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ABSTRACT
The timescales and structure sizes accessible via simulations
of atomistic molecular dynamics (MD) can be advanced sub-
stantially by two independent techniques: (1) many-core
parallelization with graphics processing units (GPUs) and
(2) multiscale approximation with hierarchical charge parti-
tioning (HCP). Achieving efficient many-core parallelization
on the GPU generally requires highly synchronized and regu-
lar computation across the GPU. However, multiscale meth-
ods can result in highly asynchronous and irregular process-
ing. Thus, one might expect that realizing such multiscale
algorithms on the GPU would result in an overall loss of
performance and that the total speedup obtained would be
less than the product of the individual speedups for the two
techniques separately, i.e., less than multiplicative speedup.

To test this expectation in the context of atomistic MD, we
designed and implemented our HCP multiscale method on
NVIDIA GPU platforms. The HCP code was implemented
in NAB, short for nucleic acid builder, and tested using the
distance-dependent-dielectric, implicit solvent model. (NAB
is the molecular dynamics module in the open-source Amber-
Tools v1.4.) We show that for the HCP multiscale approx-
imation and the common MD simulation model considered
here, the degradation in performance due to asynchronous
and irregular processing is mostly offset by a corresponding
reduction in other asynchronous operations and slow global
memory accesses. As a result, we realize near multiplicative
speedups. For example, for a 475,000-atom virus capsid we
were able to achieve a 11,071-fold combined speedup, only
slightly less than the 11,706-fold multiplicative limit speedup
– 48.0-fold from the parallelization on the GPU times 243.9-
fold from the multiscale approximation. The overall speedup
depends on structure size, with smaller structures having
lower speedups. An additional benefit of the HCP imple-
mentation on the GPU is the reduced memory requirement,
which allows the processing of much larger structures that
would otherwise be impossible on the limited memory GPU
platform.
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1. INTRODUCTION
Simulations of atomistic molecular dynamics (MDs) are

used to gain insight into the structure and function of biolog-
ical molecules. However, the timescales that can be studied
via such simulations are often far smaller than those required
to observe many biological processes, such as protein fold-
ing and ligand binding [1, 2, 3]. These limitations increase
rapidly with the structure size. Two common approaches
for extending the timescales and structure sizes accessible
to atomistic MD simulations are (i) parallelization across
multi- and many-core platforms [4, 5, 6] and (ii) algorithmic
approximations [7, 8, 9, 10, 11, 12].

The widespread use of graphics processing units (GPUs)
for general-purpose computations in desktops and worksta-
tions has made them attractive as accelerators for high-
performance parallel programs [13]. This increased popu-
larity has been propelled by its (i) sheer computing power,
(ii) superior performance/price ratio, and (iii) compelling
performance/power ratio. For example, an 8-GPU cluster,
costing thousands of dollars, can simulate 52 ns/day of the
JAC Benchmark as compared to 46 ns/day on the Kraken
supercomputer at ORNL, which costs millions of dollars [14].
The emergence of GPUs as an attractive high-performance
computing platform is also evident from the fact that three
out of the top five fastest supercomputers on the November
2011 Top500 list employ GPUs as accelerators [15]. A wide
range of applications in image and video processing, finan-
cial modeling and scientific computing have also been shown
to benefit from the use of GPUs [16, 17, 6, 18, 19].

GPUs, however, are not a panacea for all of computing.
For maximum efficiency on the GPU, computational opera-
tions across processing cores need to be synchronized. How-
ever, an important class of algorithmic approximations, i.e.,
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multiscale approximations, have highly asynchronous com-
putational requirements. These approximations involve nu-
merous divergent branches depending on the relative dis-
tances between interacting atoms, thereby resulting in non-
uniform computational requirements across processors. Thus,
when multiscale algorithms are realized on the GPU, one
may expect to achieve less than multiplicative speedups, i.e.,
the total speedup is less than the product of the individual
speedups for the multiscale algorithm and the GPU, respec-
tively [20]. To test this expectation, we implemented our
hierarchical charge partitioning (HCP) [21] multiscale algo-
rithm on the NVIDIA GPU. The HCP code itself is imple-
mented in NAB, the open-source molecular dynamics mod-
ule in AmberTools v1.4 [22], and tested using the distance-
dependent-dielectric implicit-solvent model [23].

Contrary to our initial expectations, the implementation
resulted in near multiplicative speedups. The loss in per-
formance due to the additional divergent branches in HCP
algorithm was mostly offset by a corresponding reduction in
the number of other divergent branches that otherwise would
have been needed to be considered. In short, these other di-
vergent branches are bypassed by the HCP algorithm. In
addition, the HCP algorithm benefits from a reduction in
the number of accesses to slower global memory.

