
Semantics-based Distributed I/O for mpiBLAST ∗

P. Balaji∗ W. Feng† J. Archuleta† H. Lin‡ R. Kettimuthu∗ R. Thakur∗ X. Ma‡§

Mathematics and Computer Science, Argonne National Laboratory∗

Department of Computer Science, Virginia Tech†

Department of Computer Science, North Carolina State University‡

Computer Science and Mathematic Division, Oak Ridge National Laboratory§

balaji@mcs.anl.gov feng@cs.vt.edu jsarch@cs.vt.edu hlin2@ncsu.edu kettimut@mcs.anl.gov
thakur@mcs.anl.gov ma@cs.ncsu.edu

Abstract

BLAST is a widely used software toolkit for genomic sequence
search. mpiBLAST is a freely available, open-source parallelization
of BLAST that uses database segmentation to allow different worker
processes to search (in parallel) unique segments of the database. Af-
ter searching, the workers write their output to a filesystem. While
mpiBLAST has been shown to achieve high performance in clusters
with fast local filesystems, its I/O processing remains a concern for
scalability, especially in systems having limited I/O capabilities such
as distributed filesystems spread across a wide-area network. Thus,
we present ParaMEDIC—a novel environment that uses application-
specific semantic information to compress I/O data and improve per-
formance in distributed environments. Specifically, for mpiBLAST,
ParaMEDIC partitions worker processes into compute and I/O work-
ers. Compute workers, instead of directly writing the output to the
filesystem, the workers process the output using semantic knowledge
about the application to generate metadata and write the metadata to
the filesystem. I/O workers, which physically reside closer to the ac-
tual storage, then process this metadata to re-create the actual output
and write it to the filesystem. This approach allows ParaMEDIC to
reduce I/O time, thus accelerating mpiBLAST by as much as 25-fold.

Categories and Subject Descriptors J.3 [Computer Applications]:
Life and Medical Sciences

General Terms Design, Performance

Keywords mpiBLAST, I/O, distributed filesystem

1. Introduction

Many computational biology tools and applications use nucleotide
and protein sequence-searches to find similarities between different
species of organisms. Given the importance of sequence searches,
researchers have designed a number of tools to perform sequence
search in an efficient manner. Among the most widely used sequence-
search tools is the Basic Local Alignment Search Tool (BLAST)
from the National Center for Biotechnology Information (NCBI).
mpiBLAST [1, 2] is a freely available, open-source parallelization
of NCBI BLAST. The overall software architecture of mpiBLAST
follows a master-worker model. The master fragments the sequence
database across multiple nodes so that each fragment fits in memory.
Each worker process then searches its unique portion of the database
independently of the other workers. Once the search is complete, the
results are merged and written out. While this model works well
for clusters with a fast local filesystem, it works poorly when the
filesystem is distributed across a wide-area network [3], e.g., NSF

∗ This research is funded in part by the Mathematical, Information, and Com-
putational Sciences Division subprogram of the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Department of Energy, under
Contract DE-AC02-06CH11357 and the Computer Science Department at Vir-
ginia Tech.

Copyright is held by the author/owner(s).

PPoPP’08, February 20–23, 2008, Salt Lake City, Utah, USA.

ACM 978-1-59593-960-9/08/0002.

mpiBLAST

Worker
mpiBLAST

Worker

mpiBLAST

Worker

Read temp
Database

Database
Generate temp

mpiBLAST

Worker
mpiBLAST

Worker

mpiBLAST

Worker

I/O Servers
hosting file−system

mpiBLAST Master

Raw MetaDataQuery Query

Write Results

mpiBLAST Master

Compute Master

Compute Workers

Processed Metadata

I/O Workers

I/O Master

Figure 1. ParaMEDIC Framework

TeraGrid and the distributed and encrypted compute environment
between Argonne National Lab (ANL) and Virginia Tech (VT).

