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ABSTRACT
Computational neuroscience is being revolutionized with the
advent of multi-electrode arrays that provide real-time, dy-
namic perspectives into brain function. Mining neuronal
spike streams from these chips is critical to understand the
firing patterns of neurons and gain insight into the under-
lying cellular activity. To address this need, we present a
solution that uses a massively parallel graphics processing
unit (GPU) to mine the stream of spikes. We focus on
mining frequent episodes that capture coordinated events
across time even in the presence of intervening background
events. Our contributions include new computation-to-core
mapping schemes and novel strategies to map finite state
machine-based counting algorithms onto the GPU. Together,
these contributions move us towards a real-time ‘chip-on-
chip’ solution to neuroscience data mining, where one chip
(the multi-electrode array) supplies the spike train data and
another chip (the GPU) mines it at a scale previously un-
achievable.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques—Parallel Pro-
gramming ; C.1.2 [Multiple Data Stream Architectures]:
Multiprocessors—Single-instruction stream, multiple-data
stream; C.1.3 [Computer Systems Organization]: Pro-
cessor Architectures—Heterogeneous (Hybrid) Systems; H.2.8
[Information Systems]: Database applications—Data min-
ing

General Terms
Algorithms, Performance.

Keywords
Temporal Data Mining, Graphics Processing Unit, Computation-
to-Core Mapping, Computational Neuroscience.
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1. INTRODUCTION
Brain-computer interfaces [1] have made massive strides in

recent years. Scientists are now able to analyze neuronal ac-
tivity in living organisms, understand the intent implicit in
these signals and, more importantly, use this information as
control directives to operate external devices. In a landmark
study [12], Serruya et al. described how hands-free operation
of a cursor can be achieved in real-time by monitoring the
activities of just a few neurons in the motor cortex of a mon-
key. A brain-computer interface for controlling a humanoid
robot using signals recorded from human scalp is described
in [2]. Again, the real-time, responsive behavior of the inter-
face is a remarkable feature that bodes well for its success.
Even cognitive understanding can now be achieved algorith-
mically: Mitchell et al. [10] describe how they are able to
map the semantics of words and nouns to regions of brain
activity. There are now many technologies for modeling and
recording neuronal activity including fMRI (functional mag-
netic resonance imaging), EEG (electroencephalography),
and multi-electrode arrays (MEAs). In this paper, we fo-
cus exclusively on event streams gathered through multi-
electrode array (MEA) chips for studying neuronal function
although our algorithms and implementations are applicable
to a wider variety of domains.

An MEA records spiking action potentials from an en-
semble of neurons which, after various pre-processing steps,
yields a spike train dataset providing real-time, dynamic,
perspectives into brain function (see Figure 1). Identify-
ing sequences (e.g., cascades) of firing neurons, determining
their characteristic delays, and reconstructing the functional
connectivity of neuronal circuits are key problems of inter-
est. This provides critical insights into the cellular activity
recorded in the neuronal tissue.

A spike train dataset can be modeled as a discrete sym-
bol stream, where each symbol/event type corresponds to a
specific neuron (or clump of neurons) and the dataset en-
codes occurrence times of these events. One type of pattern
that is of interest are frequent episodes which are repeti-
tive patterns of the form A → B → C, i.e., event A is
followed by (not necessarily consecutively) B is followed by
C. To mine such patterns there are essentially two broad
classes of algorithms: window-based [9] and state machine-
based [6, 7], which primarily differ in how they define the
frequency of an episode. The window-based algorithms treat
a stream as a set of windows, so counting for episodes can
proceed just as counting for itemsets among transactions.
The state machine algorithms are more complex since their



Figure 1: Chip-on-Chip Neuroscience. Spike trains
recorded from a multi-electrode array (MEA) are
mined by a GPU to yield frequent episodes which
can be summarized to reconstruct the underlying
neuronal circuitry.

reach extends arbitrarily over a stream. Within the class
of state machine algorithms, serial episode discovery using
non-overlapped counts was described in [7] and its extension
with temporal constraints in [11]. The temporal constraints
add significant complexity to the state machine algorithms
as they must now keep track of what part of an episode has
been seen, which event is expected next, and when episodes
interleave. Then, they must make a decision of which events
to be used in the formation of an episode. This class of al-
gorithmic patterns serves as the focus of this paper.

With rapid developments in instrumentation and data ac-
quisition technology, the size of event streams recorded by
MEAs has concomitantly grown, leading us to exhaust the
abilities of serial computation. For instance, just a few min-
utes of cortical recording from a 64-channel MEA can easily
generate millions of spikes! Furthermore, it is not uncom-
mon for a typical MEA experiment to span days or even
months [13]. Hence it is imperative that algorithms support
fast, real-time computation, data mining, and visualization
of patterns.

To mine frequent episodes in neuronal streams, we adopt
GPUs for several reasons. First, they are particularly eco-
nomical in morphing a desktop into a rather powerful par-
allel computing machine. This is especially attractive to
neuroscientists who might not have access to large-scale su-
percomputers. Second, similar to accelerating graphics and
rendering applications, GPUs are ideal for supporting the
interactive and real-time needs of our present application.
At the same time, mapping our data mining algorithm to a
GPU architecture is non-trivial. GPUs were originally de-
signed for data-parallel applications, not quite the class of
problems that temporal data mining falls under.

The key to porting a data mining algorithm onto a GPU [5]
is to simplify its control structure so as to reduce the num-
ber of conditionals and branches. That is, complex decision
constraints are not easily parallelizable on a GPU and algo-
rithms using these constraints will require significant rework-
ing to fit this architecture. Temporal episodic mining un-
fortunately has these decision constraints. Other attempts

have been made in this area, but due to space restrictions,
we survey only a few here.

