterML)
Pruning and Tuning Algorithm

We propose an iterative pruning and tuning algorithm to quickly
and effectively reduce the search space, as shown in Algorithm 1.
As we first define the search space D, specified by multiple design
parameters (e.g., thread-block dimension), we also chose a pick-
ratio, which is the sample ratio that we need to test in each iteration.
Once selected, the number of samples that we pick in each iteration
stays constant. For each iteration, we first apply regression models
to the samples. We then predict the performance of the residual
search space and drop those with lower performance by a cut-ratio,
e.g., 50%. We repeat this process until we meet a stopping criteria.
For example, if the cut-ratio is 50%, then after every iteration, the
search space is halved, which, in turn, means that the number of
iterations is loд2(size of search space). We may adjust the cut-ratio
based on the size of original search space.

Algorithm 1: Iterative Pruning Algorithm (IterML)
Input :D: search space specified with n design parameters

Pick-ratio: sample ratio taken in each iteration
Cut-ratio: ratio of the space pruned each iteration
Model: regression model chosen for prediction

Result: Best parameter combination currently found
initialization;
while While not meeting stopping criteria do

Pick sample set S randomly from remaining D based on
pick-ratio;
Gather performance P of S;
Build modelMi based on P;
Predict the remaining D based on modelMi ;
Drop the remaining D with low predicted performance
by cut-ratio;

end

3.3 Regression Models
Based on our iterative pruning approach, we need to build a model
between each iteration to predict the rest of the search space. We
study and use the following five popular machine-learning (ML)
models to support our IterML algorithm.

Classification and Regression Trees (CART): Decision trees can be
represented as a binary tree, where each node represents a single
input variable (x) and a split point on that variable (assuming the
variable is numeric). CART is usually fast to train and very fast to
make predictions. It requires no data pre-processing and can be
accurate for a broad range of problems.

K-Nearest Neighbors (KNN): Predictions are made for a new data
point by searching through the entire training set for the K most
similar instances (i.e., neighbors) and summarizing the output vari-
able for those K instances. We use the mean output variable as the
result for regression problems.

Support Vector Machine (SVM) Regression: SVMs use a hyperplane
to split the input variable space. The support vector regression
(SVR) uses the same principles as the SVM for classification, with
only a few minor differences. In the case of regression, a margin of

tolerance (i.e., ε) is set in approximation to the SVM, which would
have already requested from the problem.

Random Forest (RF): This type of ensemble ML algorithm is called
bootstrap aggregation or bagging. Multiple samples of training
data are taken; models are then built for each data sample. When
a prediction for new data needs to be made, each model makes a
prediction, and the predictions are averaged to give a better estimate
of the true output value. Combining predictions from these models
results in a better estimate of the true underlying output value.

Multilayer Perceptron: A multilayer perceptron (MLP) is a neural
network that connects multiple layers in a directed graph, which
means that the signal path through the nodes only goes one di-
rection. Each node, apart from the input nodes, has a nonlinear
activation function. MLP utilizes a supervised learning technique
called back propagation for training, which has drawn significant
interest recently due to its success in deep learning.

4 EXPERIMENTS
To evaluate our iterative machine-learning (IterML) pruning and
tuning approach, we leverage different ML models while pruning
the search space. To demonstrate the efficacy of our approach,
we focus on the GPU thread-block size as the hyperparameter
of interest. The GPU thread block is usually composed of an X-
dimension and Y-dimension. Each dimension ranges between 1
and 1024, inclusive. The product of the two dimensions, which is
the thread number of each GPU thread block, is also limited by
1024. To identify the GPU thread-block size that delivers the best
(optimal) performance, we exhaustively test the performance of
different benchmarks using all the possible combinations of GPU
thread-block size. We then apply our iterative machine-learning
(IterML) pruning and tuning approach on the GPU thread-block
size and evaluate its subsequent performance and compare it to the
optimal performance.

Table 1: Benchmark List

Language Benchmark Description
CUDA 2dconv 2-D convolution
CUDA 3dconv 3-D convolution
CUDA 2mm 2 matrix multiplications
CUDA 3mm 3 matrix multiplications
CUDA gemm Matrix-multiply C=alpha.A.B+beta.C
CUDA gesummv Scalar, vector and matrix multiplication
CUDA mvt Matrix vector product and transpose
CUDA syr2k Symmetric rank-2k operations
CUDA syrk Symmetric rank-k operations
OpenACC epcc EPCC 27Stencil benchmark
OpenACC ldc Lid-driven cavity code

4.1 Benchmarks Studied
As shown in Table 1, we use nine (9) GPU kernels from the Poly-
bench benchmark suite [17], an OpenACC kernel from the EPCC
benchmark suite [9], and an OpenACC kernel from our lid-driven
cavity (LDC) code to conduct the v experiments. The kernels use
various GPU functional units and exhibit diverse behavior. For
CUDA benchmarks, relevant design parameters are substituted

CF’19 Alghero, Italy.

