
Programming High-Performance Clusters with
Heterogeneous Computing Devices

Ashwin M. Aji

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Science and Applications

Wu-chun Feng, Chair
Pavan Balaji

Keith R. Bisset
Madhav V. Marathe
Calvin J. Ribbens

January 12, 2015
Blacksburg, Virginia

Keywords: Runtime Systems, Programming Models, General Purpose Graphics Processing Units (GPGPUs),
Message Passing Interface (MPI), CUDA, OpenCL

Copyright 2015, Ashwin M. Aji

Programming High-Performance Clusters with

Heterogeneous Computing Devices

Ashwin M. Aji

(ABSTRACT)

Today’s high-performance computing (HPC) clusters are seeing an increase in the adoption of accelerators like GPUs,

FPGAs and co-processors, leading to heterogeneity in the computation and memory subsystems. To program such

systems, application developers typically employ a hybrid programming model of MPI across the compute nodes in

the cluster and an accelerator-specific library (e.g.; CUDA, OpenCL, OpenMP, OpenACC) across the accelerator de-

vices within each compute node. Such explicit management of disjointed computation and memory resources leads to

reduced productivity and performance. This dissertation focuses on designing, implementing and evaluating a runtime

system for HPC clusters with heterogeneous computing devices. This work also explores extending existing program-

ming models to make use of our runtime system for easier code modernization of existing applications. Specifically,

we present MPI-ACC, an extension to the popular MPI programming model and runtime system for efficient data

movement and automatic task mapping across the CPUs and accelerators within a cluster, and discuss the lessons

learned.

MPI-ACC’s task mapping runtime subsystem performs fast and automatic device selection for a given task. MPI-

ACC’s data movement subsystem includes careful optimizations for end-to-end communication among CPUs and

accelerators, which are seamlessly leveraged by the application developers. MPI-ACC provides a familiar, flexible

and natural interface for programmers to choose the right computation or communication targets, while its runtime

system achieves efficient cluster utilization.

That this work received support in part from an NVIDIA Graduate Fellowship is purely coincidental.

Acknowledgments

This dissertation is dedicated to my family, whose unconditional support gave me the motivation to pursue and com-

plete the doctoral degree.

I am deeply grateful to each one of my committee members for their immense support and advice, ranging from

technical, financial to career related matters. This dissertation would have been impossible without them.

I like to thank all my friends and colleagues within and outside Virginia Tech, who I met along the way and who

helped me endure the lows and live the highs, which made my Ph.D. experience a truly memorable one.

iii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Research Questions . 3

1.3 Contributions . 4

1.4 Lessons Learned . 5

2 Programming HPC Clusters with Heterogeneous Computing Devices 7

2.1 Background on GPU Programming Models . 7

2.1.1 Streams and Synchronization Semantics . 8

2.1.2 Contexts, Platforms and Queues . 8

2.1.3 Data Representation and Address Spaces . 9

2.2 MPI+X Hybrid Programming Models . 10

2.2.1 The Programmer’s View . 10

2.2.2 Default Synchronization Semantics . 11

3 Related Work 13

3.1 Programming Models and Runtime Systems . 13

3.2 Data Movement Solutions . 15

3.3 Task Mapping Solutions . 17

3.3.1 Performance Models . 17

3.3.2 Runtime Schedulers . 18

4 The MPI-ACC Programming Model 23

4.1 Designing the MPI-ACC Programming Model for Data Communication 23

4.1.1 Motivation . 23

iv

4.1.2 The Application Programming Interface (API) Design . 24

4.1.3 Discussion on the Synchronization Semantics . 27

4.2 Extending the OpenCL Programming Model for Task Scheduling . 31

4.2.1 Global Scheduling at the Context . 31

4.2.2 Local Scheduling Options at the Command Queue . 32

4.2.3 Specifying Device-Specific Kernel Options . 33

4.3 Codesigning the Data Movement and Task Scheduler API . 34

4.4 Conclusion . 34

5 Data Movement with MPI-ACC 36

5.1 The MPICH Software Stack . 36

5.2 Optimizations . 37

5.2.1 Data Pipelining . 38

5.2.2 Dynamic Choice of Pipeline Parameters . 39

5.2.3 OpenCL Issues and Optimizations . 41

5.3 Application Case Studies . 41

5.3.1 EpiSimdemics . 42

5.3.2 FDM-Seismology . 49

5.4 Evaluation . 52

5.4.1 Microbenchmark Analysis . 53

5.4.2 Case Study Analysis: EpiSimdemics . 54

5.4.3 Case Study Analysis: FDM-Seismology . 61

5.4.4 Analysis of Contention . 63

5.5 Conclusion . 71

6 Task Mapping with MPI-ACC 72

6.1 Introduction . 72

6.2 Memory Modeling Example . 73

6.2.1 Partition Camping in Memory-bound GPU Kernels . 73

6.2.2 Predicting Performance Bounds . 74

6.2.3 Lessons Learned . 75

6.3 Device Selection Strategies . 77

6.3.1 Approach . 78

v

6.3.2 Offline Device Characterization . 79

6.3.3 Online Workload Characterization . 80

6.3.4 Online Relative Performance Projection . 82

6.3.5 Lessons Learned . 83

6.4 Design and Implementation of the Task Mapping Runtime . 91

6.4.1 The SnuCL Runtime Framework . 92

6.4.2 Designing the MultiCL Runtime System . 93

6.4.3 Static Command-Queue Scheduling . 96

6.4.4 Dynamic Command-Queue Scheduling . 97

6.5 Evaluation . 100

6.5.1 NAS Parallel Benchmarks (NPB) . 100

6.5.2 Seismology Modeling Simulation . 107

6.5.3 Programmability Benefits . 115

6.6 Discussion: Codesigning the Data Movement and Task Scheduler Runtimes 116

6.7 Conclusion . 120

6.7.1 Performance Modeling and Projection . 120

6.7.2 Task-Mapping Runtime . 120

7 Conclusions 122

7.1 Related Research Directions . 122

7.1.1 Interoperability With Other “X” Programming Models . 122

7.1.2 Future Work . 125

7.2 Dissertation Summary . 127

Bibliography 129

vi

List of Figures

1.1 Key challenges with the MPI+X programming model . 4

1.2 Dissertation summary . 6

2.1 Tradeoffs with hybrid MPI+CUDA program design. For MPI+OpenCL, clEnqueueReadBuffer and
clEnqueueWriteBuffer would be used in place of cudaMemcpy. Similarly, clGetEventInfo or clFinish
would be used in place of cudaStreamSynchronize. 11

4.1 Design of GPU-integrated MPI frameworks. 25

4.2 Overhead of runtime checks incurred by intranode CPU-CPU communication operations. The slow-
down from automatic detection (via cuPointerGetAttribute) is 23% to 235%, while the slowdown from
the attribute check is at most only 3%. 25

4.3 Data-dependent MPI+GPU program with explicit GPU synchronization and designed with UVA-based
MPI. 28

4.4 Data-dependent MPI+GPU program designed with the MPI attribute-based design of MPI-ACC. The
example showcases implicit GPU synchronization with asynchronous MPI. 30

4.5 MPI-ACC’s design for MPI+GPU synchronization. Example: MPI Isend. 31

4.6 API proposal to decouple kernel launch configuration with the actual launch itself to give more
scheduling options to the runtime. 34

5.1 The MPICH software stack. 37

5.2 Choosing the pipeline parameters: network – InfiniBand, transfer protocol – R3. 39

5.3 NUMA and PCIe affinity issues affecting the effective bandwidth of CPU-GPU and InfiniBand network
transfers. 40

5.4 Computational epidemiology simulation model (figure adapted from [22]). 42

5.5 Creating new optimizations for GPU-EpiSimdemics using MPI-ACC. 44

5.6 Communication-computation pattern in the FDM-Seismology application. Left: basic MPI+GPU ex-
ecution mode with data marshaling on CPU. Right: execution modes with data marshaling on GPU.
MPI-ACC automatically communicates the GPU data; MPI+GPU Adv case explicitly stages the com-
munication via CPU. 50

vii

5.7 Internode communication latency for GPU-to-GPU (CUDA) data transfers. Similar performance is
observed for OpenCL data transfers. The chosen pipeline packet size for MPI-ACC is 256 KB. 53

5.8 MPI-ACC performance with and without OpenCL object caching. 54

5.9 Execution profile of GPU-EpiSimdemics over various node configurations. The x-axis increases with
the total number of MPI processes P, where P = Nodes * GPUs. 55

5.10 Analysis of the data management complexity vs. performance trade-offs. Manual data management
achieves better performance at the cost of high code complexity. No explicit data management has
simpler code but performs poorly. 56

5.11 Analysis of MPI-ACC–driven optimizations using HPCTOOKIT. Application case study: GPU-
EpiSimdemics. 59

5.12 Analyzing the FDM-Seismology application with the larger input data (Dataset-2). Note: MPI Com-
munication refers to CPU-CPU data transfers for the MPI+GPU and MPI+GPU Adv cases and GPU-
GPU (pipelined) data transfers for the MPI-ACC case. 61

5.13 Scalability analysis of FDM-Seismology application with two datasets of different sizes. The baseline
for speedup is the naı̈ve MPI+GPU programming model with CPU data marshaling. 62

5.14 Contention impact of concurrent MPI Send and local GPU operations (compute kernels, global mem-
ory read/write, shared memory read/write and host-to-device (H2D) data transfers). 65

5.15 Characterizing the contention impacts of concurrent MPI Send and local device-to-host (D2H) GPU
operations. 67

5.16 Using HPCTOOLKIT to understand the contention impacts of MPI-ACC and local GPU data transfer
operations. 68

5.17 Characterizing the contention impacts of CUDA’s stream-0 on concurrent MPI operations. 70

6.1 The negative effect of partition camping (PC) in GPU kernels . 75

6.2 Validating the performance prediction model for a molecular modeling application. 76

6.3 Screenshot of the CampProf tool. 76

6.4 The performance projection methodology. 78

6.5 Memory throughput on the AMD Radeon HD 7970. 80

6.6 Analysis of the performance limiting factor. Gmem stands for global memory and Lmem stands for
local memory. MatMul (Gmem) stands for the matrix multiplication benchmark that only uses the
GPU’s global memory and MatMul (Lmem) stands for the matrix multiplication benchmark with the
local memory optimizations. The performance limiter of an application is denoted at the top of each
bar: G for Gmem, L for Lmem and C for Compute. 85

6.7 Accuracy of the performance projection model. Gmem stands for global memory and Lmem stands
for local memory. 86

6.8 Global memory (Gmem) transactions for select applications. 89

6.9 Kernel emulation overhead – full kernel emulation vs. single workgroup mini-emulation. 91

6.10 Kernel emulation overhead – single workgroup mini-emulation vs. actual device execution. 92

viii

6.11 Left: SnuCL’s ‘single’ mode. All OpenCL platforms within a node are aggregated under a single
platform. Right: SnuCL’s ‘cluster’ mode. All OpenCL devices and platforms across a cluster of nodes
are a provided with the view of a single OS image with a shared resource abstraction. SnuCL helps in
sharing data, sharing kernels and synchronization across devices from different platforms. 93

6.12 Left: MultiCL runtime design and extensions to SnuCL. Right: invoking MultiCL runtime modules in
OpenCL programs. 95

6.13 Mini-kernel example. 99

6.14 Relative execution times of the SNU-NPB benchmarks on CPU vs. GPU. 103

6.15 Performance overview of SNU-NPB (MD) for manual and MultiCL’s automatic scheduling. Number
of command queues: 4. Available devices: 1 CPU and 2 GPUs. 103

6.16 Distribution of SNU-NPB (MD) kernels to devices for manual and MultiCL’s automatic scheduling.
Number of command queues: 4. Available devices: 1 CPU and 2 GPUs. 104

6.17 Data transfer overhead for the FT (Class A) benchmark. 105

6.18 Impact of mini-kernel modeling for the EP benchmark. 106

6.19 FDM-Seismology performance overview. 109

6.20 FDM-Seismology performance details for the AUTO FIT scheduler. The graph shows that the over-
head of performance modeling decreases asymptotically with more iterations. 109

6.21 Data marshaling with OpenCL in FDM-Seismology. Data dependency: stress and velocity kernels
work concurrently with independent regions on separate command queues, whereas the data marshal-
ing step works with both regions on a single command queue. 111

6.22 Pseudo-code of the seismology mini-application. 112

6.23 Seismology mini-application performance overview on all queue-GPU combinations. Two GPUs are
better for smaller data sizes, whereas single GPU is better for larger data sizes. 113

6.24 Seismology mini-application performance analysis for single device vs. two device configurations.
For smaller data sizes, T K1 > T K2 + T DR, i.e. two devices are better. For larger data sizes,
T K1 < T K2 + T DR, i.e. a single device is better. 114

6.25 FDM-Seismology application performance overview on all queue-GPU combinations. For all data
sizes, a single GPU is better than using two GPUs. The sequential code cost also provides lesser
incentive to move to multiple GPUs. 114

6.26 FDM-Seismology application performance analysis for single device vs. two device configurations.
For all data sizes, T K1 < T K2 + T DR, i.e. a single device is better. 115

6.27 Point-to-point communication between OpenCL Device-1 on each node. Best performance is achieved
if the intermediate buffers for pipelining also correspond to the same device. MPI-ACC automatically
chooses the right buffer pool by querying the queue’s latest device. 117

6.28 Pseudo-code of FDM-Seismology using MPI-ACC and MultiCL runtimes. 119

7.1 Interoperability of OpenACC with MPI-ACC: device data access within a region. 124

7.2 Interoperability of OpenACC with MPI-ACC: MPI-ACC from within a region. 124

7.3 Interoperability of OpenACC with MPI-ACC: synchronization. 125

ix

7.4 Summary of our contributions and extensions to the MPI+X programming model. 127

x

List of Tables

3.1 Comparison of MVAPICH and Open MPI with our work. 16

3.2 Literature overview of runtime schedulers for heterogeneous computing environments 19

3.3 Comparison of SOCL with our work . 22

4.1 Proposed extensions to the OpenCL specification . 32

5.1 Analyzing the memory allocation costs. Note: each CUDA context is managed by a separate process. 57

6.1 Summary of GPU devices. 84

6.2 Summary of applications. 84

6.3 Performance model overhead reduction – ratio of full-kernel emulation time to single workgroup mini-
emulation time. 88

6.4 Summary of SNU-NPB-MD benchmarks, their requirements and our custom scheduler options. . . . 102

xi

Chapter 1

Introduction

We begin the dissertation by motivating the chosen research problem and outlining our contributions.

1.1 Motivation

Accelerators are being increasingly adopted in today’s high performance computing (HPC) clusters. A diverse set of

accelerators exist, including graphics processing units (GPUs) from NVIDIA and AMD and the Xeon Phi coprocessor

from Intel. In particular, GPUs have accelerated production codes for many scientific applications, including compu-

tational fluid dynamics, cosmology, and data analytics. About 15% of today’s top 500 fastest supercomputers (as of

November 2014) employ general-purpose accelerators [5].

Today, general-purpose heterogeneous clusters typically consist of nodes with a multi-socket multicore CPU (approx-

imately 8 to 32 cores) along with a few GPUs (approximately 1 to 4 devices) placed on the PCIe interface. Also,

these clusters predominantly have identical nodes in order to ease the burden of installation, configuration, and pro-

gramming such systems; however, we also are increasingly seeing heterogeneous clusters with different nodes on the

path toward 10x10 [25], which envisions the paradigm of mapping the right task to the right processor at the right

1

CHAPTER 1. INTRODUCTION 2

time. An early example of such a system is Darwin at LANL, which consists of both AMD and NVIDIA GPUs. The

ShadowFax cluster at the Virginia Bioinformatics Institute (VBI), Virginia Tech also consists of different sets of nodes

with different CPU and accelerator configurations.

The Message Passing Interface (MPI) [6] is the de-facto standard for programming distributed memory clusters. The

MPI library manages process startup, process placement, data movement and synchronization across nodes. Simi-

larly, programming models such as Compute Unified Device Architecture (CUDA) [9] or Open Computing Language

(OpenCL) [39] are used for kernel launches, kernel placement (device selection), memory management and synchro-

nization among the accelerator devices within the node. The runtime systems for the hybrid programming model are

thus fragmented, i.e., MPI across nodes and the local operating system and CUDA/OpenCL runtime systems within

the node. We refer to this disjoint hybrid model as the MPI+X programming model, where MPI is used across nodes

and a local “X” programming model of choice is used within each node.

Device-Task Management Each MPI process in the hybrid model consists of a host component that is run by the

OS on the CPU core(s), and a device component that is run by CUDA/OpenCL on the local device(s). The host

process is automatically assigned to the appropriate CPU core by the OS scheduler, and additional tools/libraries

like numactl/libnuma can be used to guide the process-CPU mapping. However, the current GPU programming

models require the programmers to explicitly choose the device for kernel offloading.

With increasing heterogeneity within a node, it is critical to assign the best GPU for a given kernel. Our experiments in-

dicate that the peak performance ratios of the GPUs do not always translate to the best kernel-to-GPU mapping scheme.

GPUs have different hardware features and capabilities with respect to computational power, memory bandwidth, and

caching abilities. As a result, different kernels may achieve their best performance on different GPU architectures.

While OpenCL is a convenient platform for writing portable applications across accelerators, its performance porta-

bility remains a well-known and open issue. For instance, using the image memory subsystem and vector arithmetic

can deliver up to 3× performance improvement over an unoptimized OpenCL kernel on certain AMD GPUs, whereas

the same optimizations may degrade the kernel’s performance by about 8% on an NVIDIA GPU [30].

CHAPTER 1. INTRODUCTION 3

OpenCL has workflow abstractions called command queues through which users submit commands to a specific

device. However, the OpenCL specification tightly couples a command queue with a specific single device for the

entire program with no runtime support for cross-device scheduling. For best performance, the programmers thus have

to find the ideal mapping of a queue to one or more devices at command queue creation time, an effort that requires

a thorough understanding of the kernel characteristics, the underlying architecture, node topology, and various data-

sharing costs, all of which severely hinder programmability. Researchers are exploring ways to extend the OpenCL

semantics for data-parallel and task-parallel workloads by scheduling kernels across multiple OpenCL devices.

Data Movement Data movement between processes is currently limited to data residing in the host CPU memory.

The ability to interact with auxiliary memory systems, such as GPU memory, has not been integrated into such data

movement standards, thus providing applications with no direct mechanism to perform end-to-end data movement.

Currently, transmission of data from accelerator memory must be done by explicitly copying data to host memory

before performing any communication operations. This process impacts productivity and can lead to a severe loss

in performance. Significant programmer effort would be required to recover this performance through vendor- and

system-specific optimizations, like GPUDirect [4] and node and I/O topology awareness.