Closest to our work, in [3], a bitmap technique is proposed
to support counting and is used to design GPU variants of
Apriori and k-means clustering. This work also proposes
co-processing for itemset mining where the complicated tie
data structure is kept and updated in the main memory of
CPU and only the itemset counting is executed in parallel
on GPU. A sorting algorithm on GPUs with applications to
frequency counting and histogram construction is discussed
in [4] which essentially recreates sorting networks on the
GPU. Li et al. [8] present a ‘cut-and-stitch’ algorithm for
approximate learning of Kalman filters. Although this is
not a GPU solution per se, we point out that our proposed
approach shares with this work the difficulties of mining tem-
poral behavior in a parallel context.

In this paper, we present a real-time data mining solu-
tion for inferring frequent episodes from massive spike train
streams. Our contributions are:

1. A ‘chip-on-chip’ real-time solution to neuroscience data
mining where one chip (the MEA) provides the data
and another chip (the graphics processor) mines it.
Our solution is not a complete data streaming solu-
tion; nevertheless, we achieve real-time responsiveness
by processing partitions of the data stream in turn.

2. Two key algorithmic strategies to find supported tem-
poral episodes from a large number of candidates. The
first is a hybrid mining approach that leverages the ad-
vantages of two computation-to-core mapping schemes
and automatically scales according to the number of in-
put episodes. The second is a two-pass approach that
first performs an episode elimination step with relaxed
constraints, resulting in large performance gain. The
potential false positives introduced in the first pass are
then eliminated in a second pass. In both, we employ
computation-to-core mapping schemes suitable for fre-
quent episode mining fully utilize the massively paral-
lel computing architecture of GPUs.

2. PROBLEM STATEMENT
A spike train dataset can be modeled as an event stream,

where each symbol/event type corresponds to a specific neu-
ron (or clump of neurons) and the dataset encodes occur-
rence times of these events over the time course.

Definition 2.1. An event stream is denoted by a sequence
of events 〈(E1, t1), (E2, t2), . . . (En, tn)〉, where n is the total
number of events. Each event (Ei, ti) is characterized by an
event type Ei and a time of occurrence ti. The sequence is
ordered by time i.e. ti ≤ ti+1∀i = 1, . . . , n − 1 and Ei’s are
drawn from a finite set ξ.

One class of interesting patterns that we wish to discover
are frequently occurring groups of events (i.e., firing cascades
of neurons) with some constraints on ordering and timing of
these events. This is captured by the notion of episodes, the
original framework for which was proposed by Mannila et
al [9].

Definition 2.2. An (serial) episode α is an ordered tuple
of event types Vα ⊆ ξ.



For example (A → B → C → D) is a 4-node serial
episode, and it captures the pattern that neuron A fires,
followed by neurons B, C and D in that order, but not nec-
essarily without intervening ‘junk’ firings of neurons (even
possibly neurons A, B, C, or D). This ability to intersperse
noise or don’t care states, of arbitrary length, between the
event symbols in the definition of an episode is what makes
these patterns non-trivial, useful, and comprehensible.

Frequency of episodes: The notion of frequency of an
episode can be defined in several ways. In [9], it is de-
fined as the fraction of windows in which the episode occurs.
Another measure of frequency is the non-overlapped count
which is the size of the largest set of non-overlapped occur-
rences of an episode. Two occurrences are non-overlapped if
no event of one occurrence appears in between the events of
the other. In the event stream shown in the following exam-
ple (1), there are at most two non-overlapped occurrences
of the episode A → B, although there are 8 occurrences in
total.

〈(A, 1), (A, 2), (B, 5), (B, 8), (A, 10),

(A, 13), (C, 15), (B, 18), (C, 20)〉 (1)

We use the non-overlapped occurrence count as the fre-
quency measure of choice due to its strong theoretical prop-
erties under a generative model of events [7]. It has also been
argued in [11] that, for the neuroscience application, count-
ing non-overlapped occurrences is natural because episodes
then correspond to causative, “syn-fire”, chains that happen
at different times again and again.

Temporal constraints: Besides the frequency threshold, a
further level of constraint can be imposed on the definition
of episodes. In multi-neuronal datasets, if one would like to
infer that neuron A’s firings cause a neuron B to fire, then
spikes from neuron B cannot occur immediately or spon-
taneously after A’s spikes due to axonal conduction delays.
These spikes cannot also occur too much later than A for
the same reason. Such minimum and maximum inter-event
delays are common in other application domains as well.
Hence we place inter-event time constraints between consec-
utive pairs of events giving rise to episodes such as:

(A
(t1low,t1high]
−−−−−−−−→B

(t2low,t2high]
−−−−−−−−→C).

In a given occurrence of episode A → B → C, let tA, tB ,
and tC denote the times of occurrence of corresponding event
types. A valid occurrence of the serial episode satisfies

t1low < (tB − tA) ≤ t1high; t2low < (tC − tB) ≤ t2high.

In general, an N-node serial episode is associated with N−1
inter-event constraints. In example (1) there is exactly one

occurrence of the episode A
(5,10]→ B

(10,15]→ C satisfying the
desired inter-event constraints, i.e., 〈(A, 2), (B, 8), (C, 20)〉.

The problem we address in this paper is defined as follows.

PROBLEM 1: Given an event stream {(Ei, ti)}, i ∈ {1 . . . n},
a set of inter-event constraints I = {(tk

low, tk
high]},k ∈ {1 . . . l},

find all serial episodes α of the form:

α = 〈E
(t

(1)
low

,t
(1)
high

]
−−−−−−−−→
(1)

E(2) . . .
(t

(N−1)
low

,t
(N−1)
high

]
−−−−−−−−−−−−→ E(N)〉

such that the non-overlapped occurrence counts of each episode
α is ≥ θ, a user-specified threshold. Here E(.)’s are the event

types in the episode α and (t
(.)
low, t

(.)
high]’s ∈ I are the corre-

sponding inter-event constraints.

