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Abstract—In many e-science applications, there exists an important need to aggregate information from data repositories distributed
around the world. In an effort to better link these resources in a unified manner, many lambda-grid networks, which provide end-to-end
dedicated optical-circuit-switched connections, have been investigated. In this context, we consider the problem of aggregating files
from distributed databases at a (grid) computing node over a lambda grid. The challenge is 1) to identify routes (that is, circuits) in the
lambda-grid network, along which files should be transmitted, and 2) to schedule the transfers of these files over their respective
circuits. To address this challenge, we propose a hybrid approach that combines offline and online scheduling. We define the Time-
Path Scheduling Problem (TPSP) for offline scheduling. We prove that TPSP is NP-complete, develop a Mixed Integer Linear Program
(MILP) formulation for TPSP, and then propose a greedy approach to solve TPSP because the MILP does not scale well. We compare
the performance of the greedy approach on a few representative lambda-grid network topologies. One key input to the offline schedule
is the file transfer time. Due to dynamics at the receiving end host, which is hard to model precisely, the actual file transfer time may
vary. We first propose a model for estimating the file transfer time. Then, we propose online reconfiguration algorithms so that as files
are transferred, the offline schedule may be modified online, depending on the amount of time that it actually took to transfer the file.
This helps in reducing the total time to transfer all the files, which is an important metric. To demonstrate the effectiveness of our
approach, we present results on an emulated lambda-grid network testbed.

Index Terms—Lambda grid, circuit switching, routing, scheduling, large-scale data transfers.
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1 INTRODUCTION

THE next generation of large-scale scientific computing
applications will involve expensive resources such as

supercomputers, storage systems, and experimental facil-
ities, which are distributed across domains and geographical
locations. Some examples of such applications, which are
being developed, include the Genomes-to-Life (GTL) Project
of the US Department of Energy (DoE) [3], Teragrid [8], and
the OptIPuter [6] project. Such projects typically require real-
time transfer of gigabytes or petabytes of data from remote
experimental sites and data warehouses across wide-area
networks to a central computation site for data aggregation,
processing, visualization, and other analysis. In this work, we
consider applications that require centralized data computa-
tion, as opposed to a distributed approach.

These requirements are addressed by lambda-grid net-
works,which arebackbonenetworks supportedontheoptical
fiber technology. They offer an end-to-end optical circuit (also
known as a wavelength or a lambda) between two end points.
Such lambdas may be requested on demand or may be
reserved in advance. The full bandwidth available in an

optical circuit (OC-192 or 10 gibagits per second (Gbps) using
current technology) may thus be made available to applica-
tions such as the GTL. A dedicated end-to-end optical channel
avoids the network congestion that is typically observed in
packet-switched networks (in the current Internet) and,
therefore, may provide a deterministic bound on the time
required for data transfer. Such a reliable and dedicated
infrastructure available on demand is a key resource for the
above applications. Examples of recent lambda-grid net-
works are the National LambdaRail (NLR) [5], DoE Ultra-
Science Net (USN) [2] and CANARIEs CA*net [1].

We consider the problem of bandwidth reservation and
scheduling on a lambda grid. As an example, the USN [2]
can accept bandwidth requests for dedicated channels on
demand or for future time slots (where a channel is
operated in a time-division multiplexing (TDM) fashion),
and it grants reservations corresponding to such requests
based on feasibility constraints. We consider applications
that require aggregating data from remote data sites to a
centralized node before computational processing. A large
number of modern e-science applications fall in this
category. A specific example is the GTL application [3].
Since data is aggregated at the time of computation, the
time required to transfer the data over the network may be
the main computational bottleneck. Even a single second of
idle time, during which the data is being aggregated, may
result in the loss of several teraflops of computation power
[3]. Therefore, minimizing the delay in data aggregation is
the key to improve the overall system throughput.

Resource scheduling algorithms such as machine sche-
duling have been studied extensively in the literature:
surveys on this topic can be found in [13] and [16]. Such
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problems include single-processor scheduling, multiproces-
sor scheduling, and open-shop, flow-shop, and job-shop
scheduling problems to name a few. However, these are not
applicable in our problem setting, since the resources
(lambdas) that we consider are not independent; rather,
they have connectivity relationships among them. The
closest problem setting considers scheduling file transfers
over a network when file sizes and the maximum number
of file transfers possible from each node are given [11]. This
problem considers a fully connected mesh network, and
hence, the algorithms described are not applicable to
lambda grids, which have sparse connectivity.