1.2 Research Questions

We identify and address three main research questions in this dissertation:

1. How to integrate auxiliary memory spaces into MPI?

2. How to incorporate dynamic device targets within MPI and X?

3. How to efficiently synchronize MPI with X?

Figure 1.1 depicts the scope of the above challenges in the context of high performance clusters.

CHAPTER 1. INTRODUCTION 4

Compute Node

Accelerator

Device

CPU CPU
Network

Accelerator

Device
Accelerator

Device
Accelerator

Device

CPU CPU

Within Node (X)

Task scheduling

Dynamic device targets

Synchronization with MPI

Within Node (X)

Task scheduling

Dynamic device targets

Synchronization with MPI

Compute Node

Across Nodes (MPI)

Data movement

Dynamic device targets

Synchronization with X

Figure 1.1: Key challenges with the MPI+X programming model

1.3 Contributions

My dissertation focuses on designing, implementing and evaluating a runtime system for heterogeneous high perfor-

mance computing systems with disjoint compute and memory subsystems while extending the boundaries of current

programming models. In particular, we extend the semantics of the popular MPI programming model to enable end-

to-end data movement and the OpenCL and CUDA programming models for automatic task mapping among CPUs

and accelerators within a cluster. The overarching contributions of my PhD dissertation are as follows:

• We design and implement MPI-ACC [15] as an extension to the popular MPI parallel programming model and

a runtime system for accelerator-based heterogeneous clusters.

• We develop and evaluate a data movement subsystem that includes a wide range of optimizations for end-to-

end point-to-point data movement among CPUs and accelerators, which can be seamlessly leveraged by the

application developers [11, 13, 14].

• We extend the OpenCL semantics and develop a task mapping runtime subsystem that leverages a performance

projection technique for fast, accurate and automatic device selection across the cluster [12, 16, 17].

• We describe the interactions between the MPI and OpenCL runtimes and discuss key driver innovations that are

needed to minimize the runtime dependencies.

CHAPTER 1. INTRODUCTION 5

1.4 Lessons Learned

One of the main lessons learned was that the MPI+X programming model has programmability and performance

challenges. By extending the MPI programming model to natively support GPU data structures and by extending the

within-node GPU programming interface to enable automatic device management, we could write high-level scientific

application code at scale. Also, the current runtime systems, i.e., the cross-node data movement and within-node task

mapping runtimes, have to be codesigned to overcome current GPU driver limitations and achieve better efficiency.

We encompass the inter- and intra-node runtime contributions into “MPI-ACC”.

The data movement and task mapping subsystems are useful additions to the MPI runtime system. MPI-ACC provides

a natural interface for programmers to specify actual devices or device abstractions as communication targets, whereas

the runtime maps the communication request to the ideal device while maintaining efficient cluster utilization.

Our experiments were conducted on HokieSpeed – a 212 TFlop CPU-GPU cluster and on Fire – an eight node CPU-

GPU cluster, both housed at Virginia Tech. The data movement subsystem of MPI-ACC was evaluated using mi-

crobenchmarks and applications from scientific computing domains like seismology and epidemiology. We found that

the pipelined data transfers for end-to-end communication among GPUs improved the performance of MPI latency

benchmarks by about 35%. We also validated via the epidemiology application that the MPI-ACC runtime system per-

formed automatic resource management and was more scalable than the manual MPI+X programming approach. We

evaluated our task scheduling system and performance projection model for best device selection by using OpenCL

as the example GPU programming model and devices of different generations from both NVIDIA and AMD. Our

evaluations on benchmarks and the seismology simulation showed that our model could accurately choose the best

device for the given task with minimal error and low overhead.

The rest of the dissertation is organized as shown in the Figure 1.2. Related work is described in Chapter 3. In

Chapter 4, we outline MPI-ACC’s application programming interface (API) and semantics for its usage with GPU

code; more specifically: (1) end-to-end data movement, (2) synchronization of MPI and GPU operations, and (3)

dynamic device selection via a high-level device abstraction. In Chapter 5, we explain the memory management

CHAPTER 1. INTRODUCTION 6

Memory Movement Subsystem
(Chapter 4)

Task Mapping Subsystem
(Chapter 5)

The MPI-ACC Programming Model
(Chapter 3)

Design

Optimizations

Case
Studies

Evaluation

Perf.
Model

Device
Selection
Strategies

Evaluation
OpenCL Extensions
and Runtime Design

Figure 1.2: Dissertation summary

runtime subsystem of MPI-ACC, design, optimizations and evaluation with case studies. In Chapter 6, we describe

and evaluate MPI-ACC’s task mapping runtime subsystem and our chosen device selection strategies. In Chapter 7,

we outline some of the potential future directions for this research and summarize the dissertation.

Chapter 2

Programming HPC Clusters with

Heterogeneous Computing Devices

In this chapter, we outline some background information on GPU programming models, and state-of-the-art methods

to write MPI+X programs for high-performance heterogeneous clusters.

2.1 Background on GPU Programming Models

Most of today’s GPUs are connected to the host processor and memory through the PCIe interconnect. The high-end

GPUs typically contain separate, high-throughput memory subsystems (e.g., GDDR5); and data must be explicitly

moved between GPU and host memories by using special library DMA transfer operations. Some GPU libraries

provide direct access to host memory, but such mechanisms still translate to implicit DMA transfers.

CUDA [9] and OpenCL [39] are two of the commonly used explicit GPU programming models, where GPU-specific

code is written to be executed exclusively on the GPU device. CUDA is a popular, proprietary GPU programming

environment developed by NVIDIA; and OpenCL is an open standard for programming a variety of accelerator plat-

7

CHAPTER 2. PROGRAMMING HPC CLUSTERS WITH HETEROGENEOUS COMPUTING DEVICES 8

forms, including GPUs, FPGAs, many-core processors, and conventional multicore CPUs. Both CUDA and OpenCL

provide explicit library calls to perform DMA transfers from the host-to-device (H2D), device-to-host (D2H), device-

to-device (D2D), and host-to-host (H2H). In both CUDA and OpenCL, DMA transfers involving pinned host memory

provide significantly higher performance than does using pageable memory.

2.1.1 Streams and Synchronization Semantics

GPUs have hardware queues for enqueueing GPU operations; for example, NVIDIA GPUs (compute capability 2.0

and above) have one hardware queue each for enqueueing kernels, D2H data transfers, and H2D data transfers. In

this way, one can potentially overlap kernel execution with H2D and D2H transfers simultaneously. In addition,

CUDA and OpenCL both provide GPU workflow abstractions, called streams (cudaStream t) and command queues

(cl command queue).1 A GPU stream denotes a sequence of operations that execute in issue order on the GPU [73].

Operations from different streams can execute concurrently and may be interleaved, while operations within the same

stream are processed serially. Synchronization between streams is explicit, whereas the synchronization within a

stream is implicit. Also, all the stream operations are asynchronous with respect to the host CPU. We note that if a

data element is shared among multiple streams, say one stream for kernel execution and another for D2H transfers, the

streams must be explicitly synchronized for correctness; otherwise the behavior is undefined.

2.1.2 Contexts, Platforms and Queues

In OpenCL, developers must pick one of the available platforms or OpenCL vendor implementations on the machine

and create contexts within which to run the device code. Data can be shared only across devices within the same

context. With few exceptions, typically different devices will be part of separate vendor-specific platforms; that is, a

device from one vendor will not typically be part of the same platform and context as the device from another vendor.

For example, the NVIDIA OpenCL implementation cannot be used to run programs on Intel Xeon Phi coprocessors

and vice versa. Third-party OpenCL implementations such as SnuCL [46], however, provide a unified platform across

1CUDA streams and OpenCL command queues are referred to as GPU streams henceforth in this document.

CHAPTER 2. PROGRAMMING HPC CLUSTERS WITH HETEROGENEOUS COMPUTING DEVICES 9

all vendors and allow contexts to be created across devices from different vendors.

While OpenCL is a convenient platform for writing portable applications across multiple accelerators, its performance

portability remains a well-known and open issue. For instance, using the image memory subsystem and vector arith-

metic can bring up to 3× performance improvement over an unoptimized OpenCL kernel on certain AMD GPUs,

whereas the same optimizations may degrade the kernel’s performance by about 8% on an NVIDIA GPU [30]. Appli-

cation developers may thus want to maintain different optimizations of the same kernel for different architectures and

explicitly query and schedule the kernels to be executed on the specific devices that may be available for execution.

In OpenCL, kernel objects are created per context; that is, they are shared across all devices within that context.

However, the kernel launch configuration or work dimensions are set globally per kernel object at kernel launch,

and per-device kernel configuration customization is possible only through custom conditional programming at the

application level. No convenient mechanism exists, however, to set different kernel configurations for different kernel-

device combinations dynamically. Therefore, the OpenCL interface and device scheduling are tightly coupled.

2.1.3 Data Representation and Address Spaces

Despite their apparent similarities, however, CUDA and OpenCL differ significantly in how accelerator memory is

used and how data buffers are created and modified. In OpenCL, device memory allocation requires a valid context

object. All processing and communication to this device memory allocation must also be performed by using the same

context object. Thus, a device buffer in OpenCL has little meaning without information about the associated context.

In contrast, context management is implicit in CUDA if the runtime library is used.

In OpenCL, data is encapsulated by a cl mem object, whereas data is represented by a void * in CUDA. CUDA (v4.0

or later) also supports unified virtual addressing (UVA), where the host memory and all the device memory regions (of

compute capability 2.0 or higher) can all be addressed by a single address space. At runtime, the programmer can use

the cuPointerGetAttribute function call to query whether a given pointer refers to host or device memory. The UVA

feature is currently CUDA-specific; and other accelerator models, such as OpenCL, do not support UVA.

CHAPTER 2. PROGRAMMING HPC CLUSTERS WITH HETEROGENEOUS COMPUTING DEVICES 10

2.2 MPI+X Hybrid Programming Models

This section describes the current ways to write MPI+X programs for high-performance heterogeneous computing

devices. Since we focus on GPU computing, we use MPI+X and MPI+GPU interchangeably.

2.2.1 The Programmer’s View

MPI-based applications are typically designed by identifying parallel tasks and assigning them to multiple processes.

In the default MPI+GPU hybrid programming model, the compute-intensive portions of each process are offloaded

to the local GPU. Data is transferred between processes by explicit messages in MPI. However, the current MPI

standard assumes a CPU-centric single-memory model for communication. The default MPI+GPU programming

model employs a hybrid two-staged data movement model, where MPI is used for internode communication of data

residing in main memory, and CUDA or OpenCL is used within the node to transfer data between the CPU and GPU

memories. Consider a simple example where the sender computes on the GPU and sends the results to the receiver

GPU, which then does some more computations on the GPU. One can implement this logic in several ways using the

hybrid MPI+GPU programming model as shown in Figure 2.1. In this simple set of examples, the additional host buf

buffer is used only to facilitate MPI communication of data stored in device memory. One can easily see that as

the number of accelerators—and hence distinct memory regions per node—increases, manual data movement poses

significant productivity and performance challenges.

Figure 2.1a describes the manual blocking transfer logic between host and device, which serializes GPU execution

and data transfers, resulting in underutilization of the PCIe and network interconnects. Figure 2.1b shows how the

data movement between the GPU and CPU can be pipelined to fully utilize the independent PCIe and network links.

However, adding this level of code complexity to already complex applications is impractical and can be error prone.

In addition, construction of such a sophisticated data movement scheme above the MPI runtime system incurs re-

peated protocol overheads and eliminates opportunities for low-level optimizations. Moreover, users who need high-

performance are faced with the complexity of leveraging a multitude of platform-specific optimizations that continue

CHAPTER 2. PROGRAMMING HPC CLUSTERS WITH HETEROGENEOUS COMPUTING DEVICES 11

1 double *dev_buf, *host_buf;
2 cudaMalloc(&dev_buf, size);
3 cudaMallocHost(&host_buf, size);
4 if (my_rank == sender) { /* sender */
5 computation_on_GPU(dev_buf);
6 /* implicit GPU sync for default CUDA stream */
7 cudaMemcpy(host_buf, dev_buf, size, ...);
8 /* dev_buf is reused; async GPU kernel launch */
9 more_computation_on_GPU(dev_buf);

10 MPI_Send(host_buf, size, ...);
11 }

(a) Hybrid MPI+CUDA program with manual synchronous data move-
ment (sender’s logic only). This approach loses data transfer perfor-
mance but gains a bit when the second GPU kernel is overlapped with
MPI.

1 double *dev_buf, *host_buf;
2 cudaStream_t kernel_stream, streams[chunks];
3 cudaMalloc(&dev_buf, size);
4 cudaMallocHost(&host_buf, size);
5 if (my_rank == sender) { /* sender */
6 computation_on_GPU(dev_buf, kernel_stream);
7 /* explicit GPU sync between GPU streams */
8 cudaStreamSynchronize(kernel_stream);
9 for(j=0;j<chunks;j++) {

10 cudaMemcpyAsync(host_buf+offset, dev_buf+offset,
11 D2H, streams[j], ...);
12 }
13 for(j=0;j<chunks;j++) {
14 /* explicit GPU sync before MPI */
15 cudaStreamSynchronize(streams[j]);
16 MPI_Isend(host_buf+offset, ...);
17 }
18 /* explicit MPI sync before GPU kernel */
19 MPI_Waitall();
20 more_computation_on_GPU(dev_buf);
21 }

(b) Hybrid MPI+CUDA program with manual asynchronous data move-
ment (sender’s logic only). This approach loses programmability but
gains data transfer performance. But, the second GPU kernel is not over-
lapped with MPI.

Figure 2.1: Tradeoffs with hybrid MPI+CUDA program design. For MPI+OpenCL, clEnqueueReadBuffer and clEn-
queueWriteBuffer would be used in place of cudaMemcpy. Similarly, clGetEventInfo or clFinish would be used in place
of cudaStreamSynchronize.

to evolve with the underlying technology (e.g, GPUDirect [4]).

2.2.2 Default Synchronization Semantics

In the hybrid programming model with interleaved GPU and MPI operations, the programmer must adhere to the

programming semantics of both models. When GPU data-transfer operations on GPU streams (D2H) are followed by

MPI operations on the copied host data, the programmer explicitly waits or checks the status of the GPU streams before

CHAPTER 2. PROGRAMMING HPC CLUSTERS WITH HETEROGENEOUS COMPUTING DEVICES 12

calling MPI. The reason is that MPI operates on ready host buffers and, in this case, the host buffer will be undefined

until the GPU stream has completed its D2H operation. Similarly, if nonblocking MPI operations are followed by

GPU data transfer operations on the same data, the programmer explicitly waits for the completion of MPI before

performing the GPU data transfer, as shown in Figure 2.1.

GPU operations are performed only on GPU data, while MPI operations are performed only on CPU data. When data

changes devices (i.e., GPU data is copied to the CPU), the programming model also changes from CUDA/OpenCL

to MPI. However, explicit synchronization between GPU operations and MPI is required only for dependent data

operations.

Chapter 3

Related Work

We classify the related work in the literature into programming models and runtime systems, data-movement solutions

and task-mapping solutions including performance models and task-distribution systems for heterogeneous computing

devices in HPC clusters.

3.1 Programming Models and Runtime Systems

OpenCL [39] is an open standard and parallel programming model for programming a variety of accelerator platforms,

including NVIDIA and AMD GPUs, FPGAs, the Intel Xeon Phi coprocessor, and conventional multicore CPUs.

OpenCL follows a kernel-offload model, where the data-parallel, compute-intensive portions of the application are

offloaded from the CPU host to the device. The hardware vendors provide their own OpenCL implementations, but

they are not cross-compatible. For example, we cannot create an OpenCL context that includes devices from two

different vendor platforms, which means that we cannot share memory buffers, command queues and other OpenCL

data structures across the devices in the system by just using the vendor-provided OpenCL implementations.

OpenMP (v4.0) [7] and OpenACC [8] are directive-based programming models for writing parallel programs primarily

13

CHAPTER 3. RELATED WORK 14

for CPUs and GPUs in single-node systems. The programmer writes a serial program with annotations to denote

parallelism, heterogeneity and asynchrony. A compiler translates the annotated code to run on the multiple CPU cores

or one of the available GPU devices. Furthermore, some research groups are investigating approaches to distribute

the loop iterations and tasks among all the CPUs and GPUs within the node (e.g.; CoreTSAR [67]). OmpSs [28],

which is an extension to the OpenMP model, also aims to run the annotated code on GPU-enabled clusters. All the

above models are fork-join models where a single master thread executes sequentially until a parallel region construct

is encountered. The parallel regions fork worker threads on the CPU or GPU kernels or both, then join back to the

master thread to continue the serial execution.

StarPU [19] is a portable runtime system that schedules tasks across hybrid CPU-GPU architectures. The programmer

implements StarPU codelets or task variants for the desired devices and specifies dependency constraints among them

to create a task graph. StarPU schedules the tasks and manages data transfers across the different devices in the node

or cluster environment. Higher-level programming models can leverage the StarPU runtime system, but the challenge

lies in creating the right-sized tasks to achieve scalability and efficient resource usage.

The StarPU team have also developed SOCL [36], an OpenCL implementation that uses the StarPU runtime to sched-

ule kernels among all the OpenCL devices in the compute environment, even if they are from different vendor plat-

forms. SOCL provides OpenCL extensions to create command queues to scheduling contexts in addition to specific

devices, which enables their scheduler to choose the ideal device for the task from all the devices within the same

context. SOCL also provides OpenCL extensions for granularity adaptation of the kernels, which helps in creating

the right-sized tasks for the StarPU runtime. While the command-queue extension relieves the programmer from

choosing the right device for their tasks, the granularity-adaptation extension requires significant programmer effort to

allow StarPU to make efficient schedules. StarPU uses historical task completion times to decide the future schedules

and the relative device performances can also be provided by the application developer. Our performance modeling

work for device selection does not rely on historical data and automatically computes the relative device performance.

Moreover, our model is complementary to StarPU and can be used in addition to the existing ones in their scheduler.

SnuCL [46] is another cross-platform OpenCL implementation that provides the programmer with a single node view

CHAPTER 3. RELATED WORK 15

of a cluster with OpenCL devices, where the OpenCL devices can be from multiple vendor platforms. In the SnuCL

programming model, there is one host node and multiple backend nodes. SnuCL enables the application to use all

the OpenCL devices in the host and backend nodes in the cluster as if they were on the host node itself. However,

unlike SOCL/StarPU, the programmer has to manually choose the OpenCL device for each kernel and data transfer

operation, i.e. there is no performance model for device selection.

