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ABSTRACT2

Gene expression regulation is a complex process involving the interplay between transcription3
factors and chromatin states. Significant progress has been made towards understanding the4
impact of chromatin states on gene expression. Nevertheless, the mechanism of transcription5
factors binding combinatorially in different chromatin states to enable selective regulation of6
gene expression remains an interesting research area. We introduce a nonparametric Bayesian7
clustering method for inhomogeneous Poisson processes to detect heterogeneous binding8
patterns of multiple proteins including transcription factors to form regulatory modules in different9
chromatin states. We applied this approach on ChIP-seq data for mouse neural stem cells10
containing 21 proteins and observed different groups or modules of proteins clustered within11
different chromatin states. These chromatin-state-specific regulatory modules were found to have12
significant influence on gene expression. We also observed different motif preferences for certain13
TFs between different chromatin states. Our results reveal a degree of interdependency between14
chromatin states and combinatorial binding of proteins in the complex transcriptional regulatory15
process. The software package is available on Github at - https://github.com/BSharmi/DPM-LGCP.16
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1 INTRODUCTION

Transcription factors (TFs) and other proteins that bind to specific DNA sequences play key roles in the18
regulation of gene expression. Binding locations of a protein of interest can be determined with chromatin19
immunoprecipitation followed by sequencing (ChIP-seq). This produces millions of short reads covering20
the protein-DNA binding sites across the genome. Several computational tools have been developed to21
identify these binding locations from ChIP-seq data. Widely used among these is MACS2 (Feng et al.,22
2012) which can identify transcription factor binding regions or ‘peaks’. Recently, efforts have been23
devoted to integrate multiple ChIP-seq datasets to uncover protein-protein interactions. SignalSpider (Wong24
et al., 2015) uses Gaussian mixture model to reveal regions co-regulated by multiple TFs. Sharmin et.25
al. identified cell-type specific TF binding events (Sharmin et al., 2016) using ensemble model. Cha and26
Zhou developed a method based on inhomogeneous Poisson processes and Ripley’s K-function that detects27
pairwise TF clustering and ordering patterns (Cha and Zhou, 2014).28
Recent studies have also revealed new insights into the interplay between proteins, specifically TFs and29
histone marks that define chromatin states. Most TFs bind to open chromatin regions that are highly30
accessible and nucleosome-depleted. Such chromatin regions are often enriched with specific histone31
modifications in promoters and enhancers, such as H3K4me1 and H3K27ac marks. It has been found32
that histone-modification-dependent TF binding is protein family specific (Xin and Rohs, 2018; Sugathan33
and Waxman, 2013; Liu et al., 2015, 2016). In addition, a small number of TFs act as pioneers with34
the ability to reach inaccessible chromatin regions and shape the chromatin landscape to facilitate the35
binding of other TFs. ChIP-seq data from histone modifications have been used to partition the genome36
into different chromatin states using semi-automated genome annotation (SAGA) tools (Libbrecht et al.,37
2015). Early examples of the SAGA tools are HMMSeg (Day et al., 2007) and ChromHMM (Ernst and38
Kellis, 2012). Since then more sophisticated chromatin segmentation tools, Segway (Hoffman et al., 2012)39
and diHMM (Marco et al., 2017), were developed providing refined genome-wide map of the chromatin40
states. ChromHMM and diHMM use hidden Markov models while Segway applies a dynamic Bayesian41
network to segment the genome and identify distinct chromatin states. Segway and ChromHMM perform42
genome segmentation and classification at a single length scale while diHMM segments the genome at43
multiple length scales (narrow or broad corresponding to nucleosome-level states and domain-level states44
respectively). We studied protein bindings through ChIP-seq data among different chromatin states in45
mice neural stem cells (detailed description of datasets provided in Supplementary document section 3.1).46
Our results showed several known co-binding rules such as NFIC-bHLH-SOX in Upstream Enhancer47
state and Poised Enhancer state (Mateo et al., 2015) and JMJD3-SMAD3 in all chromatin states (Estarás48
et al., 2012). We also showed that the regulatory effects of the predicted modules on proximal genes vary49
across chromatin states. Also, for certain classes of DNA binding proteins, the de-novo binding sequences50
compiled from ChIP-seq peaks were dependent on the chromatin states.51