Independently, the problem of reserving bandwidth in a
lambda grid for a prespecified connectivity has been
studied by many researchers. A bandwidth scheduling
algorithm that computes the available time slots on a
lambda grid between the source and destination has been
studied in [20]. The same authors have proposed algorithms
for computing the quickest paths, with a minimum end-to-
end delay, to transfer a message of a given size from its
source to a destination when bandwidth and delay
constraints on the links are specified [21]. The Virtual
Finish (ViFi) [14] heuristic schedules file transfer over a
shared path, depending on the earliest finish time for each
file determined from a fair sharing scheme. A Varying-
Bandwidth List Scheduling (VBLS) heuristic to compute
varying bandwidth levels for different time ranges for a
circuit over a lambda grid was studied in [25]. None of the
above considers the problem of routing connections.

The focus of this work is on a mathematical model and a
greedy approach to solve the problem of integrated routing
and scheduling on a lambda grid. The particular example
that we consider is of a supercomputer aggregating files
from remote repositories. The flowchart describing this
process is shown in Fig. 1. We assume the existence of a
separate control channel for signaling. The supercomputer
determines the repositories that it needs data from and
queries for the file sizes. The offline scheduling problem is
solved to determine the route and the schedule to transfer
the files. The lambdas are reserved for the corresponding
schedule of file transfers. During actual file transfers, the
schedule may need to be readjusted online to accommodate
the actual amount of time that it required to transfer a file.
This process is repeated till all files are transferred. In this
study, we propose and investigate the characteristics of

algorithms to solve the offline scheduling problem and the
online reconfiguration problem, as described in the flow-
chart in Fig. 1.

This paper is organized as follows: In Section 2, we
model the offline scheduling problem as a Time-Path
Scheduling Problem (TPSP) and discuss a corresponding
graph-based formulation. In Section 3, we prove TPSP to be
NP-complete. We formulate a Mixed Integer Linear
Program (MILP)-based mathematical model to solve TPSP.
We then discuss a greedy approach based on some
heuristics to yield fast and approximate solutions to TPSP
in Section 4. Since the actual transfer time for a file may be
different from this estimate determined by the offline
schedule, we propose an online reconfiguration algorithm
in Section 5 for modifying the offline schedule (determined
by solving TPSP). We discuss several illustrative examples
for both the offline scheduling and online reconfiguration
algorithms on sample lambda-grid network topologies in
Section 6. We conclude our work in Section 7.

2 PROBLEM FORMULATION

A lambda-grid network topology, an example of which is
the USN [2], may be represented as a graph GðV ;EÞ, where
each node V represents a core switch, and the edge E
represents the connectivity between core switches. Core
switches are connected with single or multiple lambdas (a
lambda is an optical connection established over a certain
wavelength). A core switch is attached to a Multiservice
Provisioning Platform (MSPP). MSPPs provide a Synchro-
nous Optical Network (SONET)/Synchronized Digital
Hierarchy (SDH) and Ethernet channels at sublambda
granularities to end devices such as Storage Area Networks
(SANs), data warehouses, or host computers. Thus, a
lambda grid may provide an end-to-end connection
between two end-host machines via the MSPPs and core
switches [20]. The connection from the core switch to the
MSPP to the end host is not represented in graph G.

The layout of the end-to-end connectivity is shown in
Fig. 2. For example, a simple way by which an end host may
connect to a lambda grid is by using a Gigabit Ethernet
interface card over a Local Area Network (LAN) connected to
the MSPP. Alternatively, it may be connected via a 2.5-Gbps
(OC-48) SONET connection. We term this connection from
the MSPP to the end host as a sublambda connection. In order
to simplify the problem setting, we assume that all end hosts
are connected to the MSPPs with the same connection
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Fig. 1. File transfers from remote repositories to a supercomputer.

Fig. 2. Illustration of a connection between two end hosts using a lambda

grid.



bandwidth (that is, 1 or 2.5 Gbps), and therefore, the
granularity of each sublambda connection is the same.

A supercomputing machine has high bandwidth connec-
tivity to the MSPP and, thus, has access to all the connections
arriving at the MSPP that it is connected to. The node on the
graph to which the supercomputer is attached is marked as
d 2 V . At a certain step in the computation, the super-
computer may require data aggregated from multiple end
hosts (data warehouses, SANs, etc.) before it resumes
computation. We model this process as the transfer of files
from each end host to the destination supercomputer. All the
data that must be transmitted from one end host is modeled as
one file. We assume that the connection between the core
switch, MSPP, and end host is devoid of congestion and is
available at all times. Hence, we do not model this connection
in the graphG and mark the core switches that are connected
to the end host as the source of the file. Since we assume that
all end hosts are connected to the MSPP with the same
connection bandwidth, only a single connection of sublamb-
da bandwidth may be established between the end host and
the supercomputer at one time.