The rest of the paper is arranged as follows. In sec-
tion 2, we briefly describe the HCP multiscale algorithm; the
distance-dependent-dielectric, implicit-solvent model used for
simulation; and the targeted GPU platforms. Then we dis-
cuss the mapping of the HCP algorithm to the GPU in sec-
tion 3. In section 4, we describe the CPU and GPU platforms
and the structures and protocols used for testing. Finally,
in section 5, we discuss and analyze the results of our tests.
Our findings are summarized in section 6.

2. BACKGROUND
A key objective of this study is to characterize the ef-

fect of combining multiscale approximations and many-core
parallelization on a GPU towards the realization of mul-
tiplicative speedups in molecular dynamics. For the pur-
pose of this study, we chose the hierarchical charge parti-
tioning (HCP) multiscale approximation and accelerated it
using the NVIDIA GPU platform. Our HCP software inter-
faces with NAB, the open-source molecular dynamics (MD)
module in AmberTools version 1.4 [22]. The performance of
the implementation is tested using the distance-dependent-
dielectric, implicit solvent model. The HCP approximation,
the distance-dependent-dielectric model, and the NVIDIA
GPU platform are briefly described below.

2.1 Hierarchical Charge Partitioning (HCP)
The hierarchical charge partitioning (HCP) approximation

[21] exploits the natural partitioning of biomolecules into
constituent structural components to speed-up the compu-
tation of electrostatic interactions with limited and control-
lable impact on accuracy. Biomolecules can be systemati-
cally partitioned into multiple molecular complexes, which
consist of multiple polymer chains or subunits, which are
made up of multiple amino acid or nucleotide groups. These
components form a hierarchical set with, for example, com-
plexes consisting of multiple subunits, subunits consisting of
multiple groups, and groups consisting of multiple atoms.
Atoms represent the lowest level in the hierarchy while the
highest level depends on the problem. The charge distri-

bution of the above components, other than at the atomic
level, is approximated by a small set of point charges. The
electrostatic effect of distant components is calculated us-
ing the smaller set of point charges, while the full set of
atomic charges is used for computing electrostatic interac-
tions within nearby components. The level of approxima-
tion used in the computation varies depending on distance
from the point in question: the farther away the charges, the
higher the level of the component used in the approximation.

Consider, for example, a structure consisting of four lev-
els, 0-3, as shown in Figure 1. A separate threshold distance,
h1, h2, and h3, is defined for levels 1, 2 and 3, respectively.
For complexes (level 3) farther than h3 from the point of in-
terest, the approximate charges for the complex are used in
the computation. Otherwise, for subunits (level 2) within the
complex that are farther than h2, the approximate charges
for the subunit are used in the computation. Otherwise, for
groups (level 1) within the subunit that are farther than h1,
the approximate charges for the group are used in the com-
putation. Finally, individual atomic charges are used in the
computations for charges within the level 1 threshold dis-
tance h1. This top-down algorithm results in ∼ N logN
scaling based on assumptions generally consistent with real-
istic biomolecular systems.

2.2 Distance-Dependent-Dielectric, Implicit
Solvent Model

Calculating the long-range electrostatic interactions in an
N -atom system takes O(N2) time complexity. As a conse-
quence, it is the primary computational bottleneck in molec-
ular dynamics simulations. Implicit solvent models, which
use an approximation for computing long-range interactions,
reduce this computational cost considerably by analytically
representing solvent atoms as a continuum. Solvent atoms
typically represent a majority of the atoms in the system.
Among other benefits, implicit solvent models can sample
conformation space much faster and can instantaneously in-
corporate the effect of dielectric changes in the solvent due to
changes in the solute charge distribution. For this study, we
used a simple implicit solvent model, the sigmoidal distance-
dependent-dielectric model [23]. This model computes the
long-range electrostatic potential φ at a distance of r from a
charge q as

φ =
q

ε(r)r
(1)

ε(r) = D − (D − 1)

2

ˆ
(rS)2 + 2rS + 2

˜
e−rS (2)

where ε(r) is the distant-dependent-dielectric function and
D ( = 78) and S (=0.16) are constants.

2.3 GPU Architecture and API
Graphics processing units (GPUs) have traditionally been

used to accelerate image rendering. However, the evolution
of the GPU into a compute-capable, parallel processing plat-
form has accelerated its adoption to speed-up computations
in various data-parallel applications. Thus, to speed-up the
HCP algorithm and the distance-dependent-dielectric model
for molecular dynamics simulations, we used NVIDIA GPUs
and the CUDA programming interface.

NVIDIA Tesla GPUs consist of 240 to 512 execution units,
grouped into 16 to 30 streaming multiprocessors (SMs). Each
SM can run on the order of a thousand threads, thereby en-
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Figure 1: Illustration of the HCP multiscale algorithm. Predefined threshold distances (h1, h2, h3) are used to determine the level of
approximation used in the HCP approximation. At the lowest (atomic) level the computation involves either a bonded or a non-bonded
interaction. This top-down algorithm results in ∼ NLogN scaling compared to a ∼ N2 scaling without HCP.

abling massively parallel computation. Multiple threads on
a GPU execute the same instruction and hence, is a Sin-
gle Instruction Multiple Thread (SIMT) architecture. This
makes GPUs very suitable for applications that exhibit data
parallelism, i.e., the operation on one data element is inde-
pendent of the operations on other data elements. Therefore,
it is well suited for molecular dynamics, where the force on
one atom can be computed independently of all others.