2 MATERIALS AND METHODS

In this paper we propose a two-step process (Figure 1) to investigate how chromatin configurations may52
affect the binding affinity of proteins. In the first step, uniquely aligned BAM files containing genomic53
regions of histone marks and TFs are used along with the diHMM software to segment the genome and54
identify distinct chromatin states (illustrated by chromatin state examples X and Y). In the second step,55
using the identified chromatin states from the previous step and protein binding regions obtained from56
ChIP-seq (data used in this study were obtained from ChIP-Atlas (http://chip-atlas.org)), a nonparametric57
Bayesian clustering method DPM-LGCP is applied to identify transcriptional regulatory modules within58
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each chromatin state. In downstream analyses, proximal (+/- 2kb from transcription start site genes are used59
to compare the Transcripts Per Kilobase Million or TPM expression level when regulated by individual60
proteins to that when regulated combinatorially by the predicted regulatory modules in step 2. Finally, using61
de-novo motif enrichment analysis, the binding sequences of the proteins are compared across different62
chromatin states to study the effect of histone marks and co-factors on motif preferences. Details of the63
datasets used in the study can be found in Supplementary Table S2.64

Figure 1. A two-step process to identify chromatin-state-specific transcriptional regulatory modules. In the
first step, uniquely aligned bam files of histone marks are used along with the diHMM software to segment
the genome and identify distinct chromatin states (illustrated by State X and State Y). In the second step,
using the identified chromatin states from the previous step and ChIP-seq peak files for different TFs, the
proposed Bayesian clustering method is applied to identify transcriptional regulatory modules within each
chromatin state. In downstream analyses, proximal (+/- 2kb from TSS) genes are used to compare the TPM
expression level when regulated by individual TFs to that when regulated combinatorially by the predicted
regulatory modules in step 2. Finally, using de-novo motif enrichment analysis, the binding sequences of
the TFs are compared across different chromatin stats to study the effect of histone marks and co-factors
on TF binding sequences.

2.1 Chromatin state identification through genome segmentation65

diHMM (Marco et al., 2017) is a tool based on hidden Markov model that models the presence or66
absence of a histone mark to a high degree of accuracy. It segments and annotates the genome into different67
chromatin states at multiple length scales by modeling the genome wide distribution of histone marks. By68
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default, diHMM has two scales of classification: (a) nucleosome level, with finer resolution chromatin state69
windows of around 200 base-pair (bp) length and (b) domain level, formed by stitching together similar70
nucleosome-level windows and having broader chromatin state windows extending over 100kbp-long71
regions. The domain-level states identified by diHMM are able to recapitulate known patterns in the72
chromatin literature and capture functional differences among diverse regulatory elements (Marco et al.,73
2017). The first step in identifying chromatin states is to binarize uniquely aligned BAM files. This is74
implemented in ChromHMM (Ernst and Kellis, 2012), a predecessor of diHMM. The diHMM software75
provides several nucleosome- and domain-level statistics including nucleosome-level emissions, combined76
nucleosome-level fold enrichments for each domain, fractional genome coverage of each nucleosome- and77
domain-level state, and nucleosome and domain state lengths. These statistics, together with the relative78
distance information of nucleosome- and domain-level states from transcription start site (TSS) and the79
enrichment of nucleosome-level states in genomic regions, were jointly analyzed to annotate each state to a80
biologically relevant functional category (details provided in RESULTS section).81