The mathematical representation is given as follows: At
each core switch v 2 V , there exists a set of files Sv ¼
ffv1; fv2; . . . ; fvlg corresponding to the end hosts that it is
connected to, whose estimated transfer time over the
lambda grid to the destination d, Tf is known and is
denoted by the set Tv ¼ fTfv1 ; Tfv2 ; . . . ; Tfvlg, where Tfv1 is the
transfer time for file fv1. One way to estimate the transfer
time for the respective files is to use file transfer profiles,
which is briefly discussed in Section 5. An illustration of the
problem formulation on a six-node network is shown in
Fig. 3. The objective is to determine the following:

1. Route. This is the path on the lambda grid, via which
a file should be transferred from the source to the
destination.

2. Time schedule. This is the time at which a connection
must be reserved on the lambda grid for the
corresponding file. This is important because it
may not be possible to transfer all the files
simultaneously on the lambda grid due to link-
capacity constraints.

3. Minimum finish time. The objective is to minimize the
total time required to aggregate all the data by using
the lambda grid. The last file to reach the destination
may be the bottleneck for the supercomputer, since
computation cannot be completed unless all the data
is aggregated.

We define the above problem as the TPSP [9]. The two
dimensions of determining both the path and the time

schedule make this problem exceptionally hard, and it
differentiates TPSP from other machine-scheduling pro-
blems that have been reported in the literature [19]. We
demonstrate this through an example shown in Fig. 4. Four
files need to be transferred to a destination node on a three-
node lambda grid. Choosing the shortest paths in Fig. 4a
leads to a larger finish time (9 seconds) than the best possible
choice shown in Fig. 4b (7 seconds).

3 MATHEMATICAL MODEL

We prove that TPSP is NP-complete by reducing it to the
Multiprocessor Scheduling Problem (MSP) [13].

3.1 NP-Completeness of TPSP

We first model the optimization TPSP as a decision TPSP by
asking if TPSP may be solved within a deadline D. Clearly,
the problem is in NP because, given a solution, it is easy to
verify if the last file reaches the destination within the
deadline D and if the constraint that no two files being
transmitted along the same path simultaneously is violated.
We present a proof for the polynomial reduction of MSP,
which is known to be NP-complete, to TPSP.

In the MSP, given a set of T tasks, a number m 2 Zþ of
processors, length lðtÞ 2 Zþ for each task t 2 T , and a
deadline D 2 Zþ, the goal is to determine if there is a
schedule that meets deadline D, given that no two tasks can
be processed in the same processor at the same time. The
MSP may be reduced to TPSP by constructing the following
graph GðV ;EÞ, as shown in Fig. 5:

1. Construct a vertex for each processor, resulting in
m vertices labeled 1; 2; . . . ;m.

2. Construct a vertex for the destination node denoted
by d. Construct one edge from each of the vertices
1; 2; . . . ;m to d. The weight wðeÞ of each edge is 1.

3. Construct a dummy vertex for the source denoted by
s. Construct an edge from s to each of the vertices
1; 2; . . . ;m. The weight wðeÞ of each edge is 1.

4. Model all the tasks t 2 T as files whose transfer time
Tf is the same as the length of the tasks lðtÞ. Node s
will be the source node for all these files.

Based on the above definitions, TPSP is formulated as
follows: Does there exist a time-path schedule through
which the files at node s can be transferred to destination d
on graph GðV ;EÞ within time D?
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Fig. 3. Problem formulation of TPSP on an example six-node network.

Fig. 4. Example showing that the use of shortest paths may not lead to

an optimal finish time.



We now prove that MSP has a solution if and only if
TPSP has a solution. Suppose MSP has a solution. Consider
a task tk which is scheduled at machine p from time �k to
time �k þ lðtkÞ. This can be scheduled on the path s-p-d from
time �k to time �k þ lðtkÞ in TPSP. Since a machine can
process only one task at a time, it is guaranteed that the
path s-p-d will transfer only one file at a time. Since MSP
gives a solution within deadline D, it is guaranteed that
TPSP will also have a solution within deadline D. Now, let
TPSP have a solution. Then, all files are transferred along
one of the paths s-p-d, where p 2 1; 2; . . . ;m. Each of these
paths may be modeled to one machine in MSP. If the paths
of two files share a common link in TPSP, they cannot be
scheduled at the same time. This guarantees that one
processor is not processing two tasks simultaneously in
MSP. Thus, a solution in TPSP has a solution in MSP, and
MSP is polynomial-time reducible to TPSP. This proves the
NP-completeness of TPSP.

3.2 MILP Formulation

We formulate TPSP as an optimization problem based on the
concepts of virtual-topology design in optical networks [18]:

Given:

1. set R of core switches in the lambda-grid network,
2. the core switch at which the supercomputer is

located (destination for all files) d,
3. set M of files, which have to be transferred to

destination d,
4. physical-connectivity adjacency matrix P ði; jÞ, 8i,

j 2 R, P ði; jÞ 2 Zþ (Here, P ði; jÞ represents the
number of sublambda connections possible be-
tween i and j on graph GðV ;EÞ, that is, the weight
of edge wði; jÞ. For example, if the wavelength
channel capacity is OC-192 (10 Gbps), and the
sublambda granularity is OC-48 (�sub ¼ 2:5Gbps),
then P ði; jÞ ¼ 4. P ði; jÞ ¼ 0 denotes no connectivity
between i and j,

5. the core switch to which the data warehouse at
which the files are located, which is connected to
(via a LAN or SONET network, and MSPP)
NðmÞ 2 R, 8m 2M, and

6. estimated transfer rime ðTfÞ for each file TfðmÞ 2 Nþ,
8m 2M.