On NVIDIA GPUs, threads are organized into groups of
32, referred to as a warp. When threads within a warp fol-
low different execution paths, such as when encountering
a conditional, a divergent branch takes place, thus affect-
ing performance. Furthermore, GPUs have more transistors
devoted to performing computations than for caching and
managing control flow. This means that on a GPU, com-
putations are much faster compared to a typical CPU, but
memory accesses and divergent branching instructions are
slower. The effect of slower memory access is mitigated by
initiating thousands of threads, such that when one thread
is waiting on a memory access, other threads can perform
meaningful computations.

Every GPU operates in a memory space known as global
memory. Data operands needed for computation on the
GPU must first be transferred to the GPU. This process
of transferring data to GPU memory is performed over the
PCIe interface, making it an extremely slow process. In
general, memory transfers should be kept to a minimum to
obtain optimum performance. In addition, accessing data
from the GPU global memory incurs a cost of 400 to 600
clock cycles, and hence, on-chip memory should be used to
reduce global memory traffic when possible. On a NVIDIA
GT200-based architecture, each SM contains a 16KB of high-

speed, scratch-pad memory that is known as shared memory.
Shared memory enables local re-use of data, thereby reduc-
ing traffic to global memory that is off-chip.

For the NVIDIA GF100-based Fermi architecture, each
SM contains 64KB of on-chip memory, which can either be
configured as 16KB of shared memory and 48KB of L1 cache
or vice versa. Each SM also consists of a L2 cache of size
128KB. The hierarchy of caches on the Fermi architecture
allows for more efficient global memory access patterns.

CUDA provides a C/C++ language extension with appli-
cation programming interfaces (APIs). A CUDA program is
executed by a kernel, which is effectively a function call to
the GPU, launched from the CPU. CUDA logically arranges
the threads into blocks which are in turn grouped into a grid.
Each thread has its own ID that provides for a one-to-one
mapping. Each block of threads is executed on a SM and
shares data via shared memory.

3. MAPPING HCP ONTO THE GPU
In this section, we present our approach to mapping the

hierarchical charge partitioning (HCP) algorithm onto the
GPU. The approach consists of four phases, many of which
should be co-designed together: (1) identifying the paral-
lelizable parts of HCP, particularly those parts that involve
a significant amount of computation; (2) selecting the appro-
priate granularity of computation on the GPU; (3) minimiz-
ing or amortizing the overhead of data transfer between the
CPU and GPU; and (4) minimizing the memory footprint,
and in turn, supporting the simulation of larger structures.

3.1 Approach
The parallel decomposition of molecular dynamics for het-
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erogeneous machines consists of a partitioning of work for
the host CPU and the accelerator cores. Molecular dynam-
ics encompasses the computation of neighbor-list and forces
between the atoms of a biomolecule, of which the compu-
tation of forces is the more frequent operation. Thus, one
approach to partition the entire work is by accelerating force
computation on the GPU and computing the neighbor-list
on the CPU. The atomic forces result from the bonded and
non-bonded interactions. The bonded interactions arise due
to bond-stretching, angle-bending and bond-rotation. Real-
istically, an atom is bonded to only a few of its neighbors
and hence, the bonded interactions are not compute inten-
sive. On the other hand, the non-bonded interactions, which
include the electrostatics and the van der Waals’ interac-
tions, are the primary computational bottleneck [24]. The
long-range nature of the electrostatic interactions make them
particularly difficult to compute because they scale as O(n2)
or as ∼ O(n logn) when approximation algorithms like HCP
are used, where n is the number of atoms. Our experiments
on simulating various molecules, ranging from 600 atoms to
475,500 atoms, with NAB on the Intel Xeon E5404 CPU,
show that the computation of electrostatic interactions ac-
counts for more than 90% of the total execution time in all
the cases. Thus, it is sufficient to accelerate only the non-
bonded interactions on the GPU. However, as explained in
Section 3.2, partitioning the non-bonded and bonded inter-
actions on two compute devices results in an increase in the
data transfers to and from the GPU.

One of the artifacts of today’s GPUs is that they require
data to be transferred from the host to the device memory,
which is of limited size (4 GB on the GPU that we have
used in our experiments). Therefore, the charges and coor-
dinates of all the components (atoms, group, subunits and
complexes) are transferred to the GPU memory. Computing
the neighbor-list on the CPU requires it to be transferred to
the device memory as well. The storage complexity of main-
taining a neighbor-list is O(n2) and hence, transferring it to
the device dramatically reduces the size of the biomolecule
that can be simulated. In order to reduce the memory foot-
print of our application, we eliminate the neighbor-list and
instead determine the neighbors on the fly on the GPU, as
explained in Section 3.3.