2.2 Protein binding intensity estimation using Dirichlet Process Mixture of Log82
Gaussian Cox Processes (DPM-LGCP)83

Binding regions of the proteins were obtained using MACS2 acting as inputs to our proposed clustering
algorithm. Treating the center of each region as a binary binding event, we modeled binding events of each
protein along the genome by an inhomogeneous Poisson process (IP). We chose this modeling strategy
for the following reasons: (i) the event of each binding site falling into a minuscule interval is a rare
event, independent of the events in other non-overlapping intervals, and (ii) the non-uniform distribution
of the peaks at different genomic locations can be well characterized by the intensity function of the
inhomogeneous Poisson process. For a protein with n binding site locations, we map these locations to
points in a closed interval D on the real line, denoted by S = {s1, . . . , sn}. Following the inhomogeneous
Poisson process model setting, the likelihood of observing S can be written as (Simpson et al., 2016)

f(S|λ(s)) = exp
{
|D| −

∫
D
λ(s)ds

} n∏
j=1

λ(sj), (1)

where |D| is the interval length and λ(s), s ∈ D is the intensity function. The Poisson process likelihood
(1) provides the basis for nonparametric clustering of proteins based on their binding patterns, resulting
in identification of modules of co-binding proteins that share similar regulatory functions. For a given
ChIP-seq dataset of N proteins coming from K clusters (with K unknown), we assume that proteins in the
same cluster share a common intensity function, distinct from those in other clusters.
Under this assumption, we implement a Dirichlet process mixture of log Gaussian Cox process (DPM-
LGCP) model that employs a Dirichlet process (DP) prior to the latent log intensity functions to facilitate
clustering of the intensity functions. Let Si denote the binding site locations of the ith protein, the
DPM-LGCP model can be described as follows:

Si|λi(s) ∼ IP (λi(s)), s ∈ D, i = 1, ..., N,

log(λi(s)) = zi(s), zi(s) ∼ G,

G ∼ DP (m,G0), G0 = GP (0, Cθ),

(2)

where G is a random distribution with a DP prior. The DP prior is characterized by two parameters m and84
G0, where m is the precision parameter, and G0 is the base measure. The base measure G0 is assumed to85
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be a Gaussian process with mean 0 and covariance kernel Cθ(, ), and θ contains parameters that control86
the shape of the covariance kernel. The introduction of this DP prior to the latent log intensity functions87
naturally facilitates clustering of the N point processes based on their intensity functions. With this model,88
neither the number of clusters nor ad-hoc distance measure between two point processes needs to be89
specified.90

To overcome the difficulty of calculating the marginal likelihood of the point process Si, we employed an91
approximate but efficient posterior inference using the Integrated Nested Laplace Approximations (INLA)92
package (Simpson et al., 2016; Rue et al., 2009).93

The INLA approximation of the LGCP transforms the continuous covariance kernel of zi(s) into a94
discrete precision matrix of the B-spline basis coefficients on a regular grid, which enables very fast95
covariance computation (Rue and Held, 2005). Finally, posterior inference on the assignment of proteins96
into clusters is performed through a Markov chain Monte Carlo (MCMC) algorithm using Neal’s Gibbs97
sampler (Neal, 2000) (detailed description provided in the Supplementary document).98

3 RESULTS

3.1 Genome segmentation and chromatin state identification99

As described in the methods section, diHMM segments a genome into distinct chromatin states and100
outputs the states as regions within two bed files labeled by nucleosome and domain indexes (e.g. N1,101
N2... and D1, D2... respectively). For the nucleosome level states, annotation of the chromatin states102
to functionally relevant categories was performed by using information from the emission probabilities103
of the nucleosome states (Figure 2(a)), fractional genome coverage (Figure 2(b)), relative enrichment104
in different genomic regions (Supplementary Figure S3), and distribution of nucleosome states around105
TSS (Supplementary Figure S4(A)). Similarly, by comparing the nucleosome-level fold enrichments in106
each domain level state and the distribution of the domain level states around TSS (Supplementary Figure107
S4(B)), the domain-level states were further grouped into different broader functional categories as shown108
in Figure 2(c). Details of functional annotation of the nucleosome and domain-level states are presented in109
Section 3 of the Supplementary Document.110

