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Abstract—As FPGAs and GPUs continue to make inroads into
high-performance computing (HPC), the need for languages and
frameworks that offer performance, productivity, and portability
across heterogeneous platforms, such as FPGAs and GPUs, con-
tinues to grow. OpenCL and SYCL have emerged as frameworks
that offer cross-platform functional portability between FPGAs
and GPUs. While functional portability across a diverse set
of platforms is an important feature of portable frameworks,
achieving performance portability often requires vendor and
platform-specific optimizations. Achieving performance portabil-
ity, therefore, comes at the expense of productivity.

This paper presents a quantification of the tradeoffs be-
tween performance, portability, and productivity of OpenCL
and SYCL. It extends and complements our prior work on
quantifying performance-productivity tradeoffs between Verilog
and OpenCL for the FPGA. In addition to evaluating the
performance-productivity tradeoffs between OpenCL and SYCL,
this work quantifies the performance portability (PP) of OpenCL
and SYCL as well as their code convergence (CC), i.e., a measure
of productivity across different platforms (e.g., FPGA and GPU).
Using two applications as case studies (i.e., edge detection using
the Sobel filter, and graph link prediction using the Jaccard simi-
larity index), we characterize the tradeoffs between performance,
portability, and productivity. Our results show that OpenCL and
SYCL offer complementary tradeoffs. While OpenCL delivers
better performance portability than SYCL, SYCL offers better
code convergence and a 1.6× improvement in source lines of code
over OpenCL.

Index Terms—code convergence, FPGA, GPU, high-level syn-
thesis (HLS), oneAPI, OpenCL, performance, portability, pro-
ductivity, SLOC, SYCL, Verilog

I. INTRODUCTION

In high-performance computing (HPC), there is an in-
creasing need for easily programmable, highly performant,
and naturally portable applications across different heteroge-
neous platforms (e.g., CPU, GPU, and FPGA). Over the past
decade, the high-performance computing (HPC) community
has witnessed the emergence of a cornucopia of heterogeneous
computing frameworks and languages that offer functional
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Computing (SHREC). The authors would also like to thank Intel DevCloud
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portability1 across a wide variety of heterogeneous platforms.
Examples of such frameworks and languages include Meta-
Morph [1], Kokkos [2], RAJA [3], SYCL [4], OpenCL [5], and
Chapel [6]. The above frameworks and languages generally
offer functional portability across CPUs and GPUs only. For
OpenCL and SYCL, however, parallel programs can be written
and run on CPUs and GPUs as well as FPGAs. OpenCL,
as a C-based high-level synthesis language, is supported by
FPGA vendors and their associated toolchains, e.g., Intel’s
FPGA SDK for OpenCL [7] and Xilinx’s Vitis Unified Software
Platform [8]. For SYCL programs, Intel’s data-parallel C++
(DPC++) compiler [9] can be used to target Intel CPUs, GPUs,
and FPGAs and even NVIDIA GPUs.

While the aforementioned frameworks offer functional
portability, achieving performance portability generally re-
quires architecture-aware and vendor-specific optimizations.
For example, our prior work [10] of a Sobel edge detection fil-
ter in OpenCL for an FPGA uses OpenCL’s single-task kernel
configuration [11] to exploit pipelined parallelism. In contrast,
the OpenCL GPU implementation of the same application re-
quires data-parallel designs using OpenCL’s NDRange config-
uration [12] to achieve high performance. Thus, the transition
from a baseline functionally portable implementation between
an FPGA and GPU to a performance-portable implementation
generally requires the introduction of platform-specific code.
As a result, achieving performance portability across FPGAs
and GPUs comes at the expense of the developer’s produc-
tivity. In fact, Harrell et al. [13] refer to the introduction
of platform-specific code as code divergence and propose a
metric to evaluate it. Complementarily, Pennycook et al. use
code convergence (CC) as a measure of similarity between
programs that target a FPGA vs. a GPU [14].

Figure 1 shows examples of code divergence in OpenCL
when targeting a GPU and an FPGA, respectively. When
targeting a GPU (or CPU) platform, the OpenCL kernel can be
built at runtime via just-in-time (JIT) compilation. Figure 1a

1This is in contrast to performance portability, which we define as achieving
a similar percentage of theoretical peak performance across two (or more)
platforms.
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shows such an example of building an OpenCL program object
from source for a GPU (or CPU). When targeting an FPGA,
a pre-compiled binary is typically used to build an OpenCL
program object. Figure 1b shows such an example of using a
pre-compiled binary to build an OpenCL program.