Virtual OpenCL (VOCL) [83] and rCUDA [34] are virtual GPU models that enable the local applications to run

programs on remote GPUs as if they were on the local node itself. Virtualization also enables a small set of backend

GPU nodes to service multiple frontend client nodes, thereby minimizing the GPU footprint in clusters and cloud

environments.

DCGN [74] is a novel programming environment that moves away from the GPU-as-a-worker programming model.

DCGN assigns ranks to GPU threads in the system and allows them to communicate among each other by using MPI-

like library calls. The actual control and data message transfers are handled by the underlying runtime layer, which

hides the PCIe transfer details from the programmer. Our contribution is orthogonal to DCGN’s in that we retain the

original MPI communication and execution model while hiding the details of third-party CPU-GPU communication

libraries from the end user.

All the above programming models are high level in that they use communication libraries like MPI as the underlying

runtime for cluster management. While these models provide a convenient way to utilize the heterogeneous devices

within a node and have shown to extend support to cluster environments, they do not show the scalability to hundreds

of thousands of cores like MPI applications. We believe that the above models and runtime systems can be best used

in conjunction with MPI, i.e. MPI across nodes and one of the above models within each node.

3.2 Data Movement Solutions

MVAPICH [3] is another implementation of MPI based on MPICH and is optimized for RDMA networks such as

InfiniBand. From v1.8 onward, MVAPICH has included support for transferring CUDA memory regions across the

CHAPTER 3. RELATED WORK 16

Table 3.1: Comparison of MVAPICH and Open MPI with our work.

MPI-ACC

• Attribute-based design

– Valid for both CUDA and OpenCL

– No pointer check overhead

• Implicit dependency resolution for mixed
MPI and GPU operations

– Automatic performance gain

• Naturally extends to dynamic device
targets, if available

• Setup code

– Low for P2P communication

– Low for mixed MPI+GPU operations

MVAPICH / Open MPI

• UVA-based design

– Valid for CUDA 4.0+ and NVIDIA GPUs

– Has pointer check overhead

• Explicit dependency resolution for mixed
MPI and GPU operations

– Manual performance gain

• Dynamic device targets for UVM feature of
CUDA 6.0+

• Setup code

– None for P2P communication

– High for mixed MPI+GPU operations

network (point-to-point, collective and one-sided communications). In order to use this, however, each participating

system should have an NVIDIA GPU of compute capability 2.0 or higher and CUDA v4.0 or higher, because MVA-

PICH leverages the UVA feature of CUDA. On the other hand, MPI-ACC takes a more portable approach: we support

data transfers among CUDA, OpenCL, and CPU memory regions; and our design is independent of library version or

device family. By including OpenCL support in MPI-ACC, we automatically enable data movement between a variety

of devices, including GPUs from NVIDIA and AMD, IBM and Intel CPUs Intel MICs, AMD Fusion, and IBM’s

Cell Broadband Engine. Furthermore, we make no assumptions about the availability of key hardware features (e.g.,

UVA) in our interface design, thus making MPI-ACC a truly generic framework for heterogeneous CPU-GPU systems.

Figure 3.1 summarizes the differences between MVAPICH and related frameworks and MPI-ACC, our contribution.

CudaMPI [49] is a library that helps improve programmer productivity when moving data between GPUs across the

network. It provides a wrapper interface around the existing MPI and CUDA calls. Our contribution conforms to

the MPI Standard, and our implementation removes the overhead of communication setup time, while maintaining

productivity.

GPUs have been used to accelerate many HPC applications across a range of fields in recent years [56, 62, 79]. For

large-scale applications that go beyond the capability of one node, manually mixing GPU data movement with MPI

communication routines is still the status quo, and its optimizations usually require expertise [27, 35, 69].

CHAPTER 3. RELATED WORK 17

3.3 Task Mapping Solutions

In this section, we describe work related to performance models and runtime systems for task-device mapping.

3.3.1 Performance Models

Several techniques for understanding and modeling GPU performance have been proposed. These techniques are often

used for performance analysis and tuning. We classify the prior work into two categories: performance estimation and

performance analysis and tuning.

Performance Estimation

GPU performance models have been proposed to help understand the runtime behavior of GPU workloads [38, 84].

Some studies also use microbenchmarks to reveal architectural details [38, 77, 81, 84]. Although these tools provide

in-depth performance insights, they often require static analysis or offline profiling of the code by either running or

emulating the program.

Several cross-platform, performance-projection techniques can be used to compare multiple systems, many of them

employ machine learning [51,75]. However, the relationship between tunable parameters and application performance

is gleaned from profiled or simulated data.

Performance Analysis and Tuning

Researchers have proposed several techniques to analyze GPU performance from various aspects, including branch-

ing, degree of coalescing, race conditions, bank conflict, and partition camping [12, 26, 71]. They provide helpful

information for the user to identify potential bottlenecks.

Several tools have also been developed to explore different transformations of a GPU code [47, 54]. Moreover, Ryoo

et al. proposed additional metrics (efficiency and utilization) [65] to help prune the transformation space. Furthermore,

CHAPTER 3. RELATED WORK 18

several autotuning techniques have been devised for specific application domains [29, 55].

The various techniques either require the source code for static analysis or rely on the user to manually model the

source-code behavior; both approaches are infeasible for application to a runtime system. Moreover, they often require

offline profiling, which may take even longer than the execution time of the original workload. To our knowledge, no

GPU performance models have been developed that are suitable for online device selection.

Our work focuses on leveraging the familiar and popular MPI and CUDA/OpenCL programming models and make

extensions to their existing semantics for accelerator-based heterogeneous clusters. We add data movement and task

mapping techniques to the MPI runtime system. We use performance models for optimal task mapping, which can be

leveraged by other heterogeneous runtime systems as well.

3.3.2 Runtime Schedulers

In this section, we review popular approaches for intra-application task scheduling in CPU-GPU systems and explain

how our work fits into the existing literature, in terms of scheduling granularity, API design and implementation.

We also discuss some inter-application schedulers and remote accelerator virtualization solutions and review their

workload distribution techniques. We discuss OpenCL implementations that offer platform aggregation capabilities.

Finally, we compare our design and implementation with SOCL, the work most closely related to ours.

The problem of scheduling among CPU-GPU cores is well studied and they broadly fall into two categories – intra-

application scheduling and inter-application scheduling. Intra-application schedulers aim to optimize the performance

of individual applications, whereas the inter-application schedulers optimize for system throughput and application

turnaround time. The techniques explored by intra-application schedulers may be incorporated into the OS, accelerator

runtimes or compilers, whereas the inter-application scheduling techniques may be included in cluster software stacks

(GRES [50] or PBS [59]) or virtualization frameworks (VOCL [83] or rCUDA [60]). In addition, researchers have

also explored optimizations for power [48] and fault tolerance [82] for the above cases. Our research deals with

coarse-grained, intra-application scheduling for OpenCL programs running on CPU-GPU systems. A summary of the

CHAPTER 3. RELATED WORK 19

Table 3.2: Literature overview of runtime schedulers for heterogeneous computing environments

Intra-application Scheduling

Data/Loop-level Parallelism

OpenMP-like: CoreTSAR [66],
Kaleem [44], OmpSs [28]

Custom API: Qilin [52]

OpenCL-based: FluidiCL [57],
Kim [45], de la Lama [32],
Maestro [72]

Task/Kernel-level Parallelism This dissertation, StarPU [19]
(SOCL [36])

Inter-application Scheduling Wen [80], Ravi [63]
VOCL [82, 83], rCUDA [60]

literature related to heterogeneous runtime schedulers is shown in Table 3.2.

Intra-Application Scheduling in CPU-GPU Systems

Depending on the chosen programming model, intra-application schedulers either distribute loop iterations in directive-

based applications [28, 44, 66] or distribute work groups in explicit kernel offload-based applications, i.e. work can

mean either loop iterations or work groups. These are essentially device aggregation solutions, where the scheduler

tries to bring homogeneity to the heterogeneous cores by giving them work proportional to their compute capabilities.

Optimal work distribution techniques for both these cases can either be based on adaptive scheduling, work steal-

ing, offline device profiling with performance modeling or machine learning techniques. We consider explicit device

offload models, such as OpenCL, for this dissertation.

Scheduler Granularity The possibility of presenting multiple devices as a single device to the OpenCL layer and

performing workload distribution internally has been explored in [32, 45, 52, 57, 72]. The work in [45] and [32] both

follow static load partitioning approaches for intra-kernel workload distribution, but the work in [32] leverages their

own API. FluidiCL [57] performs work stealing to dynamically distribute work groups among CPU-GPU cores with

low overhead. Maestro [72] is a another unifying solution addressing device heterogeneity, featuring automatic data

pipelining and workload balancing based on a performance model obtained from install-time benchmarking. Maestro’s

approach requires autotunable kernels that get the size of their workloads at runtime as parameters. Qilin [52] does

adaptive mapping of computation to the CPU and GPU by using curve fitting against an evolving kernel performance

CHAPTER 3. RELATED WORK 20

database. The above approaches provide fine grained scheduling at the kernel or loop level and exploit data parallelism

in applications. In contrast, our work performs coarser grained scheduling at the command queue level to enable task

parallelism between kernels and command queues in applications.

Application Programming Interface (API) Qilin [52] proposes a completely new API with its own compiler

toolchain and [32] proposes a new API on top of OpenCL. While [45, 57] retain the existing OpenCL interface,

they do not support all of the OpenCL semantics; for example, they support only synchronous kernel launches. They

also do not address real application scenarios like interleaved OpenCL operations from different command queues;

for example, how are concurrent kernels from different command queues implemented and how does it impact data

consistency and performance? In [52,57], it is also unclear how their approach would perform for an arbitrary number

of devices. While [32] and [57] support multiple OpenCL platforms, the others require all devices to belong to a

single platform. Moreover, all of their evaluation has been only on benchmarks and not on real-world applications.

Furthermore, fine-grained kernel splitting performs well only for kernels with very high compute-to-memory access

ratio.

We retain the full OpenCL interface and propose a few minor extensions to enable command queue scheduling. Our

solution also does not enforce any restrictions on the semantics of the OpenCL program, thus allowing arbitrary

interleaving of OpenCL operations. We provide a library implementation and do not rely on compiler support. Our

solution works on any arbitrary number of OpenCL devices from multiple OpenCL platforms. We evaluate the efficacy

of our runtime using benchmarks as well as a real world seismology simulation. The goal of our API design is to enable

users to easily write task parallel OpenCL programs with multiple command queues, and let our runtime scheduler

automatically handle the queue-device scheduling. The design of our framework is flexible enough to include several

scheduling algorithms, and as examples, we implement a couple of schedulers in this paper. However, our framework

could be extended to implement other scheduling algorithms as well.

CHAPTER 3. RELATED WORK 21

Inter-application Scheduling

Inter-application schedulers [63, 80] distribute entire kernels from different applications across the available compute

resources. Their solutions are primarily designed for multi-tenancy, power efficiency and fault tolerance in data cen-

ters. Remote accelerator virtualization solutions such as the cluster mode of SnuCL, rCUDA [60], or VOCL [83]

provide seamless access to accelerators placed on remote nodes. They address the workload distribution concern in

different ways. SnuCL’s cluster mode permits remote accelerator access in clusters only to those nodes within the task

allocation, and users have to do explicit workload distribution and scheduling. On the other hand, rCUDA enables

global pools of GPUs within compute clusters, performing cross-application GPU scheduling by means of extensions

to the cluster job scheduler [60]; as with SnuCL, users have to explicitly deal with load distribution and schedul-

ing within the application. VOCL implements its own automatic scheduler, which can perform device migrations

according to energy, fault tolerance, on-demand system maintenance, resource management, and load-balancing pur-

poses [48, 82]. This scheduling mechanism, however, is limited to performing transparent context migrations among

different accelerators; it is not aimed at providing performance-oriented workload distribution and scheduling.

While some of the above solutions provide scheduling support across applications, our solution provides scheduling

capabilities across command queues within an OpenCL application.

Multiplatform OpenCL Implementations and SOCL

Some OpenCL implementations integrate multiple OpenCL platforms from different vendor implementations into a

single platform, while still presenting them as separate devices. This enables cross-platform context creation and thus

object sharing (buffers, events, etc.) among different compute devices from different vendors.

On the single-node mode, SnuCL limits to presenting all available OpenCL devices to applications under the same

platform. The IBM OpenCL Common Runtime [40] also offers this functionality. Like the single-platform OpenCL

implementations, these solutions do not provide automatic cross-device scheduling.

SOCL [36] is an OpenCL frontend to the StarPU runtime framework [19]. It provides automatic task dependency

CHAPTER 3. RELATED WORK 22

Table 3.3: Comparison of SOCL with our work

MultiCL (Our Approach)

• Scheduling at synchronization epoch
granularity

• Auto-scheduling can be controlled for
portions of the queue’s lifetime

• Kernels are tasks

• Launch configuration decoupled from the
launch function

SOCL (with StarPU)

• Scheduling at kernel granularity

• Auto-scheduling for entire lifetime of the
queue

• Require specific “kernel splitter” helper
functions to create tasks

• Launch configuration cannot be changed

resolution and scheduling as well as performance modeling and device selection functionality. This solution applies

the performance modeling at kernel granularity. In our runtime, we perform modeling at synchronization epoch

granularity. Our approach enables more coarse-grained scheduling that makes device choices for task groups rather

than individual tasks. Also, it speeds the model lookup time for aggregate kernel invocations, reducing runtime

overhead.

In SOCL, dynamically scheduled queues are automatically distributed among devices, being bound for the entire

duration of the program. In our runtime, we enable users to dynamically control the queue-device binding for specific

code regions for further optimization purposes. A gist of the differences between our work and SOCL is shown in

table 3.3.

In addition, our runtime enables scheduling policies both at the context level (global) and the command queue level

(local). The latter may be set and reset during different phases of the program. Furthermore, our solution enables the

launch configuration to be decoupled from the launch function, providing kernel-device configuration customization

capabilities. A typical use case is to set different kernel launch configurations for different device types depending on

the hardware and occupancy limitations.

Chapter 4

The MPI-ACC Programming Model

In this chapter, we discuss the programming semantics of the default MPI+GPU model and MPI-ACC as well as

explain the design tradeoffs that were considered for MPI-ACC. We also describe the OpenCL extensions that we

propose to enable custom scheduling in GPU programs. This chapter is based on [11] and [17].

4.1 Designing the MPI-ACC Programming Model for Data Communication

4.1.1 Motivation

To bridge the gap between the disjointed MPI and GPU programming models, GPU-integrated MPI solutions are being

developed, such as our MPI-ACC [13] framework and MVAPICH-GPU [78] by Wang et al. These frameworks provide

a unified MPI data transmission interface for both host and GPU memories; in other words, the programmer can use

either the CPU buffer or the GPU buffer directly as the communication parameter in MPI routines. The goal of such

GPU-integrated MPI platforms is to decouple the complex, low-level, GPU-specific data movement optimizations from

the application logic, thus providing the following benefits: (1) portability: the application can be more portable across

multiple accelerator platforms, and (2) forward compatibility: with the same code, the application can automatically

23

CHAPTER 4. THE MPI-ACC PROGRAMMING MODEL 24

achieve performance improvements from new GPU technologies (e.g., GPUDirect RDMA) if applicable and supported

by the MPI implementation. In addition to enhanced programmability, transparent architecture-specific and vendor-

specific performance optimizations can be provided within the MPI layer.

With MPI-ACC, programmers only need to write GPU kernels and regular host CPU codes for computation and invoke

the standard MPI functions for CPU-GPU data communication, without worrying about the aforementioned complex

data-movement optimizations of the diverse accelerator technologies. The task-mapping subsystem of MPI-ACC aims

to automatically choose the ideal device for the given compute kernel.

4.1.2 The Application Programming Interface (API) Design

While, conceptually, most GPU-integrated MPI frameworks are broadly similar to each other, they differ with respect

to the user programming semantics they provide. Specifically, how GPU execution and communication integrates

with MPI communication can be different for different frameworks. In this section, we discuss two such programming

semantics that are found in current GPU-integrated MPI frameworks: (1) UVA-based design and (2) MPI attributes–

based design.

UVA-based design

UVA is a CUDA-specific concept that allows information about the buffer type to be encoded inside a void * size

argument. This allows both the host memory and the GPU memory to be represented within a common 64-bit virtual

address space. In such a model, the user would pass a void * communication buffer argument to MPI, as it would

do in a traditional MPI library (Figure 4.1a). The MPI implementation would, internally, query for the buffer type

attribute using CUDA’s cuPointerGetAttribute function. With this, the MPI implementation can identify whether the

buffer resides on host memory or on GPU memory and thus decide whether to perform a pipelined data transfer for

GPU data over the PCIe and network interconnects or to fall back to the traditional CPU data-transfer logic. The

cuPointerGetAttribute function can also be used to query the actual GPU device number on which the buffer resides.

CHAPTER 4. THE MPI-ACC PROGRAMMING MODEL 25

1 double *dev_buf, *host_buf;
2 if (my_rank == sender) { /* send from GPU (CUDA) */
3 MPI_Send(dev_buf, ...);
4 } else { /* receive into host */
5 MPI_Recv(host_buf, ...);
6 }

(a) UVA-based design: example MPI code where a device buffer is sent
and received as a host buffer.

1 double *cuda_dev_buf; cl_mem ocl_dev_buf;
2 /* initialize a custom type */
3 MPI_Type_dup(MPI_CHAR, &type);
4 if (my_rank == sender) { /* send from GPU (CUDA) */
5 MPI_Type_set_attr(type, BUF_TYPE, BUF_TYPE_CUDA);
6 MPI_Send(cuda_dev_buf, type, ...);
7 } else { /* receive into GPU (OpenCL) */
8 MPI_Type_set_attr(type, BUF_TYPE,
9 BUF_TYPE_OPENCL);

10 MPI_Recv(ocl_dev_buf, type, ...);
11 }
12 MPI_Type_free(&type);

(b) MPI Attribute-based design: example MPI code where a device
CUDA buffer is sent and received as an OpenCL device buffer.

Figure 4.1: Design of GPU-integrated MPI frameworks.

The MVAPICH2-GPU implementation [78], for instance, uses the UVA model. However, the cuPointerGetAttribute

function is expensive relative to extremely low-latency communication times and can add significant overhead to

host-to-host communication operations. Figure 4.2 shows the impact of this query on the latency of intra-node, CPU-

to-CPU, communication using MVAPICH v1.8 on the HokieSpeed CPU-GPU cluster.

Apart from the obvious downside that UVA is CUDA-specific and is not relevant to other programming models such as

OpenCL, this approach is fundamentally limited by the amount of information that can be passed by the user to MPI.