Thus, we propose ParaMEDIC: Parallel Metadata Environment
for Distributed I/O and Computing, a novel environment that uses
application-specific semantic information to compress I/O data and
improves performance in distributed environments. Specifically,
ParaMEDIC divides the worker processes into two groups: compute
workers and I/O workers. The compute workers reside on the compute
cluster (as before), while the I/O workers reside physically closer to
the actual storage. When a biologist requests that a query be searched,
the compute workers act as before, but instead of directly writing the
output to the filesystem, the workers process the output using seman-
tic knowledge about the application to generate orders-of-magnitude
smaller metadata and write this metadata to the filesystem, thus sig-
nificantly reducing the I/O time taken by the compute workers. The
I/O workers perform a small amount of additional processing of this
metadata to re-generate the final output and write it to the filesystem.
Since the I/O workers are physically closer to the actual storage, this
model is substantially faster than traditional distributed I/O.

2. ParaMEDIC Design Overview

ParaMEDIC provides a two-tiered hierarchical framework for decou-
pling computation and I/O in mpiBLAST. The upper tier consists of
two processes, compute manager and I/O manager, while the lower
tier consists of two groups of processes – compute workers and I/O
workers. The actual sequence search is handled by the compute work-
ers. Once the output is generated, the compute master understands the
semantics of the output data and converts this output initially to raw
metadata, and then processes and compresses it to form the final meta-
data. It then writes the final metadata to the filesystem and sends a
signal to the I/O master. The I/O master, upon receiving a signal from
the compute master, uses the I/O workers to process the metadata and
generate the final output. We note that the amount of computation re-
quired is higher than what is required by the original application (due
to the additional metadata processing). However, such metadata pro-
cessing potentially allows the the I/O cost to be significantly reduced.
In other words, the ParaMEDIC framework aims at trading a small
amount of additional computation for reduced I/O cost.

Managing Compute and I/O Worker Processes: Managing the
compute and I/O worker processes in ParaMEDIC essentially deter-



mines the tradeoff in the amount of time spent in computation versus
the amount of time saved in I/O. In general, since the I/O worker pro-
cesses are restricted to the cluster that hosts the filesystem, the num-
ber of I/O workers that are available is restricted. For example, in a
distributed environment hosting 10,000 processors, only 1000 proces-
sors might reside on the same cluster that hosts the filesystem. Thus,
in this case, it is ideal to maintain a 10:1 ratio between the number of
compute workers and the number of I/O workers. Depending on the
ratio, the appropriate metadata processing scheme needs to be picked.

Metadata Processing for mpiBLAST: Several sequence databases
use unique identifiers for each sequence in the database. For the nu-
cleotide database, for example, GenBank Identifiers (GIs) are used to
represent the different sequences. The output that is generated from
mpiBLAST typically consists of the sequences themselves, together
with a significant amount of additional information. ParaMEDIC
parses through the results generated by the mpiBLAST compute
workers to extract the GI information for each matching sequence
and compress the output before sending it to the I/O workers. De-
pending on the query, this compressed GI information can be nearly
three to four orders of magnitude smaller than the actual output.

I/O Post-Processing: I/O post-processing consists of two primary
components—database creation and query search. For the former, the
I/O master creates a new temporary database based on the matched
segments that were found by the compute workers. This temporary
database is much smaller than the original database. For example, in
the default configuration, if a single query sequence is provided by the
user, while the actual database has about 5 million sequences, the tem-
porary database will have at most 500 sequences, i.e., 0.01% of the
original size. Once the temporary database is created, the I/O work-
ers recompute the original query sequences against this temporary
database to generate the final output. Since the temporary database is
very small, this search time is minimal.

3. Performance Evaluation

We first look at the performance of mpiBLAST and ParaMEDIC on
a distributed system between ANL and VT connected over Internet2.
Next, we illustrate the performance of mpiBLAST and ParaMEDIC
on the TeraGrid infrastructure.