Subject variables:

1. The virtual-connectivity matrix V m
i;j;k 8i, j 2 R,

k 2 1 . . .P ði; jÞ, m 2M, takes two values: 0 and 1.
V m
i;j;k ¼ 1 denotes that file m is routed along a path,

which contains the link from i to j via sublambda k.

2. Start time �ðmÞ, 8m 2M, denotes the time at
which file m is transmitted. File m is transferred
along the route determined from time �ðmÞ till
time �ðmÞ þ TfðmÞ.

Constraints:

1. Connectivity constraints. These constraints ensure
proper virtual connectivity:

Xk¼Pi;j

k¼1

V m
i;j;k � Pi;j 8i; j 2 R;m 2M; ð1Þ

Xj¼jRj

j¼1

Xk¼Pi;j

k¼1

V m
NðmÞ;j;k ¼ 1 8m 2M; ð2Þ

Xm¼jMj

m¼1

Xj¼jRj

j¼1

Xk¼Pi;j

k¼1

V m
j;d;k ¼ jMj; ð3Þ

Xj¼jRj

j¼1

Xk¼Pi;j

k¼1

V m
d;j;k ¼ 0 8m 2M; ð4Þ

Xj¼jRj

j¼1

Xk¼Pi;j

k¼1

V m
x;j;k � 1 8x 2 R� d; 8m 2M; ð5Þ

Xj¼jRj

j¼1

Xk¼Pi;j

k¼1

V m
j;x;k ¼

Xj0¼jRj

j0¼1

Xk¼Pi;j0

k¼1

V m
x;j0;k; ð6Þ

8x 2 R�NðmÞ, d, m 2M.
We use the term virtual connection for a sublamb-

da to be determined for transferring a file. Constraint
(1) ensures that a virtual connection may not exceed
the number of sublambdas available on the physical
link. Constraint (2) ensures that an outgoing virtual
connection must start from the source node of the
file. Constraint (3) ensures that the destination must
have one incoming virtual connection for each file.
Constraint (4) ensures that the destination must not
have any outgoing virtual connection for each file;
that is, all connections terminate at the destination.
Constraint (5) ensures that there is no bifurcation in
the path for a particular file in any node; that is, we
consider single-path routing. Constraint (6) is a flow-
constraint equation for balanced flows. The number
of incoming virtual connections at a node for a
particular file should equal the number of outgoing
virtual connections for that file for a balanced flow.

2. No-time-overlap constraints. These ensure that if a
virtual connection exists for transferring one file,
then it may be used for another file only after or
before the file has been completely transmitted but
not during the transmission.

For any virtual connection and pair of files

ðm;m0Þ, we require one of the following constraints

to be satisfied:

V m
i;j;k þ V m0

i;j;k � 1; ð7Þ
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�ðm0Þ � �ðmÞ þ TfðmÞ; ð8Þ

�ðmÞ � �ðm0Þ þ Tfðm0Þ: ð9Þ

Constraint (7) implies that the virtual connection
from node i to node j along sublambda k is not used
for transferring both files m and m0. Constraint (8)
implies that the virtual connection ði; j; kÞ is used for
transferring file m0 only after file m has been
transferred. Constraint (9) implies that the virtual
connection ði; jÞ is used for transferring file m only
after file m0 has been transferred.

3. Subject variable constraints. These are given as
follows:

�ðmÞ � 0 8m 2M: ð10Þ

Objective function:

MinimizeðMaxð�ðmÞ þ TfðmÞÞÞ 8m 2M: ð11Þ

The objective function aims at minimizing the time
at which the last file is received at the destination,
hereafter called the finish time.

The no-time-overlap constraints and objective function can
be easily represented as linear equations by introducing
some dummy integer variables. Variables V m

i;j and �ðmÞ are
constrained to be integers. Therefore, the formulation turns
out to be a MILP, which can be solved using a commercial
MILP solver [4].

The size of the MILP grows exponentially with the
number of files because a set of several equations is created
for every pair of files. Therefore, in Section 4, we propose a
greedy approach based on some heuristics to solve TPSP,
and we use the MILP for only a comparative and
verification study for smaller topologies and smaller
number of files.