3. GPU ARCHITECTURE
To understand the algorithmic details behind our approach,

we provide a brief overview of the GPU and its architecture.
The initial purpose of specialized GPUs was to accelerate

the display of 2D and 3D graphics, much in the same way
that the FPU focused on accelerating floating-point instruc-
tions. However, the advances of GPU’s many-core architec-
ture, coupled with extraordinary speed-ups of application
“toy” benchmarks on the specialized GPUs, led GPU ven-
dors to transform the GPU from a specialized processor to a
general-purpose graphics processing unit (GPGPU), such as
the NVIDIA GTX 280, as shown in Figure 2. GPUs provide
a massively parallel computing architecture that can sup-
port concurrent execution of tens of thousands of threads
and manage trillions of threads at the same time. To lessen
the steep learning curve, GPU vendors also introduced pro-
gramming environments, such as the NVIDIA’s Compute
Unified Device Architecture (CUDA).

Figure 2: Architecture of the NVIDIA GTX280
GPU.

Processing Elements: The basic execution unit on the
GTX 280 is a scalar processing core, of which 8 together
form a multiprocessor. The number of multiprocessors
and processor clock frequency depends on the make and
model of the GPU. For example, GTX 280 has 30 multi-
processors and totally 240 cores, where each of the cores
runs at a speed of 1.296 MHz. GPU multiprocessors exe-
cute in SIMT (Single Instruction, Multiple Thread) fashion,
which is similar in nature to SIMD (Single Instruction, Mul-
tiple Data) execution. Each multiprocessor can manage the
concurrent execution of a maximum 1024 threads, of which
32 forms a warp. Warp is the minimum threads set that is
scheduled independently to run on multiprocessors in paral-
lel. Therefore, GTX 280 can execute at least 960 threads in
parallel at any given moment. Since each multiprocessor has
only one instruction fetch unit, all threads in a warp must
execute the same instruction in a GPU clock cycle. How-
ever, if a branch instruction causes the execution of diverged
codepaths within a warp, all different codepaths have to be
executed sequentially, which implies performance slowdown.
Memory Hierarchy: The GTX 280 contains multiple forms
of memory. Beginning with the furthest from the GPU pro-
cessing elements, the device memory is located off-chip on
the graphics card and provides the main source of storage



Algorithm 1 Serial Episode Mining

Require: Candidate N-node episode α = 〈E(1)

(t
(1)
low

,t
(1)
high

]

−→
. . . E(N)〉 and event sequence S = {(Ei, ti)|i = 1 . . . n}.

Ensure: Count of non-overlapped occurrences of α satisfy-
ing inter-event constraints

1: count = 0; s = [[], . . . , []] //List of |α| lists
2: for all (E, t) ∈ S do
3: for i = |α| down to 1 do
4: E(i) = ith event type of α
5: if E = E(i) then
6: iprev = i − 1
7: if i > 1 then
8: k = |s[iprev ]|
9: while k > 0 do

10: tprev = s[iprev , k]

11: if t
(iprev)

low < t − tprev ≤ t
(iprev)

high then

12: if i = |α| − 1 then
13: count + +; s = [[], . . . , []]; break Line:

4
14: else
15: s[i] = s[i] ∪ t
16: break Line: 4
17: k = k − 1
18: else
19: s[i] = s[i] ∪ t
20: RETURN count

for the GPU while being accessible from the CPU and GPU.
Each multiprocessor on the GPU contains three caches —
a texture cache, constant cache, and shared memory.
The texture cache and constant cache are both read-only
memory providing fast access to immutable data. Shared
memory, on the other hand, is read-write to provide each
core with fast access to the shared address space of a thread
block within a multiprocessor. Finally, on each core resides a
plethora of registers such that there exists minimal reliance
on local memory resident off-chip on the device memory.
Parallelism Abstractions: At the highest level, the CUDA
programming model requires the programmer to offload func-
tionality to the GPU as a compute kernel. This kernel is
evaluated as a set of thread blocks logically arranged in a
grid to facilitate organization. In turn, each block contains
a set of threads, which will be executed on the same multi-
processor, with the threads scheduled in warps, as mentioned
above. CUDA allows a two-dimensional grid organization.
Each grid can have a maximum 65, 535× 65, 535 blocks and
each block can have a maximum of 512 threads. It means
CUDA-based applications can create and manage more than
2 trillion threads for massively parallel computing.

4. APPROACH
Our overall approach for solving Problem 1 (defined in

Section 2) is based on a state machine algorithm with inter-
event constraints [11]. There are two major phases of this
algorithm: generating episode candidates and counting these
episodes, and we focus on the latter since it is the key per-
formance bottleneck, typically by a few orders of magnitude.
Therefore, our focus in this paper is on novel algorithm de-
sign for accelerating episodes counting on GPUs. We leave
the execution of candidate generation on CPU.

Let us first introduce the standard sequential counting al-
gorithm for mining frequent episodes with inter-event con-
straints. In Algorithm 1, we outline the serial counting pro-
cedure for a single episode α. The algorithm maintains a
data structure s which is a list of lists. Each list s[k] in
s corresponds to an event type E(k) ∈ α and stores the
times of occurrences of those events with event-type E(k)

which satisfy the inter-event constraint (t
(k−1)
low , t

(k−1)
high ] with

at least one entry tj ∈ s[k − 1]. This requirement is relaxed
for s[0], thus every time an event E(0) is seen in the data its
occurrence time is pushed into s[0].

When an event of type E(k), 2 ≤ k ≤ N at time t is
seen, we look for an entry tj ∈ s[k − 1] such that t − tj ∈
(t

(k−1)
low , t

(k−1)
high ]. Therefore, if we are able to add the event to

the list s[k], it implies that there exists at least one previous
event with event-type E(k−1) in the data stream for the cur-
rent event which satisfies the inter-event constraint between
E(k−1) and E(k). Applying this argument recursively, if we
are able to add an event with event-type E(|α|) to its cor-
responding list in s, then there exists a sequence of events
corresponding to each event type in α satisfying the respec-
tive inter-event constraints. Such an event marks the end
of an occurrence after which the count for α is incremented
and the data structure s is reinitialized. Figure 3 illustrates

the data structure s for counting A
(5,10]→ B

(10,15]→ C.
The maximality of the left-most and inner-most occur-

rence counts for a general serial episode has been shown in
[7]. Similar arguments hold for the case of serial episodes
with inter-event constraints and are not shown here for lack
of space.