Figures 1c and 1d show vector addition kernels using
OpenCL’s NDRange and single-task configurations, respec-
tively, and serve as examples of code divergence introduced
due to performance considerations. Data-parallel designs are
implemented with the NDRange configuration for the GPU.
In contrast, pipelined designs and associated optimizations use
the single-task configuration for the FPGA [15].

1 s t d : : i f s t r e a m k e r n e l F i l e ( f i leName , s t d : : i o s : : i n ) ;
2 i f ( ! k e r n e l F i l e . i s o p e n ( ) )
3 {
4 s t d : : c e r r << ” F a i l e d t o open f i l e f o r r e a d i n g : ” <<

↪→ f i l eName << s t d : : e n d l ;
5 r e t u r n ;
6 }
7 s t d : : o s t r i n g s t r e a m o s s ;
8 o s s << k e r n e l F i l e . r d b u f ( ) ;
9 s t d : : s t r i n g s r c S t d S t r = o s s . s t r ( ) ;

10 c o n s t c h a r * s r c S t r = s r c S t d S t r . c s t r ( ) ;
11 program = c l C r e a t e P r o g r a m W i t h S o u r c e ( c o n t e x t , 1 , ( c o n s t c h a r **)&

↪→ s r c S t r , NULL, NULL) ;
12
13 i f ( program == NULL)
14 {
15 s t d : : c e r r << ” F a i l e d t o c r e a t e CL program from s o u r c e . ” <<

↪→ s t d : : e n d l ;
16 r e t u r n ;
17 }
18 c l B u i l d P r o g r a m ( program , 1 , &dev ice , NULL, NULL, NULL) ;

(a) GPU: Creating OpenCL program object from kernel

1 # d e f i n e c l B i n a r y P r o g ( name ) \
2 c l p r o g r a m name ; { \
3 FILE * f = fopen (# name ” . aocx ” , ” r ” ) ; \
4 f s e e k ( f , 0 , SEEK END) ; \
5 s i z e t l e n = ( s i z e t ) f t e l l ( f ) ; \
6 c o n s t u n s i g n e d c h a r * p r o g S r c = ( c o n s t u n s i g n e d c h a r * ) ma l lo c

↪→ ( s i z e o f ( c h a r ) * l e n ) ; \
7 rewind ( f ) ; \
8 f r e a d ( ( vo id * ) progSrc , l en , 1 , f ) ; \
9 f c l o s e ( f ) ; \

10 c l i n t e r r ; \
11 name = c l C r e a t e P r o g r a m W i t h B i n a r y ( c o n t e x t , 1 , &d e v i c e , &len , &

↪→ progSrc , NULL, &e r r ) ;}
12
13 c l F i n i s h ( commandQueue ) ;
14 c l B i n a r y P r o g ( program ) ;
15 errNum= c l B u i l d P r o g r a m ( program , 1 , &dev ice , NULL, NULL, NULL) ;

(b) FPGA: Creating OpenCL program object from a pre-compiled binary

1 k e r n e l vo id k e r n e l 1 ( g l o b a l i n t * r e s t r i c t d e v i c e i n p u t 1 ,
2 g l o b a l i n t * r e s t r i c t d e v i c e i n p u t 2 ,
3 g l o b a l i n t * r e s t r i c t d e v i c e o u t p u t ,
4 ){
5 i n t t i d = g e t g l o b a l i d ( 0 ) ;
6 d e v i c e o u t p u t [ t i d ]= d e v i c e i n p u t 1 [ t i d ] + d e v i c e i n p u t 2 [ t i d ]
7 }

(c) GPU: OpenCL vector add kernel with NDRange configuration

1 k e r n e l vo id k e r n e l 2 ( g l o b a l i n t * r e s t r i c t d e v i c e i n p u t 1 ,
2 g l o b a l i n t * r e s t r i c t d e v i c e i n p u t 2 ,
3 g l o b a l i n t * r e s t r i c t d e v i c e o u t p u t ,
4 g l o a b l i n t a r r a y s i z e )
5 ){
6 f o r ( i n t i = 0 ; i< a r r a y s i z e ; i ++){
7 d e v i c e o u t p u t [ t i d ]= d e v i c e i n p u t 1 [ t i d ] + d e v i c e i n p u t 2 [ t i d

↪→ ]
8 }
9 }

(d) FPGA: OpenCL vector add kernel with single task configuration

Fig. 1: Examples of code divergence in OpenCL when targeting
FPGAs and GPUs

From the example code listings in Figure 1, we observe
that the development of performance-portable applications

comes at the expense of higher code divergence and reduced
productivity. While multiple studies exist that quantify the
metrics of performance portability and code convergence for
frameworks targeting CPUs and GPUs, a similar study on
the rigorous quantification of the aforementioned metrics for
FPGAs and GPUs has never been conducted.