0.1

1

10

100

0 1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

La
te

n
cy

 (
µ

s)

Data Size (bytes)

Basic MPI

MPI + Datatype attribute check

MPI + Automatic detection

Figure 4.2: Overhead of runtime checks incurred by intranode CPU-CPU communication operations. The slowdown from auto-
matic detection (via cuPointerGetAttribute) is 23% to 235%, while the slowdown from the attribute check is at most only 3%.

CHAPTER 4. THE MPI-ACC PROGRAMMING MODEL 26

Specifically, only information that can be encoded within a 64-bit space can be passed to the MPI implementation. For

example, the user cannot inform the MPI implementation which stream (in CUDA) or command queue (in OpenCL)

can be used for the data transfer or whether MPI needs to order the data transfer relative to an event on a stream or

command queue.

MPI Attribute–based Design

Another programming semantic that can be exposed by the MPI implementation is to use MPI communicator or

datatype attributes. MPI communicators specify a collection of MPI processes and a communication context. MPI

datatypes are used to specify the type and layout of buffers passed to the MPI library. The MPI standard defines

an interface for attaching metadata to MPI communicators or datatypes through attributes. These attributes can be

used to indicate buffer type and any other information to the MPI library (Figure 4.1b). Communicator attributes

allow processes to mark a communicator as “special” in that it would always move data to/from GPUs. However,

they are restricted in that they cannot move data from the GPU on one process to host memory of another process.

Datatype attributes allow processes to perform a specific communication to/from GPU memory or host memory and

thus are fully generic and can describe any CPU/GPU communication pattern desired by the user. This approach

introduces a lightweight runtime attribute check to each MPI operation, but the overhead is negligible, as shown in

Figure 4.2. Moreover, this approach is more extensible and maintains compatibility with the MPI standard. Our

MPI-ACC framework uses this communication model.

An important capability of this model is that there is no restriction on the amount of information that the user can pass

to the MPI implementation. The MPI implementation can define attributes for the buffer type, buffer locality (e.g.,

which GPU), which stream to use, ordering semantics, or basically anything else. The MPI implementation can allow

some of these attributes to be optional for the user, for programming convenience, without restricting the user from

providing it as needed.

CHAPTER 4. THE MPI-ACC PROGRAMMING MODEL 27

4.1.3 Discussion on the Synchronization Semantics

In this section, we describe the synchronization and ordering semantics when GPU execution and data movement

operations are interleaved with GPU-integrated MPI libraries [11].

UVA-Based Design

In the naı̈ve MPI+GPU programming models, the synchronization semantics occurred only when the data changed

devices; that is, if GPU data was copied to the CPU, the programming semantics would also change from implicit

synchronization in CUDA/OpenCL to explicit synchronization in MPI or vice versa. However, since GPU-integrated

MPI can operate directly on GPU data, the synchronization semantics must be carefully defined. If GPU operations

on a CUDA stream, such as CUDA kernels or host-to-device (H2D) transfers, are followed by direct MPI operations

on the same data (i.e., if there is data dependence), there should be some form of synchronization (explicit or implicit)

between the GPU operation and the MPI call even though the data has not changed devices. If the MPI call does not

have any data dependence with the preceding GPU operation, then synchronization is not needed.

In the GPU programming model, however, streams are used to implicitly indicate data dependence and maintain

execution-order semantics. We could imagine MPI’s data-dependent operations as GPU operations that belong to

the same stream as the preceding GPU operation, but it is impossible to pass additional information, such as the

dependent GPU stream, to the UVA-based MPI model by just a void * argument. Since the UVA-based model has no

mechanism to implicitly express data dependence, GPU operations and their dependent MPI function calls are required

to explicitly synchronize for correctness. On the other hand, if a GPU operation follows a nonblocking MPI operation,

MPI semantics requires that MPI be explicitly waited upon before reusing the data.

Consider a synthetic MPI application example with N processes, where MPI process 0 computes a large array on its

local GPU and sends chunks of the array directly from the GPU to the remaining N − 1 processes, similar to a scatter

operation. For the sake of argument, let us also assume that the GPU array computation is data parallel, that is, the

array elements can be processed independently and can be pipelined. This example application can be implemented by

CHAPTER 4. THE MPI-ACC PROGRAMMING MODEL 28

1 cudaStream_t myStream[N];
2 for(rank = 1; rank < N; rank++) {
3 fooKernel<<<b, t, myStream[rank]>>>
4 (dev_buf+offset);
5 }
6 for(rank = 1; rank < N; rank++) {
7 /* explicit GPU stream sync before MPI */
8 cudaStreamSynchronize(myStream[rank]);
9 MPI_Send(dev_buf+offset, rank, ...);

10 }

(a) Simple UVA-based design: explicit GPU synchronization with syn-
chronous MPI.

1 cudaStream_t myStream[N];
2 int processed[N] = {1, 0};
3 for(rank = 1; rank < N; rank++) {
4 fooKernel<<<b, t, myStream[rank]>>>(dev_buf+offset);
5 }
6 numProcessed = 0; rank = 1;
7 while(numProcessed < N - 1) {
8 /* explicit GPU stream query before MPI */
9 if (cudaStreamQuery(myStream[rank])==cudaSuccess) {

10 MPI_Isend(dev_buf+offset, rank, ...);
11 numProcessed++;
12 processed[rank] = 1;
13 }
14 MPI_Testany(...); /* check progress */
15 flag = 1;
16 if(numProcessed < N - 1) /* find next rank */
17 while(flag) {
18 rank=(rank+1)%N; flag=processed[rank];
19 }
20 }
21 MPI_Waitall();

(b) Advanced UVA-based design: explicit GPU synchronization with
asynchronous MPI.

Figure 4.3: Data-dependent MPI+GPU program with explicit GPU synchronization and designed with UVA-based MPI.

using the UVA-based design in a couple of ways as shown in Figure 4.3, where the GPU kernel execution is pipelined

with data movement, but MPI can be synchronous or asynchronous. Clearly, while the example in Figure 4.3a is

simpler, it is also less efficient because of the blocking GPU and MPI calls. Moreover, while the GPU kernels in the

different streams can finish in any order, the program waits for them in issue order. This unnecessary wait is removed

in Figure 4.3b, but the code becomes more complex.

Disadvantages of the UVA-Based Design While the UVA-based design provides an ideal API by perfectly conform-

ing to the MPI standard for end-to-end CPU-GPU communication, its code semantics forces explicit synchronization

between data-dependent (ordered) and interleaved GPU and MPI operations. The MPI implementation can potentially

avoid the explicit synchronization semantics by conservatively invoking cudaDeviceSynchronize before performing

CHAPTER 4. THE MPI-ACC PROGRAMMING MODEL 29

data movement, but this approach will obviously hurt performance and is impractical. Moreover, the UVA-based de-

sign is not extensible for other accelerator models such as OpenCL that do not support UVA, because it is impossible

to pass the cl context and cl command queue arguments to MPI through just the void * argument.

MPI Attribute–based Design

Since MPI can directly operate on GPU data, the synchronization semantics of the MPI attribute-based model must also

be carefully defined, that is, explicit vs. implicit. Of course, one can treat the attribute-based model just like the UVA-

based model and introduce explicit synchronization semantics between data-dependent GPU and MPI calls; but we can

do better with this model because there is no restriction in the amount of information that the user can pass to the MPI

implementation via the MPI attribute metadata. Since GPU streams implicitly indicate data dependence on GPUs, the

programmer can now pass the stream parameter itself as one of the MPI attributes. The MPI implementation can use

this stream information to perform additional optimizations for best performance. For example, if a stream parameter

is associated with an asynchronous MPI Isend call, the stream could be added to a stream pool that is periodically

queried for completion instead of blocking on cudaStreamSynchronize immediately. The MPI implementer is free

to apply different heuristics and additional optimizations on the stream parameter, as needed. Since there exists a

mechanism in the attribute-based model to implicitly express data dependence, GPU operations and their dependent

MPI function calls can be either implicitly or explicitly synchronized for correctness. On the other hand, if a GPU

operation follows a nonblocking MPI operation, MPI semantics requires that MPI be explicitly waited upon before

reusing the data.

The synthetic MPI application example from Figure 4.3 can now be easily implemented in MPI-ACC by using the

attribute-based design and implicit synchronization as shown in Figure 4.4. Note that the stream parameter that is

passed to MPI Isend is different for each loop iteration (or rank) and we have to set that attribute in every loop. The

GPU buffer attribute type is constant and is set once before the loop execution. This example is fully nonblocking with

asynchronous and interleaved GPU and MPI operations. With this design, we can do away with the complex logic of

looping over the GPU streams and explicitly coordinating between the GPU and MPI operations. Instead, by passing

CHAPTER 4. THE MPI-ACC PROGRAMMING MODEL 30

1 cudaStream_t myStream[N];
2 for(rank = 1; rank < N; rank++) {
3 fooKernel<<<b, t, myStream[rank]>>>(dev_buf+offset);
4 /* implicit GPU stream sync before MPI */
5 MPI_Type_dup(MPI_CHAR, &new_type);
6 MPI_Type_set_attr(new_type, BUF_TYPE, BUF_TYPE_CUDA);
7 MPI_Type_set_attr(new_type, STREAM_TYPE, myStream[rank]);
8 MPI_Isend(dev_buf+offset, new_type, rank, ...);
9 MPI_Type_free(&new_type);

10 }
11 /* explicit MPI sync */
12 MPI_Waitall();

Figure 4.4: Data-dependent MPI+GPU program designed with the MPI attribute-based design of MPI-ACC. The example show-
cases implicit GPU synchronization with asynchronous MPI.

more information to MPI, the synchronization semantics can be implicitly controlled within the MPI implementation.

Design of Stream Synchronization in MPI-ACC Figure 4.5 illustrates our approach to synchronizing GPU and

MPI operations within MPI-ACC. We consider only GPU-specific MPI operations for this discussion; the CPU data

is handled separately as before. When the programmer initiates an asynchronous MPI call on a GPU buffer with a

dependent stream parameter, we have two options: (1) we can use the application’s stream itself for the data transfers,

which means that we avoid the complex management of streams and their synchronization within MPI, or (2) we can

wait for the completion of the application stream and use MPI-ACC’s multiple internal streams for more efficient data

transfer. We use the second approach because, in practice, multiple streams are more efficient for pipelining, although

their management can become complex. Once the user initiates an MPI command, we simply create a corresponding

request object in MPI-ACC, add it to the outstanding GPU request pool, and return. We do not query immediately or

wait for the stream object. MPICH’s progress engine periodically checks for unfinished MPI transactions and tries to

complete them when possible. We leverage and extend the progress engine to periodically query for all the unfinished

stream requests. If we find that a stream request has completed, it means that the data dependence semantics have

been observed and that we are free to communicate the corresponding GPU data by using our internal streams. For

every completed stream request, we follow MPI’s communication protocol to send the rest of the data to the receiver,

namely, send the Ready-To-Send (RTS) packet to receiver, wait for the Clear-To-Send (CTS) packet, and then transfer

the actual GPU payload data to the receiver. On the other hand, if the programmer initiates an MPI call without a

dependent stream parameter, it means that the data is immediately ready to be transferred. In this case, we do not add

CHAPTER 4. THE MPI-ACC PROGRAMMING MODEL 31

MPI_Isend
Stream
Request
Object

Request
creation GPU Stream Request

Pool

GPU Stream Request
Pool

On request
completion

Send Initiation

Progress Engine Loop

1. Perform RTS/CTS
handshake.

2. Send payload data
using multiple GPU
streams.

Figure 4.5: MPI-ACC’s design for MPI+GPU synchronization. Example: MPI Isend.

this request to the stream pool but directly send an RTS packet to the receiver to initiate data communication.

4.2 Extending the OpenCL Programming Model for Task Scheduling

In this section, we describe our proposed minor OpenCL API extensions to express global and local scheduling policies

and the proposed OpenCL functions for decoupling kernel launches from the actual device. Our proposed extensions

enable programmers to perform algorithmic decompositions among the queues and let the specified scheduler map

them to the underlying devices. Table 4.1 summarizes our proposed extensions.

4.2.1 Global Scheduling at the Context

We extend the OpenCL context to specify a context-wide global queue scheduling policy. The global scheduling

policy influences the final queue-device mapping. On the other hand, the queue-specific local scheduling options will

determine if a specific command queue is participating in automatic scheduling or the code extent through which the

CHAPTER 4. THE MPI-ACC PROGRAMMING MODEL 32

Table 4.1: Proposed extensions to the OpenCL specification

CL Function CL Extensions Parameter Names Options

clCreateContext
New parameters

and options
CL_CONTEXT_SCHEDULER

ROUND_ROBIN
AUTO_FIT

clCreateCommandQueue New parameters

SCHED_OFF
SCHED_AUTO_STATIC
SCHED_AUTO_DYNAMIC
SCHED_KERNEL_EPOCH

SCHED_EXPLICIT_REGION
SCHED_ITERATIVE

SCHED_COMPUTE_BOUND
SCHED_IO_BOUND

SCHED_MEMORY_BOUND

N/A

clSetCommandQueueSche
dProperty

New CL API

clSetKenelWorkGroupInfo New CL API N/A N/A

queue is eligible for automatic scheduling.

We propose a new parameter to the context property called CL CONTEXT SCHEDULER to express the global schedul-

ing policies. Currently, we support the following global scheduler policies: round robin and autofit. The round-robin

policy schedules the command queue to the next available device when the scheduler is triggered. This approach is

expected to cause the least overhead but may not always produce the optimal queue-device map. On the other hand,

the autofit policy decides the most optimal queue-device mapping when the scheduler is triggered. The global policies,

in conjunction with the local command queue–specific options, will determine the final queue-device mapping.

4.2.2 Local Scheduling Options at the Command Queue

While command queues that are created with the same context share data and kernel objects, they also share the

context’s global scheduling policy. We extend the OpenCL command queue to specify a local scheduling option that

is queue-specific. The combination of global-local scheduler policies can be leveraged by the runtime to result in a

more optimal device mapping. The command queue properties are implemented as bitfields, so the user can specify a

combination of local policies.

Setting the queue property to either SCHED AUTO * or SCHED OFF determines whether the particular queue is opting

in or out of the automatic scheduling, respectively. For example, an intermediate or advanced user may want to

manually optimize the scheduling of just a subset of the available queues by applying the SCHED OFF flag to them,

CHAPTER 4. THE MPI-ACC PROGRAMMING MODEL 33

while the remaining queues may use the SCHED AUTO DYNAMIC flag to participate in automatic scheduling. Static

vs. dynamic automatic scheduling provides a tradeoff between speed and optimality. Command queue properties can

also specify scheduler triggers to control the scheduling chunk size, frequency of scheduling, and scheduling code

regions. For example, the SCHED KERNEL EPOCH flag denotes that scheduling should be triggered after a batch

of kernels (kernel epoch) are synchronized and not after individual kernels. The SCHED EXPLICIT REGION flag

denotes that scheduling for the given queue should be triggered between explicit start and end regions in the program,

and the new clSetCommandQueueSchedProperty OpenCL command is used to mark the scheduler region

and set more scheduler flags if needed. Queue properties may also be used to provide optimization hints to the

scheduler. Depending on the expected type of computation in the given queue, the following properties may be used:

SCHED COMPUTE BOUND, SCHED MEM BOUND, SCHED IO BOUND, or SCHED ITERATIVE. For example, if the

SCHED COMPUTE BOUND flag is used, the runtime chooses to perform minikernel profiling to reduce overhead.

4.2.3 Specifying Device-Specific Kernel Options

The parameters to the OpenCL kernel launch functions include a command queue, a kernel object, and the kernel’s

launch configuration. The launch configuration is often determined by the target device type, and it depends on the

device architecture. Currently, per-device kernel configuration customization is possible only through custom condi-

tional programming at the application level. The device-specific launch function forces the programmer to manually

schedule kernels on a device, which leads to poor programmability.

We propose a new OpenCL API function called clSetKernelWorkGroupInfo to independently set unique kernel

configurations to different devices. Its signature is shown in Figure 4.6. The purpose of this function is to enable

the programmer to separately express the different combinations of kernel configuration and devices beforehand so

that when the runtime scheduler maps the command queues to the devices, it can also profile the kernels using the

device-specific configuration that was set before. The clSetKernelWorkGroupInfo function may be invoked

at any time before the actual kernel launch. If the launch configuration is already set before the launch for each

device, the runtime simply uses the device-specific launch configuration to run the kernel on the dynamically chosen

CHAPTER 4. THE MPI-ACC PROGRAMMING MODEL 34

1 cl_int clSetKernelWorkGroupInfo(cl_kernel kernel,
2 cl_device_id *devices,
3 cl_uint num_devices,
4 cl_uint work_dim,
5 const size_t *global_work_offset,
6 const size_t *global_work_size,
7 const size_t *local_work_size)

Figure 4.6: API proposal to decouple kernel launch configuration with the actual launch itself to give more scheduling options to
the runtime.

device. We do not change the parameters to the clEnqueueNDRangeKernel and other launch API, but the kernel

configuration parameters are ignored if they are already set by using clSetKernelWorkGroupInfo.

4.3 Codesigning the Data Movement and Task Scheduler API

While the data movement library ideally interfaces with the high-level device abstractions provided by the GPU run-

time, sometimes, it may be necessary to implement some device-specific optimizations. For example, pinned mem-

ory for device-host RDMA cannot be shared across devices, and so the MPI runtime may want to query for the

queue’s device use device-specific resources. Furthermore, the task scheduler runtime may change the queue-device

association whenever the scheduler gets triggered. While the clGetCommandQueueInfo OpenCL API supports

the CL QUEUE DEVICE parameter to return the device that was used during queue creation, we add a new flag

CL QUEUE LATEST DEVICE property to the command queue to retrieve the latest device that was scheduled for the

command queue. For example, the MPI runtime can query for the latest device that was associated with a queue after

a data read/write and then choose the respective buffer pool for pipelining.

4.4 Conclusion

By using three implementations of a synthetic example program (Figures 4.3 and 4.4), we demonstrated that with the

UVA-based design one can use only the explicit synchronization method. On the other hand, with the MPI attribute-

based design, we can use either explicit or implicit synchronization, and the programmer can choose the preferred

CHAPTER 4. THE MPI-ACC PROGRAMMING MODEL 35

programming style. The attribute-based design can be considered somewhat like a superset of the UVA-based design.

To use implicit GPU synchronization with attribute-based design, the programmer sets the stream parameter as an

MPI attribute, while explicit synchronization can be used by simply not setting it. The explicit synchronization of the

advanced UVA approach (Figure 4.3b) is more complex to code when compared with the simple UVA- and attribute-

based approaches but is more likely to achieve the best performance. On the other hand, the attribute-based implicit

GPU synchronization example is the most straightforward to code, but its performance depends on MPI’s internal

implementation, for example, the stream request pool management. We have chosen the attribute-based design for

MPI-ACC.