A
(5,10]

B C
(10,15]

Events:

Times:

A A B A A C B C

1 2 5 8 10 13 15 18 20

B

s[A] s[B] s[C]

1

2

10

13

8

18

20

Figure 3: Illustration of the data structure s for

counting A
(5,10]→ B

(10,15]→ C

In the next two sections, we first present a hybrid ap-
proach for counting M episodes on the massively paral-
lel computing architecture of GPUs. The approach lever-
ages the advantages of two different computation-to-core
mapping schemes, where the highest level of parallelism is
achieved. We then propose a two-pass counting approach,
where the first counting pass eliminates most of unsupported
episodes and the second counting pass completes the count-
ing tasks for the remaining episodes. Since the first counting
pass uses a less complex algorithm the execution time saved
at this step contributes to an overall performance gain even
we go through two-pass counting.

4.1 A Hybrid Approach
To parallelize the sequential counting algorithm on GPU,

we need to segment the overall computation into indepen-
dent units that can be mapped onto GPU cores and exe-



cuted in parallel to fully utilize GPU resources. Different
computation-to-core mapping schemes can result in differ-
ent levels of parallelism, which are suitable for different in-
puts for the counting algorithm. We design two mapping
schemes for counting M episodes: 1) one thread for count-
ing each episode; and 2) multiple threads per episode. Each
mapping scheme has its own advantages and disadvantages
when counting different numbers of episodes. We propose
a hybrid counting approach that can sense the input condi-
tion, so that the optimized level of parallelism can be chosen
to achieve the best performance. Let us present the detail
of each mapping scheme and how our hybrid approach opti-
mizes the counting by selecting between different mapping
schemes according to the number of input episodes M .

Per Thread Per Episode (PTPE) One heuristic for
segmenting computation into parallelizable units is to en-
force the maximum independence between these units, so
that minimum effort is needed to combine the results from
different units. An intuitive mapping scheme is to ask each
GPU thread to count support for one episode. Since there
is no computational dependency between the counting of
different episodes, all counting threads can be executed in
parallel with no result/data synchronization at the end of
the execution. In our implementation, we simply implement
Algorithm 1 as the CUDA kernel for each GPU thread, and
create M threads to cover the counting of all input episodes.

This mapping scheme, PTPE, is very intuitive and simple.
It fits perfectly to GPU’s massive data-parallel architecture.
However, there is one major disadvantage of this mapping
scheme for episode counting: if the number of episodes M is
smaller than a certain threshold, the GPU resource is under
utilized. As we mentioned in Section 3, the GTX 280 GPU
is capable of executing 960 threads in parallel. Since we
generate one thread for counting one episode, if the number
of episodes M is less than 960, saying M = 1 in the extreme
case, the most of GPU cores are left idle, and GPU resource
is heavily under utilized.

Multiple Threads Per Episode (MTPE) Due to in-
efficiencies in resource usage when M is small, we seek to
achieve a higher level of parallelism within the counting of
a single episode, so that multiple threads are created for
counting one episode. The basic idea is to segment the in-
put event stream into segments of sub-streams and map the
counting in one segment onto one thread. Therefore, in this
new computation-to-core mapping scheme, MTPE, we in-
crease the level of parallelism by introducing parallel count-
ing of multiple segments of the input stream. If the number
of the segments is R (which is controllable by the count-
ing algorithm), the total number of threads we generate is
M × R. We need to ensure that M × R is larger enough to
fully utilize GPU processing cores.

The disadvantage of the mapping scheme MTPE is the
extra step needed to merge the sub-counts of all segments
for the final count. In this step, we can not simply add all
the sub-counts together for the final count, because there
are cases that an occurrence of an episode might be divided
by the segmentation of the input stream. Additional work
is needed to concatenate the divided occurrence between
neighboring segments. The bigger the number of segments
R is, the more computation is introduced.

Let us discuss the detail about how this two-step, Count-
ing and Merging, mapping scheme is designed. When we
divide the input stream into segments, there are chances

h1 h2 h3 h4

α0 : count = 4

α1 : count = 1 α2 : count = 2

g1 g2 g3 g4

Partial occurrence

Segment 1 Segment 2

A B C A B CA B CA B C A B CEvent

Sequence

Figure 4: Illustration of splitting a data sequence
into segments and counting within each segment.

that some occurrences of an episode span across the bound-
aries of consecutive segments. As an example, see Fig. 4
which depicts a data sequence divided into two segments.
The shaded rectangles on the top mark the non-overlapped
occurrences h1 . . . h4 of an episode (A → B → C) (assume
for now that inter-event constraints are always satisfied), as
seen by a state machine α0 on the unified event sequence.
α0 is thus the reference (serial) state machine. Let α1 and
α2 be the state machines counting occurrences in segment 1
and segment 2 respectively. During the Counting step, α1

and α2 are executed in parallel, and each state machine can
see a local view of the episode occurrences, which are shown
by empty rectangles below the event sequence. α1 sees the
occurrence g1 and a partial occurrence g2. For α2, it will first
see the occurrence g3 and therefore miss h3 before moving
onto g4.

We propose Counting and Merging steps that use multi-
ple state machines in each segment, so that the counting
of a segment is able to anticipate partial occurrences near
boundaries. Let us explain in detail why multiple state ma-
chines are necessary, and how we design the Counting step
and Merging step to maintain the correctness of counting.

E(1) E(2) E(N). . .

Possible locations of split

Figure 5: Illustration of different possibilities of an
occurrence splitting across two adjacent data seg-
ments.