Specifically, this paper quantifies the tradeoffs between the
performance, portability, and productivity of OpenCL and
SYCL on FPGA and GPU. It extends and complements
our prior work on the characterization of the performance-
productivity tradeoff for FPGAs [10]. In addition to measuring
the performance-productivity tradeoffs between FPGA pro-
gramming languages (i.e., Verilog and OpenCL), this paper
explores the performance portability (PP) of OpenCL and
SYCL as well as their code convergence (CC), i.e., a measure
of productivity across different platforms (e.g., FPGA and
GPU). Using two applications as case studies — (1) edge
detection using the Sobel filter and (2) graph link prediction
using the Jaccard similarity index — we characterize the
tradeoffs between performance, portability, and productivity.
In all, this paper makes the following contributions:
• Quantification and analysis of the performance-productivity

tradeoffs between OpenCL and SYCL on GPU and FPGA.
• Quantification and analysis of productivity improvements of

SYCL over OpenCL.
• Quantification and analysis of performance portability and

code convergence [13], [14], [16] of OpenCL and SYCL.
The rest of the paper is organized as follows. §II highlights the
related work on quantifying tradeoffs between performance,
productivity, and portability. In §III, we present the metrics
used to evaluate performance portability and productivity. In
§IV, we discuss the implementations of our target applications
(in short, Sobel filter and Jaccard similarity). §V presents
the evaluation of performance, productivity, and portability
metrics. We discuss future work in §VI and conclude in §VII.

II. RELATED WORK

We present related work in three parts: (1) metrics for
tradeoffs between performance, portability, and productivity,
(2) prior work on our target applications, i.e., Sobel filter and
Jaccard similarity, and (3) existing studies on performance
portability.

A. Metrics for tradeoffs between performance, portability, and
productivity

First, Pennycook et al. define performance portability as the
harmonic mean of an application’s performance efficiencies
observed across a set of platforms [16]. Second, Harell et al.
define metrics to quantify productivity in terms of code diver-
gence, maintenance cost, and development cost platforms [17].
Third, Pennycook et al. incorporate the code divergence met-
ric from [17] and expand upon their performance-portability
evaluation [18].

Figure 2 shows how Pennycook et al. visualize the per-
formance portability and code convergence of a particular
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code [18]. An ideal language is expected to have theoreti-
cal maximum values of one for performance portability and
code convergence, but it is not realistic for a language to
deliver both high performance portability and code conver-
gence. Oftentimes, the use of platform-specific code is neces-
sary to achieve high performance portability. However, while
platform-specific code can improve performance portability, it
comes at the expense of code convergence, as shown in Fig-
ure 2. In this work, we evaluate the performance portability of
the OpenCL and SYCL implementations of a Sobel filter and
code convergence for the OpenCL and SYCL implementations
of a Sobel filter and Jaccard similarity.

In our prior work, we introduced the performance productiv-
ity product (Π) to evaluate performance-productivity tradeoffs
between FPGA programming languages (e.g., Verilog) and
high-level synthesis languages (e.g., OpenCL) [10]. This paper
is a complementary extension of this prior work. Rather
than focus on the Π metric of an FPGA, we more broadly
evaluate performance, productivity, and portability metrics
(and combinations thereof) on both the GPU and FPGA.

Fig. 2: Visualization of performance portability vs. code
convergence for portable languages and frameworks [18]

B. Prior work on target applications

We realize and evaluate two applications in this paper: (1)
image edge detection using the Sobel filter and (2) link pre-
diction in graph datasets using Jaccard similarity, hereinafter
referred to as Sobel filter and Jaccard similarity for brevity.