To address the problem of static device management and scheduling in OpenCL, we proposed to add global and local

scheduling policies to the OpenCL specification. These policies can be leveraged by a runtime system to schedule

command queues and kernels among the available devices, as we discuss in Chapter 6. Our proposed scheduling

policies are specified via new attributes to the cl context and cl command queue objects. Our hierarchical

scheduling policies provide sufficient information to a runtime scheduler to perform ideal device mapping, thereby

enabling the average user to focus on the algorithm-level parallelism rather than scheduling. Attributes may be applied

for the entire lifetime of the command queues, implicit synchronization epochs, or any explicit code regions. We also

proposed and defined a new OpenCL function to separately specify per-device kernel execution configurations, which

enables the scheduler to choose the appropriate configuration at kernel launch time, thereby associating a kernel launch

with a high level command queue rather than a low level physical device. The advanced users can choose to not use

any of the above scheduling policies and functions in order to manually schedule and extract performance, as usual.

Chapter 5

Data Movement with MPI-ACC

In this chapter, we discuss the data-movement subsystem of MPI-ACC. We discuss the optimizations for end-to-end

data transfers among accelerators and evaluate them using microbenchmarks and case studies from epidemiology and

seismology modeling. This chapter is based on [13,14] and focuses on inter-node communication optimizations. Our

related work on intra-node data movement optimizations [41, 42] is not included in this chapter.

5.1 The MPICH Software Stack

MPICH [2] is an open-source, high-performance MPI implementation. We extend MPICH to implement MPI-ACC’s

accelerator communication support. MPICH and its derivatives form the most widely used implementations of MPI in

the world. They are used exclusively on nine of the top 10 supercomputers (November 2014 ranking), including the

world’s current fastest supercomputer: Tianhe-2.

The communication software stack is shown in Figure 5.1. The application invokes the MPI library API, which in

turn calls a device layer abstraction. The ‘CH3’ device is the default example implementation of the MPICH ADI3

(Abstract Device Interface) that provides an implementation of the ADI3 using a relatively small number of functions.

36

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 37

MPI

CH3 DCMFD

NemesisSock …

TCP IB MX ...

ADI3 Interface

CH3 Interface

Netmod Interface

...

MPI Interface

Application

Device layer

Channel layer

Netmod layer

MPI layer

Figure 5.1: The MPICH software stack.

The device implements communication channels. A channel provides routines to send data between two MPI processes

and to make progress on communications. A channel may define additional capabilities (optional features) that the

CH3 device may use to provide better performance or additional functionality. Different channels may be selected at

build time, and we choose the ‘Nemesis’ default communication channels in our implementation. Multiple network

module, or netmod, implementations are available within Nemesis, out of which we implement MPI-ACC within the

InfiniBand netmod.

The MPICH design principle is based on the one-size-does-not-fit-all policy. The MPICH design is modular and broad

enough to support as many architectures and communication interfaces as possible, while performing key optimiza-

tions within each module at any layer in the software stack. Third-party vendors like MVAPICH, Cray and IBM may

extend MPICH to suit their specific architectural needs while enjoying the portability of MPI. MPI-ACC is similarly

extended by optimizing key components in the CH3, Nemesis and InfiniBand (IB) layers of the communication stack.

5.2 Optimizations

Once MPI-ACC has identified a device buffer, it leverages PCIe and network link parallelism to optimize the data

transfer via pipelining. Pipelined data transfer parameters are dynamically selected based on NUMA and PCIe affinity

to further improve communication performance. We discuss the pipelining and OpenCL metadata optimizations in

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 38

this chapter, but the other optimizations can be found in [13].

5.2.1 Data Pipelining

We hide the PCIe latency between the CPU and GPU by dividing the data into smaller chunks and performing pipelined

data transfers between the GPU, the CPU, and the network. To orchestrate the pipelined data movement, we create

a temporary pool of host-side buffers that are registered with the GPU driver (CUDA or OpenCL) for faster DMA

transfers. The buffer pool is created at MPI Init time and destroyed during MPI Finalize. The system administrator

can choose to enable CUDA and/or OpenCL when configuring the MPICH installation. Depending on the choice of

the GPU library, the buffer pool is created by calling either cudaMallocHost for CUDA or clCreateBuffer (with the

CL MEM ALLOC HOST PTR flag) for OpenCL.

To calculate the ideal pipeline packet size, we first individually measure the network and PCIe bandwidths at different

data sizes (Figure 5.2), then choose the packet size at the intersection point of the above channel rates, 64 KB for

our experimental cluster (section 5.4). If the performance at the intersection point is still latency bound for both data

channels (network and PCIe), then we pick the pipeline packet size to be the size of the smallest packet at which

the slower data channel reaches peak bandwidth. The end-to-end data transfer will then also work at the net peak

bandwidth of the slower data channel. Also, only two packets are needed to do pipelining by double buffering:

one channel receives the GPU packet to the host while the other sends the previous GPU packet over the network.

We therefore use two CUDA streams and two OpenCL command queues per device per MPI request to facilitate

pipelining.

The basic pipeline loop for a “send” operation is as follows (“receive” works the same way, but the direction of the

operations is reversed). Before sending a packet over the network, we check for the completion of the previous GPU-

to-CPU transfer by calling cudaStreamSynchronize or a loop of cudaStreamQuery for CUDA (or the corresponding

OpenCL calls). However, we find that the GPU synchronization/query calls on already completed CPU-GPU copies

cause a significant overhead in our experimental cluster, which hurts the effective network bandwidth and forces us to

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 39

100

1000

10000

16384 32768 65536 131072 262144 524288 1048576 2097152

B
an

d
w

id
th

 (
M

B
/s

)

Packet Sizes (Bytes)

Network Bandwidth

GPU-CPU PCIe Bandwidth

Effective Network Bandwidth (with redundant GPU
synch overhead)

Figure 5.2: Choosing the pipeline parameters: network – InfiniBand, transfer protocol – R3.

choose a different pipeline packet size. For example, we measure the cost of stream query/synchronization operations

as approximately 20 µs, even though the data transfer has been completed. Moreover, this overhead occurs every time

a packet is sent over the network, as shown in Figure 5.2 by the “Effective Network Bandwidth” line. We observe that

the impact of the synchronization overhead is huge for smaller packet sizes but becomes negligible for larger packet

sizes (2 MB). Also, we find no overlap between the PCIe bandwidth and the effective network bandwidth rates, and

the PCIe is always faster for all packet sizes. Thus, we pick the smallest packet size that can achieve the peak effective

network bandwidth (in our case, this is 256 KB) as the pipeline transfer size for MPI-ACC. Smaller packet sizes (<256

KB) cause the effective network bandwidth to be latency-bound and are thus not chosen as the pipeline parameters. In

MPI-ACC, we use the pipelining approach to transfer large messages—namely, messages that are at least as large as

the chosen packet size—and fall back to the nonpipelined approach when transferring smaller messages.

5.2.2 Dynamic Choice of Pipeline Parameters

The effective data transfer bandwidth out of a node in current heterogeneous clusters may vary significantly. A com-

mon scenario of heterogeneous performance involves multisocket, multicore CPU architectures that may have multiple

memory and PCIe controllers (GPU or IB) per socket, where the access latencies vary significantly depending on the

affinity of the executing CPU core and the target memory or PCIe controller. The sockets within a die are connected

via quick links, such as QPI (Intel) and HT (AMD), and the additional intersocket data transfers hurt performance. For

example, if the target memory module controller and the GPU PCIe controller are on different sockets, the GPU-CPU

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 40

0

1

2

3

4

5

6

7

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

B
an

d
w

id
th

 (
G

B
/s

)

Data Size (bytes)

InfiniBand (Socket 0 to 0)

InfiniBand (Socket 1 to 1)

CPU-GPU (Same socket)

CPU-GPU (Cross Socket)

GPU-CPU (Same socket)

GPU-CPU (Cross socket)

Figure 5.3: NUMA and PCIe affinity issues affecting the effective bandwidth of CPU-GPU and InfiniBand network transfers.

data transfer bandwidth can slow by as much as 49% (Figure 5.3). Similarly, the InfiniBand network bandwidth can

slow by 7% because of the varying network controller affinity. Since the effective bandwidth can change dynamically

and significantly, we also choose the pipeline parameters (packet size) dynamically at runtime for both the source and

destination processes. We inspect a series of benchmark results; learn the dynamic system characteristics, such as

the CPU socket binding; and then apply architecture-aware heuristics to choose the ideal transfer parameters for each

communication request, all at runtime.

The sender sends a ready-to-send (RTS) message at the beginning of every MPI communication. The receiver sends

a corresponding clear-to-send (CTS) message back, and then the sender begins to transfer the actual payload data.

Thus, the sender encapsulates the local pipeline parameters within the RTS message and sends it across the network.

The receiver inspects the sender’s parameters and also the receiver’s system characteristics (e.g., socket binding) and

chooses the best pipeline parameters for the current communication transaction, based on our benchmark results and

corresponding heuristics. The receiver then sends the CTS message back to the sender along with its chosen pipeline

parameters. The sender uses the received pipeline parameters to perform data movement from the GPU, as before.

In this approach, the two participating processes both first pick an initial pipeline configuration, then coordinate via

RTS/CTS messages to converge on a single packet size depending on the effective bandwidth of the participating

processes.

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 41

5.2.3 OpenCL Issues and Optimizations

In OpenCL, device data is encapsulated as a cl mem object that is created by using a valid cl context object. To transfer

the data to/from the host, the programmer needs valid cl device id and cl command queue objects, which are all created

by using the same context as the device data. At a minimum, the MPI interface for OpenCL communication requires

the target OpenCL memory object, context, and device ID objects as parameters. The command queue parameter is

optional and can be created by using the above parameters. Within the MPICH implementation, we either use the user-

provided command queue or create several internal command queues for device-host data transfers. Within MPICH,

we also create a temporary OpenCL buffer pool of pinned host-side memory for pipelining. However, OpenCL requires

that the internal command queues and the pipeline buffers also be created by using the same context as the device data.

Also, in theory, the OpenCL context could change for every MPI communication call, and so the internal OpenCL

objects cannot be created at MPI Init time. Instead, they must be created at the beginning of every MPI call and

destroyed at the end of it.

The initialization of these temporary OpenCL objects is expensive and their repeated usage severely hurts performance.

We cache the command queue and pipeline buffer objects after the first communication call and reuse them if the same

OpenCL context and device ID are used for the subsequent calls, which is a very plausible scenario. If any future

call involves a different context or device ID, we clear and replace our cache with the most recently used OpenCL

objects. In this way, we can amortize the high OpenCL initialization cost across multiple calls and significantly

improve performance. We use a caching window of one, which we consider to be sufficient in practice.

5.3 Application Case Studies

In this section, we first perform an in-depth analysis of the default MPI+GPU application design in scientific appli-

cations from computational epidemiology and seismology modeling. We identify the inherent data movement inef-

ficiencies and show how MPI-ACC can be used to explore new design spaces and create novel application specific

optimizations.

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 42

1

2

3

4

a

b

c

8-9

9-12
8-10

10-12

8-10
8-12

10-12

(a) Bipartite graph representation
with people 1–4 and locations a–c.

a

b

c
8:00 9:00 10:00 11:00 12:00

1,2 1

1,3,4 2,3

4

2

3,4

(b) Temporal and spatial people-to-people contacts.

8:00 9:00 10:00 11:00 12:00

2
3
4

latent infectious

1
susceptible

susceptible

Potential
Transmissionsucept.

(c) Occupancy of location b overlaid with the health
states of its occupants. The dotted area shows the
time of possible disease transmission.

Figure 5.4: Computational epidemiology simulation model (figure adapted from [22]).

5.3.1 EpiSimdemics

GPU-EpiSimdemics [22, 24] is a high-performance, agent-based simulation program for studying the spread of epi-

demics through large-scale social contact networks and the co-evolution of disease, human behavior, and the social

contact network. The participating entities in GPU-EpiSimdemics are persons and locations, which are represented as

a bipartite graph (Figure 5.4a) and interact with each other iteratively over a predetermined number of iterations (or

simulation days). The output of the simulation is the relevant disease statistics of the contagion diffusion, such as the

total number of infected persons or an infection graph showing who infected whom and the time and location of the

infection.

Phases

Each iteration of GPU-EpiSimdemics consists of two phases: computeVisits and computeInteractions. During the

computeVisits phase, all the person objects of every processing element (or PE) first determine the schedules for

the current day, namely, the locations to be visited and the duration of each visit. These visit messages are sent to the

destination location’s host PE (Figure 5.4a). Computation of the schedules is overlapped with the visit communication.

In the computeInteractions phase, each PE first groups the received visit messages by their target locations. Next,

each PE computes the probability of infection transmission between every pair of spatially and temporally co-located

people in its local location objects (Figure 5.4b), which determines the overall disease spread information of that

location. The infection transmission function depends on the current health states (e.g., susceptible, infectious, latent)

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 43

of the people involved in the interaction (Figure 5.4c) and the transmissibility factor of the disease. These infection

messages are sent back to the “home” PEs of the infected persons. Each PE, upon receiving its infection messages,

updates the health states of the infected individuals, which will influence their schedules for the following simulation

day. Thus, the messages that are computed as the output of one phase are transferred to the appropriate PEs as inputs

of the next phase of the simulation. The system is synchronized by barriers after each simulation phase.

Computation-Communication Patterns and MPI-ACC-Driven Optimizations

In GPU-EpiSimdemics, each PE in the simulation is implemented as a separate MPI process. Also, the computeInter-

actions phase of GPU-EpiSimdemics is offloaded and accelerated on the GPU while the rest of the computations are

executed on the CPU [24].1 In accordance with the GPU-EpiSimdemics algorithm, the output data elements from the

computeVisits phase (i.e., visit messages) are first received over the network, then merged, grouped, and preprocessed

before the GPU can begin the computeInteractions phase of GPU-EpiSimdemics.

Moreover, there are two GPU computation modes depending on how the visit messages are processed on the GPUs:

exclusive GPU computation, where all the visit messages are processed on the GPU, and cooperative CPU-GPU

computation, where the visit messages are partitioned and concurrently processed on both the GPU and its host CPU.

For each mode, we discuss the optimizations and tradeoffs. We also describe how MPI-ACC can be used to further

optimize GPU-EpiSimdemics in both computation modes.

Exclusive CPU-GPU computation mode Internode CPU-GPU data communication: In the naı̈ve data movement

approach, each PE first receives all the visit messages in the CPU’s main memory during the computeVisits phase,

then transfers the aggregate data to the local GPU (device) memory across the PCIe interface at the beginning of the

computeInteractions phase. The typical all-to-all or scatter/gather type of operation is not feasible because the number

of pairwise visit message exchanges is not known beforehand in GPU-EpiSimdemics. Thus, each PE preallocates

and registers fixed-sized persistent buffer fragments with the MPI Recv init call and posts the receive requests by

1The current implementation of GPU-EpiSimdemics assumes one-to-one mapping of GPUs to MPI processes.

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 44

Network

PEi (Host CPU)

GPUi (Device)

1. Copy to GPU

2. Pre-process on GPU

GPUi (Device)

PEi (Host CPU)

Network

1a. Pipelined or direct
data transfers to GPU

1b. Pipelined pre-processing
with GPU communication

(a) Exclusive GPU computation mode. Left: Manual MPI+CUDA optimizations, where the visit messages are
received on the host, then copied to the device for preprocessing. Right: New MPI-ACC–enabled optimiza-
tions, where the visit messages are transparently pipelined into the device and preprocessing is overlapped.

PEi (Host CPU)

GPUi (Device)

1
. P

ar
ti

ti
o

n
 d

at
a

fo
r

si
m

u
lt

an
eo

u
s

C
P

U
-

G
P

U
 e

xe
cu

ti
o

n

2. Copy partitioned buffers to the GPU

3
a

. P
re

-
p

ro
ce

ss
e

o
n

G

P
U

3b. Pre-process on CPU

4. Lastly, compute
simultaneously on
CPU and GPU with
these buffers

PEi (Host CPU)

GPUi (Device)

1
. P

ar
ti

ti
o

n
 d

at
a

fo
r

si
m

u
lt

an
eo

u
s

C
P

U
-

G
P

U
 e

xe
cu

ti
o

n

2. Copy partitioned
buffers to the CPU

3. Pre-process on CPU

4. Lastly, compute
simultaneously on
CPU and GPU with
these buffers

0. Pre-processed buffer

(b) Cooperative CPU-GPU computation mode. Left: Manual MPI+CUDA optimizations, where data partition-
ing happens on the CPU. Right: New MPI-ACC–enabled optimizations, where the data distribution happens
on the GPU. The preprocessing of the GPU data is still overlapped with communication.

Figure 5.5: Creating new optimizations for GPU-EpiSimdemics using MPI-ACC.

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 45

subsequently calling MPI Start all. Whenever a buffer fragment is received, it is copied into a contiguous visit

vector in the CPU’s main memory. The computeInteractions phase of the simulation first copies the aggregated visit

vector to the GPU memory. While the CPU-CPU communication of visit messages is somewhat overlapped with

their computation on the source CPUs, the GPU and the PCIe interface will remain idle until the visit messages are

completely received, merged, and ready to be transferred to the GPU.

Preprocessing phase on the GPU: As a preprocessing step in the computeInteractions phase, we modify the data layout

of the visit messages to be more amenable to the massive parallel architecture of the GPU [24]. Specifically, we unpack

the visit message structures to a 2D time-bin matrix, where each row of the matrix represents a person-location pair and

the cells in the row represents fixed time slots of the day: that is, each visit message corresponds to a single row in the

person-timeline matrix. Depending on the start time and duration of a person’s visit to a location, the corresponding

row cells are marked as visited. The preprocessing logic of data unpacking is implemented as a separate GPU kernel

at the beginning of the computeInteractions phase. The matrix data representation enables a much better SIMDization

of the computeInteractions code execution, which significantly improves the GPU performance. However, we achieve

the benefits at the cost of a larger memory footprint for the person-timeline matrix, as well as a computational overhead

for the data unpacking. MPI-ACC–enabled optimizations: In the basic version of GPU-EpiSimdemics, the GPU

remains idle during the internode data communication phase of computeVisits, whereas the CPU remains idle during

the preprocessing of the computeInteractions phase on the GPU. With MPI-ACC, during the computeVisits phase, we

transfer the visit message fragments from the source PE directly to the destination GPU’s device memory. Internally,

MPI-ACC may pipeline the internode CPU-GPU data transfers via the host CPU’s memory or use direct GPU transfer

techniques (e.g., GPUDirect RDMA), if possible, but these details are hidden from the programmer. The fixed-sized

persistent buffer fragments are now preallocated on the GPU and registered with the MPI Recv init call, and the

contiguous visit vector is not created in the GPU memory itself. Furthermore, as soon as a PE receives the visit

buffer fragments on the GPU, we immediately launch small GPU kernels that preprocess on the received visit data,

that is, unpack the partial visit messages to the 2D data matrix layout (Figure 5.5). These preprocessing kernels

execute asynchronously with respect to the CPU in a pipelined fashion and thus are completely overlapped by the visit

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 46

data generation on the CPU and the internode CPU-GPU data transfers. In this way, the data layout transformation

overhead is completely hidden and removed from the computeInteractions phase. Moreover, the CPU, GPU, and the

interconnection networks are all kept busy, performing either data transfers or the preprocessing execution.

