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Abstract

Chromatin immunoprecipitation (ChIP), followed by
high-throughput DNA sequencing (ChIP-seq), enables
genome-wide mapping of transcription-factor binding
sites (TFBS). Several transcription factors (TFs) have
been known to be able to differentiate tumor sub-types
in diseases like cancer. For instance, the Luminal A
and Luminal B sub-types of breast cancer tumors are
high in estrogen receptor (ER) while human epidermal
growth factor receptor 2 (HER2) tumors are high in
HER2 protein. The accurate mapping of the DNA-
protein loci is important in determining the causality
of epigenetic regulation of gene expression under both
normal and disease conditions in order to promote the
development of targeted drug therapy. In this paper,
we leverage the popular variational Bayes framework
for Gaussian mixture models to demonstrate its effec-
tiveness in identifying transcription-factor binding sites
(TFBS) and common regions co-regulated by multiple
TFs. We show that our method performs favorably
when compared to existing peak calling and clustering
methods. Our proposed method can both be used as a
peak calling method as well as clustering co-regulated
genomic regions acted upon by multiple TFs.

1 Introduction

Transcription factors (TFs) are proteins that regulate
gene expression by binding to the DNA at specific
locations along the genome. They play a significant
role in many biological processes including cell growth,
division, and signal transmission. These findings led
to computational methods for identifying transcription-
factor binding sites (TFBS) and leveraging the knowl-
edge of genetics in the treatment of diseases through
targeted drug therapy. The development of tools that
can faithfully identify enriched binding sites and that
are computationally inexpensive is necessary to analyze
ChIP-seq data. Several peak calling methods have been
developed in the past to identify TFBS. Some of the
methods include MACS [8], PeakSeq [5], BCP [7] and
Signal Spider [6].

PeakSeq relies on a local Poisson model while MACS
uses a dynamic Poisson distribution to identify enriched
regions. BCP uses Bayesian change point technology
to identify read clusters. More recently, Signal Spi-
der uses a Gaussian mixture model to approximate
read intensity of ChIP-seq profiles to identify genomic
regions co-regulated by multiple TFs but does not
consider input ChIP-seq profiles. A second method [1]
proposes a Gaussian mixture model for both sample
and input ChIP-seq profiles to identify TF peaks and
downstream genes, but uses only two components in the
mixture. In addition, MACS and PeakSeq are read-
count based and focus on strong TF-DNA bindings.
However, the sequencing depth of ChIP-seq has been
greatly improved leading to the discovery of weaker
binding sites. Existing peak calling tools either do not
consider or fail to identify these weak peaks.

We propose a variational Bayes (VB) structure with
a multiple-component Gaussian mixture model (ChIP-
GMM) that identifies TF-DNA binding sites by seg-
regating ChIP from input. Adding more components
to a Gaussian mixture increases its power to capture
the finer properties of the data since each component
has different eigenvalue spectra but similar eigenvector
structure [9]. ChIP-GMM can cluster genomic regions
co-regulated by multiple TFs. ChIP-GMM produces a
list of region identified as peaks (for a single TF) or
common TF binding regions (for multiple TFs) that
are not based on p-value or any other significance
test metric. We compare ChIP-GMM to PeakSeq and
MACS and show that it performs favorably in terms of
fold enrichment and the number of peaks identified.

2 Approach

Here we describe the workflow of ChIP-GMM and its
associated mathematical model.

2.1 Workflow of ChIP-GMM

We leverage the variational Bayes (VB) approach [4],
which has an inherent advantage over non-Bayesian
methods in automatically selecting the model without
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over-fitting the data. In a variational approach, the
posterior distribution is approximated over factorized
parameter density and hidden variables. The conver-
gence of the model is monitored by maximizing the
negative free energy which consists of the average like-
lihood and Kullback-Leibler (KL) divergence between
priors and posteriors. Clustering using ChIP-GMM is
achieved by estimating the hidden parameters of the
model and the probability of the Gaussian components
associated with each point. To establish the association
between the component and data points, we select the
component with the highest weight since it is likely to
have generated the data point.