3.2 Chromatin state preference of individual protein binding and gene expression111
regulation112

To analyze the distribution of protein-DNA binding sites in each chromatin state, we integrated ChIP-seq113
data with the chromatin state map of mouse neural stem cells (NSCs) (Figure 3(a)). For most proteins,114
the binding events occur in open chromatin regions, although some pioneer transcription factors have the115
ability to bind directly to condensed chromatin and recruit co-factors (Zaret and Carroll, 2011; Soufi et al.,116
2015; Cuesta et al., 2007). We observed, in both active and repressed states, enrichment of pioneer TFs as117
well as other proteins (that might have been recruited by the former). BMI1, which is known to bind to118
regions marked by both H3K27me3 and H3K4me3 (Bhattacharya et al., 2015), was found to be highly119
enriched in the Bivalent Promoter and Poised Enhancer states (Figure 3(a)). In addition, most TFs were120
found to be enriched in the Super Enhancer states except for RAD21, BMI1, SMCHD1 and NUP153. A121
similar observation was made by the authors in Mateo et al. (2015) where they showed that OLIG2, NFI122
family, SOX2, SOX9, TCF3, FOXO3, ASCL1, SOX21, and MAX were associated with active enhancer123
regions.124
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Figure 2. (a) Nucleosome level emission matrix generated by diHMM. Functional annotations of the
nucleosome level states are shown in the color bar on the left. Scale varies linearly between 0 and 1. (b)
Fractional genome coverage for nucleosome and domain level states. Scale varies logarithmically between
10−4 and 1. (c) Combined nucleosome-domain fold change obtained by diHMM. Functional annotation of
the states are shown in the color bar on the left. Scale varies logarithmically between 0.5 and 50.

Next, to study the regulatory effect of histone marks on proximal genes, we compared the expression125
levels of genes (Transcripts Per Kilobase Million or TPM) with promoters located in different chromatin126
states. We observed that proximal genes in the Broad Promoter state had a higher median expression127
than proximal genes in the Polycomb Repressed or Low Coverage states (Figure 3(b)). To understand128
the influence of chromatin states on transcriptional regulation, we further grouped genes in each state129
based on the presence of binding sites of different proteins surrounding their TSSs. We observed that,130
for most proteins, the median expression of the genes in active states was higher than those in repressed131
states (Figure 3(c),(d), Supplementary Figure S8). Also, fewer proteins had binding sites in repressed states132
as compared to active states (In Figure 3(c), there are 16 proteins whereas in Figure 3(d), there are 14133
proteins). Additional gene expression analysis for individual proteins is shown in Supplementary Figure134
S8.135

This is a provisional file, not the final typeset article 6

Frontiers in Genetics, section Epigenomics and Epigenetics.



Banerjee et al. Transcriptional regulatory networks

Figure 3. (a) Enrichment (in log scale) of TF peaks in different chromatin states showing binding
preference of individual TFs. (b) Comparison of average TPM expression (in log scale) of proximal genes
(+/- 2kb from TSS) in different domain level chromatin states. Genes were mapped to the nucleosome-level
states for the corresponding domain-level states. (c) Comparison of average TPM expression (in log scale)
of proximal genes (+/- 2kb from TSS) mapped to individual TFs in the Broad Promoter state and in (d) the
Poised Enhancer state.

3.3 Chromatin state and preferential clustering of proteins136

The distributions of ChIP-seq peaks across distinct chromatin states indicate that functionally relevant137
proteins may have similar binding patterns (Supplementary Figure S2). We determined the co-occupancy of138
proteins in a specific chromatin state through a nonparametric Bayesian clustering approach that identifies139
the combinatorial binding patterns of proteins (detailed description available in Supplementary Document).140
Each state at the domain level had multiple windows over different chromosomes across the genome. We141
observed that most windows are with very few peaks although the average domain-level window length142
ranged from 3.8 kb to over 450 kb. This prevented prediction of modules within a single domain window.143
To ensure that the unique properties of the domain-level states were preserved during clustering, we merged144
all windows of a single domain-level state (e.g. D1) across the entire genome and mapped the genome145
positions to a common interval [0, 50] on an imaginary real line. Adopting this approach for all domain146
level states eliminated the problem that different domains may have different sizes. Next, for each domain147
level state, the proposed algorithm used these mapped binding locations, computed individual binding148
intensity of each protein and clustered proteins having similar intensity patterns together to construct149
transcriptional regulatory modules. This process was repeated for each domain level state.150