Lower Bound (LB) Analysis. Only one file may be
delivered to the destination along a sublambda at a time.
Therefore, an LB on the finish time is given by

T lbfin ¼
Pm¼M

m¼1 TfðmÞ
Pj¼jRj

j¼1 P ðj; dÞ
: ð12Þ

It is important to note that the LB on the finish time is based
only on the connectivity of the destination node, and it does
not consider the complete graph.

4 GREEDY APPROACH FOR OFFLINE SCHEDULE

COMPUTATION

We propose a greedy approach for solving TPSP. The
greedy approach chooses one file at a time and determines
the route along which this file may be scheduled at the
earliest. The file is scheduled along this route. We describe
two heuristics for choosing the best file and two algorithms
for determining the best schedule for a file.

4.1 Heuristics for Choosing the File

4.1.1 Largest File First (LFF)

This approach is based on the intuition that the largest file
(having the largest estimated transfer time) is the bottleneck
for scheduling because it requires more resources in terms
of the amount of time required to be free on the links of the
lambda grid. Thus, the largest file remaining to be

scheduled is picked as the greedy choice.

4.1.2 Most Distant File First (MDFF)

This approach is based on the intuition that files that are
located at nodes far away from the destination in terms of
number of hops must be given higher priority for
scheduling because they require more links to be free for
files to be transferred. Files are chosen in the order of the
number of hops that they are located away from the
destination.

4.2 Algorithms to Determine Route and Schedule

After a file f is chosen using one of the above heuristics, it
may be routed and scheduled on the lambda grid by using
one of the following algorithms:

4.2.1 All Possible Time Slots (APT) Algorithm

This algorithm first computes all time slots that are available
between the file source ðNðfÞÞ (denoted as source s) to the
destination d for the duration estimated for transferring file
fðTfÞ. We employ the bandwidth scheduling algorithm
reported in [22], which is based on the Bellman-Ford shortest
path algorithm [12] applied to the disjoint time intervals at
which the links are available. The algorithm is described in
brief in Fig. 6. If time slots of duration Tf or greater are
available before the current finish time, then the best fit
available time slot is chosen, or else, the earliest available time
slot is chosen. File f is scheduled on the chosen time slot and
routed along the corresponding path.

The complexity of the algorithm described in Fig. 6 may
be written as

OðjV j � jEj � ðOð�Þ þOð�ÞÞ; ð13Þ

where Oð�Þ and Oð�Þ are a function of the number of
disjoint time intervals on the links (� denotes the operation
of merging the disjoint time intervals, and � denotes the
operation of intersection of the disjoint time intervals).

4.2.2 K-Randomized Paths (KRP)

This algorithm chooses the best path among K randomly
chosen paths. The steps are outlined in Fig. 7. It is important
to choose random paths because if a fixed set of paths are
chosen (for example, K shortest paths), then a few links in
the lambda grid may get increasingly congested, and the
finish time may be poor.

The complexity of step 1 may be stated asOðK � jV jlogjV jÞ,
since for a sparse graph, we have ðjEj < jV jlogjV jÞ, and the
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Fig. 6. Bellman-Ford algorithm to determine all possible time slots (�
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complexity of Djikstra’s algorithm is OðjV jlogjV jÞ. The
complexity of step 2 may be written as OðK � jV jÞ, since jV j
is the maximum length of a path in a graph, and we assume
that the cost of merging the disjoint time-intervals is a
constant. The overall complexity of the algorithm is
OðK � jV jlogjV jÞ. Typically, the number of alternate paths
that needs to be chosen is much less than the number of
vertices ðK << jV jÞ. Therefore, the complexity is

OðjV jlogjV jÞ: ð14Þ

5 RECONFIGURING THE SCHEDULE ONLINE

The estimated transfer time ðTfÞ for each file f is required as
an input in TPSP. Once an offline schedule is determined
using the TPSP solutions based on the estimated file
transfer time, the links of the lambda grid are reserved,
corresponding to the schedule. When a file is actually
transferred in accordance with the offline schedule, two
scenarios may occur: either the file is completely transferred
within the circuit holding time, which is referred to as early
finish, or it is not fully transferred, which is referred to as
Incomplete File Transfer. We describe the following algo-
rithms for reconfiguring the schedule online.

Case 1: Early Finish. In case of an early finish, the
motivation is to improve the utilization on the reserved
links. In particular, when there is an early finish, the present
circuit may be torn down as the sublambdas that this circuit
was using are now free. There may be future reservations in
the offline schedule, which use some of these sublambdas.
Since these sublambdas had already been reserved by the
current application, the future circuits may be pulled back
in time so that the corresponding file transfers can begin
earlier than when they were scheduled according to the
offline schedule. The algorithm, which is invoked for each
file that is transferred early, is presented in Fig. 8.