Assume that we are counting an episode α = 〈E(1)

(t
(1)
low

,t
(1)
high

]

−→
. . . E(N)〉, the data sequence is divided into P segments, and

events in the pth data segment are in the range (τp, τp+1].
An occurrence of episode α can be split across two adjacent
segments in at least N ways as shown in Figure 5. For each
possible split, we need one state machine, αk

p , 0 ≤ k ≤ N−1,

to count the second segment, starting at t = τp−Pk
i=1 t

(i)
high.

So we have N different state machines all counting occur-
rences of episode α using Algorithm 1, handling all possible
cases of split between current segment and previous segment.

For each segment p, the Counting step is designed as fol-
lows, and illustrated in Figure 6.

1. Each state machine αk
p maintains its own count =

countk
p .

2. αk
p does not increment count for occurrences ending at

time t ≤ τp.



Segment-pEvent sequence

α0
p

α1
p

αN−1
p

τp

τp − t
(1)
high

τp τp+1

τp − ∑N−1
i=1 t

(i)
high

a0
p b0

pcount0p

a1
p b1

p

aN−1
p

bN−1
p

count1p

countN−1
p

τp+1 +
∑N−1

i=1 t
(i)
high

Figure 6: Illustration of a Counting step.

3. αk
p stores the end time of the first occurrence that com-

pletes at time t, τp < t < τp +
PN−1

i=1 t
(i)
high. Let this

be ak
p. If there is no such occurrence ak

p is set to τp.

4. αk
p on reaching end of the segment, crosses over into

the next segment to completes the current partial oc-

currence and continues until t < τp+1 +
PN−1

i=1 t
(i)
high.

Let the end time of this occurrence be bk
p. Note that

count is not incremented for this occurrence. In case
the occurrence cannot be completed bk

p is set to τp+1.

The result of the Counting step for each segment p is tu-
ples of (ak

p, countk
p , bk

p). Based on these results, we design
our Merging step for pairs of consecutive segments as fol-
lows, and illustrated in Figure 7.

Segment 1 Segment 2 Segment 3 Segment 4

(a0
1, count01, b

0
1) (a0

2, count02, b
0
2)

(a1
2, count12, b

1
2)

(a2
2, count22, b

2
2)

(a0
3, count03, b

0
3)

(a1
3, count13, b

1
3)

(a2
3, count23, b

2
3)

(a0
4, count04, b

0
4)

(a1
4, count14, b

1
4)

(a2
4, count24, b

2
4)

(a0
1, count01 + count22, b

2
2) (a0

3, count03 + count14, b
1
4)

(a1
3, count13 + count24, b

2
4)

(a2
3, count23 + count04, b

0
4)

Level 1:

Level 2:

Level 3: (a0
1, count01 + count22 + count23 + count04, b

0
4)

Figure 7: Illustration of a Merging step.

1. Start Merging step at level 1.

2. For level i, concatenate the tuples of segment (j −
1)2i +1 with the tuples of segment (j−1)2i +1+2j−1

for all possible j. The procedure for concatenating the
tuples of sth segment and tthsegment is: find all pairs
of tuples (ak

s , countk
s , bk

s) and (al
t, countl

t, b
k
t ) such that

bk
s = al

t, and then concatenate these pairs to obtain
the next level (i + 1) tuples (ak

s , countk
s + countl

t, b
l
t)

for sthsegment.

3. After all adjacent segment pairs are concatenated for
level i, increase the level to i+1 and repeat the previous
step until there is only one segment left for this level.

It is worth mentioning that, at level i of Merging step,
segment (j − 1)2i + 1 and segment (j − 1)2i + 1 + 2j−1 are

Algorithm 2 A Hybrid GPU Mining Algorithm

1: if S > MP × BMP × TB × f(N) then
2: Call PTPE Algorithm
3: else
4: Call MTPE Algorithm

considered as adjacent segments. We also choose segment
number p to be a power of 2, say 2q , so that the Merging
step takes exactly q + 1 levels and 2q+1 − 1 concatenate
operations to finish.

A Hybrid Algorithm. MTPE mapping scheme can
greatly out-perform the PTPE in cases when the number
of episodes, M , is small and some GPU cores are idle for
the PTPE algorithm. For other cases, the PTPE algorithm
would run much faster than MTPE. So, as a practical ap-
proach, we would like to use their selective superiorities to
automatically decide the right algorithm to execute. The
logic for making these choices can be very simple: if the
GPU can be fully utilized with the PTPE algorithm, then
we choose it, else we choose MTPE. In NVIDIA’s CUDA
framework, the GPU is fully utilized when:

S > MP × BMP × TB (2)

where S is the number of episodes to be counted, TB is the
number of threads per block as defined by the algorithm,
MP is the number of multiprocessors on the GPGPU, and
BMP is the number of blocks that the compiler determines
can be fit into one multi-processor.

However, another key factor that determines the selec-
tive superiority is the size/length (N) of the episode being
counted. For example, MTPE will run slower on larger N ,
since the Counting step needs N state machines to count
each event segment, forcing the Merging step to take more
time to concatenate the state machines together. The per-
formance of the PTPE algorithm is also dependent on N ,
but will not change as much as MTPE, since it only uses one
state machine to count each episode. Therefore, we need to
consider the effect of N when deciding which algorithm to
use:

S > MP × BMP × TB × f(N) (3)

where f(N) is a performance penalty factor dependent on
the episode length/level of the mining algorithm. We de-
fine Cross-over Point as the number of episodes beyond
which we estimate that the PTPE algorithm will outperform
MTPE.

By considering both GPU utilization and episode size, we
propose the Hybrid algorithm for mining temporal episodes
on the GPU as shown in algorithm 2.