To visualize the predicted regulatory modules in different chromatin states, we have shown the estimated151
binding intensities of the proteins and the corresponding clusters in Figure 4(a), (b) and in Supplementary152
Figures S6, S7. We took a closer look at the clustering results in two contrasting states—Broad Promoter153
(Figure 4(a)) and Poised Enhancer (Figure 4(b)), and found noticeable differences in the binding intensity154
shape of both individual proteins and the predicted clusters between the two states. In addition, the set155
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Figure 4. (a), (b) Estimated cluster binding intensities along with the individual TF binding intensities
in the Broad Promoter and Poised Enhancer states, respectively. In each figure, the estimated binding
intensities of the individual TFs are shown in dotted lines and the estimated binding intensities of the
clusters are shown in solid line. TFs in each cluster are shown in the same color as that of the cluster. The X
axis represents the genomic locations mapped on the real line between 0 and 50. The Y axis represents the
estimated binding intensities, both for the individual TFs and for the identified clusters. (c), (d) Pairwise
protein co-binding probabilities corresponding to (a) and (b) respectively. (e), (f) Comparison of proximal
gene expressions (TPM) regulated by the clusters in (a) and (b) respectively. Only those clusters having (1)
multiple TFs and (2) proximal genes for at least two TFs are shown in the figure to explain the combinatorial
regulation of gene expressions by multiple TFs.

of co-factors for different proteins varied between the two states. BMI1 is known to bind to repressed156
and poised states (Bhattacharya et al., 2015) and was predicted as a single-protein cluster in the Poised157
Enhancer (Figure 4(b)) and Bivalent Promoter states (Supplementary Figure S6). In other states such as158
Broad Promoter, Super Enhancer, and Upstream Enhancer, BMI1 was predicted with RNF2, RAD21, or159
SMCHD1 (Supplementary Figures S6, S7). It is worth noting that both BMI1 and RNF2 are components of160
the Polycomb group multi-protein, whereas SMCHD1, a non-canonical member of the SMC super-family,161
is also known to be associated with transcriptional repression (Chen et al., 2015) and polycomb recruitment162
mechanisms (Gendrel et al., 2012). The proposed approach was able to cluster several other functionally163
relevant proteins that shared similar binding patterns, for example, JMJD3-SMAD3 (Figure 4) in most164
chromatin states (in Estarás et al., 2012, the authors found that JMJD3 is recruited to gene promoters by165
SMAD3 in neural stem cells and is essential to activate TGF-β -responsive genes), FOXO3-NFIC-SOX-166
TCF3 (Supplementary Figures S6) in Upstream Enhancer states (in Mateo et al., 2015), the authors showed167
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interactions among NFI family, TCF3, SOX2, SOX9, and FOXO3. We have shown additional predicted168
protein-protein interactions in Supplementary Table S1.169

To assess the strength of association between two co-binding proteins, we calculated a pairwise protein170
co-binding probability matrix from the posterior samples of the MCMC procedure (Figure 4(c), (d)). Each171
value in Figure 4(c), (d) indicates the frequency of observing the corresponding two proteins in the same172
cluster out of the total 200 MCMC iterations. A high protein co-binding probability (indicated by darker173
color) provides stronger evidence of the existence of the protein pair in a cluster. We further performed a174
three-fold assessment on the robustness of the clustering algorithm explained in Supplementary document175
section 5.176