1) Sobel filter: Since its introduction by Sobel [19],
the Sobel filter has been optimized for both GPUs [12]
and FPGAs [20], [21]. In our prior work, we quantified
the performance-productivity tradeoffs between Verilog and
OpenCL using the Sobel filter [10]. We complement and
extend our prior work by including FPGAs and GPUs in
our analysis as well as adding a more complex and irregular
application to the mix, i.e., Jaccard similarity.

2) Jaccard similarity: In graph analytics, computing the
intersection of neighborhood sets is a widely explored prob-
lem [22], [23]. In this work, we evaluate an instance of the
set intersection problem to compute link prediction in graph
datasets. Link prediction in graph datasets can be evaluated
using a metric called Jaccard similarity (JS) [24]. Our analysis
uses the edge-centric implementation of Jaccard similarity,
introduced in [23].

C. Performance portability studies

We use the aforementioned target applications to evaluate
performance portability and related metrics. Similar studies
have been conducted for a wide variety of languages and
frameworks. For example, Deakin et al. present a rigorous
quantification of performance portability of OpenMP, Kokkos,
CUDA, and OpenACC [25]. Deakin et al. extend their work
by including SYCL and more applications in the analysis
of performance portability [26]. None of the above studies
include FPGAs in their evaluation.

III. METRICS FOR PERFORMANCE, PRODUCTIVITY, AND
PORTABILITY

This section describes the metrics used in our evaluation.

A. Source lines of code (SLOC)

We use source lines of code (SLOC) as a baseline measure
of productivity when writing programs in OpenCL and SYCL.

B. Performance-productivity product (Π)

As defined in [10], for a low-level language A and a
high-level language B, ΠA→B evaluates the performance-
productivity tradeoff for a transition from A to B. The metric
ΠA→B is formulated such that it evaluates to zero in the ideal
case, i.e., no difference. ΠA→B , is defined as shown below:

ΠA→B =
∆TA→B

∆PA→B
(1)

where ∆TA→B evaluates the relative difference in the per-
formance on a given platform when transitioning from a
low-level language A to a high-level language B and where
∆PA→B , evaluates the relative productivity improvement by
incorporating both source lines of code (SLOC) and total
development time (TDEV) of language A and language B.
∆TA→B and ∆PA→B , from Equation (1) are defined below.

∆TA→B =
ThroughputA − ThroughputB

ThroughputA
(2)

∆PA→B = α

(
SLOCA − SLOCB

SLOCA

)
+

(1− α)

(
TDEVA − TDEVB

TDEVA

)
where 0 ≤ α ≤ 1

(3)

We use the terms α and (1-α) to assign weights to the SLOC
and TDEV metrics. The value of α can be varied between
[0, 1], depending on the perceived importance of SLOC and
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TDEV metrics. In this work, we evaluate ΠA→B by setting α
to one (1). ΠA→B is designed such that it rewards a transition
from a low-level framework to a high-level framework if the
associated productivity improvement does not come at the cost
of performance degradation. In contrast, the metric penalizes
the same transition if productivity gains are not significant in
comparison with performance degradation.

C. Composite metric for performance portability

For an application a, solving a problem p on a given set
of platforms H , Pennycook et al. [16] define performance
portability, as shown in Equation (4).

PP(a, p,H) =


|H|∑

i∈H

1

ei(a, p)

, if i is supported ∀i ∈ H.

0, otherwise.
(4)

|H| is the total number of platforms and ei(a, p) is the
performance efficiency of application a on a platform i. It can
be observed from Equation (4) that performance portability
is defined as the harmonic mean of performance efficiencies
on all supported platforms. Performance portability evaluates
to zero if an application is not supported on any one (or
more) of the target platforms. Pennycook et al. provide two
definitions of performance efficiency: architectural efficiency
and application efficiency [16]. Architectural efficiency is de-
fined as achieved performance as a fraction of peak theoretical
performance on a given platform . Application efficiency is
measured as a fraction of performance relative to the best-
observed performance on a given platform. In this paper,
we use application efficiency to evaluate the performance
portability for OpenCL and SYCL, as shown in Equation (4).
The ideal value of performance portability is one (1), PP (a,
p, H) evaluates to 1 when the performance efficiencies across
all platforms are equal to one, indicating that the framework
achieves maximum efficiency on all target platforms.