MPI-ACC’s internal pipelined CPU-GPU data transfer largely hides the PCIe transfer latency during the computeVisits

phase. However, it still adds a non-negligible cost to the overall communication time when compared with the CPU-

CPU data transfers of the default MPI+GPU implementation. However, our experimental results show that the gains

achieved in the computeInteractions phase due to the preprocessing overlap outweigh the communication overheads

of the computeVisits phase for all system configurations and input data sizes.

Advanced MPI+GPU optimizations without using MPI-ACC: The above discussed optimizations can also be im-

plemented at the application level without using MPI-ACC, as follows. The fixed-sized persistent receive buffer

fragments are pre-allocated on the CPU itself and registered with the MPI Recv init call, but the contiguous visit

vector resides in GPU memory. Whenever a PE receives a visit buffer fragment on the CPU, we immediately en-

queue an asynchronous CPU-GPU data transfer to the contiguous visit vector and also enqueue the associated GPU

preprocessing kernels.

However, to enable asynchronous CPU-GPU data transfers, the receive buffers have to be nonpageable (pinned) mem-

ory. Moreover, since the number of visit message exchanges is not known beforehand to the application, each PE

creates a receive buffer fragment corresponding to every other participating PE in the simulation, i.e. the pinned

memory footprint increases with the number of processes. This design reduces the available pageable CPU memory

which could lead to poor CPU performance [9]. The pinned memory management logic can be implemented at the

application level in a couple of ways, as follows. In the first approach, the pinned memory pool is created before

the computeVisits phase begins and is destroyed once the phase finishes, but the memory management routines are

invoked every simulation iteration. While this approach is relatively simple to implement, repeated memory manage-

ment leads to significant performance loss. In the second approach, the pinned memory pool is created once before

the main simulation loop and destroyed after the loop ends, which avoids the performance overhead of repeated mem-

ory management. However, this approach leads to a more complex application design because the programmer has

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 47

to explicitly and efficiently reuse the pinned memory. Moreover, the large and growing pinned memory allocation

reduces the available pageable CPU memory not only for the computeVisits phase, but also for the other phases of the

simulation, including computeInteractions. We discuss the performance tradeoffs of the above two manual memory

management techniques in section 5.4.2.

On the other hand, MPI-ACC helps the programmer by enabling automatic and efficient memory management tech-

niques. While the MPI-ACC–based solution also manages persistent receive buffers, it does so on the GPU’s memory,

which is an order of magnitude faster than managing the host-side pinned memory. MPI-ACC internally creates and

manages a constant pool of pinned memory during MPI Init and automatically reuses it for all CPU-GPU trans-

fers, thereby enabling better scaling and easier programmability. Moreover, MPI-ACC exposes a natural interface to

communicate with the target device (CPU or GPU), without treating CPUs as explicit communication relays.

Cooperative CPU-GPU computation mode The exclusive GPU computation mode achieved significant overlap of

communication with computation during the preprocessing phase. When the infection calculation of the computeIn-

teractions phase was executed on the GPU, however, the CPU remained idle. On the other hand, in the cooperative

computation mode, all the incoming visit messages are partitioned and processed concurrently on the GPU and its host

CPU during the computeInteractions phase, an approach that gives better parallel efficiency. Again, we present three

optimizations with their tradeoffs.

Basic MPI+GPU with data partitioning on CPU: In the MPI+GPU programming model, the incoming visit vector

on the CPU is not transferred in its entirety to the GPU. Instead, the visit messages are first grouped by their target

locations into buckets. Within each visit group, the amount of computation increases quadratically with the group size

because it is an all-to-all person-person interaction computation within a location. Each visit group can be processed

independently of the others but has to be processed by the same process or thread (CPU) or thread block (GPU).

Therefore, data partitioning in GPU-EpiSimdemics is done at the granularity of visit groups and not individual visit

messages.

At a high level, the threshold for data partitioning is chosen based on the computational capabilities of the target

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 48

processors (e.g., GPUs get more populous visit groups for higher concurrency) so that the execution times on the CPU

and the GPU remain approximately the same. The visit messages that are marked for GPU execution are then grouped

and copied to the GPU device memory, while the CPU visit messages are grouped and remain on the host memory

(Figure 5.5b).

Preprocessing and computation phases: In this computation mode, preprocessing, in other words, unpacking the visit

structure layout to the person-timeline matrix layout, is concurrently executed on the CPU and GPU on their local

visit messages (Figure 5.5b). Next, the CPU and GPU simultaneously execute computeInteractions and calculate the

infections.

MPI-ACC–enabled optimizations with data partitioning on GPU: In the MPI-ACC model, the computation of the

computeInteractions phase is executed on the CPU and GPU concurrently. While this approach leads to better re-

source utilization, the data partitioning logic itself and the CPU-GPU data transfer of the partitioned data add nontriv-

ial overheads that may offset the benefits of concurrent execution. However, our results in Section 5.4.2 indicate that

executing the data partitioning logic on the GPU is about 53% faster than on the CPU because of the GPU’s higher

memory bandwidth. With MPI-ACC, the visit vector is directly received or pipelined into the GPU memory, and the

data partitioning logic is executed on the GPU itself. Next, the CPU-specific partitioned visit groups are copied to the

CPU (Figure 5.5b). As a general rule, if the GPU-driven data partitioning combined with the GPU-to-CPU data trans-

fer performs better than the CPU-driven data partitioning combined with CPU-to-GPU data transfer, then GPU-driven

data partitioning is a better option. Our experimental results (Section 5.4.2) indicate that for GPU-EpiSimdemics, the

MPI-ACC enabled GPU-driven data partitioning performs better than the other data partitioning schemes.

The preprocessing phase on the GPU is still overlapped with the internode CPU-GPU communication by launching

asynchronous GPU kernels, just like the exclusive GPU mode, thereby largely mitigating the preprocessing overhead.

While this approach could lead to redundant computations for the CPU-specific visit groups on the GPU, the corre-

sponding person-timeline matrix rows can be easily ignored in the subsequent execution phases. This approach will

create some unnecessary memory footprint on the GPU; however, the benefits of overlapped preprocessing outweigh

the issue of memory overuse. On the other hand, the preprocessing on the CPU is executed only after the data parti-

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 49

tioning and GPU-to-CPU data transfer of CPU-specific visit groups. This step appears on the critical path and cannot

be overlapped with any other step, but it causes negligible overhead for GPU-EpiSimdemics because of the smaller

data sets for the CPU execution.

Advanced MPI+GPU with data partitioning on GPU: GPU-driven data partitioning can also be implemented with-

out using MPI-ACC, where the visits vector is created on the GPU and the preprocessing stage is overlapped by the

local CPU-GPU data communication, similar to the advanced MPI+GPU optimization of the exclusive GPU compu-

tation mode. The data partitioning on the GPU and the remaining computations follow from the MPI-ACC–enabled

optimizations. As in the GPU-exclusive computation mode, however, the pinned memory footprint increases with

the number of processes, which leads to poor CPU performance and scaling. Moreover, from our experience, the

back-and-forth CPU-GPU data movement in the GPU-driven data partitioning optimization seems convoluted without

a GPU-integrated MPI interface. On the other hand, MPI-ACC provides a natural interface for GPU communication,

which encourages application developers to explore new optimization techniques such as GPU-driven data partitioning

and to evaluate them against the default and more traditional CPU-driven data partitioning schemes.

5.3.2 FDM-Seismology

FDM-Seismology is our MPI+GPU implementation of an application that models the propagation of seismological

waves using the finite-difference method (FDM) by taking the earth’s velocity structures and seismic source models

as input [53]. The application implements a parallel velocity-stress, staggered-grid finite-difference method for prop-

agation of waves in a layered medium. In this method, the domain is divided into a three-dimensional grid, and a

one-point-integration scheme is used for each grid cell. Since the computational domain is truncated in order to keep

the computation tractable, absorbing boundary conditions (ABCs) are placed around the region of interest so as to keep

the reflections minimal when boundaries are impinged by the outgoing waves. This strategy helps simulate unbounded

domains. In our application, PML (perfectly matched layers) absorbers [23] are being used as ABCs for their superior

efficiency and minimal reflection coefficient. The use of a one-point integration scheme leads to an easy and efficient

implementation of the PML absorbing boundaries and allows the use of irregular elements in the PML region [53].

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 50

GPU CPU
Net
I/O

Velocity
Kernels

cudaMemcpy

cudaMemcpy

Stress
Kernels

cudaMemcpy

cudaMemcpy

Write Results

MPI+GPU

Data
Marshaling

MPI

Data
Marshaling

MPI

GPU CPU
Net
I/O

Velocity
Kernels

Stress
Kernels

cudaMemcpy

Write Results

MPI-ACC/MPI+GPU Adv

Data
Marshaling

MPI

Data
Marshaling

MPI

Figure 5.6: Communication-computation pattern in the FDM-Seismology application. Left: basic MPI+GPU execution mode with
data marshaling on CPU. Right: execution modes with data marshaling on GPU. MPI-ACC automatically communicates the GPU
data; MPI+GPU Adv case explicitly stages the communication via CPU.

Computation-Communication Patterns

The simulation operates on the input finite-difference (FD) model and generates a three-dimensional grid as a first

step. Our MPI-based parallel version of the application divides the input FD model into submodels along different

axes such that each submodel can be computed on different CPUs (or nodes). This domain decomposition technique

helps the application to scale to a large number of nodes. Each processor computes the velocity and stress wavefields

in its own subdomain and then exchanges the wavefields with the nodes operating on neighbor subdomains, after each

set of velocity or stress computation (Figure 5.6). Each processor updates its own wavefields after receiving all its

neighbors’ wavefields.

These computations are run for multiple iterations for better accuracy and convergence of results. In every iteration,

each node computes the velocity components followed by the stress components of the seismic wave propagation. The

wavefield exchanges with neighbors take place after each set of velocity and stress computations. This MPI communi-

cation takes place in multiple stages wherein each communication is followed by an update of local wavefields and a

small postcommunication computation on local wavefields. At the end of each iteration, the updated local wavefields

are written to a file.

The velocity and stress wavefields are stored as large multidimensional arrays on each node. In order to optimize the

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 51

MPI computation between neighbors of the FD domain grid, only a few elements of the wavefields, those needed by

the neighboring node for its own local update, are communicated to the neighbor, rather than whole arrays. Hence,

each MPI communication is surrounded by data marshaling steps, where the required elements are packed into a

smaller array at the source, communicated, and then unpacked at the receiver to update its local data.

GPU Acceleration of FDM-Seismology

Here, we describe a couple of GPU execution modes of FDM-Seismology.

MPI+GPU with data marshaling on CPU (MPI+GPU): Our GPU-accelerated version of FDM-Seismology performs

the velocity and stress computations as GPU kernels. In order to transfer the wavefields to other nodes, it first copies

the bulk data from the GPU buffers to CPU memory over the PCIe interface and then transfers the individual wavefields

over MPI to the neighboring nodes (Figure 5.6). All the data-marshaling operations and small post-communication

computations are performed on the CPU itself. The newly updated local wavefields that are received over MPI are

then bulk transferred back to the GPU before the start of the next stress or velocity computation on the GPU.

MPI+GPU with data marshaling on GPU (MPI+GPU Adv): In this execution mode, the data-marshaling operations

are moved to the GPU to leverage the faster GDDR5 memory module and the massively parallel GPU architecture.

As a consequence, the CPU-GPU bulk data transfers before and after each velocity-stress computation kernel are

completely avoided. The need to explicitly bulk transfer data from the GPU to the CPU arises only at the end of the

iteration, when the results are transferred to the CPU to be written to a file (Figure 5.6).

MPI-ACC–Enabled Optimizations

GPU-based data marshaling suffers from the following disadvantage in the absence of GPU-integrated MPI. All data-

marshaling steps are separated by MPI communication, and each data-marshaling step depends on the previously

marshaled data and the received MPI data from the neighbors. In other words, after each data-marshaling step, data

has to be explicitly moved from the GPU to the CPU only for MPI communication. Similarly, the received MPI data

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 52

has to be explicitly moved back to the GPU before the next marshaling step. In this scenario, the application uses the

CPU only as a communication relay. If the GPU communication technology changes (e.g., GPUDirect RDMA), we

will have to largely rewrite the FDM-Seismology communication code to achieve the expected performance.

With MPI-ACC as the communication library, we still perform data marshaling on the GPU, but communicate the

marshaled data directly to and from the GPU without explicitly using the CPU for data staging. Also, the bulk transfer

of data still happens only once at the end of each iteration to write the results to a file. However, the data-marshaling

step happens multiple times during a single iteration and consequently, the application launches a series of GPU

kernels. While consecutive kernels entail launch and synchronization overhead per kernel invocation, the benefits of

faster data marshaling on the GPU and optimized MPI communication outweigh the kernel overheads.

Other than the benefits resulting from GPU-driven data marshaling, a GPU-integrated MPI library benefits the FDM-

Seismology application in the following ways: (1) it significantly enhances the productivity of the programmer, who is

no longer constrained by the fixed CPU-only MPI communication and can easily choose the appropriate device as the

communication target end-point; (2) the pipelined data transfers within MPI-ACC further improve the communication

performance over the network; and (3) regardless of the GPU communication technology that may become available

in the future, our MPI-ACC–driven FDM-Seismology code will not change and will automatically benefit from the

performance upgrades that are made available by the subsequent GPU-integrated MPI implementations (e.g., support

for GPUDirect RDMA).

5.4 Evaluation

In this section, we describe our experimental setup followed by the performance evaluation of MPI-ACC via latency

microbenchmarks. Next, we demonstrate the efficacy of the MPI-ACC–enabled optimizations in GPU-EpiSimdemics

and FDM-Seismology. Finally, using both microbenchmarks and GPU-EpiSimdemics, we study the impact of shared

resource (hardware and software) contention on MPI-ACC’s communication performance.

We conducted our experiments on HokieSpeed, a state-of-the-art, 212-teraflop hybrid CPU-GPU supercomputer housed

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 53

10

100

1000

10000

100000

16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M 32M 64M

La
te

n
cy

 (
µ

s)

Data Size (bytes)

MPI-ACC

Manual Blocking

Manual Non blocking (Pipelined)

MPI Send/Receive (CPU-only; Lower Bound)

Figure 5.7: Internode communication latency for GPU-to-GPU (CUDA) data transfers. Similar performance is observed for
OpenCL data transfers. The chosen pipeline packet size for MPI-ACC is 256 KB.

at Virginia Tech. Each HokieSpeed node contains two hex-core Intel Xeon E5645 CPUs running at 2.40 GHz and two

NVIDIA Tesla M2050 GPUs. The host memory capacity is 24 GB, and each GPU has a 3 GB device memory. The

internode interconnect is QDR InfiniBand. We used up to 128 HokieSpeed nodes and both GPUs per node for our

experiments. We used the GCC v4.4.7 compiler and CUDA v5.0 with driver version 310.19.

5.4.1 Microbenchmark Analysis

Impact of Pipelined Data Transfer

In Figure 5.7 we compare the performance of MPI-ACC with the manual blocking and manual pipelined implemen-

tations. Our internode GPU-to-GPU latency tests show that MPI-ACC is better than the manual blocking approach by

up to 48.3% and is up to 18.2% better than the manual pipelined implementation, especially for larger data transfers.

The manual pipelined implementation performs poorly because of the repeated handshake messages that are sent back

and forth across the network before the data transfer. For message sizes that are smaller than the pipeline packet size,

we show that the performance of MPI-ACC is comparable to the manual approaches. This is because we use the

MPI-ACC pipelining logic only to transfer data that is larger than one pipeline packet size, and we fall back to the

default blocking approach for smaller data sizes.

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 54

1

10

100

1000

10000

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

8
M

1
6

M

3
2

M

6
4

M

La
te

n
cy

 (
u

s)

Data Size (bytes)

Without Caching (Initialization Overhead of Command Queues + Pipeline Buffers)
Without Caching (Initialization Overhead of Pipeline Buffers only)
With Caching

Figure 5.8: MPI-ACC performance with and without OpenCL object caching.

Impact of OpenCL Object Caching

Figure 5.8 shows that the OpenCL caching optimization improves the internode GPU-to-GPU communication latency

from 3% for larger data sizes (64 MB) to 88.7% for smaller data sizes (< 256 KB). Even where the programmers

provide their custom command queue, the pipeline buffers still have to be created for every MPI communication call,

and so caching improves performance.

5.4.2 Case Study Analysis: EpiSimdemics

We compare the combined performance of all the phases of GPU-EpiSimdemics (computeVisits and computeInter-

actions), with and without the MPI-ACC–driven optimizations discussed in Section 5.3.1. We choose different-sized

input data sets from synthetic populations from two U.S. states: Washington (WA) with a population of 5.7 million

and California (CA) with a population of 33.1 million. We also vary the number of compute nodes from 8 to 128 and

the number of GPU devices between 1 and 2. We begin from the smallest node-GPU configuration that can fit the

entire problem in the available GPU memory.

Our results in Figure 5.9 indicate that in the exclusive GPU-computation mode, our MPI-ACC–driven optimizations

perform better than the basic blocking MPI+GPU implementations by an average of 9.2% and by up to 13.3% for WA.

The MPI-ACC–driven solution and the advanced manual pipelined MPI+GPU implementations have performances

within 1.7% of each other. Note that the advanced MPI+GPU implementation uses the manual pinned memory man-

agement techniques that we implemented at the application level, which achieves better performance but with much

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 55

0

20

40

60

80

100

120

140

160

180

M
P

I+
G

P
U

M
P

I+
G

P
U

 A
d

v
M

P
I-

A
C

C

M
P

I+
G

P
U

M
P

I+
G

P
U

 A
d

v
M

P
I-

A
C

C

M
P

I+
G

P
U

M
P

I+
G

P
U

 A
d

v
M

P
I-

A
C

C

M
P

I+
G

P
U

M
P

I+
G

P
U

 A
d

v
M

P
I-

A
C

C

M
P

I+
G

P
U

M
P

I+
G

P
U

 A
d

v
M

P
I-

A
C

C

M
P

I+
G

P
U

M
P

I+
G

P
U

 A
d

v
M

P
I-

A
C

C

M
P

I+
G

P
U

M
P

I+
G

P
U

 A
d

v
M

P
I-

A
C

C

M
P

I+
G

P
U

M
P

I+
G

P
U

 A
d

v
M

P
I-

A
C

C

M
P

I+
G

P
U

M
P

I+
G

P
U

 A
d

v
M

P
I-

A
C

C

8x2 16x1 16x2 32x1 32x2 64x1 64x2 128x1 128x2

Ex
e

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)

Nodes x GPUs-per-node

Preprocessing on GPU

Rest of ComputeInteractions Phase

ComputeVisits Phase

(a) Exclusive GPU mode for Washington.