We next examined the expression levels of proximal genes (Transcripts Per Kilobase Million or TPM)177
regulated by the predicted clusters in each state to understand transcriptional regulation by combinatorial178
binding of proteins in different chromatin states. We observed that the median expression level of the179
genes regulated by distinct clusters are close to each other in the Broad Promoter state (Figure 4(e)).180
On the contrary, the median expression level of the proximal genes combinatorially regulated by the181
FOXO3-RAD21-SMAD4 cluster in Poised Enhancer was higher than that of the genes combinatorially182
regulated by the other cluster (Figure 4(f)) (Similar behavior was observed in Bivalent Promoter, Upstream183
Enhancer and Boundary states shown in Supplementary Figure S9). These results show that gene expression184
could change due to combinatorial binding of proteins in different chromatin states.185

3.4 Comparison of results with other clustering methods186

We compared the clustering results of the proposed algorithm with K-means and CLARANS (Ng and187
Han, 2002). Instead of applying these two clustering methods directly on the binding locations of the188
proteins, we first estimated individual protein binding intensities and used these intensity matrices as inputs189
for clustering (we assumed each protein was in its own cluster). For both methods, we first obtained the190
optimal number of clusters using the NBclust package (Charrad et al., 2014). From the results in Table191
1, we observe that for both methods, the number of optimal clusters was 2 for the two chromatin states.192
However, the cluster compositions that contain the regulatory TF modules are very similar to that of the193
proposed approach. Furthers comparisons are provided in Supplementary Table S5.194

3.5 Protein-DNA binding motif preferences in chromatin states195

It is known that local epigenetic states affect bindings of proteins to targets and protein-DNA binding196
may prevent or facilitate epigenetic changes on their binding sites (Blattler and Farnham, 2013; Xin and197
Rohs, 2018). A protein is known to bind to the DNA with different motifs depending on the presence of198
its co-binding partners (Bais et al., 2011). To examine the influence of chromatin states and co-binding199
partners on the binding sequences of a protein, we grouped ChIP-seq peaks for each protein overlapped200
with each chromatin state and analyzed the binding motifs of the protein in an active (Broad Promoter/Super201
Enhancer) and a repressed state (Poised Enhancer/Polycomb Repressed) (Figure 5(a), (b)). We used the202
MEME suite (Bailey et al., 2009) to identify de-novo motif sequences and from the results we selected the203
motif that matched with the candidate protein’s consensus motif or was known as a secondary motif. In204
both the HOMER (Heinz et al., 2010) or JASPAR (Mathelier et al., 2016) databases, no reference motif is205
documented for BMI1, KDM1A, JMJD3, NPAS3, NUP153, RNF2, RAD21, P300, and SMCHD1. For206
the remaining proteins with known motifs, we extracted genomic sequences from two different subsets of207
peaks overlapped with two contrasting chromatin states as mentioned before and determined the de-novo208
motifs.209
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Figure 5. Effect of chromatin states and co-binding partner on binding motifs. (a) De-novo motifs obtained
using MEME for ASCL1 are similar to the consensus motif in both Broad Promoter and Polycomb
Repressed states although the co-factors of ASCL1 are different in the two states. (b) De-novo motifs
obtained using MEME for TCF3 show differences in motifs between the two states with different co-factors.
The motifs in active state resemble the β-catenin/TCF/LEF motif whereas the motifs in repressed state
resemble the E-Box consensus motif.