It should be noted that the above algorithm does not alter
the lambda-grid link reservations, which had been made by
the offline schedule, but it only alters the start times for the
later file transfer. Moreover, if the file transfer start time is
modified to earlier than its scheduled time, the end time is
kept the same. The circuit holding time for that file will
therefore increase. This may help us to provide more time
margin for a potentially incomplete file transfer event. If
this file is transferred before the end time, the online
reconfiguration algorithm will attempt to adjust the
schedule of the next file transfer.

Case 2: Incomplete File Transfer. The motivation is to
handle those cases in which the file could not be transferred
in the reserved circuit holding time. We assume that the
holding time of the current circuit may not be extended, as

the links may be reserved for transfer of a different file of
the same application or for a different application.

For an incomplete file transfer, two different options are
available. The first option is to retransmit the entire file after
establishing a new circuit. The second option is to transmit
only the remaining portion of the file, which could not be
transmitted the first time. The former is simple to imple-
ment and also does not require any application-level
fragmentation and reassembly of file components. How-
ever, the time duration in which the file was being
originally transmitted is completely lost. The latter requires
marking of correctly transmitted sequence numbers by the
transport protocol so that retransmission may begin from
the last-marked sequence number. Alternatively, check-
pointing tools, which are available in many operating
systems to maintain persistence of data and recover from
failures [26], may be employed. We note that both
approaches require establishing a new circuit and hence
require new link reservations to be established.

In order to reserve a new circuit, either the APT
algorithm or the KRP algorithm may be used.

6 RESULTS

6.1 Offline Scheduling Using TPSP

We chose three different deployed lambda-grid topologies
and four other network topologies to demonstrate the
performance of the greedy solution to TPSP. We consider
the DoE USN [2] superimposed on the NLR network [5].
This is a sparse topology shown in Fig. 9, and the average
number of hops between any two nodes is 3.7. Henceforth,
we refer to this topology as USN-NLR. The 20-node
CANARIE CA*net4 [1] topology is shown in Fig. 10, and
its average number of hops between two points is 3.82. A
24-node sample backbone topology of one of the telecom
carriers in the US is shown in Fig. 11. The average number
of hops between any two nodes in this topology is 2.9.
Henceforth, we refer to this topology as 24-NODE. We
considered four other symmetric mesh network topologies:

1. the 15-node all-connected topology (ALL-CON-
NECT),

2. the 15-node bidirectional ring topology (RING),
3. the 24-node (3,2) Shufflenet topology (SHUFFLE-

NET) [18], and
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Fig. 7. KRP algorithm.

Fig. 8. Algorithm to modify schedule in case of early finish.



4. the 24-node (4,6) Manhattan Street (Torus) network
topology (TORUS) [18].

The capacity of each link in all topologies is 10 Gbps
(OC-192). We assume that the granularity of each sub-
lambda is 2.5 Gbps (OC-48; �sub ¼ 2:5 Gbps, and wðeÞ ¼ 4).
Since the mesh network topologies are symmetric, any node
may be chosen as the destination. We assume that no
background reservations exist. The destination in the
lambda-grid topologies is denoted as d. A specified number
of files of sizes having uniform random distribution
between 10 and 20 Gbytes are located randomly across
the remaining nodes in the network.

For the offline scheduling, the estimated transfer time for
a file m ðTfðmÞÞ is determined as

TfðmÞ ¼
File size

�sub
: ð15Þ

Figs. 12a and 12b show the finish time for a varying
number of files transferred on two topologies, USN-NLR and
24-NODE, by using the different heuristics described in
Section 4: LFF-APT, MDFF-APT, LFF-KRP, and MDFF-KRP.
The value chosen forK in KRP isK ¼ 5. (We did not observe
any performance improvement beyond K ¼ 5.) The LB for
the finish time calculated using (12) is shown as “LB.” To
illustrate the importance of the TPSP heuristics, we compare
the performance of the heuristics with a simple scheme
described earlier in Fig. 4, in which a file is randomly chosen,
routed, and scheduled along the shortest path to the
destination. These steps are repeated till all the files have
been routed and scheduled. We call this scheme RND-
SPATH. Fig. 13 compares the finish time for 500 files
transferred on the different lambda-grid topologies: USN-

NLR, 24-NODE, and CANARIE. Fig. 14 compares the finish
time for 500 files transferred on different network topologies:
ALL-CONNECT, RING, SHUFFLENET, and TORUS. Fig. 15
compares the finish time for 500 files transferred on lambda-
grid topologies with a different value of the sublambda
granularity of 1 Gbps. We observe the following:

1. All the heuristics perform much better than the
scheme of routing files on the shortest path to the
destination (RND-SPATH). This is because the
shortest path becomes increasingly congested as
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Fig. 9. The 27-node DoE USN superimposed on NLR network (USN-

NLR).

Fig. 10. The 20-node CANARIE (CA*net4).

Fig. 11. The 24-node sample backbone topology of a carrier in the US

(24-NODE).