ANL to Virginia Tech Encrypted File-system

0

1000

2000

3000

4000

5000

6000

10 20 30 40 50 60 70 80 90 100

Query Size (KB)

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

mpiBLAST

ParaMEDIC

Figure 2. ANL-VT Encrypted Filesystem

Figure 2 shows that ParaMEDIC significantly outperforms mpi-
BLAST in this environment with the performance difference increas-
ing with query size. For a query size of 100 KB, we observe more than
a 25-fold improvement in performance. This difference is attributed to
multiple aspects. First, given the shared network connection between
the two sites, the effective network performance achievable is usu-
ally lower than within the cluster. Thus, with mpiBLAST transferring
the entire output over the network, its performance would be heavily
impacted by the network performance. Second, since data is commu-
nicated over the Internet, it is locally encrypted before being transmit-
ted; mpiBLAST has to pay the penalty for such encryption. Though
ParaMEDIC also pays such data encryption penalty, the amount of
data it transfers is significantly lesser, and hence the penalty is less as

well. Third, the distance between the two sites causes the communi-
cation latency to be high. Thus, filesystem operations tend to take a
large amount of time, resulting in further loss of performance.

The TeraGrid infrastructure represents a distributed environment
for several compute- and I/O-intensive applications including mpi-
BLAST. A GPFS-based distributed filesystem is hosted at SDSC,
which can be accessed from all facilities and forms a part of the Tera-
Grid facility. Since TeraGrid is a dedicated facility, it does not utilize
any encryption of the data exchanged between sites. For our experi-
ments, we utilized the nodes at the University of Chicago and SDSC.
The I/O workers in ParaMEDIC are always scheduled at SDSC be-
cause of its close proximity to the actual storage. The compute work-
ers, however, are scheduled at the University of Chicago.

Teragrid Infrastructure

0

500

1000

1500

2000

2500

3000

3500

4000

10 20 30 40 50 60 70 80 90 100

Query Size (KB)

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
) mpiBLAST

ParaMEDIC

Figure 3. Evaluation on the TeraGrid Infrastructure

Figure 3 shows the performance of mpiBLAST and ParaMEDIC on
the TeraGrid infrastructure. While the final output is written to the
same global filesystem in both cases, mpiBLAST suffers from the
fact that the compute workers are performing the I/O for the output
results. Since they reside on a remote cluster as compared to the
actual storage, their I/O performance is limited resulting in an overall
degradation in execution time. For ParaMEDIC, on the other hand,
since the I/O workers are performing the I/O for the output results,
the amount of time taken is significantly smaller. For a query file size
of 100 KB, ParaMEDIC outperforms mpiBLAST by about five times.

4. Concluding Remarks

mpiBLAST is an open-source parallelization of BLAST, a widely
used software for genome sequence searching. In spite of recent en-
hancements, I/O processing in mpiBLAST is still a concern, espe-
cially in environments that use distributed filesystems with limited
I/O capabilities. In this paper, we presented ParaMEDIC—an envi-
ronment that uses application-specific semantic information to com-
press I/O data and improve performance in distributed environments.
We provided details of the ParaMEDIC design and studied its per-
formance impact on mpiBLAST in two distributed environments: (i)
an encrypted file-system between Argonne National Lab (VT) and
Virginia Tech (VT) over Internet2 and (ii) NSF TeraGrid. We demon-
strated that ParaMEDIC can accelerate mpiBLAST by 25-fold in the
ANL-VT distributed environment and by 5-fold on TeraGrid.

References

[1] A. Darling, L. Carey, and W. Feng. The Design, Implementation, and
Evaluation of mpiBLAST. In International Conference on Linux Clusters:

The HPC Revolution 2003, 2003.

[2] W. Feng. Green destiny + mpiblast = bioinfomagic. In International

Conference on Parallel Computing (ParCo), 2003.

[3] M Gardner, W Feng, J Archuleta, H Lin, and X Ma. Parallel genomic
sequence-searching on an ad-hoc grid: Experiences, lessons learned, and
implications. In ACM/IEEE SC2006: The International Conference on

High-Performance Computing, Networking, and Storage, 2006.