4.2 A Two-Pass Elimination Approach
After a thorough analysis of GPU performance of our hy-

brid mining algorithm, we find the performance is largely
limited by the requirement of large amount of shared mem-
ory and large number of GPU registers for each GPU thread.
For example, if the episode size is 5, each thread requires
220 bytes of shared memory and 97 bytes of register file.
It means that only 32 threads can be allocated on a GPU
multi-processor, which has 16K bytes of shared memory and
register file. When each thread requires more resources, only
fewer threads can run on GPU at the same time, resulting
in more execution time for each thread.



To address this problem, the only way is to reduce the
complexity of the algorithm without losing correctness. In
this section, we introduce a two-pass elimination approach
that more efficiently searches larger numbers of episodes,
further improving the overall performance. The idea is to
use a far less complex algorithm, we call it PreElim, to elim-
inate most of non-supported episodes, and only use the com-
plex hybrid algorithm to determine if the rest of episode is
supported or not. In order to introduce algorithm PreE-
lim, we consider the solution to a slight relaxed problem,
which plays an important role in our two-pass elimination
approach.

Less-Constrained Mining: Algorithm PreElim. Let
us consider a constrained version of Problem 1. Instead of
enforcing both lower-limits and upper-limits on inter-event
constraints, we design a counting solution that enforces only
upper limits.

Let α′ be an episode with the same event types as in α,
where α uses the original episode definition from Problem
1. The lower bounds on the inter-event constraints in α are
relaxed for α′ as shown below.

α′ = 〈E
(0,t

(1)
high

]
−−−−−−→
(1) E(2) . . .

(0,t
(N−1)
high

]
−−−−−−−→ E(N)〉

Observation 4.1. In Algorithm 1, if lower-bounds of inter-
event constraints in episode α are relaxed as α′, the list size
of s[k], 1 ≤ k ≤ N can be reduced to 1.

Proof. In Algorithm 1, when an event of type E(k) is
seen at time t while going down the event sequence, s[E(k−1)]

is looked up for at least one tk−1
i , such that t − tk−1

i ∈
(0, t

(k−1)
high ]. Note that tk−1

i represents the ith entry of s[E(k−1)]

corresponding the (k − 1)th event-type in α.
Let s[E(k−1)] = {tk−1

1 . . . tk−1
m } and tk−1

i be the first entry

which satisfies the inter-event constraint (0, t
(k−1)
high ], i.e.,

0 < t − tk−1
i ≤ t

(k−1)
high (4)

Also Equation 5 below follows from the fact that tk−1
i is the

first entry in s[E(k−1)] matching the time constraint.

tk−1
i < tk−1

j ≤ t,∀j ∈ {i + 1 . . . m} (5)

From Equation 4 and 5, Equation 6 follows.

0 < t − tk−1
j ≤ t

(k−1)
high ,∀j ∈ {i + 1 . . . m} (6)

This shows that every entry in s[E(k−1)] following tk−1
i also

satisfies the inter-event constraint. This follows from the
relaxation of the lower-bound. Therefore it is sufficient to
keep only the latest time stamp tk−1

m only in s[E(k−1)] since
it can serve the purpose for itself and all entries above/before
it, thus reducing s[E(k−1)] to a single time stamp rather than
a list (as in Algorithm 1).

Combined Algorithm: Two-Pass Elimination. Now,
we can return to the original mining problem (with both up-
per and lower bounds). By combining Algorithm PreElim
with our hybrid algorithm, we can develop a two-pass elim-
ination approach that can deal with the cases on which the
hybrid algorithm cannot be executed. The Two-Pass Elim-
ination algorithm is as follows.

Algorithm 3 Less-Constrained Mining: PreElim

Require: Candidate episode α = 〈E(1)

(0,t
(1)
high

]

−→ . . . E(N)〉
is a N-node episode, event sequence S = {(Ei, ti)}, i ∈
{1 . . . n}.

Ensure: Count of non-overlapped occurrences of α
1: count = 0; s = [] //List of |α| time stamps
2: for all (E, t) ∈ S do
3: for i = |α| to 1 do
4: E(i) = ith event type ∈ α
5: if E = E(i) then
6: iprev = i − 1
7: if i > 1 then
8: if t − s[iprev] ≤ t

(iprev)

high then

9: if i = |α| then
10: count + +; s = []; break Line: 4.2
11: else
12: s[i] = t
13: else
14: s[i] = t
15: Output: count

Algorithm 4 Two-Pass Elimination Algorithm

1: (First pass) For each episode α, run PreElim on its less-
constrained counterpart, α′.

2: Eliminate every episode α, if count(α′) < CTh, where
CTh is the support count threshold.

3: (Second Pass) Run the hybrid algorithm on each re-
maining episode, α, with both inter-event constraints
enforced.

The two-pass elimination algorithm yields the correct so-
lution for Problem 1. Although the set of episodes mined
under the less constrained version are not a superset of those
mined under the original problem definition, we can show
the following result:

Theorem 4.1. count(α′) ≥ count(α), i.e., the count ob-
tained from Algorithm PreElim is an upper-bound on the
count obtained from the hybrid algorithm.

Proof. Let h be an occurrence of α. Note that h is a
map from event types in α to events in the data sequence S.
Let the time stamps for each event type in h be {t(1) . . . t(k)}.
Since h is an occurrence of α, it follows that

ti
low < t(i) − t(i−1) ≤ ti

high, ∀i ∈ {1 . . . k − 1} (7)

Note that ti
low > 0. The inequality in Equation 7 still holds

after we replace ti
low with 0 to get Eqn.8.

0 < t(i) − t(i−1) ≤ ti
high, ∀i ∈ {1 . . . k − 1} (8)

The above corresponds to the relaxed inter-event constraint
in α′. Therefore every occurrence of α is also an occurrence
of α′ but the opposite may not be true. Hence we have that
count(α′) ≥ count(α).

In our two-pass elimination approach, algorithm PreElim
is less complex and runs faster than the hybrid algorithm,
because it reduces the time complexity of the inter-event
constraint check from O(|s[E(k−1)]|) to O(1). Therefore,
the performance of two-pass elimination algorithm is signif-
icantly better than the hybrid algorithm when the number



of episodes is very large and the number of episodes culled
in the first pass is also large as shown by our experimental
results described next.