Fig. 12. Comparison of finish time for different heuristics with the LB for

different number of files. (a) USN-NLR. (b) The 24-NODE.



more and more files are routed on the same path.
This shows the importance of an integrated ap-
proach to routing and scheduling, as opposed to
treating them separately.

2. The metric of LFF performs better than MDFF on all
topologies. MDFF performs poorly on the sparse
USN-NLR and CANARIE topologies. This also
illustrates the importance of a good heuristic for
choosing the files.

3. The LFF-KRP algorithm performs almost as well as
the LFF-APT algorithm on the three sparse topolo-
gies USN-NLR, CANARIE, and 24-NODE, and on
the three network topologies RING, SHUFFLENET,
and TORUS. (Note that the APT algorithm is
optimal.) Similarly, the MDFF-KRP algorithm per-
forms close to MDFF-APT. However, the APT
algorithms perform much better than the KRP
algorithms on the fully connected topology because
KRP considers only a limited set of random paths,
and the number of possible paths in a fully-
connected topology is large. Since the complexity
of KRP is much less, and lambda-grid networks are
usually sparse topologies, we believe that KRP is
better suited to lambda grids.

4. LFF-APT and LFF-KRP perform very close to the
LB for all topologies, except for CANARIE. The

optimal solution is expected to be very close to the
LB, except for topologies in which files may be
blocked because of lack of links. In CANARIE,
links {15-2, 14-3} are a bottleneck for files at nodes
{14-20}, and links {6-5, 7-5} are a bottleneck for files
at nodes {8-13}. Therefore, the solution yields a
transfer time much higher than the LB.

5. Comparing Fig. 13 with Fig. 15, we notice that the
file transfer time does not increase noticeably
when the sublambda granularity is changed from
2.5 to 1 Gbps. This is primarily because the
backbone network and not the edge connection
from the MSPP to the end host is the bottleneck
for transferring the files.

We compare the performance of the heuristics against
solutions for the MILP formulation solved by a commercial
MILP solver [4]. Since the MILP does not scale with the
problem size, we demonstrate results of the MILP formula-
tion on the small six-node topology in Fig. 3. The capacity of
each link is OC-192. The number of files is varied from 15 to
25, and the file size is randomly generated using a uniform
random distribution between 5 and 10 Gbytes. Fig. 16
shows the results. All heuristics either match or yield
solutions that are very close to the MILP solutions. It is
particularly interesting to observe that in two scenarios,
MDFF yields the optimal solution. For a general lambda-
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Fig. 13. Comparison of finish time for transferring 500 files on different lambda-grid topologies.

Fig. 14. Comparison of finish time for transferring 500 files on different

topologies.

Fig. 15. Comparison of finish time for transferring 500 files on different

lambda-grid topologies (the sublambda granularity is 1 Gbps).



grid topology, however, LFF would be the best choice, since
MDFF does not perform well in all cases.

6.2 Online Reconfiguration

We emulated file transfers over a lambda grid by transferring
files between two machines connected via 1-Gbps Ethernet
connection through a dummynet machine (configuration
shown in Fig. 17 and Table 1). The purpose of the dummynet
machine [23] is to simulate network latency. The dummynet
machine receives packets from one host and forwards them to
the other after the specified delay. Since we did not have
access to high-performance disks, we used Linux RamDisks
(which create a temporary file system from the system RAM)
to host the file on both machines. Since the system RAM was
limited to 1 Gbyte, we experimented with files of sizes
between 400 and 800 Mbytes.

Transmission Control Protocol (TCP)-Reno, which has
been deployed in the Internet, does not deliver good
throughput over networks with a high Bandwidth Delay
Product (BDP; for example, the lambda grid which has a high
bandwidth and large Round-Trip Time (RTT)). This is
because its congestion control algorithm requires a long time
to recover from packet loss, however few they may be,
thereby decreasing the throughput significantly [15]. Numer-
ous protocols, which are variants of the User Datagram
Protocol (UDP), have been developed to deliver higher
throughputs in such settings. We used one such protocol,
that is, the Reliable Blast UDP (RBUDP) [17], which is
available in the QUANTA 1.0 package [7], to transfer the files.

The determination of the transfer time in (15) may not be
a perfect estimate. It is nontrivial to accurately estimate the
transfer time for a file even though a file of known size is
being transferred over a dedicated circuit due to the
following reasons:

1. Often, the end host may not be able to receive data
continuously at the high bit rate supported by a
dedicated circuit in a lambda grid [27], [10]. As an
example, when the end host is under a heavy work-
load, packets may be lost when the operating system
allocates a large context switch to an alternate process.
This leads to unpredictable packet losses at the end
system. In such cases, the transport-layer protocol
may adjust the sending rate if it detects packet losses.
This affects the overall time for data transfer.

2. Often, data at the end system is spread across
multiple disks in a parallel file system. The load time
from the disk may vary from run to run [20].