D. Code convergence

Code convergence is a measure of similarity between
portable programs targeting multiple platforms such as FPGAs
and GPUs. Pennycook et al. [14] define code convergence as
“1− code divergence” and evaluate code divergence, as defined
by Harrell et al. [13]. Code divergence is defined as the average
Jaccard distance between each pair of platforms [13]. For two
platforms N and M , code divergence (CD) can be defined
as shown in Equation (5), where SLOCi is the number of
source lines of code when targeting platform i. In this paper,
we compute code convergence (CC) as shown in Equation (6).

CD =
|SLOCN ∪ SLOCM| − |SLOCN ∩ SLOCM|

|SLOCN ∪ SLOCM|
(5)

CC =
|SLOCN ∩ SLOCM|
|SLOCN ∪ SLOCM|

(6)

The ideal value of CC is 1, CC = 1 implies that the same
code can be run on all target platforms without any platform-
specific updates.

IV. CASE STUDIES

This section describes the target applications — Jaccard
similarity and Sobel filter — and their implementations in
OpenCL and SYCL.

A. Jaccard similarity

In graph analytics, Jaccard similarity is used to measure link
prediction between two or more vertex pairs. More generally,
Jaccard similarity between any two sets, A and B, is defined
as shown in Equation (7).

Jaccard similarity(A,B) =
|A ∩B|
|A ∪B|

(7)

In graph datasets, Jaccard similarity for any two vertices
is computed using the respective neighborhood sets of the
vertices. Algorithm 1 describes our implementation of Jaccard
similarity. Similar to prior work on Jaccard similarity for
FPGA [23], we use binary search to compute the size of the
intersection and union of neighborhood sets.

Algorithm 1: Edge-centric implementation of Jaccard
similarity [23]
Input : graph G(V, E) in edge-list format:

source(|E|), dest(|E|),
offsets(|V |)

Output: Jaccard(|E|)
Data: |E|

1 foreach edge e from E do
2 s = source[e], d = dest[e]

// Count neighbors
3 Ns = offsets[s+1]- offsets[s]
4 Nd = offsets[d+1]- offsets[d]
5 if Ns < Nd then
6 ref = s, cur = d
7 end
8 else
9 ref = d, cur = s

10 end
11 foreach destination i from ref do
12 refCol = dest[i]

// Binary search
13 is present = binary search(refCol,

neighbors(cur))
14 if (is present)
15 Jaccard[e] += 1
16 Jaccard[e] = Jaccard[e] / ((Ns + Nd) -

Jaccard[e]);
17 end
18 end
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Implementation: Our implementation of Jaccard similarity
in OpenCL and SYCL exploits edge-centric parallelism. Each
work-item computes the Jaccard score for a unique vertex
pair that forms an edge. Unlike the Sobel filter, we do not
implement any platform-specific optimizations. Instead, we
evaluate the performance of similar data-parallel designs in
OpenCL and SYCL on both FPGA and GPU.

B. Sobel filter

We evaluate an integer variation of the Sobel filter [10].
Figure 3 shows an example of the Sobel filter on an RGB
image from [27]. A 3×3 filter is used to compute gradients
along the X and Y axes of the image. Algorithm 2 describes
our baseline implementation of the Sobel filter.

(a) RGB image [27] (b) Sobel Filter output

Fig. 3: Example of Sobel edge detection filter on an RGB image

Implementation: The OpenCL implementation for FPGA
uses manual vectorization and loop unrolling in OpenCL’s
single-task configuration [15]. The SYCL implementation tar-
geting FPGAs includes loop unrolling in a single-task kernel.

The GPU implementations in OpenCL and SYCL exploit
data-level parallelism via NDRange and parallel-for kernel
launch configurations in OpenCL and SYCL, respectively. To
compute the application efficiency of OpenCL and SYCL on
the FPGA, we use the performance of a Verilog implementa-
tion of the Sobel filter as our reference [10]. To compute the
application efficiency of OpenCL and SYCL on the GPU, we
designed a CUDA implementation of Algorithm 2 and used
its performance as the best-observed performance on the GPU.
Table I describes our OpenCL and SYCL implementations.