0.00

0.25

0.50

0.75

1.00

2dconv 2mm 3dconv 3mm epcc gemm gesummv ldc mvt syr2k syrk
Benchmark

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

thread_block
8x8
8x16
16x8
16x16

Figure 2: Normalized performance across varying thread-block sizes on the V100 GPU

0.00

0.25

0.50

0.75

1.00

2dconv 2mm 3dconv 3mm epcc gemm gesummv ldc mvt syr2k syrk
Benchmark

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

thread_block
8x8
8x16
16x8
16x16

Figure 3: Normalized performance across varying thread-block size on the P100 GPU

by C macros so that our design can easily modify and recompile
them. For the OpenACC benchmarks, we pass variables using the
compiler flags to modify the OpenACC pragma.

Each kernel is executed 10 times and the average execution time
reported. Only the GPU time of each kernel execution is measured
and used, thus excluding any CPU work, data transfer, or kernel
launch overhead.

4.2 Hardware Platform
We conducted our experiments on two modern NVIDIA GPUs:
Tesla P100 and Tesla V100. The P100s are equipped with two 2.4-
GHz Intel E5-2680v4 CPUs, resulting in 28 cores on each node. The
connection between the GPU and the CPU is PCI-E 3.0. The V100
nodes are paired with two 3.0-GHz Intel Skylake Xeon Gold CPUs,
resulting in 24 cores on each node. There is 384 GB of memory, and
two NVIDIA V100 ("Volta") GPUs. Each of these GPUs is capable
of more than 7.8 TFLOPS of double-precision performance.

4.3 Pruning Procedure
We begin to evaluate our iterative pruning approach after we collect
all the performance data of the 10 benchmarks and applications
by varying the GPU thread-block size. The pruning approach is
implemented in Python with the Scikit-learn machine learning (ML)
libraries [16]. We select five (5) commonly used models to predict
the performance based on previous samples; these models include
CART, KNN, SVM, RF, and MLP, as presented in §3.3. Because the

thread-block search space is relatively modest, we use 0.5 as the
cut-ratio, which means that we drop 50% of the search space with
low predicted performance in each iteration. We can change this
number depending on the scale of the search space. Each time, we
pick a portion of the sample based on the pick-ratio and keep this
sample number consistent until end. Due to the random selection of
the samples, we repeat this process at least 100 times, thus drawing
a distribution of the results using our iterative pruning approach.
We then compare the result of different models based on this dis-
tribution. We normalize the samples to the result of the baseline,
which entirely randomly selected the samples.

4.4 Case Studies
Here we present multiple case studies to show how the selection
of the GPU thread-block size affects performance. How does the
manual selection of the thread-block size by an experienced developer
impact performance? In real-world GPU coding, developers set the
GPU thread-block size based on their experience. Typically, the
chosen block sizes are 64, 128, and 256. Figures 2 and 3 show the
normalized performance of benchmarks, where the GPU thread-
block size is set by experienced developers, relative to the optimal
performance. We observe that none of the manually chosen thread-
block sizes provide consistently good performance across all the
benchmarks. In fact, each setting achieves only 20% to 99% of the
optimal performance across the benchmarks.

CF’19 Alghero, Italy.

Is there a universal thread-block size that “rules them all”? Fig-
ures 4 and 5 show the minimum normalized performance across all
benchmarks tested on the V100 and P100 GPUs, respectively. For
brevity, we only show the cases where the total number of threads
is less than or equal to 512 and where each dimension is limited
to 128. (Note: The unshown parts of the graphs produce similar
results.) We observe that all the blocks in the heatmap achieve less
than 30% of optimal performance. This result indicates that there is
no such notion of a universal thread-block size that can consistently
provide good performance for most applications.

Is the ideal thread-block size for one device good enough for other
devices with similar architectures? We first identify the thread-block
size that achieves the best performance on one device (e.g., P100)
and then see if that ideal thread-block size for the one device (e.g.,

0

8

16

24

32

40

48

56

64

72

80

88

96

104

112

120

128

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

blockX

bl
oc

kY

0.4

0.6

0.8

1.0
performance

Figure 4: Minimum performance heatmap across all bench-
marks on V100 GPU

0

8

16

24

32

40

48

56

64

72

80

88

96

104

112

120

128

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

blockX

bl
oc

kY

0.4

0.6

0.8

1.0
performance

Figure 5: Minimum performance heatmap across all bench-
marks on P100 GPU

P100) is also good enough for another device (e.g., V100) with a
similar architecture.