As shown in Figure 1, input data to the model
contains uniquely aligned reads from ChIP and the
corresponding background/input signals. The pre-
processing step removes low read coverage regions and
normalizes the data. Next, we apply VB-GMM (short
for variational Bayes–Gaussian mixture model) to the
data, which generates a set of peak regions identified by
the method. For multiple TFs, the input data are the
ChIP signal profiles for each TF. Here the ChIP signal
profile refers to the normalized value at each region.

Since ChIP-GMM clusters/segregates ChIP from in-
put/control, we select those ChIP-seq data that had
both ChIP and input reads. After aligning reads for
ChIP and input, we use PeakSeq to get the accumulated
read coverage for each region. PeakSeq uses a two-
step peak calling tool that produces a directory of
mapped reads for ChIP and input in the first step and
a peak file with increasing Q-values in the second step.
The parameters that determine the cut-off to select
peaks are target FDR and max Q-value. Typically,
these values are set to 0.05. Because we want to
use PeakSeq as a pre-processing step to get the ChIP
and input reads at each region, we set the FDR and
Qvalue to 1.0 to ensure loose cut-off and pass most
of the reads. Thus, from PeakSeq we have a list of
accumulated read coverage for ChIP and input at each
region, which we call the raw intensity values. Next, we
transform the raw intensity values to a natural log scale
and normalize each value by the length of the region.
Input to ChIP-GMM then consists of the combined
list of log-normalized read intensity values. We then
leverage the MATLAB Statistical Parametric Model
(spm) tool box [4] to fit a one-dimensional mixture
of Gaussian distributions. The model generates the
estimated mixing weight, mean, and precision for each
component, the hyper-parameters, and the likelihood of
the mixing weight for each data point. For every region,
we check the components that are likely to generate the
ChIP and input signals. If both ChIP and input have
the same component, we conclude that the region does
not have a peak. If the components are different, the

Figure 1: ChIP-GMM model in identifying peaks and
co-regulated regions

region has a peak. Thus, the existence of peak at a
region is based on the hypothesis that ChIP and input
should be generated by different Gaussian distributions.

2.2 Model description of ChIP-GMM

We show that the variational Bayes (VB) mixture
model proposed by [4] can both (a) identify binding
sites for a single TF and (b) cluster binding sites for
multiple TFs. In [9], the authors describe the advantage
of a GMM with multiple components compared to one
with two components. Additional components that
differ in eigenvalues capture the variability of the data
better, which is not possible with a two-component
GMM. Normalized ChIP signal profiles can be thought
of as data points in one-dimensional space D = yn
with n = 1...N . Let us consider the Gaussian mixture
model to have m components. We denote the mixing
probability, mean, and precision (inverse of variance)
of each component s by πs, µs, andβs, respectively.
We also introduce a parameter set of vectors θ =
π,µ, andβ corresponding to the mixing weight, mean,
and precision, respectively. The likelihood that a data
point yn is generated by the parameters is defined as
follows:

p(yn|θ) =

m∑
s=1

p(sn = s|π)p(yn|βs, µs)
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where sn is the indicator variable denoting the source
of a data point from m components and where p(sn =
s|π) = πs

The probability for each Gaussian component is
defined as

p(yn|βs, µs) = (2π)−1/2β1/2
s exp(−βs

2
(yn − µs)2)

p(θ) is the prior probability on the model parameter set,
which can be written as a product of the prior prob-
abilities of mixing weights with Dirichlet distribution
(Eq. (1)), mean with a normal distribution (Eq. (2)),
and precision with gamma distribution (Eq. (3)).

p(π) =
Γ(mλ0)

Γ(λ0)m

m∏
s=1

πλ0−1
s (1)

p(µs) = N(µs;m0, v0) (2)

p(βs) = Γ(βs; b0, c0) (3)

where λ0 is the prior hyper-parameter of mixing weight
π; m0 and v0 are the prior mean and variance hyper-
parameters of mean µs; and b0 and c0 are the prior
shape and scale hyper-parameters of precision βs.