5. EXPERIMENTAL RESULTS

5.1 Datasets and Testbed
Our datasets are drawn from both mathematical mod-

els of spiking neurons as well as real datasets gathered by
Wagenar et al. [13] in their analysis of cortical cultures.
Both these sources of data are described in detail in [11].
The mathematical model involves 26 neurons (event types)
whose activity is modeled via inhomogeneous Poisson pro-
cesses. Each neuron has a basal firing rate of 20Hz and two
causal chains of connections—one short and one long—are
embedded in the data. This dataset (Sym26) involves 60
seconds with 50,000 events. The real datasets (2-1-33, 2-1-
34, 2-1-35) observe dissociated cultures on days 33, 34, and
35 from over five weeks of development. The original goal
of this study was to characterize bursty behavior of neurons
during development.

We evaluated the performance of our GPU algorithms on
a machine equipped with Intel Core 2 Quad 2.33 GHz and
4GB system memory. We used a NVIDIA GTX280 GPU,
which has 240 processor cores with 1.3 GHz clock for each
core, and 1GB of device memory.

There are two CUDA runtime parameters we need to de-
termine for each execution on the GPU: number of threads
per block, T , and the total number of blocks. The second pa-
rameter is always calculated based on T so that all required
computation can be finished with T threads per block and
within one CUDA kernel function call.

Parameter T is determined by the algorithm and the size
of the episode (N). For the PTPE algorithm, we calcu-
late the maximum number of threads per block at each N .
The larger N is, more shared memory is needed per thread.
When N = 1, we use 128 threads, and as N increases, the
maximum number of threads per block decrease due to the
shared memory limit. When N = 6, we cannot have more
than 32 threads per block. For MTPE, the event stream
is segmented into a number (R) of sub-streams, as men-
tioned in Section 4.1. Recall that we need to create multiple
threads to count all sub-streams independently and run mul-
tiple state machines, as shown in Figure 6. The number of
threads for each block T can be calculated as T = R × N ,
since there are R sub-streams and N state machines. Again,
we must limit the number of sub-streams to reduce the num-
ber of threads due to the shared memory limit affected by
N . For the PreElim algorithm, we generate as many threads
as possible per block until shared memory usage reaches the
hardware limit (16KB). In this case, T is normally much
larger than 32, since we do not have a strict memory re-
quirement for the GPU for PreElim algorithm.

5.2 Performance of the Hybrid Algorithm
In order to evaluate the performance of the hybrid algo-

rithm, we shall first provide the performance comparison be-
tween PTPE and MTPE algorithms. As seen in Figure 8(a),
it is clear that blindly choosing to execute the PTPE or
MTPE approach for all levels is not the best solution. For
episode sizes of 1, 2, and 5 both approaches complete in
roughly the same amount of time. However, PTPE signif-
icantly outperforms MTPE at episode sizes of 3 and 4 by

(a) Run Times at Different Episode Sizes.

(b) Speedups at Different Support Thresholds.

Figure 8: Comparison of PTPE, MTPE, and Hybrid
Algorithm on Sym26 dataset.

3.96X and 2.84X, respectively. On the other hand, PTPE
performs slower than MTPE for episodes of size 6 (1.32X)
and 7 (2.63X). In Figure 8(a), we allow provide the evalua-
tion result for our hybrid algorithm. Since the hybrid algo-
rithm leverage the advantages of both PTPE and MTPE al-
gorithms, it demonstrates a better performance than PTPE
and MTPE.

The crossover points exist in all of our tests for this dataset
(see supplementary information), and for lack of space, Ta-
ble 1 shows the crossover points determined experimentally
for the Sym26 dataset.

Table 1: Crossover Points on number of episodes
below which MTPE should be run (for the fewer
episodes case). For other episode sizes—1, 2, and
>8—MTPE should be chosen.

Level 3 4 5 6 7 8
Crossover 415 190 200 100 100 60

Recall Equation 3 in Section 4.1 where optimal execution
occurs when the GPU is fully utilized and a small factor of
episode size is taken into account. Using the table above,
with M = 30, TB = 32, and BM = 1, we find that f(N)
of the form a

N
+ b is a better fit than a × N + b as seen in

Figure 9.
With these crossover points determined, the hybrid ap-

proach was evaluated on the same support thresholds and
the speedup for this approach over both PTPE and MTPE is
visible in Figure 8(b). The range of improvement over PTPE
is almost 3X and over 4.5X for MTPE. When the number
of episodes is large (i.e., low support threshold) there are
enough episodes to fully utilize the GPU and as such the
hybrid algorithm shows little improvement over PTPE. Con-
versely, the hybrid algorithm shows little improvement over
MTPE when the support threshold is high with very few
episodes.



Figure 9: Crossover points fitted to a
N

+b and a×N+b

(a) Execution time of Two-Pass Elimination and Hybrid al-
gorithms for Support=3600 on Dataset 2-1-35 at different
episode sizes.

(b) Speedup of Two-Pass Elimination over Hybrid Algorithm
for multiple support thresholds on multiple datasets.

Figure 10: Execution time and speedup comparison
of the Hybrid algorithm versus Two-Pass Elimina-
tion algorithm.

5.3 Performance of the Two-Pass Elimination
Algorithm

As stated in Section 4.2, the performance of the hybrid al-
gorithm suffers from the requirement of large shared memory
and large register file, especially when the episode size is big.
So we introduce algorithm PreElim that can eliminate most
of the non-supported episodes and requires much less shared
memory and register file, then the complex hybrid algorithm
can be executed on much fewer number of episodes, resulting
in performance gains. The amount of elimination that PreE-
lim conducts can greatly affect the execution time at differ-
ent episode sizes. In Figure 10(a), the PreElim algorithm
eliminates over 99.9% (43634 out of 43656) of the episodes
of size four. The end result is a speedup of 3.6X over the
hybrid algorithm for this episode size and an overall speedup
for this support threshold of 2.53X. Speedups for three dif-
ferent datasets at different support thresholds are shown in
Figure 10(b) where in every case, the two-pass elimination
algorithm outperforms the hybrid algorithm with speedups
ranging from 1.2X to 2.8X.