Table 2 shows how the ideal thread-block size on the P100 GPU
performs on the V100 GPU while Table 3 shows the converse. For
some benchmarks (e.g., 2mm), the ideal block size delivers 99% of
the optimal performance. However, there are still some benchmarks
(e.g., syrk) that achieve only 44%-47% of the optimal performance.

Table 2: P100 ideal thread-block size performance on V100

Benchmark Thread-X Thread-Y Performance
2dconv 512 2 0.974
3dconv 96 2 0.946
2mm 32 32 0.99
3mm 16 48 0.76
gemm 16 48 0.775
gesummv 16 1 0.868
mvt 14 1 0.903
syr2k 16 36 0.751
syrk 32 24 0.473
epcc 1 128 0.968
ldc 16 6 0.954

Table 3: V100 ideal thread-block size performance on P100

Benchmark Thread-X Thread-Y Performance
2dconv 64 5 0.941
3dconv 88 10 0.846
2mm 64 16 0.994
3mm 32 26 0.938
gemm 32 26 0.938
gesummv 6 5 0.675
mvt 8 1 0.883
syr2k 8 124 0.601
syrk 8 124 0.447
epcc 8 64 0.778
ldc 4 32 0.945

5 EVALUATION
We evaluate the total sample ratio needed to achieve good perfor-
mance using our iterative pruning and tuning approach. We vary
the ML models used for prediction during each iteration and use
exhaustive random search approach as our baseline. To quantify the
goodness of the performance compared to the optimal, we utilize
the following two standards:

(1) Standard 1: The sample ratio required to achieve a median
that is higher than 95% of optimal performance. This means
that the result is expected to be at least better than 95% of
the optimal performance on average.

(2) Standard 2:The sample ratio required to achieve 5-percentile
higher than 95% of the optimal performance. Standard 2 is
more difficult standard to achieve than Standard 1. It means
there is at least a 95% probability to get a result that is better
than 95% of the optimal performance.

CF’19 Alghero, Italy.

Figure 6: Performance of SYR2K benchmark with random forest (RF) and varying the number of iterations (see legend) using
IterML and the total sample ratio (X-axis) on the V100 GPU

Figure 6 shows the box-plot for the performance of the SYR2K
benchmark on a V100 GPU. It is tuned by our iterative pruning
approach using the random forest model and varying the total
sample ratio used. Each bar in the box-plot consists of at least 500
data points. The middle line of each bar represents the median (for
Standard 1); the lower-bound labels the 5-percentile (for Standard 2).
We only show the first three iterations in this plot since the data set
is relatively small in this case. The red color represents the baseline
results, which randomly selects the potential samples. We observe
that, with the same number of total samples used, those with more
iterations generally produce better performance. This means our
approach performs better with fewer samples in each iteration but
with more iterations. However, some models may require a certain
minimum of samples in order to become accurate for prediction.

From the plot, we also observe that the light grey bar (i.e., 3
iterations) with total sample ratio 0.4% reaches Standard 1, while
the baseline (red bar) requires at least 1%. With a total of 1.2%
samples (i.e., 3 iterations of 0.4%), the light bar reaches Standard
2. In this paper, we generate this box-plot for all the benchmarks
with different predicting models. We then compare the median or
5-percentile bar to 0.95 and collect the sample ratio required by
each model to achieve Standard 1 or Standard 2.

Figures 7, 8, 9, and 10 show the normalized total samples to
reach Standard 1 or Standard 2 on the V100 and P100 GPUs, re-
spectively. Depending on the performance distribution of different
benchmarks, we need different sample ratios to achieve good per-
formance. For comparison purposes, we normalized the number of
the samples required by different models to the baseline (denoted
as the “non” model, short for non-iterative ML model).

We observe that in most cases, using our iterative pruning ap-
proach saves approximately 40% to 80% search effort when choosing
the best model. Due to the performance distribution in some cases,

we only need a very small set of samples to achieve good perfor-
mance (e.g., epcc).

We also observe that the performance of SVM and MLP, respec-
tively, are not stable. Sometimes these two models perform even
worse than the baseline, especially when the sample size is rela-
tively small. We conjecture that these two models require a certain
amount of data to be effective.

On the other hand, the other three models (CART, RF, and KNN)
always require fewer samples to achieve good performance.We note
that we used a cut-ratio of 50% by default in this case because the
search space (i.e., GPU thread-block size) is relatively small. When
dealing with a larger search space, we may increase this value to
achieve higher search speed. However, this higher search speed
could compromise the search quality; hence, there is a tradeoff here,
which we discuss in our future work.