Based on the MEME results, a protein’s binding preferences may be broadly categorized into one of the210
three types: (1) De-novo sequences that closely matched the protein’s consensus motif such as ASCL1211
(Figure 5(a)), MAX, NFIC, FOXO3, and TFs from the SOX family. (2) De-novo sequences that either212
did not match with the consensus/secondary motifs or matched the consensus motif but were weakly213
enriched. It has been observed that the ATF/CREB motifs (‘TGAYRTCA’) are often enriched in genes214
targeted by β-catenin/TCF/LEF (Taniue et al., 2016; Lien et al., 2014). For TCF3, we observed highly215
enriched de-novo sequences resembling its consensus motif in the repressed state (Figure 5(b)). However,216
in the active state we observed that the ‘TGACGTCA’ pattern was highly enriched. This could imply217
that TCF3 might have been recruited by other co-factors resulting in indirect binding in that particular218
state. For OLIG2, both active and repressed chromatin states contained de-novo sequences resembling219
its consensus motif. However, these sequences were highly enriched in the repressed state and weakly220
enriched in the active state. The fact that the E-value of the de-novo sequences of OLIG2 was not significant221
in the active state might suggest indirect binding in the state, probably being governed by other factors. (3)222
De-novo sequences resembling the secondary motifs such the SMAD family. For SMAD4, we observed223
that sequences with ‘GCCGC’ pattern were highly enriched in both active and repressed chromatin states,224
as reported previously in (Hu et al., 2013) where the authors found that SMAD4 can bind to both methylated225
and un-methylated motifs of distinct sequences. Similarly, for SMAD3, we observed highly enriched226
sequences rich in ‘GC’ content in both chromatin states, which have been reported as secondary SMAD3227
motifs, often associated with known SMAD binding partners in TGF-β responses (Vidakovic et al., 2015).228
Interestingly, for POU5F1, we observed that the E-Box element ‘CANNTG’ was significantly enriched229
in both active and repressed chromatin states. In Yin et al. (2017), the authors had also observed that the230
E-Box motif was significantly enriched with a p-value of 1e-6 in a POU5F1 ChIP-seq experiment of ES231
cell with Dnmt1, Dnmt3A and Dnmt3B triple knockout, whereas the consensus POU5F1 motif was weakly232
enriched with a p-value of 0.1. Detailed results are provided in Supplementary Table S3.233
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4 DISCUSSION

Development of the semi-automated genome annotation tools has enabled genome segmentation and234
identification of distinct chromatin states at fine resolutions. In this study, we designed a two-step process to235
identify transcriptional regulatory modules within distinct chromatin states. First, we segmented the genome236
using the diHMM software. Second, we designed a novel nonparametric Bayesian clustering algorithm to237
identify clusters of co-binding proteins on the segmented genome. Existing work have adopted distance238
thresholds and empirical tests to define pairwise co-bound regions and context-dependent co-regulators (Ji239
et al., 2006; Chen et al., 2008; Orlov et al., 2009; Lee and Zhou, 2013). The statistically principled approach240
we proposed models protein-DNA binding site locations through inhomogeneous Poisson processes. It241
also employs a Dirichlet process prior to the random distribution of the latent log-intensity functions to242
facilitate clustering of the binding patterns. Such a nonparametric Bayesian clustering procedure is based243
on joint likelihood rather than pairwise protein-protein relationship and is flexible in capturing the intricate244
protein-DNA binding patterns in ChIP-seq data. This approach does not require pre-specified parameters245
such as window size, distance threshold, and number of clusters, and hence achieves improved robustness.246

We applied the approach on ChIP-seq data for neural stem cells obtained from ChIP-Atlas, an247
integrated and comprehensive database rapidly gaining importance in cell replacement therapy. Despite248
the methodological advantages, this approach may have limitations in practical use. First, ChIP-seq can249
produce millions of short reads, which may result in varying strengths of signal intensities along the250
genome. In the current study, we did not consider the peak-height for different proteins but treated the251
center of each peak as a binary binding event along the genome. The overlook of the signal intensity effects252
may impact the modeling of protein binding patterns. Another possible limitation of our approach lies in253
handling the three dimensional structural information of the histone marks. This restricted our downstream254
gene expression analysis to gene promoters present in the Enhancer states. While not in scope of the current255
study, including such information may improve the accuracy of the model and enable the prediction of256
long distance Enhancer activity.257