In the prior settings, λ0,m0, v0, b0, and c0 are fixed.
For mixing weights, we set λ0 = 1. For the mean, we
use m0 = mean(y) and β0 = 1. For precision, we define
c0 = 1 and b0 = 0.01. When data with dimension d is
normalized to zero mean and unit variance, then the
prior for precision (or variance) can be set as c0 = d
and b0 = 0.01 ∗ d ∗ eye(d), where eye(d) is a diagonal
matrix with size d x d. Also, the number of components
m is fixed and does not vary during iterations.

The joint likelihood of the data and indicator,
p(Y, S|θ), is defined as:

p(Y, S|θ) =

N∏
n=1

p(sn| = s|π)p(yn| = βs, µs)

The posterior distribution of the parameter set, q(θ), is
defined by the product of the density of each factor
as follows: q(θ) = q(π)q(µ)q(β), and the posterior
distribution of the hidden variables are approximated
by q(S). The Bayes framework maximizes the negative
free energy similar to expectation maximization tech-
nique. The negative free energy is a composition of
the average likelihood and the KL divergence between
the prior and the posterior. The E-step and M-step
equations are called iteratively and are summarized
below.

2.2.1 E-step

In this step, we update the indicator posterior, γ̃ns which
consists of the posterior hyper-parameters. Let us
define γ̃ns = p(sn = s). We expand γ̃ns in Eq. (4) using
λs, which is the posterior hyper-parameter of π; ms and
vs, which are the posterior mean and variance hyper-
parameters of µs, respectively; and bs and cs, which are
the posterior shape and scale hyper-parameters of βs.

γ̃ns = π̃sβ̃
1
2
s exp[−

1

2
β̄s(y

2
n +m2

s + vs − 2msyn)] (4)

where

logπ̃s = Ψ(λs)− Ψ(
∑
s′

λs′)

logβ̃s = Ψ(cs) + logbs

β̄s = bscs

Thus, Eq. (5) gives the probability that yn is generated
by s. (Ψ is the digamma function)

γns =
γ̃ns∑
s′ γ̃

n
s′

(5)

2.2.2 M-step

In this step, we update the posterior hyper-parameters.
The posterior hyper-parameter of mixing weight, λs is
updated as:

λs = Ns + λ0

The posterior hyper-parameters of precision, bs and cs,
are updated as:

1

bs
=
N

2
σ̃2
s +

1

b0

cs =
Ns

2
+ c0

The posterior hyper-parameters of mean, ms and vs,
are updated as:

τs = τ0 + τdata(s)

ms =
τ0
τs
m0 +

τdata(s)

τs
mdata(s)

where τ0 = 1
v0

and τs = 1
vs

are the prior and posterior
precision hyper-parameters, respectively.

πs is the proportion of data in component s defined
as:

πs =
1

N

N∑
n=1

γns
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Ns is the number of data points in component s defined
as:

Ns = Nπs

ys are the weighted data points defined as:

ys =
1

N

N∑
n=1

γns yn

ỹ2s are the weighted square data points defined as:

ỹ2s =
1

N

N∑
n=1

γns y
2
n

σ̃2
s is the average variance of component s defined as

σ̃2
s = ỹ2s + πs(m

2
s + vs)− 2msys

The negative free energy Fm is given by

Fm = Lav −KL(q(π)||p(π))−KL(q(µ)||p(µ))−
KL(q(β)||p(β))

where the Kullback-Leibler (KL) divergence is defined
as a metric to determine the difference between two
probability distributions, where p(.) and q(.) denote the
prior probability distribution and the posterior distri-
bution of parameters, respectively, and Lav denotes the
average likelihood.