0

20

40

60

80

100

120

140

160

M
P

I+
G

P
U

 (
C

P
U

)
M

P
I+

G
P

U
 (

G
P

U
)

M
P

I-
A

C
C

M
P

I+
G

P
U

 (
C

P
U

)
M

P
I+

G
P

U
 (

G
P

U
)

M
P

I-
A

C
C

M
P

I+
G

P
U

 (
C

P
U

)
M

P
I+

G
P

U
 (

G
P

U
)

M
P

I-
A

C
C

M
P

I+
G

P
U

 (
C

P
U

)
M

P
I+

G
P

U
 (

G
P

U
)

M
P

I-
A

C
C

M
P

I+
G

P
U

 (
C

P
U

)
M

P
I+

G
P

U
 (

G
P

U
)

M
P

I-
A

C
C

M
P

I+
G

P
U

 (
C

P
U

)
M

P
I+

G
P

U
 (

G
P

U
)

M
P

I-
A

C
C

M
P

I+
G

P
U

 (
C

P
U

)
M

P
I+

G
P

U
 (

G
P

U
)

M
P

I-
A

C
C

M
P

I+
G

P
U

 (
C

P
U

)
M

P
I+

G
P

U
 (

G
P

U
)

M
P

I-
A

C
C

M
P

I+
G

P
U

 (
C

P
U

)
M

P
I+

G
P

U
 (

G
P

U
)

M
P

I-
A

C
C

8x2 16x1 16x2 32x1 32x2 64x1 64x2 128x1 128x2

Ex
e

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)

ComputeVisits Phase ComputeInteractions Phase

(b) Cooperative CPU-GPU mode for Washington.

Figure 5.9: Execution profile of GPU-EpiSimdemics over various node configurations. The x-axis increases with the total number
of MPI processes P, where P = Nodes * GPUs.

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 56

0
20
40
60
80

100
120
140
160
180

M
an

u
al

 M
gm

t.

N
o

 M
gm

t.

M
an

u
al

 M
gm

t.

N
o

 M
gm

t.

M
an

u
al

 M
gm

t.

N
o

 M
gm

t.

M
an

u
al

 M
gm

t.

N
o

 M
gm

t.

M
an

u
al

 M
gm

t.

N
o

 M
gm

t.

M
an

u
al

 M
gm

t.

N
o

 M
gm

t.

M
an

u
al

 M
gm

t.

N
o

 M
gm

t.

M
an

u
al

 M
gm

t.

N
o

 M
gm

t.

M
an

u
al

 M
gm

t.

N
o

 M
gm

t.

8x2 16x1 16x2 32x1 32x2 64x1 64x2 128x1 128x2

Ex
e

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)

Nodes x GPUs-per-node

ComputeInteractions Phase

Mgmt. of GPU Communication Data

Rest of ComputeVisits Phase

Figure 5.10: Analysis of the data management complexity vs. performance trade-offs. Manual data management achieves better
performance at the cost of high code complexity. No explicit data management has simpler code but performs poorly.

more complex code.

For both the MPI-ACC and advanced MPI+GPU implementations, the preprocessing step (data unpacking) of the

computeInteractions phase is completely overlapped with the CPU to remote GPU communication for all node con-

figurations. For larger node configurations, however, the local operating data set in the computeInteractions phase

becomes smaller, which means that the basic MPI+GPU solution takes less time to execute the preprocessing stage.

So, the absolute gains over the basic MPI+GPU solution, which is achieved by hiding the preprocessing step, get

diminished while the relative gains still hold. Note that the data transfer optimizations within MPI-ACC or any other

GPU-integrated MPI, by themselves, do not impact the performance gains. In contrast, MPI-ACC enables the devel-

oper to create newer optimizations for better resource utilization.

Data management complexity vs. performance tradeoffs

While the advanced MPI+GPU implementation achieved comparable performance to the MPI-ACC–based solution,

it put the burden of explicit data management on the application programmer. We discussed in section 5.3.1 that on

the other hand, the user can write simpler code and avoid explicit data management, but has to repeatedly create and

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 57

Table 5.1: Analyzing the memory allocation costs. Note: each CUDA context is managed by a separate process.

Number of CUDA Contexts malloc cudaMallocHost
1 (normal allocation) 1.10µs 1.39µs
2 (parallel allocation) 1.11µs 2.67µs

destroy the receive buffers for every simulation iteration and lose performance. Figure 5.10 shows the performance

tradeoffs of the above two approaches. We observe that explicit data management is better for all node configurations

and can achieve up to 4.5× performance improvement. Without data management, the pinned memory footprint of

the receive buffers increases with the number of MPI processes, which entails bigger performance losses for larger

nodes. To quantify the degree of performance loss, we measured the individual memory allocation costs via simple

microbenchmarks and found that CUDA’s pinned memory allocator (cudaMallocHost) is about 26% slower than

the vanilla CPU memory allocator (malloc) for single CUDA contexts (table 5.1). We also see that the pinned

memory allocation cost increases linearly with the number of GPUs or CUDA contexts, whereas memory management

in multiple processes and CUDA contexts should ideally be handled independently in parallel. Consequently, in

figure 5.10, we see that for the same number of MPI processes, the node configuration with two MPI processes (or

GPUs) per node performs worse than the node with a single MPI process, e.g. 64× 2 configuration is slower than the

the 128× 1 one. Thus, efficient pinned memory management is essential for superior performance but it comes at the

cost of significant programmer effort.

Discussion: The basic MPI+GPU solution has the preprocessing overhead but does not have significant memory

management issues. While the advanced MPI+GPU implementation gains from hiding the preprocessing overhead, it

loses from either nonscalable pinned memory management or poor programmer productivity. On the other hand, MPI-

ACC provides a more scalable solution by (1) automatically managing a fixed-size pinned buffer pool for pipelining

and (2) creating them just once at MPI Init and destroying them at MPI Finalize. MPI-ACC thus gains from

both hiding the preprocessing overhead and efficient pinned memory management. MPI-ACC decouples the lower-

level memory management logic from the high-level simulation implementation, thereby enabling both performance

and productivity.

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 58

Analysis of resource utilization using HPCToolkit

HPCTOOLKIT [10] is a sampling based performance analysis toolkit capable of quantifying scalability bottlenecks in

parallel programs. In this paper, we use an extension of HPCTOOLKIT that works on hybrid (CPU-GPU) codes; the

extension uses a combination of sampling and instrumentation of CUDA code to accurately identify regions of low

CPU/GPU utilization. HPCTOOLKIT presents program execution information through two interfaces: hpcviewer

and hpctraceviewer. Hpcviewer associates performance metrics with source code regions including lines,

loops, procedures, and calling contexts. Hpctraceviewer renders hierarchical, timeline-based visualizations of

parallel program executions.

In Figure 5.11, we present snapshots of the execution profile of GPU-EpiSimdemics from the hpctraceviewer

tool of HPCTOOLKIT. Figure 5.11a depicts the application without the MPI-ACC-driven optimizations. The timeline

information of all CPU processes and their corresponding CUDA streams is presented by the hpctraceviewer

tool. The call path pane on the right represents the call stack of the process/stream at the current crosshair position.

Although we study a 32-process execution, we zoom in and show only the 0th and 1st processes and their associated

CUDA streams, because the other processes exhibit identical behavior.

The figure depicts two iterations of the application, where a couple of computeInteractions phases, with the corre-

sponding GPU activity, are surrounding a computeVisits phase, where there is no GPU activity. The GPU idle time

during the computeVisits phase can be reduced by offloading parts of the computeVisits computation to the GPU; but

that is beyond the scope of this paper.

In the basic hybrid MPI+GPU programming model, the application launches kernels on the default CUDA stream

for the computeInteractions phase, including the preprocessing (or data unpacking) and the main infection processing

stages. In the figure, we can see a corresponding set of bars on the default CUDA stream in the computeInteractions

phase, which denote the following: (1) a small, negligible sliver showing cudaMemcpy of the visit messages from the

CPU to the GPU; (2) a medium-sized bar showing preprocessing (or data unpacking) on the GPU; and (3) a thick band

showing the main infection computation kernel. The figure thus helps identify two distinct issues and opportunities

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 59

(a) Manual MPI+CUDA optimizations. The visit messages are first received on the CPU and copied to the device; then the preprocessing (unpacking)
takes place on the GPU.

(b) MPI-ACC optimizations. The visit messages are received directly in the device. Preprocessing (unpacking) on the GPU is pipelined and
overlapped with data movement to the GPU. This leads to negligible CPU waiting while the GPU preprocesses/unpacks the data.

(c) MPI-ACC optimizations. This figure combines (b) with activity occurring on other streams. MPI-ACC employs multiple streams to push the
data to the device asynchronously, while the application initiates the unpacking of data.

Figure 5.11: Analysis of MPI-ACC–driven optimizations using HPCTOOKIT. Application case study: GPU-EpiSimdemics.

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 60

for performance improvement in the computeInteractions phase of GPU-EpiSimdemics.

1. The thick band on the CUDA stream representing the main kernel of the computeInteractions phase has a

corresponding thick cudaDeviceSynchronize band on the CPU side; that is, the CPU is idle while waiting

for the GPU, thus indicating that some work from the GPU can be offloaded to the CPU.

2. The medium-sized bar on the CUDA stream representing the preprocessing (data unpacking) step has a corre-

sponding cudaDeviceSynchronize bar on the CPU, which indicates that the CPU can start offloading the

data to be unpacked to the GPU in stages, thus overlapping data transfers to the GPU with their unpacking on

the GPU.

We resolve the first issue by using the cooperative CPU-GPU computation mode. The second issue is resolved in

both the cooperative and the exclusive GPU modes. We use MPI-ACC to pipeline the data unpacking before the com-

puteInteractions phase by overlapping it with the computeVisits phase. We use a custom CUDA stream to execute the

preprocessing kernel so that we can achieve an efficient overlap between the host-to-device (H2D) data transfers within

MPI-ACC and the preprocessing kernel of GPU-EpiSimdemics. Figure 5.11b, which represents HPCTOOLKIT’s trace

view on applying these optimizations, shows that the time wasted by the CPU in cudaDeviceSynchronize while

the GPU unpacked the data has disappeared (compared with Figure 5.11a). This reduction in the CPU idle time char-

acterizes the success of the MPI-ACC–driven optimizations.

Figure 5.11c shows a zoomed-in version of Figure 5.11b, where we can see the internal helper streams that are created

within MPI-ACC along with the custom CUDA stream of one of the processes (only a subset of MPI-ACC’s internal

streams is shown here for brevity). While the GPU kernels of the computeInteractions phase are executed on the ap-

plication’s custom stream, the staggered bars in the MPI-ACC’s internal streams represent the pipelined data transfers

before the unpacking stage, thus showing efficient use of concurrency via multiple GPU streams.

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 61

0

1000

2000

3000

4000

5000

6000

M
P

I+
G

P
U

M
P

I+
G

P
U

 A
d

v

M
P

I-
A

C
C

M
P

I+
G

P
U

M
P

I+
G

P
U

 A
d

v

M
P

I-
A

C
C

M
P

I+
G

P
U

M
P

I+
G

P
U

 A
d

v

M
P

I-
A

C
C

M
P

I+
G

P
U

M
P

I+
G

P
U

 A
d

v

M
P

I-
A

C
C

16x1 32x1 64x1 128x1

It
e

ra
ti

o
n

 T
im

e
 (

m
s)

Marshaling

MPI Communication

cudaMemcpy

Stress Computation

Velocity Computation

Figure 5.12: Analyzing the FDM-Seismology application with the larger input data (Dataset-2). Note: MPI Communication refers
to CPU-CPU data transfers for the MPI+GPU and MPI+GPU Adv cases and GPU-GPU (pipelined) data transfers for the MPI-ACC
case.

5.4.3 Case Study Analysis: FDM-Seismology

In this section, we analyze the performance of the different phases of the FDM-Seismology application and evaluate

the effect of MPI-ACC optimizations on the application. We vary the nodes from 2 to 128 with 1 GPU per node and

use small and large datasets as input. Our scalability experiments begin from the smallest number of nodes required to

fit the given data in the GPU memory. For the larger input data (i.e., Dataset-2), the size of the MPI transfers increases

by 2× while the size of data to be marshaled increases by 4× when compared with the smaller Dataset-1.

Figure 5.12 shows the performance of the FDM-Seismology application, with and without the MPI-ACC–enabled

designs. We report the average wall clock time across all the processes because the computation-communication

costs vary depending on the virtual location of the process in the application’s structured grid representation. The

application’s running time is mainly composed of velocity and stress computations (>60%), which does not change

for all the three application designs.

In the basic MPI+GPU case, we perform both data-marshaling operations and MPI communication from the CPU.

So, the application has to move large wavefield data between the CPU and the GPU for data marshaling and MPI

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 62

0%

10%

20%

30%

40%

50%

2x1 4x1 8x1 16x1 32x1 64x1 128x1B
e

n
ef

it
 d

u
e

 t
o

 M
P

I-
A

C
C

Nodes x GPUs-per-node

Dataset-1 (Small)

Dataset-2 (Large)

Figure 5.13: Scalability analysis of FDM-Seismology application with two datasets of different sizes. The baseline for speedup is
the naı̈ve MPI+GPU programming model with CPU data marshaling.

communication after every stress and velocity computation phase over every iteration. In the MPI+GPU Adv and

MPI-ACC–driven scenarios, we perform data marshaling on the GPU itself and so, smaller sized wavefield data is

transferred from GPU to CPU only once per iteration for output generation. By performing data marshaling on the

GPU, we avoid the large bulk CPU-GPU data transfers and improve the overall performance over the basic MPI+GPU

design with data marshaling on the CPU.

Scalability analysis: Figure 5.13 shows the performance improvement due to the MPI-ACC–enabled GPU data

marshaling strategy over the basic MPI+GPU implementation with CPU data marshaling. We see that the performance

benefits due to the GPU data marshaling decrease with increasing number of nodes, for the reasons noted below. For

a given dataset, the per-node data size decreases with increasing number of nodes. This reduces the costly CPU-GPU

bulk data transfers (Figure 5.12) and thus minimizes the overall benefits of GPU-based data marshaling itself. Also,

for larger number of nodes, the application’s MPI communication cost becomes significant when compared with the

computation and data marshaling costs. In such a scenario, the CPU-to-CPU MPI communication of the MPI+GPU

and MPI+GPU Adv implementations will have less overhead than the pipelined GPU-to-GPU MPI communication

of the MPI-ACC–enabled design. If newer technologies such as GPUDirect-RDMA are integrated into MPI, we can

expect the GPU-to-GPU communication overhead to be reduced, but the overall benefits of GPU data marshaling itself

will still be limited because of the reduced per-process working set.

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 63

5.4.4 Analysis of Contention

In this section, we provide some insights into the scalable design of MPI-ACC. Specifically, we show that MPI-ACC

is designed to work concurrently with other existing GPU workloads with minimum contention; that is, one should

be able to perform MPI-ACC GPU-GPU communication and other user-specified GPU tasks (kernel or data transfers)

simultaneously with minimum performance degradation for both tasks. We use microbenchmarks as well as the GPU-

EpiSimdemics application for our evaluation study.

Sources of contention: NVIDIA Fermi GPUs have one hardware queue each for enqueueing GPU kernels, device-

to-host (D2H) data transfers, and host-to-device (H2D) data transfers. Operations on different hardware queues can

potentially overlap. For example, a GPU kernel can overlap with H2D and D2H transfers simultaneously. However,

operations enqueued to the same hardware queue will be processed serially. If a GPU task oversubscribes a hardware

queue by aggressively enqueueing multiple operations of the same type, then it can severely slow down other GPU

tasks contending to use the same hardware queue.

GPU streams are software workflow abstractions for a sequence of operations that execute in issue-order on the GPU.

Stream operations are directed to the appropriate hardware queue depending on the operation type. Operations from

different streams can execute concurrently and may be interleaved, whereas operations within the same stream are

processed serially, leading to software contention.

In summary, contention among GPU operations can be of two types: hardware contention, where one or more hardware

queues of the GPU are oversubscribed by the same type of operation, or software contention, where different types

of operations may be issued but to the same GPU stream. In MPI-ACC, we have carefully minimized both types of

contention by staggered enqueueing of H2D and D2H operations to different GPU streams, thereby enabling maximum

concurrency.

Microbenchmark design: We extended the SHOC [31] benchmark suite’s contention-mt application for the

microbenchmark study. The benchmark creates two MPI processes, each on a separate node and controlling the two

local GPUs. Each MPI process is also dual-threaded and concurrently runs one task per thread, where task-0 by

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 64

thread-0 does MPI-ACC point-to-point GPU-to-GPU communication with the other process and task-1 by thread-1

executes local non-MPI GPU tasks, such as compute kernels or H2D and D2H data transfer loops. CUDA allows the

same GPU context to be shared among all the threads (tasks) in the process. We share the local GPU between both

tasks. To measure the contention impact, we first execute tasks 0 and 1 independently without contention and then

execute them concurrently to induce contention. Each task is run for 100 loop iterations. We measure and report the

performance difference between the tasks’ independent and concurrent runs as the incurred contention.

Quantifying the Hardware Contention

MPI-ACC uses the D2H and H2D hardware queues of the GPU for send and receive, respectively. In theory, MPI-ACC

communication can overlap with kernel invocations or other data transfer operations in the opposite direction, that is,

using the other data transfer queue. However, MPI-ACC can cause contention with another data transfer operation in

the same direction. For example, MPI Send can contend with a concurrent D2H data transfer. MPI-ACC operations

can also potentially contend with the on-device memory controller. For example, MPI Send or MPI Recv can slow a

global-memory-intensive kernel that is accessing the same memory module. In this section, we quantify and evaluate

the global memory and PCIe contention effects.