We also use CUDA Visual Profiler to analyze the execu-
tion of the hybrid algorithm and PreElim algorithm to give

(a) (b)

Figure 11: Comparison between the Hybrid algo-
rithm and Two-pass Elimination algorithm for sup-
port threshold 1650 on dataset 2-1-33. (a) Total
number of loads and stores of local memory. (b)
Total number of divergent branches.

a quantitative measurement of how PreElim out-performs
the hybrid algorithm on the GPU. We have analyzed vari-
ous GPU performance factors, such as GPU occupancy, co-
alesced global memory access, shared memory bank conflict,
divergent branching, and local memory loads and stores.
We find the last two factors are primarily attributed to the
performance difference between th e hybrid algorithm and
PreElim, which are shown in Figure 11. The hybrid algo-
rithm requires 17 registers and 80 bytes of local memory for
each counting thread, while PreElim algorithm only requires
13 registers and no local memory. Since local memory is used
as supplement for registers and mapped onto global mem-
ory space, it is accessed very frequently and has the same
high memory latency as global memory. In Figure 11 (a),
the total amount of local memory access of both two-pass
elimination algorithm and the hybrid algorithm comes from
the hybrid algorithm. Since the PreElim algorithm elimi-
nates most of the non-supported episodes and requires no
local memory access, the local memory access of two-pass
approach is much less than one-pass approach when the size
of episode increases. At the size of 4, the PreElim algorithm
eliminates all episode candidates, thus there is no execu-
tion for the hybrid algorithm and no local memory access,
resulting a large performance gain for two-pass elimination
algorithm over the hybrid algorithm. As shown in Figure 11
(b), the amount of divergent branching also affects the GPU
performance difference between the two-pass elimination al-
gorithm and the hybrid algorithm.

5.4 Performance Gain Over CPU
To demonstrate the performance gain of our GPU ap-

proach, we developed a C++ implementation of Algorithm 1
on a quad-core CPU with four threads. Each thread counts
one-fourth of total episodes and accesses each event in input
stream only once to ensure the best cache performance. As
illustrated in Algorithm 1, we use a state machine to count
each episode. At the beginning, each state machine is ini-
tialized to a wait state corresponding to the first event in the
episode. As the thread processes each event in the stream,
the algorithm looks through the list of episodes waiting for
that particular event and updates the state machines so that
they are now also waiting for the next event in the episodes.
Furthermore, each state machine is annotated with the time
of the event so that intervals may be accounted for. This
complex state machine implementation is required to cor-



Figure 12: Speedup of GPU implementation over
the CPU implementation

rectly account for intervals between two subsequent events
in a candidate episode. When the thread finds the last event
in an episode it then increments that count for the corre-
sponding episode and resets the state machine to the initial
state of waiting for the first event of the episode.

In order to have a fair comparison with the GPU imple-
mentation, we also implemented the two-pass elimination
algorithm on CPU. Counting using the two-pass algorithm
allows a simplified and speedier state machine to quickly
eliminate possible candidates before using the slower but
more complete state machine described in the preceding
paragraph.

Compared with the performance of the CPU implementa-
tion, our GPU algorithms exhibit a significant speedup, as
shown in Figure 12. For the 2-1-35 dataset, the speedup is
approximately 15-fold for a support threshold of 2700.

5.5 Mining Evolving Neuronal Circuits
Due to space limitations, we are unable to discuss the bio-

logical significance of our mined episodes. In addition to un-
derstanding the activity of an ensemble of neurons, another
advantage of our GPU solution is to mine evolving cultures
and watch the progression of neuronal development in real
time. Please see our supplemental website http://neural-
code.cs.vt.edu/gpgpu for videos depicting how our mining
reveals key characteristics of cortical culture growth.

Compared with the performance of the CPU implementa-
tion, our GPU algorithms exhibit a significant speedup, as
shown in Figure 11. For the 2-1-35 dataset, the speedup is
approximately 15-fold for a support threshold of 2700.

6. DISCUSSION
We have presented a powerful and non-trivial framework

for conducting frequent episode mining on GPUs and shown
its capabilities for mining neuronal circuits in spike train
datasets. For the first time, neuroscientists can enjoy the
benefits of data mining algorithms without needing access to
costly and specialized clusters of workstations. Our supple-
mentary website (http://neural-code.cs.vt.edu/gpgpu) pro-
vides auxiliary plots and videos demonstrating how we can
track evolving cultures to reveal the progression of neural
development in real-time.

Our future work is in four categories. First, our experi-
ences with the neuroscience application have opened up the
interesting topic of mapping finite state machine based al-
gorithms onto the GPU. A general framework to map any
finite state machine algorithm for counting will be extremely
powerful not just for neuroscience but for many other ar-
eas such as (massive) sequence analysis in bioinformatics
and linguistics. Second, the development of the hybrid al-

gorithm highlights the importance of developing new, ad-
ditional, programming abstractions specifically geared to-
ward data mining on GPUs. Third, we found that the
two-pass approach performs significantly better than run-
ning the complex counting algorithm over the entire input.
The first pass generates an upper bound that helps reduce
the input size for the complex second pass, speeding up the
entire process. We seek to develop better bounds that in-
corporate more domain-specific information about neuronal
firing rates and connectivities. Finally, we wish to integrate
more aspects of the application context into our algorithmic
pipeline, such as candidate generation, streaming analysis,
and rapid “fast-forward” and “slow-play” facilities for visual-
izing the development of neuronal circuits.
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