Figure. 11 shows the box-plot of the overall average normalized
sample required to achieve Standard 1 and Standard 2 for differ-
ent machine-learning (ML) models. The results are normalized to
baseline, which exhaustively randomly chooses the parameter com-
binations as samples. We observe that, among the five popular ML
models, random forest (RF) performs better and produces more
stable results than all the other models. It only requires ∼ 1.5%
samples to reach Standard 1 on average.

CF’19 Alghero, Italy.

0.0

0.5

1.0

1.5

2dconv 2mm 3dconv 3mm epcc gemm gesummv mvt syr2k syrk
Benchmark

N
or

m
al

iz
ed

 s
am

pl
e

ra
tio

model
non
cart
rf
knn
svm
mlp

Figure 7: Normalized sample ratio to achieve Standard 1 on the V100 GPU (lower is better)

0.0

0.5

1.0

1.5

2dconv 2mm 3dconv 3mm epcc gemm gesummv mvt syr2k syrk
Benchmark

N
or

m
al

iz
ed

 s
am

pl
e

ra
tio

model
non
cart
rf
knn
svm
mlp

Figure 8: Normalized sample ratio to achieve Standard 2 on the V100 GPU (lower is better)

0.0

0.5

1.0

2dconv 2mm 3dconv 3mm epcc gemm gesummv mvt syr2k syrk
Benchmark

N
or

m
al

iz
ed

 s
am

pl
e

ra
tio

model
non
cart
rf
knn
svm
mlp

Figure 9: Normalized sample ratio to achieve Standard 1 on the P100 GPU (lower is better)

0.00

0.25

0.50

0.75

1.00

2dconv 2mm 3dconv 3mm epcc gemm gesummv mvt syr2k syrk
Benchmark

N
or

m
al

iz
ed

 s
am

pl
e

ra
tio

model
non
cart
rf
knn
svm
mlp

Figure 10: Normalized sample ratio to achieve Standard 2 on the P100 GPU (lower is better)

CF’19 Alghero, Italy.

Figure 11: Comparison ofmachine-learning (ML)models for
IterML, relative to the normalized sample ratio (lower is bet-
ter)

In conducting this empirical study on our iterative machine
learning (IterML) algorithm and comparing its performance to that
of traditional non-iterative ML, we note that we used the default
model functions provided by the scikit-learn library.

6 FUTUREWORK
In proposing our iterative machine-learning (IterML) approach to
prune and tune hyperparameters for better performance, we utilized
five machine-learning (ML) models for prediction in each iteration
and parameterized our IterML approach with the cut-ratio and pick-
ratio. The values for these two ratios should depend on the tradeoff
between accuracy and search speed. Thus, futurework encompasses
conducting additional experiments to glean more insight as to how
to adjust these two ratios under different circumstances. At present,
we directly use the default ML model functions from the Python
scikit-learn library. However, these ML models could benefit from
extra hand-tuning to achieve better prediction results. Thus, we
plan to continue studying and improving these models.

In addition, in this paper, we only evaluated our IterML approach
to tune one system parameter of the GPU, namely the GPU thread-
block size. Therefore, we plan to study additional parameters of
relevance, including input data size and compiler flags, for example.
Furthermore, due to the small set of benchmarks used and due to
only using one vendor’s hardware, namely NVIDIA, we plan to
diversify the study further to include a broader set of benchmarks
and greater breadth of hardware platforms.

7 CONCLUSION
In this work, we presented our iterative pruning approach with
machine learning models (IterML) to auto-tune the performance
of code running on accelerators, in particular, NVIDIA GPUs. In
each iteration, we used machine-learning (ML) models to assist
with pruning the rest of the parameter search space. Specifically,
we focused on auto-tuning the GPU thread-block size.

Overall, our experiment results showed that IterML can signif-
icantly reduce the search effort by 40% to 80% compared to the

traditional non-iterative ML approach. We also showed that the
random forest (RF) model, in particular, better fits our IterML design
than other models like SVM or MLP.

ACKNOWLEDGEMENT
This work was supported in part by the Air Force Office of Scientific
Research (AFOSR) Computational Mathematics Program via Grant
No. AFOSR Grant FA9550-17-1-0205.

REFERENCES
[1] Jee W Choi, Amik Singh, and Richard W Vuduc. 2010. Model-driven autotuning

of sparse matrix-vector multiply on GPUs. In ACM sigplan notices, Vol. 45. ACM,
115–126.