3 Results

We provide our results in three parts. The first
two parts present the performance of ChIP-GMM in
peak calling and TF clustering, respectively, and its
comparison to existing peak calling tools while the third
part presents the functional analysis of the peaks using
gene annotation tools.

3.1 Peak calling for single
transcription factor

We utilized three ChIP-seq data sets, listed below, to
identify peaks for a single transcription factor (TF) and
compared the performance of ChIP-GMM to MACS
and PeakSeq in terms of average log fold change (FC)
and the number of peaks identified. MACS and
PeakSeq were run with default parameters.

(1) Two ER+ breast cancer samples: one with
favorable response to treatment (SRR1021753)
and another with poor response to treatment
(SRR1021758) from GSE32222. We refer to these
samples as ER 1 and ER 2

(2) JMJD3 and SMAD3 ChIP-seq data from neural
stem cells of 12.5 embryonic, day-old, wild-type
mice from GSE36673

(3) Znf335a ChIP-seq from lateral telencephalon of
E14.5 mice from GSE36386

The threshold for peaks was selected as 5(−log10p−
value) for MACS and −5(log10p− value) for PeakSeq.
Table 1 shows that ChIP-GMM performs favorably with
PeakSeq and MACS in terms of fold change peaks in
addition to identifying more peaks than either method.
These additional regions identified by ChIP-GMM may
contain genes functionally relevant to the TF, which are
not captured by MACS or PeakSeq.

Figure 2: ChIP-GMM results for ER 1

Table 1: ChIP-GMM vs. other peak calling methods
Data ChIP-GMM PeakSeq MACS

FC Peaks FC Peaks FC Peaks
ER 1 2.01 13,801 2.16 3,485 2.62 2,723
ER 2 1.90 12,133 1.60 3,980 2.21 2,467
JMJD3 1.75 52,997 1.47 28,259 1.94 15,366
SMAD3 1.80 14,392 1.44 38,350 1.89 21,832
Znf335a 2.11 1,515 2.18 367 2.13 99

We show the estimated component pdfs and his-
togram of log-normalized ChIP and input intensities
of ER 1 in Figure 2. As can be seen, the intensity
values of ChIP are larger than the input. We also
illustrate the distribution of log-normalized ChIP and
input reads for ChIP-GMM estimated peaks ER 1 in
Figure 3. It can be seen from the p-values that the
ChIP read intensities are significantly higher than the
input read intensities for the peaks identified by ChIP-
GMM. This validates the hypothesis of ChIP-GMM
that in order to have a peak at a particular region,
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Figure 3: ChIP vs. input for ER 1

ChIP and input are generated from different Gaussian
distributions.

3.2 Clustering for multiple TFs

We applied ChIP-GMM to cluster genomic regions
co-regulated by multiple TFs for two cases. For the
first case, we used the peak files of JMJD3 and SMAD3
produced by PeakSeq with default parameters as input
to ChIP-GMM. An important aspect of ChIP-GMM is
that it has different modes of operation between peak
calling and TF clustering. For a single TF, a region
will have peak if ChIP and input are generated by
different Gaussian components. For TF clustering, an
overlapped region will have reads from different TFs
generated by the same Gaussian component. Thus
we first list regions from both TFs having the same
Gaussian component. Then we calculate the overlap
among those regions. For each component, we have a
list of overlapping regions. We then combine the regions
for all components to obtain the final set of co-regulated
regions. From PeakSeq, there were 28259 peaks for
JMJD3 and 38350 peaks for SMAD3. Upon clustering,
ChIP-GMM identified 15041 common regions.