In our implementation, the force on each atom is computed
by a GPU thread. A pseudocode for force computation is
shown in Figure 2. We launch a kernel with 256 threads
within a CUDA block. We limited our execution to only 256
threads within a CUDA block to avoid register spilling. For
a large molecule, we divide the total atoms into ‘n’ chunks
where ‘n’ is the total number of threads launched. We then
assign each thread to compute the force on every nth atom.
This is done to avoid the kernel overhead multiple times. The
scaling of GPU performance hits a plateau when the number
of threads that can be executed simultaneously reaches the
upper limit. This limit is governed by the amount of per-
thread register utilization by the implementation. Increasing
number of threads beyond this limit does not result in any
improved performance as the extra threads must to wait until
some of the threads finish execution.

We store the atomic coordinates in the per-SM shared
memory to take the advantage of the significant reuse of
atomic coordinates. Therefore for each atom, we store 12
bytes (4 bytes each x, y, z coordinates) in the shared memory.
As the maximum number of threads that can be launched

1 global void ForceComp(float *g_coords ,
2 float *forces , int* cutoffs) {
3 int tid = get_global_id (0);
4 int lid = get_local_id (0);
5 float force_comp = 0.0;
6 shared float* l_coords [1024];
7
8 // copy atomic coordinates to shared memory
9 l_coords[lid] = g_coords[tid];

10 barrier;
11
12 // compute force using the HCP algorithm
13 while (component_1) {
14 if (dist. bet. atom_i > cutoffs [1]) {
15 /* compute force via approximation
16 and update force_comp */
17 }
18 else {
19 while (component_2) {
20 if (dist. bet. $atom_i$ > cutoffs [2]) {
21 /* compute force via approximation
22 and update force_comp */
23 }
24 else {
25 /* ...so on until all the components
26 and atoms are exhausted ... */
27 }
28 }
29 }
30 }
31
32 // update the force
33 forces[tid] = force_comp;
34 }

Figure 2: Pseudocode of the Kernel for Force Computation.
Atomic coordinates are first loaded into the shared memory and
then each thread is tasked to compute force on one atom using
the HCP algorithm.

per SM is 1K, in theory we require 12KB of shared memory
which is well within the amount of shared memory available.
For larger molecules, the coordinates of the atoms already
been computed are over-written by the next chunk of atoms.

3.2 Minimizing CPU-GPU Data Transfers
The total computation time for a molecular dynamics sim-

ulation, T, can be summed up as follows:

T = tCPU + tdata−copy + tGPU (3)

The time to transfer data is bound by the bandwidth of the
PCIe 2.0 interface, typically 4-5 GB/s in each direction due
to the API overhead incurred in an application. Therefore,
data transfers over the PCIe should be avoided or minimized
to achieve better performance.

Computing the bonded and non-bonded interactions on
different compute devices results in significant data-transfer
overhead. In simulating various molecules with the HCP
approximation in NAB on the NVIDIA C1060 GPU, our ex-
periments show that data-transfer time can account for as
much as 70% of the total time spent on the GPU for the
virus capsid molecule. Why? After every timestep of the
MD simulation, the non-bonded forces must be transferred
back to the host main memory in order to be summed up
with the bonded forces that were computed on the CPU. The
summation of the forces is necessary to compute the atom
coordinates for the next timestep of MD simulation. Thus,
for every timestep, 12 ∗ n bytes (4 bytes each for x, y, z co-
ordinates in single precision) of non-bonded forces are trans-
ferred to the host and then 12 ∗ n bytes (4 bytes each for x,
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y, z coordinates in single precision) of the atom coordinates
are transferred back to the device, where n is the number of
atoms in the molecule. The amount of data to be transferred
becomes substantial for a large molecule, e.g., 500,000 atoms
or more. For meaningful simulations wherein nanosecond
scales need to be achieved, the transfer of data must then
take place at least a million times (for 106 timesteps). As
evident, this approach involves extremely slow CPU-GPU
memory transfers at every step of the simulation, leading to
performance degradation.

To reduce the number of CPU-GPU memory transfers, we
computed both the non-bonded and bonded interactions on
the GPU. This approach mitigated the per timestep memory
transfers and allowed for calculating the new atomic coordi-
nates on the GPU itself.

3.3 Minimizing Memory Footprint on the GPU
The disadvantage of the GPUs is that they require data to

be transferred from the host to the device memory. There-
fore, the size of the molecule that can be simulated is now
bound by the amount of device memory. In order to most ef-
ficiently use the device the memory, we eliminated the most
prominent data-structure in our application, which was the
neighbor-list, a 4 ∗ n2 bytes array (n being the number of
atoms in the molecule). As a result, we are bound to sim-
ulate a molecule with at most 32K atoms on a GPU with
4 GB of device memory. HCP also requires pair-lists for
every component for which the interactions are to be ap-
proximated along with the atomic neighbor-list in the GPU
memory. This makes the total amount memory, M, required
by pair-lists alone to be

M = 4 ∗ n(n+ r + s+ c) bytes (4)

where n, r, s, c are number of atoms, groups, subunits and
complexes in the molecule, respectively. Therefore, the pair-
lists can account for a large amount of memory on the GPU,
e.g., for virus capsid, n = 475, 500, r = 30, 700, s = 60, c = 1,
which results in almost a terabyte of GPU memory required
by the pair-lists.