TABLE I: Implementations of target applications

Application Language FPGA GPU
Implemenation Description Implemenation Description

Sobel filter
OpenCL

NDRange
Data-parallel
design NDRange Data-parallel

design
ST + LU [10]

Single task with
unrolling

ST + LU + V [10]
Single task with
unrolling and
vectorization

SYCL Parallel for
Data-parallel
design Parallel for Data-parallel

design
ST + LU [10]

Single task with
unrolling

Jaccard
similarity

OpenCL NDRange
Data-parallel
design

NDRange
Data-parallel
design

SYCL NDRange
Data-parallel
design

NDRange
Data-parallel
design

ST: single-task kernel, LU: loop unrolling, V: vectorization

Algorithm 2: Sobel filter using 3×3 kernels
Input : rgb image[height*width]
Output: filtered image[height*width]
Data: r, g, b, gx[3][3], gy[3][3]

1 gx← {{−1,−2,−1}, {0, 0, 0}, {1, 2, 1}}
2 gy ← {{−1, 0, 1}, {−2, 0, 2}, {−1, 0, 1}}
3 for k ← 0 to height ∗ width− 1 do
4 x grad, y grad ← 0
5 for i← 0 to 2 do
6 for j ← 0 to 2 do
7 pixel = rgb image[k + ((i-1)*width) + (j-1)]
8 b = pixel & 0xff
9 g = (pixel >> 8) & 0xff

10 r = (pixel >> 16) & 0xff
11 luma ← rgb to Luma(r, g, b)
12 x grad += luma * gx[i][j]
13 y grad += luma * gy[i][j]
14 end
15 end
16 sum = abs(x grad) + abs(y grad)
17 sum = min(255, sum)
18 filtered image[k] ← sum
19 end

V. EVALUATION

This section presents the evaluation of our target appli-
cations and metrics discussed in §III. Relative to hardware,
we evaluated the applications on the following hardware:
Intel Arria 10 GX FPGA and NVIDIA RTX 3090 GPU.
Intel’s DPC++ compiler [9] was used to compile the SYCL
implementations on target platforms.

A. Sobel filter

Tables II and III show the evaluation of performance
portability ( PP) and code convergence (CC) for Sobel filter.
We computed the application efficiency for OpenCL and
SYCL on the Arria 10, relative to the performance of our
optimized Verilog implementation from [10]. It is a stream-
oriented implementation with the Sobel gradients along the
X and Y axes being computed as the data is streamed from
the host CPU to the FPGA. To ensure that the performance
comparisons are consistent with our implementation of Sobel
filter in Verilog, we used the total time to solution, including
the time to transfer the data to and from the platform along
with the kernel runtime. The total time to solution was
used to compute the application efficiency for Sobel filter
implementations. CUDA delivered the best-observed perfor-
mance from our implementations on the RTX 3090 GPU,
and therefore, we computed application efficiencies on the
RTX 3090 relative to the CUDA performance. Similar to the
visualizations presented by Pennycook et al. [18], we plot the
PP and CC of OpenCL in Figure 4. The NDRange kernel

without any FPGA-specific optimizations offers the highest
CC but poor PP. As we introduce FPGA-specific optimizations,
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TABLE II: Performance portability ( PP) evaluation for Sobel filter on 8K (4320 × 7680) image

FPGA
(Intel Arria 10)

GPU
NVIDIA RTX 3090

Application
efficiency
(Arria 10)

Application
efficiency
RTX 3090)

Performance
portability ( PP)
(Arria 10,
RTX 3090)

Language Implementation
Kernel
runtime
(ms)

Total time
to solution:
kernel + data
transfer time
(ms)

Throughput
(frames/sec)

Implementation
Kernel
runtime
(ms)

Total time
to solution:
kernel + data
transfer time
(ms)

Throughput
(frames/sec)

Verilog LU + V [10] - 34.43 29.03 not portable on GPU 1 not portable 0

CUDA not portable on FPGA
CUDA equivalent
of NDRange

0.34 17.77 56.27 not portable 1 0

OpenCL
NDRange 128.34 152.70 6.54

NDRange 0.35 22.26 44.92
0.22

0.79
0.34

ST + LU [10] 108.25 180.88 5.52 0.19 0.31
ST + LU + V [10] 6.86 41.34 24.19 0.83 0.81

SYCL
Parallel for 135.13 170.23 5.87

Parallel for 0.37 23.65 42.28 0.20
0.75

0.31
ST + LU [10] 113.75 183.19 5.45 0.18 0.29

ST: Single-Task kernel, LU: Loop Unrolling, V:Vectorization

TABLE III: Code convergence and SLOC evaluation for Sobel filter

FPGA
(Intel Arria 10)

GPU
(NVIDIA RTX 3090)

Common SLOC
FPGA ∩ GPU

Total SLOC
FPGA ∪ GPU

Code convergence
(Arria 10, RTX 3090)