Nevertheless, we were able to establish several interesting findings. It has been known that protein-258
DNA binding sites are not randomly distributed but rather clustered together at enhancer or promoter259
regions. Hence, some specific proteins may team up to have a significant epigenetic impact on gene260
expression. In our study, transcriptional regulatory modules identified in different chromatin states revealed261
several known protein-protein interactions in neural stem cells, for example, SOX family and NF1 in the262
Enhancer states (Webb et al., 2013), MAX-FOXO3-OLIG2 in Upstream Enhancer (Mateo et al., 2015),263
and JMJD3-SMAD3 in most chromatin states (Estarás et al., 2012). These results suggest chromatin-264
state-specific protein-protein co-occupancy. In addition, diverse gene expression levels were observed265
through combinatorial regulation by the predicted transcriptional regulatory modules in different states.266
The uncovered links between gene expression and protein binding patterns on a genome-wide scale will267
enhance our understanding on how chromatin-state-specific regulatory network is assembled to coordinate268
tissue differentiation and cell specification.269

An important issue in transcription regulation is to understand the binding specificity and affinity of a270
protein. A TF may have several thousands of DNA binding sites along the genome, which collectively271
can be represented as a motif—a consensus sequence demonstrating the nucleotide preferences at each272
position of the binding site. In this study, we observed that chromatin state can have an impact on the273
binding preferences of transcription factors and their co-activators (Jolma et al., 2015). For example, the274
de-novo sequences predicted for the some proteins resembled the consensus PWM across distinct chromatin275
states whereas for certain proteins such as SMAD family the sequences resembled secondary motifs in276
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specific chromatin states. Further, we also noticed that the prediction of binding preferences might help the277
identification of indirect protein bindings when the de-novo sequences do not match the consensus PWM278
(Yin et al., 2017). In conclusion, we expect that our work will help understand the causality of chromatin279
state and combinatorial protein-DNA binding in regulating gene expression in neural stem cells.280
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Table 1. Comparison of clustering results with other methods
Chromatin state DPM-LGCP K-means CLARANS

Broad Promoter (D5) (1) ASCL1, JMJD3,
KDM1A, NPAS3, OLIG2,
SMAD3, SMAD4, TCF3;
(2) BMI1, POU5F1,
RNF2, SMCHD1, SOX21,
NUP153; (3) FOXO3,
MAX, NFIC, P300, RAD21,
SOX2, SOX9

(1) ASLC1, JMJD3,
KDM1A, NFIC, NPAS3,
OLIG2, SMAD3, SMAD4,
TCF3; (2) BMI1, FOXO3,
MAX, P300, POU5F1,
RAD21, RNF2, SMCHD1,
SOX2, SOX21, SOX9,
NUP153

(1) ASCL1, FOXO3,
JMJD3, KDM1A, NFIC,
NPAS3, OLIG2, RAD21,
SMAD3, SMAD4, SOX2,
SOX9; (2) BMI1, MAX,
P300, POU5F1, RNF2,
SMCHD1, SOX21,
NUP153

Poised Enhancer (D13) (1) ASCL1, JMJD3,
KDM1A, NFIC, NPAS3,
OLIG2, P300, SMAD3,
SOX2, TCF3; (2) BMI1; (3)
FOXO3, POU5F1, RAD21,
RNF2, SMAD4, SOX21,
SOX9, TCF3; (4) MAX,
SMCHD1, NUP153

(1) ASCL1, JMJD3,
KDM1A, NFIC, NPAS3,
OLIG2, P300, SMAD3,
SOX2, SOX9, TCF3; (2)
BMI1, FOXO3, MAX,
POU5F1, RAD21, RNF2,
SMAD4, SMCHD1,
SOX21, NUP153

(1) ASCL1, FOXO3,
JMJD3, KDM1A, NFIC,
NPAS3, OLIG2, P300,
POU5F1, SMAD3, SMAD4,
SOX2, SOX9, TCF3; (2)
BMI1, MAX, RAD21,
RNF2, SMCHD1, SOX21,
NUP153

For each method the clusters are preceded by the cluster number within parentheses. Further comparisons are shown in Supplementary Table S5.
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