To reduce memory utilization, we eliminated the need for
a pre-calculated pair-list, and instead, determined if a pair
of coordinates should be included in the computation, on
the fly. Our approach, akin to the one used by Brown et al.
in [25], significantly extended the structure size that could be
simulated and thus enabled us to simulate the 475,000-atom
virus capsid, which was not otherwise possible.

4. EXPERIMENTAL SETUP
We tested our GPU implementation on two NVIDIA GPUs

(Tesla C1060 & Fermi Tesla C2050) and compared it to the
baseline CPU code running on the host machine. The host
machine consists of a 2.0-GHz Intel Xeon E5404 CPU with
8-GB DDR2 SDRAM and runs 64-bit Ubuntu 9.04 with the
2.6.28-18 Linux kernel. Programming the GPU was facili-
tated by the CUDA 4.0 toolkit for the C2050 and CUDA 3.2
for the C1060 with NVIDIA driver version 285.05.23.

4.1 Test Structures
To test the scalability of our approach we used nine dif-

ferent structures ranging in size from 632 to 475,500 atoms.
Table 1 shows the characteristics of the structures that we
used; it also lists the threshold distances used for each level of

HCP for each structure. These are the recommended thresh-
old distances as described in Anandakrishnan et al. [26]. For
the purpose of the analysis presented in this work, we use
the 1-charge HCP approximation, where the charge distri-
bution of components is approximated by a single charge.
Increasing the number of charges used in the approximation
would increase accuracy and computational cost.

4.2 Molecular Dynamics Protocol
Unless otherwise stated, the following parameters and pro-

tocol were used for all simulations. The simulations use the
sigmoidal distant-dependent-dielectric [23] implicit-solvent
model. The HCP threshold distances used are listed in Ta-
ble 1; 6-12 van der Waals interactions for HCP were com-
puted using only the atoms that are within the level 1 thresh-
old distance, i.e., atoms that are treated exactly. The sim-
ulations used the Amber ff99SB force field [28]. Langevin
dynamics with a collision frequency of 50 ps−1 (appropriate
for water) was used for temperature control, and the inte-
gration time step was 2 fs. Default values were used for all
other parameters.

The simulation protocol consisted of five stages. First,
the starting structure was minimized using the conjugate
gradient method with a restraint weight of 5.0 kcal/mol/Å2.
Next, the system was heated to 300 K over 10 ps with a
restraint weight of 1.0 kcal/mol /Å2. The system was then
equilibrated for 10 ps at 300 K with a restraint weight of 0.1
kcal /mol/Å2, and then for another 10 ps with a restraint

weight of 0.01 kcal/mol/Å2. Finally, all restraints were re-
moved for the production stage.

5. RESULTS AND DISCUSSION
Here we present an analysis of the following: (i) speedups

due to the GPU, the HCP and the combined speedup due to
both, (ii) the impact of divergent branching on the speedup,
(iii) the limitation on structure size due to the limited GPU
memory, (iv) the scaling with structure size, and (v) the
stability of simulations. We show that near multiplicative
speedups were achieved despite the introduction of addi-
tional divergent branching by the HCP algorithm. The largest
structure that can be processed by our implementation is ap-
proximately 500,000 atoms, which is significantly larger than
other GPU implementations [29]. We tested both single as
well as double-precision floating point on the C2050 GPU
even though the theoretical performance of double-precision
is only half as good as that of single precision. We also show
that using single precision and the HCP approximation in
simulations does not lead to gross instabilities, and hence,
it is not imperative to use double precision and suffer the
performance degradation.

5.1 Speedup
Figures 3a and 3b depict the speedups obtained using

single precision on two NVIDIA GPUs, i.e., Tesla C1060
and Tesla Fermi C2050, respectively. The figure presents
four speedups: (i) speedup obtained due to GPU alone, (ii)
speedup obtained due to HCP alone, (iii) the multiplicative
limit which is the product of speedups due to GPU and HCP
and lastly, (iv) the actual speedup that was realized due to
the combination of HCP and GPU. For all these speedups,

1The microtubule structure was constructed as described in
Wang and Nogales [27]
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Table 1: Characteristics of Structures.