[2] Xuewen Cui, Thomas RW Scogland, Bronis R de Supinski, and Wu-chun Feng.
2017. Directive-based partitioning and pipelining for graphics processing units.
In Parallel and Distributed Processing Symposium (IPDPS), 2017 IEEE International.
IEEE, 575–584.

[3] Jack J Dongarra, Hans W Meuer, and Erich Strohmaier. 1994. Top500 Supercom-
puter Sites.

[4] SunpyoHong andHyesoon Kim. 2009. An analytical model for a GPU architecture
with memory-level and thread-level parallelism awareness. In ACM SIGARCH
Computer Architecture News, Vol. 37. ACM, 152–163.

[5] Kaixi Hou, Wu-chun Feng, and Shuai Che. 2017. Auto-tuning strategies for
parallelizing sparse matrix-vector (spmv) multiplication on multi-and many-core
processors. In Parallel and Distributed Processing SymposiumWorkshops (IPDPSW),
2017 IEEE International. IEEE, 713–722.

[6] Kaixi Hou, Hao Wang, and Wu-chun Feng. 2017. Gpu-unicache: Automatic
code generation of spatial blocking for stencils on gpus. In Proceedings of the
Computing Frontiers Conference. ACM, 107–116.

[7] Kaixi Hou, Hao Wang, Wu-chun Feng, Jeffrey S Vetter, and Seyong Lee. 2018.
Highly Efficient Compensation-based Parallelism for Wavefront Loops on GPUs.
In 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 276–285.

[8] Wenhao Jia, Kelly A Shaw, and Margaret Martonosi. 2013. Starchart: Hardware
and software optimization using recursive partitioning regression trees. In Par-
allel Architectures and Compilation Techniques (PACT), 2013 22nd International
Conference on. IEEE, 257–267.

[9] N Johnson. 2013. EPCC OpenACC benchmark suite.
[10] PJ Joseph, Kapil Vaswani, and Matthew J Thazhuthaveetil. 2006. Construction

and use of linear regression models for processor performance analysis. In High-
Performance Computer Architecture, 2006. The Twelfth International Symposium
on. IEEE, 99–108.

[11] Rubao Lee, Hao Wang, and Xiaodong Zhang. 2018. Software-Defined Software:
A Perspective of Machine Learning-Based Software Production. In 2018 IEEE
38th International Conference on Distributed Computing Systems (ICDCS). IEEE,
1270–1275.

[12] Wenqiang Li, Guanghao Jin, Xuewen Cui, and Simon See. 2015. An evaluation of
unified memory technology on nvidia gpus. In 2015 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing. IEEE, 1092–1098.

[13] Yan Li, Kenneth Chang, Oceane Bel, Ethan L Miller, and Darrell DE Long. 2017.
CAPES: unsupervised storage performance tuning using neural network-based
deep reinforcement learning. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. ACM, 42.

[14] Yinan Li, Jack Dongarra, and Stanimire Tomov. 2009. A note on auto-tuning
GEMM for GPUs. In International Conference on Computational Science. Springer,
884–892.

[15] Sparsh Mittal and Jeffrey S Vetter. 2015. A survey of methods for analyzing and
improving GPU energy efficiency. ACM Computing Surveys (CSUR) 47, 2 (2015),
19.

[16] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal
of machine learning research 12, Oct (2011), 2825–2830.

[17] Louis-Noël Pouchet. 2012. Polybench: The polyhedral benchmark suite. URL:
http://www. cs. ucla. edu/pouchet/software/polybench (2012).

[18] Shane Ryoo, Christopher I Rodrigues, Sam S Stone, Sara S Baghsorkhi, Sain-Zee
Ueng, John A Stratton, and Wen-mei W Hwu. 2008. Program optimization space
pruning for a multithreaded GPU. In Proceedings of the 6th annual IEEE/ACM
international symposium on Code generation and optimization. ACM, 195–204.

[19] Nhat-Phuong Tran, Myungho Lee, and Jaeyoung Choi. 2017. Parameter based
tuning model for optimizing performance on GPU. Cluster Computing 20, 3
(2017), 2133–2142.

CF’19 Alghero, Italy.

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Motivating Example
	2.2 Related Work

	3 Approach and Design
	3.1 Choosing the Parameter Search Space
	3.2 Iterative Machine-Learning (IterML) Pruning and Tuning Algorithm
	3.3 Regression Models

	4 Experiments
	4.1 Benchmarks Studied
	4.2 Hardware Platform
	4.3 Pruning Procedure
	4.4 Case Studies

	5 Evaluation
	6 Future Work
	7 Conclusion
	References