Language Implementation SLOC Implementation SLOC
Verilog UR +V [10] 429 not portable on GPU not portable on GPU

CUDA not portable on FPGA
CUDA equivalent
of NDRange

141 not portable on FPGA

OpenCL
NDRange 257

NDRange 254
239 272 0.87

ST + LU [10] 267 228 293 0.77
ST + LU + V [10] 328 208 374 0.55

SYCL
Parallel for 135

Parallel for 135
133 137 0.97

ST + LU [10] 139 128 142 0.90
SLOC: Source Lines of Code

ST: Single-Task kernel, LU: Loop Unrolling, V:Vectorization

we achieve higher PP, but it comes at the expense of reduced
CC. Table IV shows the performance-productivity product (Π)
for the OpenCL and SYCL implementations of our target ap-
plications. For the Sobel filter implementations with identical
levels of optimizations, the transition from OpenCL to SYCL
does not come at the expense of significant performance loss.

Fig. 4: Sobel filter: impact of platform-specific optimizations on
the PP and CC of OpenCL

ST: Single-Task kernel, LU: Loop Unrolling, V:Vectorization

TABLE IV: ΠA→B evaluation for transitions from OpenCL to SYCL

Application Platform Implementation A Implementation B
ΠA→B

α = 1

Sobel filter
Arria 10 OpenCL (ST + LU + V) SYCL (ST + LU) 1.34

OpenCL (ST +LU) SYCL (ST +LU) 0.02
RTX 3090 OpenCL (NDRange) SYCL (Parallel for) 0.12

Jaccard
similariy

Arria 10 OpenCL (NDRange) SYCL (NDRange) 0.87
RTX 3090 OpenCL (NDRange) SYCL (NDRange) 0.76

Lower the value of ΠA→B the better
ST: Single-Task kernel, LU: Loop Unrolling, V:Vectorization

TABLE V: SLOC and code convergence for OpenCL and SYCL
NDRange implementations of Jaccard similarity

Language
SLOC

Common
SLOC

Total
SLOC

Code
convergence

SLOCFPGA SLOCGPU SLOCFPGA ∩ GPU SLOCFPGA ∪ GPU CC
OpenCL 915 915 898 932 0.96
SYCL 721 721 720 722 0.99

B. Jaccard similarity

Tables V and VI present the evaluation of code convergence
and performance of Jaccard similarity implementations, re-
spectively. The RTX 3090 GPU outperforming the Xilinx Arria
10 FPGA is expected as we did not implement any FPGA-
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TABLE VI: Performance evaluation for Jaccard similarity. Input
graph: California road network from [28] with 2 million vertices
and 5.6 million bidirectional edges

FPGA
(Intel Arria 10)

GPU
(NVIDIA RTX 3090)

Language Implementation
Kernel
runtime (ms)

Implementation
Kernel
runtime (ms)

CUDA Not portable on FPGA
CUDA
equivalent of
NDRange

0.25

OpenCL NDRange 262.44 NDRange 0.26
SYCL NDRange 322.15 NDrange 0.31

specific optimizations (yet). We observe that OpenCL offers
better performance on both platforms compared to SYCL
while SYCL offers higher code convergence and productivity.

Our OpenCL and SYCL implementations offer complemen-
tary tradeoffs, with OpenCL delivering higher PP compared
to SYCL and SYCL offering better code convergence and
average 1.6× improvement in productivity in terms of SLOC.

VI. FUTURE WORK

Future work in this area can include the evaluation of
performance portability and code convergence of applications
that utilize multiple GPUs and/or FPGAs. We intend to in-
corporate more languages and frameworks, such as Kokkos,
RAJA, Chapel, OpenMP, and OpenACC, to further evaluate
performance portability and code convergence.

VII. CONCLUSION

This work quantifies the metrics for performance portabil-
ity, code convergence, and performance-productivity tradeoffs
when targeting FPGAs and GPUs. The platform-agnostic ker-
nels from our examples achieve poor performance portability
but have higher code convergence than kernels that incorporate
platform-specific optimizations. With the case study on the
Sobel filter, we show that achieving performance portability
requires platform-specific optimizations. In terms of source
lines of code (SLOC), we observe that developing target
applications in SYCL is 1.6× more productive than OpenCL.
SYCL offers better code convergence than OpenCL but the
higher code convergence and productivity benefits come at
the cost of performance portability.
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