Structure PDB ID No. of Atoms
HCP Threshold Distance (Å)
Level 1 Level 2

10 bp B-DNA fragment 2BNA 632 15 n/a
Immunoglobulin binding domain 1BDD 726 15 n/a
Ubiquitin 1UBQ 1,231 15 n/a
Thioredoxin 2TRX 1,654 15 n/a
Carboxypeptidase A 1CBX 4,793 15 66
Hemoglobin 2HHD 8,782 15 66
Nucleosome core particle 1KX5 25,101 21 90
Microtubule sheet 1 158,016 15 48
Virus capsid 1A6C 475,500 15 66

the baseline was a single-threaded, CPU, all-atom computa-
tion, without any approximation. Speedup due to the GPU
was computed by comparing the execution times of the all-
atom computation on the CPU with that of the all-atom
computation on the GPU, without the use of HCP approx-
imation in both cases. Speedup due to HCP was computed
by comparing the execution times of an all-atom simulation
with and without the HCP approximation on the CPU. The
idealistic goal is to achieve multiplicative speedup due to the
combination of GPU and HCP.

Figure 3 indicates that we are close to achieving the multi-
plicative limit in terms of speedup due to the combination of
GPU and HCP. The speedup achieved is closer to the mul-
tiplicative limit for the larger structures. Why? The larger
structures can more efficiently utilize the GPU. For exam-
ple, for the nucleosome core particle, the achieved speedup is
within 3% and 8% of the multiplicative speedup, on C1060
and Fermi C2050, respectively, and for the virus capsid, the
largest structure we tested, we are within 2.5% and 5%, on
the C1060 and Fermi C2050, respectively. Another obser-
vation is that the performance improvement on the Fermi
C2050 is better than on the C1060. This is as expected
since the Fermi C2050 consists of L1 and L2 caches, which
mitigates the impact of the random global memory accesses
of the HCP algorithm. For memory accesses to be consecu-
tive, all 32 atoms (atoms in a warp) need to follow similar
execution paths, i.e., either they are approximated or not.
However, due to the fact that each atom may meet differ-
ent threshold requirements, it is common to have random
memory accesses.

Figure 4 shows our experimental results on a C2050, with
the basic data type being a double-precision, floating-point
value. The speedup achieved with the double-precision im-
plementation on the C2050 is roughly one-half or better than
the single-precision implementation. The product specifica-
tion indicates one-half peak performance when comparing
double to single precision, so the results here indicate better-
than-expected performance from the C2050 for double pre-
cision. Specifically, speedup for double precision compared
to single precision is between 93% for the smallest structure
tested and 54% for the largest. Since the number of compu-
tations scales as ∼ N2 (without the HCP approximation),
where N is the number of atoms, smaller structures are more
likely to be bandwidth-bound, whereas larger structures are
more likely to be compute-bound. Thus, there is little or no
penalty for double-precision computations on smaller struc-
tures, while larger structures incur nearly the full penalty
for double-precision computation.

We achieved near multiplicative speedup by the judicious

optimization of our GPU application. Ryoo et al. point out
that GPUs have a large optimization search space [30] and
hence, narrowing it down is imperative. We first checked
whether HCP is memory bound or compute bound and as
presented in [31, 32], HCP was found to be memory bound.
Since, HCP is memory bound, we focused on optimizations
that reduce the number of global memory transactions. We
utilized the shared memory and constant memory available
on GPUs, both of which help in the reduction of global mem-
ory accesses. Shared memory was used to store the coordi-
nates and atomic charges while the constant memory, which
acts as a read-only cache, was used to store all the constants
that were required to compute the forces and energies. We
also kept the number of memory transfers to a minimum
since, they use the slow PCIe interface, thereby leading to
performance degradation. We also re-structured our code
so as not to use atomic operations for the computation of
bonded interactions. All these strategies, in combination,
helped us achieve near multiplicative speedup.

5.2 Divergent Branching
In our implementation, we assign each GPU thread with

the task of computing the force at one atom of the molecule.
From Figure 1, one would intuitively expect the HCP to in-
troduce many divergent branches on the GPU, which lead to
performance degradation. However, HCP actually reduces
the total number of divergent branches when compared to
an all-atom simulation. This is because for an all-atom sim-
ulation, a conditional is required to determine the type of in-
teraction (bonded or non-bonded), which needs to be carried
out for every atom of the molecule. Our analysis indicates
that for some structures, this conditional results in as many
divergent branches as all other conditionals combined. To
exemplify, we present the number of divergent branches for
a subset of structures on the C1060 GPU in Table 2. Looking
at the difference in number of divergent branches, it becomes
apparent that the said conditional increases the number of
divergent branches by an order of magnitude. Use of HCP
mitigates the effect of this conditional. For distant compo-
nents, the HCP algorithm does not reach the stage where it
is necessary to determine the type of interaction (bonded or
non-bonded).