We then compared the results with MACS2 in dif-
ferential binding mode and with Signal Spider. With
MACS2, for each treatment condition we first ran
‘predictd’ and averaged the fragment length from the
two conditions. We used this averaged length in the
‘callpeak’ stage. Finally we used the pileup .bdg files
and control .bdg files and ran ‘bdgdiff’. For Signal
Spider, we transformed the ChIP read-intensity values
(from PeakSeq) to log scale. MACS2 and Signal Spider
identified 6575 and 19175 common regions, respectively.

For the second case, we selected AUTS2, BMI1,
P300 and RING1B from GSE60409 [2]. Using PeakSeq
we obtained 172983, 76454, 377272 and 53651 peaks
for AUTS2, BMI1, P300 and RING1B, respectively.

Figure 4: Time complexity of ChIP-GMM

Following the steps from the first case, we applied ChIP-
GMM to find common regions regulated jointly by the
fours TFs. ChIP-GMM identified 2508 common regions
while Signal Spider identified 5305 common regions
(numOfCombinations = 4,numOfBindingModes = 3).
We compared ChIP-GMM to Signal Spider only for
this case because both methods can handle multiple
ChIP profiles (unlike MACS2 which can only be used
to analyze a pair of TFs).

As shown in Figure 4, the execution time of ChIP-
GMM depends on the size of the data set and ranges
from a few seconds to over sixty minutes.

3.3 Binding regions to genes

In order to identify the genes regulated by TFs, we
used the peaks identified by ChIP-GMM from ER 1 on
GREAT [3] as a test case for functional analysis. We
prepared a bed file with the peak regions as the test
regions for GREAT, selected the whole genome (hg18)
as the binding regions and then selected single nearest
gene within 1.5 Kb in annotating genomic regions to
genes.

The first list in Table 2 is a set of 96 genes with a sig-
nificant binomial raw p-value and fold enrichment (FE)
of 3.43. These genes are typically down-regulated in
basal sub-type of breast cancer. Basal sub-type tumors
have ER-negative status compared to the Luminal A
and Luminal B tumors that have ER-positive status.
The second list of 37 genes are up-regulated in Luminal
B sub-type. These two sets indicate that the identified
peak regions for ER contain genes that might help to
classify ER+ vs. ER- tumor sub-types leading to the
development of targeted drug therapy. In addition the
motifs have been targets of miR-19a and miR-19b which
are known tumor suppressors in breast cancer.

4 Conclusion

We present ChIP-GMM, a variational Bayes frame-
work on a Gaussian mixture model that can be used
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Table 2: Functional analysis of ER 1 using GREAT

Type of Genes Gene
Count

p-val Fold
Change

Down-regulated
in basal subtype
of breast cancer
samples

96 3.7e-27 3.43

Up-regulated in the
luminal B subtype
of breast cancer

37 1.3e-17 5.34

Between two groups
of breast cancer
according to basal
(ESR1- AR-) and
luminal (ESR1+
AR+)

50 4.1e-16 3.68

Up-regulated in
breast cancer
samples positive for
ESR1 compared to
the ESR1 negative
tumors

22 8.9e-12 5.28

Targets of
MicroRNA
TTTGCAC,MIR-
19A,MIR-19B

52 8.2e-11 2.79

both to identify protein-DNA binding sites as well as
clustering genomic regions that are co-regulated by
multiple TFs. An important difference between our
proposed method and existing peak calling methods is
in the selection of peaks. Based on the hypothesis that
log-normalized ChIP and input read intensities should
be generated from different Gaussian distributions, the
method determines the existence of a peak if the ChIP
and input are assigned to different Gaussian compo-
nents. ChIP-GMM also clusters co-regulated genomic
regions using the reverse hypothesis that for overlapped
genomic regions ChIP signals for each TF are likely
to be generated by the same Gaussian distribution.
Analysis of ChIP-GMM peaks for ER+ data revealed
genes that are known to be up/down-regulated in breast
cancer. ChIP-GMM performs favorably to others in
terms of fold enrichment of peaks. Future work might
use a Dirichlet prior mixture model to auto-select the
number of Gaussian components in the mixture.
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