For the purpose of evaluating our algorithms in this
study, we propose to maintain profiles of the end-to-end
transfer time for files that are transmitted over the lambda
grid. These file transfer profiles may be employed to
determine the estimated transfer time for a new file.
Transfer rates usually vary across file sizes, and file transfer
times may not be linearly extrapolated with the file size
[24]. Therefore, it is important to maintain file transfer profiles
for different file sizes. We reiterate that although the above
may not be an accurate estimation for the file transfer time,
we demonstrate that it performs well in our experimental
setting. Some other metrics for the estimation consider the
effects of the end host issues highlighted above.

Since the links in a lambda grid must be reserved prior to
the file transfers, it is important for the circuit holding time
(determined from the estimated file transfer time) to be larger
than the actual file transfer time so that we do not have to
establish another circuit in the future to transfer the same file.
The most conservative approach would be to take the largest
transfer time (or the lowest transfer bandwidth) out of the
past profiles of file transfers to calculate the circuit holding
time. Although this would allow almost all files to be
transmitted within the circuit holding time, it may lead to
poor link utilization. On the other hand, taking a more
aggressive estimate such as the mean of past transfer times
may lead to a large number of files not being delivered in their
allocated times. Therefore, an important problem is how we
can accommodate the variance in file transfer times. To
accommodate the variance, we consider different numbers of
standard deviation ð�Þ away from the mean ðmÞ, which
would correspond to the upper limit of a confidence interval
in a normal distribution. Such a prediction mechanism is
widely deployed in many protocols such as the estimation for
the RTT between end hosts in TCP.

We considered the USN-NLR topology, with some mod-
ifications. The capacity of each lambda on NLR is 1 Gbps,
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Fig. 16. Comparison of heuristics with the MILP solution for the six-node

topology.

Fig. 17. Example of a dummynet configuration [23].

TABLE 1
Machine Configuration



whereas the capacity on USN (links 3-13, 13-20, and 13-21) is
2 Gbps. The sublambda granularity ð�subÞ is 1 Gbps.

The offline schedule is first determined by considering
the estimated transfer time using the LFF-KRP heuristic,
and the corresponding file transfer events are generated in a
Java-based discrete event simulator. For each file transfer
event, a file of the same size is transferred between two end
hosts via the dummynet. The latency in the dummynet
router is set to be the exact end-to-end link latency, which is
determined by considering the length of fiber along which
the circuit is established in the USN-NLR and considering
that the typical delay of communication in an optical fiber is
5 �s per kilometer. Thus, our experimental setup is a close
reflection of what the scenario in the lambda grid would be.
Once the file has been transferred, the transfer time is
measured. The online algorithms mentioned above are
invoked thereafter to reconfigure the offline schedule,
depending on the actual transfer time.

Our results for the transfer of 30 and 50 files for different
predictive schemes for 10 different iterations of transfer are
shown in Tables 2 and 3, respectively. Of particular
importance are the maximum and minimum actual finish
time for each predictive scheme.

As expected, using a higher prediction leads to a higher
offline schedule finish time. The actual finish times are
sometimes less than the finish time of the offline schedule,
demonstrating the effectiveness of the Modify_Schedule_
Early_Finish algorithm. The results show that a limited
number of incomplete file transfers do not have an adverse
effect on the actual finish time. This is because the offline
schedule that is generated usually has some links free, and the
incomplete files may be transferred using these links.
However, if the number of incomplete transfers is high, as it
happens when some of the lower predictors are chosen, then
the actual finish time increases significantly.

Hence, a predictor that limits the number of incomplete
transfers to a reasonable number gives a good actual finish
time. From the above results, we find that the predictors
mþ 2�,mþ 2:5�, andmþ 3�give the desired values of actual
finish times. Comparing these three predictors, we find that
the highest predictor ðmþ 3�Þ does not lead to the best actual
finish time. The online Modify_Schedule_Early_Finish algo-
rithm tries to pull back circuit start times in case of an early
finish. However, since files are sent along different links, if all

the links required for the transfer of the next file are not
available, the file cannot be scheduled earlier. Hence, long
circuit holding times may lead to poor link utilization and
may create congestion for another file transfer.

7 CONCLUSION

In this work, our goal was to present a complete picture of
the transfer of large files over a lambda grid for large-scale
e-science applications such as GTL. We presented a hybrid
approach that combines offline and online scheduling. The
TPSP was defined, and a MILP formulation and a greedy
approach were proposed to determine the offline schedule.
We presented an estimation model for predicting the file
transfer time and then proposed an online reconfiguration
to the offline schedule, depending on the actual transfer
time of a file. Results demonstrate that the LFF0-KRP
algorithm performs well. We also demonstrated the
importance of the online reconfiguration on an emulated
testbed of a lambda grid.
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