The HCP also reduces the number of global memory trans-
actions by reducing the number of atomic coordinates that
need to be fetched. For distant components, the coordinates
of only the higher level component are required, bypassing
all other molecular constituents. Table 2 portrays the num-
ber of per SM global memory transactions that occur, with
and without the use of HCP. It can be seen that HCP re-
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Figure 3: Speedups for single precision implementation (i) due to GPU, (ii) due to HCP, (iii) the multiplicative limit, and (iv) achieved.
We are off by less than 8% of the multiplicative limit in terms of speedup due to the combination of GPU and HCP. The speedup
on the Fermi C2050 is better than the C1060 due to the presence of L1 and L2 caches. For all the results, the baseline used is a
no-approximation-CPU-serial implementation.

sults in an order of magnitude decrease in the number of
global memory transactions. Being a memory-bound algo-
rithm [31, 32], HCP benefits from the reduction in number
of global memory accesses. Therefore, the combined effect
of reduction in the number of global memory transactions as
well as reduction in the number of divergent branches brings
about performance improvement of HCP on the GPU which
is as follows:

THCP = TNo HCP − TgMem − TdivBranch (5)

∴ THCP < TNo HCP

where THCP is the execution time with HCP approximation
on the GPU, TNo HCP is the execution time without HCP
approximation on the GPU, TgMem is the time for global
memory transactions, TdivBranch is the time for divergent
branching.

5.3 Memory Footprint
One of the constraints of GPU programming is dealing

with the limited memory space available on the GPU. Due
to this limitation, there arises a trade-off between the perfor-
mance benefits that can be obtained on the GPU and the size
of the structure that can be simulated. For example, current
CUDA-based implementation of the MD module (pmemd) of

AMBER [22] molecular modeling package (AMBER GPU)
focuses on maximizing speedup on the GPU, whereas, our
implementation tries to maximize speedup while being able
to handle large structures. Hence, the largest structure that
AMBER GPU can simulate is 1/20th of what we can sim-
ulate, albeit the AMBER GPU has a higher speedup than
our GPU implementation of NAB running without HCP.

AMBER GPU uses scratch arrays [29] to maximize speedup
whereas we took advantage of the HCP algorithm to produce
even higher speedup, and at the same time are able to han-
dle much larger structures, though at the potential price of
reduced accuracy. We also reduced memory utilization by
using the strategy of not storing the pair-list on the GPU
and hence, were able to simulate much larger structures.
Table 3 depicts the amount of GPU memory our implemen-
tation requires. To simulate the 25,000-atom nucleosome
core particle, our implementation uses only 17 MB of GPU
memory. The nucleosome is the largest structure that the
AMBER GPU implementation can simulate on the Fermi
C2050 GPU, whereas on the NVDIA GTX295 GPU, with
896 MB of memory, the memory is insufficient for running
the nucleosome [33].

The minimal memory requirement of our GPU implemen-
tation lets us run molecular dynamics simulation of nucle-
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Figure 4: Speedup for double precision implementation on NVIDIA Fermi Tesla C2050

Table 2: Number of Divergent Branches and Global Memory Transactions for the C1060 GPU

No. of Atoms
Divergent Branches Global Memory Transactions
all-atom HCP all-atom HCP

632 92,610 51,022 753,238 423,679
726 57,586 42,378 442,936 324,421

1,231 59,572 37,226 393,862 237,830
1,654 127,260 54,150 1,013,492 433,213

25,101 8,088,980 382,275 157,252,461 12,074,672

Table 3: Memory Usage

No. of Amount of
Atoms Memory Used (MB)

632 0.43
726 0.50

1,231 0.83
1,654 1.13

25,101 16.88
158,016 107.06
475,500 323.46

osome core particle even on a Apple MacBook Pro laptop,
which is not possible using the AMBER GPU program.

5.4 Scaling
In Fig. 5a and 5b, we show the scalability of our imple-

mentation with respect to structure size (number of atoms).
The absolute speedup obtained is higher for the Tesla Fermi
C2050 GPU due to (i) the greater number of processing cores
and (ii) presence of L1 and L2 caches that improve the per-
formance of the memory subsystem.

From Fig. 5a and 5b, it is clear that, as a function of struc-
ture size, the speedup due to the GPU grows fast at first,
then levels off after the structure size is increased into the
range of ∼ 104 atoms. This behavior can be explained as
follows. In order to realize the full potential of a GPU, its
occupancy needs to be high, i.e., none of the processing cores
of the GPU should be idle. Better occupancy leads to bet-
ter performance. In our case, once the size of the structure
reaches a several thousand atoms, occupancy of the GPU
reaches its maximum, as described in Section 3.1. Beyond
which, increasing the size does not increase the speed up
as much, since the additional atoms need to “wait” for the
computation on the preceding atoms to finish, only after
which they can be operated upon. Performance on Fermi

C2050 is better than C1060 as it allows for a greater number
of threads to be executed simultaneously, primarily due to
the presence of a larger register file. At the same time, the
speedup due to the HCP continues to increase with the in-
crease in number of atoms in the molecule. This is because,
the HCP algorithm scales as ∼ N logN , where N is the
number of atoms. Hence, it is almost entirely due to the
benefits of HCP, that both the ‘multiplicative limit’ as well
as the ‘achieved’ speedup continue to increase as the system
size is increased beyond ∼ 104 atoms.

5.5 Stability in MD Simulations
We have performed a standard all-atom 2 ps long (103

steps) constant temperature (300K) implicit solvent simula-
tion for each of the structures list in Table . The simulation
was extended to 50 ns (2.5× 107 steps) for the four smallest
structures, ranging in size from 623 atoms (a 12-base-pair
long fragment of B-DNA) to 1654 atoms (protein thiore-
doxin). No numerical instabilities were noticed. For all but
one of the structures, the RMS deviation, compared to the
starting crystal structure, was within the range of about 2
Å expected for implicit solvent molecular dynamics[26]. For
the B-DNA fragment, the RMS deviation was considerably
larger than typically expected, ∼5-6 Å instead of ∼2 Å. How-
ever, the same deviation was observed for a control MD run
on a CPU with double precision and without the HCP, show-
ing that the larger than expected RMS deviation for the B-
DNA fragment was due to the use of the simplified solvent
model (distance-dependent dielectric) rather than inherent
instabilities of either the HCP algorithm or its GPU imple-
mentation. That, of course, does not mean that the single
precision arithmetic used here for the GPU implementation
is completely“safe” to use, but that any errors due to the use
of single precision on the GPU or the errors due to HCP do
not accumulate or/and combine in a way to produce gross
instabilities in the MD simulation, at least for the structures
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Figure 5: Scalability. Speedup due to the GPU peaks off after
a certain thousand atoms due to the inability to launch more
threads. Speedup due to HCP continues to increase with the
increase in the number of atoms and hence, scales as ∼ N log N .
Connecting lines are shown to visually guide the eye.

tested here. However, there may be more subtle ways in
which the single precision arithmetic may skew the results
of MD simulation over millions of steps, that may not be ev-
ident from the RMS deviation metric. These issues are well
beyond the scope of this work that focuses on demonstrat-
ing the ability to achieve multiplicative speedup from the
combined use of the HCP and GPU. On GPU cards such
as C1060 the performance loss of about a factor of ten in
speed due to the use of double vs. single precision certainly
warrants closer examination of the possibility of the use of
single precision arithmetics in practical MD simulations. At
the same time, for GPU cards such as C2050 the gain of only
about a factor of two in speed due to single precision vs. the
tried-and-true double precision may not be worth potential
risks or even efforts associated with thorough assessment of
those risks.

6. CONCLUSION
Molecular dynamics simulations are routinely used to anal-

yse the structure of biomolecules, and to study their func-
tional activities such as ligand binding, complex formation
and proton transport. However, the timescales associated

with many of these processes are much greater than those
achieved via present-day atomistic molecular dynamics. Thus,
it is imperative to extend these timescales, which can be
done by (i) parallelization across multi- and many-core pro-
cessors, and (ii) use of approximation algorithms. In the
present work, we combine the two techniques. Specifically,
we parallelize molecular dynamics simulations using graphi-
cal processing units (GPUs), and use the hierarchical charge
partitioning (HCP) approximation.

Presence of asynchronous computations in approximation
algorithms make these algorithms less than ideal candidates
for implementation on the GPU platform. Hence, there is
an expectation that the combination of these two techniques
would not result in multiplicative speedups, i.e., total ap-
plication speedup being the product of speedup due to each
technique. However, our hybrid approach of the combina-
tion of HCP and GPUs does result in nearly multiplica-
tive speedups. For example, for the 25,101-atom nucleosome
and 475,500-atom virus capsid, the difference between mul-
tiplicative speedup and the actual speedup realized is only
8% and 5%, respectively, for the single-precision implemen-
tation. The near-multiplicative speedup achieved, despite
the additional asynchronous computations introduced by the
HCP due to the additional divergent branching, is due to
two factors: (i) HCP eliminates a number of other divergent
branches that would have been executed without the HCP,
and (ii) HCP reduces the number of slow global memory ac-
cesses. We also show that there were no gross instabilities
in the MD simulations due to the use of single-precision. So
a single precision implementation may be acceptable where
the computational cost of double precision is significantly
higher, such as the 10-fold penalty on the C1060 GPU.

The limited amount of GPU memory available (∼4 GB),
is an additional challenge that has to be dealt with while
implementing applications on GPUs. Unlike typical imple-
mentations of MD algorithms, we do not use pre-calculated
pair-lists for identifying interacting charges. Instead, we de-
termine, at the point of computation, if two charges should
be included in the computations. Eliminating the pair-list
significantly reduces memory utilization allowing us to sim-
ulate much larger structures, such as the 475,500-atom virus
capsid. Thus, we expect our implementation of the HCP
implicit solvent algorithm on the GPU to be most useful for
the preliminary refinement of large biomolecular structures,
which can then be used as input to more accurate simulation
methods such as the explicit solvent particle mesh Ewald.

The results shown here are for the distant-dependent-dielectric
implicit solvent model. We plan to extend our implementa-
tion to use more widely used implicit solvent models such as
the generalized Born model.
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