Global memory contention analysis: We study the impact of global memory contention by executing MPI-ACC

operations in task-0 and global memory read/write benchmarks in task-1 with custom CUDA streams. Our experiments

indicate that the performance drop due to contention in the MPI-ACC communication is about 4%, whereas the

global memory kernels slow by about 8%. The average MPI-ACC call runs longer than an average global memory

access, so MPI-ACC has less relative performance reduction. On the other hand, the performance impact of MPI-

ACC on on-chip (local) memory accesses and simple computational kernels using custom CUDA streams is less,

where the performance degradation in the MPI-ACC communication is about 3% and the GPU workloads do not have

any noticeable slowdown. Figure 5.14 depicts the performance slowdown of the MPI-ACC communication due to

contention.

PCIe contention analysis with data transfers in the opposite direction: We study the impact of PCIe contention by

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 65

0

0.2

0.4

0.6

0.8

1

1.2

256 512 1024 2048 4096 8192 16384M
P

I-
A

C
C

 S
e

n
d

 L
at

e
n

cy

(N
o

rm
al

iz
e

d
)

Data Size (KB)

Contention Type: none compute loop gmem (rd) gmem (wr) shmem (rd) shmem (wr) H2D

Figure 5.14: Contention impact of concurrent MPI Send and local GPU operations (compute kernels, global memory read/write,
shared memory read/write and host-to-device (H2D) data transfers).

having task-0 perform MPI Send or MPI Recv communication operations with GPU-0, while task-1 executes H2D

or D2H calls. This approach gives four different task combinations, of which two combinations perform bidirec-

tional data transfers and two combinations transfer data in the same direction. Here, we report the results by running

MPI Send (task-0) concurrently with H2D and D2H transfers on the same GPU (task-1). The contention analysis

of MPI Recv with H2D and D2H transfers is identical. If task-0 and task-1 perform bidirectional data transfers and

use custom CUDA streams, then we find that the average slowdown of task-0 is 10%, as shown by the H2D bars

in Figure 5.14. Ideally, if the bidirectional bandwidth were to be twice the unidirectional bandwidth, then both the

concurrent tasks would have no slowdown. In our experimental platform, however, the bidirectional bandwidth is

only about 19.3% more than the unidirectional bandwidth according to the simpleMultiCopy CUDA SDK bench-

mark. Thus, task-0’s slowdown is due to slower bidirectional bandwidth and not due to any possible MPI-ACC–related

contention effects.

PCIe contention analysis with data transfers in the same direction: For this study, we analyze the contention impact

of three MPI Send implementations: MPI-ACC, manual pipelining using asynchronous MPI and CUDA, and manual

synchronous MPI and CUDA. Since the Fermi GPUs have a single data transfer hardware queue in each direction, we

expect significant contention when MPI Send (task-0) is invoked concurrently with standalone D2H transfers on the

same GPU (task-1). In fact, however, we show that MPI-ACC induces less contention than the manual synchronous

and asynchronous MPI+GPU approaches of GPU data communication. We show that MPI-ACC enqueues commands

to the GPU hardware queue in a balanced manner and minimizes the apparent performance slowdown.

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 66

Figure 5.15a shows the slowdown of the MPI communication (task-0) for different combinations of data sizes across

both tasks. In all three implementations, the slowdown in the MPI communication is minimal when the data sizes of

both task-0 and task-1 are comparable. However, the slowdown increases as the relative data size of task-1 increases,

because the D2H operations within the MPI communication will have to wait in the same hardware queue for the more

time consuming D2H operations of task-1. On average, MPI-ACC is seen to have the least slowdown among the three

MPI implementations. Furthermore, Figure 5.15b shows that MPI-ACC causes the least performance perturbation to

the D2H operations of task-1, on average.

HPCToolkit analysis: We use HPCTOOLKIT’s Hpctraceviewer interface to understand why MPI-ACC causes

less contention than the manual MPI+GPU implementations do. Hpctraceviewer renders hierarchical, timeline-

based visualizations of parallel hybrid CPU-GPU program executions. Figure 5.16 presents screenshots of the detailed

execution profile of our contention benchmark. The hpctraceviewer tool presents the timeline information of all

CPU processes, threads, and their corresponding CUDA streams. However, we zoom in and show only the timelines

of the relevant CUDA streams associated with both tasks of the 0th process.

Figure 5.16a shows the effect of MPI-ACC’s send operation interacting with the D2H data transfers of task-1. Since

both tasks issue D2H commands and there is only one D2H queue on Fermi, we can see that only one of the CUDA

streams is active at any given point in time. Moreover, the MPI-ACC’s pipelining logic has been designed to not

oversubscribe the GPU and leads to balanced execution, which can be seen by the interleaved bars in the MPI-related

timeline. Figure 5.16b depicts the contention effect of the manual pipelined MPI+GPU implementation. In this

implementation, we enqueue all the pipeline stages upfront, which is an acceptable design for standalone point-to-

point communication. This design oversubscribes the GPU, however, and can be seen as clusters of bars in the

MPI-related timeline. If one designs the manual MPI+GPU implementation similar to our MPI-ACC design, then the

associated timeline figure will look like Figure 5.16a. The manual MPI+GPU implementation is more aggressive to

enqueue GPU operations, and the D2H operations of task-1 tend to wait more. Figure 5.15b shows that, on average,

MPI-ACC causes the least perturbation to the D2H task.

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 67

0

2000

4000

6000

8000

10000

12000

Sy
n

c
M

P
I O

n
ly

Sy
n

c
M

P
I +

 D
2

H

A
sy

n
c

M
P

I O
n

ly

A
sy

n
c

M
P

I +
 D

2
H

M
P

I-
A

C
C

 O
n

ly

M
P

I-
A

C
C

 +
 D

2
H

Sy
n

c
M

P
I O

n
ly

Sy
n

c
M

P
I +

 D
2

H

A
sy

n
c

M
P

I O
n

ly

A
sy

n
c

M
P

I +
 D

2
H

M
P

I-
A

C
C

 O
n

ly

M
P

I-
A

C
C

 +
 D

2
H

Sy
n

c
M

P
I O

n
ly

Sy
n

c
M

P
I +

 D
2

H

A
sy

n
c

M
P

I O
n

ly

A
sy

n
c

M
P

I +
 D

2
H

M
P

I-
A

C
C

 O
n

ly

M
P

I-
A

C
C

 +
 D

2
H

Sy
n

c
M

P
I O

n
ly

Sy
n

c
M

P
I +

 D
2

H

A
sy

n
c

M
P

I O
n

ly

A
sy

n
c

M
P

I +
 D

2
H

M
P

I-
A

C
C

 O
n

ly

M
P

I-
A

C
C

 +
 D

2
H

MPI Size (KB): 256 1024 4096 16384

M
P

I L
at

e
n

cy
 (

µ
s)

CUDA D2H Size (KB): 256 1024 4096 16384

(a) Impact on the MPI Send communication latency.

0

1

2

3

4

5

6

D
2

H
 O

n
ly

Sy
n

c
M

P
I +

 D
2

H

A
sy

n
c

M
P

I +
 D

2
H

M
P

I-
A

C
C

 +
 D

2
H

D
2

H
 O

n
ly

Sy
n

c
M

P
I +

 D
2

H

A
sy

n
c

M
P

I +
 D

2
H

M
P

I-
A

C
C

 +
 D

2
H

D
2

H
 O

n
ly

Sy
n

c
M

P
I +

 D
2

H

A
sy

n
c

M
P

I +
 D

2
H

M
P

I-
A

C
C

 +
 D

2
H

D
2

H
 O

n
ly

Sy
n

c
M

P
I +

 D
2

H

A
sy

n
c

M
P

I +
 D

2
H

M
P

I-
A

C
C

 +
 D

2
H

CUDA D2H Size (KB): 256 1024 4096 16384

C
U

D
A

 D
2

H
 B

an
d

w
id

th
 (

G
B

/s
)

MPI Size (KB): 256 1024 4096 16384

(b) Impact on the local device-to-host (D2H) GPU operations.

Figure 5.15: Characterizing the contention impacts of concurrent MPI Send and local device-to-host (D2H) GPU operations.

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 68

Task 0: MPI_Send from GPU
(MPI-ACC’s Internal Stream 0)

Task 1: D2H Loop
(Custom Stream)

Task 0: MPI_Send from GPU
(MPI-ACC’s Internal Stream 1)

Balanced GPU Requests

(a) Impact of MPI-ACC’s MPI Send with concurrent D2H operations.

Task 0: MPI+CUDA send from GPU
(Custom Stream 0)

Task 1: D2H Loop
(Custom Stream)

Task 0: MPI+CUDA send from GPU
(Custom Stream 1)

Aggressive GPU Requests

(b) Impact of manual MPI+GPU send task with concurrent D2H operations.

Figure 5.16: Using HPCTOOLKIT to understand the contention impacts of MPI-ACC and local GPU data transfer operations.

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 69

Quantifying the Software Contention

CUDA’s stream-0 (default stream) is unique in that it is completely ordered with all operations issued on any stream of

the device. That is, issuing operations on stream-0 would be functionally equivalent to synchronizing the entire device

before and after each operation. Although MPI-ACC privately creates and uses custom streams to minimize software

contention with other streams, a concurrent user operation to stream-0 can inadvertently stall any MPI-ACC operation

on that GPU until stream-0 has completed.

In this section, we measure the impact of the stream-0 contention by using our benchmark as follows. We launch

several MPI-ACC send-receives on task-0 and invoke several compute kernels on task-1, where the kernel simply exe-

cutes a large multiply-add loop on the GPU. MPI-ACC uses custom (non-0) CUDA streams to schedule the pipelined

data transfers in task-0 while the compute kernel of task-1 uses the CUDA stream-0. We vary the loop count on task-1

to artificially change the compute kernel’s workload size and execution time. Figure 5.17a shows that as the loop size

of the computation kernel task increases, the MPI task loses proportional performance. On the other hand, if task-1

uses the non-0 stream, task-0 and task-1 efficiently overlap, and the average contention impact drops to about 4%

(Figure 5.14).

Contention due to stream-0 can be seen even in GPU-EpiSimdemics, and we analyze its effect as follows. In GPU-

EpiSimdemics, the internode CPU-GPU communication of the visit messages is overlapped with a preprocessing

kernel that performs data layout transformation (Section 5.3.1). While we use non-0 streams within MPI-ACC for the

internode communication of visit messages, the preprocessing kernel may be launched with the user’s chosen CUDA

stream. Figure 5.17b shows that the performance of GPU-EpiSimdemics is about 6.6% slower when the preprocessing

kernels use stream-0 instead of a non-0 stream, and the slowdown can be up to 16.3% for some node configurations.

While MPI-ACC’s streams are designed to scale, a poor application design using stream-0 can cause an apparent

slowdown in MPI-ACC’s data transfer performance.

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 70

0.1

1

10

256 512 1024 2048 4096 8192 16384M
P

I-
A

C
C

 G
P

U
-G

P
U

La

te
n

cy
 (

N
o

rm
al

iz
e

d
)

Data Size (KB)

Contending compute kernel's loop size (normalized): 1x 2x 4x 8x

(a) Impact on a point-to-point latency benchmark.

0

20

40

60

80

100

120

140

160

180

C
u

st
o

m
 S

tr
e

am

St
re

am
 0

C
u

st
o

m
 S

tr
e

am

St
re

am
 0

C
u

st
o

m
 S

tr
e

am

St
re

am
 0

C
u

st
o

m
 S

tr
e

am

St
re

am
 0

C
u

st
o

m
 S

tr
e

am

St
re

am
 0

C
u

st
o

m
 S

tr
e

am

St
re

am
 0

C
u

st
o

m
 S

tr
e

am

St
re

am
 0

C
u

st
o

m
 S

tr
e

am

St
re

am
 0

C
u

st
o

m
 S

tr
e

am

St
re

am
 0

8x2 16x1 16x2 32x1 32x2 64x1 64x2 128x1 128x2

Ex
e

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)

Nodes x GPUs-per-node

ComputeInteractions Phase

ComputeVisits Phase

(b) Impact on the performance of GPU-EpiSimdemics.

Figure 5.17: Characterizing the contention impacts of CUDA’s stream-0 on concurrent MPI operations.

CHAPTER 5. DATA MOVEMENT WITH MPI-ACC 71

5.5 Conclusion

In this chapter, we discussed MPI-ACC’s comprehensive set of data transfer optimizations including data pipelin-

ing and buffer management. We studied the efficacy of MPI-ACC for scientific applications from the domains of

epidemiology (GPU-EpiSimdemics) and seismology (FDM-Seismology) and we presented the lessons learned and

tradeoffs. We found that while MPI-ACC’s internal pipeline optimization helped improve the end-to-end communica-

tion performance, it enabled novel optimization opportunities at the application level which significantly enhanced the

CPU-GPU and network utilization. With MPI-ACC, one could naturally express the communication target without

explicitly treating the CPUs as communication relays. MPI-ACC decoupled the application logic from the low-level

GPU communication optimizations, thereby significantly improving scalability and application portability across mul-

tiple GPU platforms and generations. We also provided insights into the scalable design of MPI-ACC. Specifically,

we showed that MPI-ACC delivers maximum concurrency by carefully ordering multiple GPU streams and efficiently

balancing the host-to-device (H2D) and device-to-host (D2H) hardware queues for data pipelining.

Chapter 6

Task Mapping with MPI-ACC

6.1 Introduction

Each MPI process in the hybrid model consists of a host component that is run by the OS on the CPU core(s) and a

device component that is run by CUDA/OpenCL on the local device(s). The host process is automatically assigned to

the appropriate CPU core by the OS scheduler, and additional tools/libraries like numactl/libnuma can be used to

guide the process-CPU mapping. However, the current GPU programming models require the programmers to explic-

itly choose the device for kernel offloading. With increasing heterogeneity within a node, it is critical for a runtime

system to assign the optimal GPU for a given kernel. Our experiments and other work in the literature [30] indicate

that the peak performance ratios of the GPUs do not always translate to the optimal kernel-to-GPU mapping scheme.

GPUs have different hardware features and capabilities with respect to computational power, memory bandwidth, and

caching abilities. As a result, different kernels may achieve their best performance or efficiency on different GPU

architectures. In this chapter, we address the task-device mapping issue as follows:

• Microbenchmark-based performance analysis for memory-bound GPU kernels, which is based on [12], in Sec-

tion 6.2.

72

CHAPTER 6. TASK MAPPING WITH MPI-ACC 73

• Device selection strategy that leverages our generic performance projection technique, which is based on [16],

in Section 6.3.

• Design and implementation of our runtime system component of MPI-ACC’s task mapping subsystem, which

we call as MultiCL [17], in Section 6.4.

6.2 Memory Modeling Example

In this section, we describe our methodology of using offline microbenchmarks and statistical regression techniques

to analyze memory-bound GPU kernels. In the next section, we leverage our lessons learned and apply the same

methodology to understand the kernels’ performance limiters (compute, on-chip or off-chip memory), which we then

use to pick the optimal device for the given kernel.

6.2.1 Partition Camping in Memory-bound GPU Kernels

We choose partition camping as the example scenario and predict a performance range for memory-bound GPU

kernels. The performance bound helps us to analyze the degree to which partition camping exists in the kernel, which

can lead to memory-access optimizations. Partition camping is caused by kernel-wide memory accesses that are

skewed towards a subset of the available memory partitions or banks, which may severely affect the performance of

GPU kernels [64]. It must be noted that the impact due to partition camping has reduced since the NVIDIA Fermi

architecture, but is severe for the pre-Fermi GPUs. Our study shows that the performance can degrade by up to

seven-fold because of partition camping (Figure 6.1). Common optimization techniques for NVIDIA GPUs have been

widely studied, and many tools and models are available to perform common intra-block optimizations. It is difficult

to discover and characterize the effect of partition camping, because the accessed memory addresses and the actual

time of memory transactions have to be analyzed together. Therefore, traditional methods that detect similar problems,

such as static code analysis techniques to discover shared-memory bank conflicts or the approaches used in existing

GPU performance models, are prone to errors because they do not analyze the timing information.

CHAPTER 6. TASK MAPPING WITH MPI-ACC 74

6.2.2 Predicting Performance Bounds

We develop a suite of microbenchmarks to capture the device characteristics. We run the microbenchmarks offline and

record the effect of various memory-access patterns combined with the different memory-transaction types and sizes.

We then use the actual kernel’s configuration and memory-access patterns and match it with the device characteristics

to predict performance. For this specific example, we obtained the number of global memory transactions, their type

and sizes from performance counters via the NVIDIA Profiler.

For the partition-camping problem, we predict a range of possible execution times, which denotes the degree to which

partition camping can exist in the kernel. While partition camping truly means that any subset of memory partitions are

being accessed concurrently, we choose the extreme cases for our study, i.e. all the available partitions are accessed

uniformly (Without Partition Camping, or Without PC, for short), or only one memory partition is accessed all the

time (With Partition Camping, or With PC, for short). Although this method does not exhaustively test the different

degrees of partition camping, our study acts as a realistic first-order approximation to characterize its effect in GPU

kernels. Thus, we developed two sets of benchmarks and analyzed the memory effects with and without partition

camping. Each set of benchmarks test the different memory-transaction types (reads and writes) and different memory-

transaction sizes (32, 64 and 128 bytes), making it a grand total of twelve benchmarks. As an example, we show in

Figure 6.1 that the performance of memory-bound kernels can degrade by up to seven-fold if kernels suffer from

partition camping. This particular result was obtained by running a simple 64-byte memory read micro-kernel that

was part of our micro-benchmark suite.

We apply multiple linear-regression techniques on the microbenchmark data and predict the the performance of the

given kernels by extracting their memory-access characteristics. Our performance model predicts a range of the effect

of partition camping in a GPU kernel. If performance is measured by the wall clock time, the lower bound of our

predicted performance will refer to the best case, i.e. without partition camping for any memory transaction. The upper

bound will refer to the worst case, i.e. with partition camping for all memory transaction types and sizes. Figure 6.2

shows that our approach and performance model are accurate for the particular molecular modeling application. As

CHAPTER 6. TASK MAPPING WITH MPI-ACC 75

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 18	 20	 22	 24	 26	 28	 30	 32	

Ex
ec
u&

on
	 T
im

e	
(m

se
c)
	

Ac&ve	 Warps	 per	 SM	

With	 PC	 Without	 PC	

7-fold
performance
degradation

Figure 6.1: The negative effect of partition camping (PC) in GPU kernels

a research artifact, we developed a simple spreadsheet-based tool called CampProf, which helps the user to visually

detect and analyze the partition camping effects in the GPU kernel (Figure 6.3).

6.2.3 Lessons Learned

We outline below the lessons learned from using microbenchmarks for analyzing memory-bound kernels.

• While microbenchmarks are useful to create offline device profiles, performance counters and tools like the

NVIDIA Profiler can be used to obtain online kernel profiles.

• For a runtime system, obtaining the kernel characteristics via performance counters is impractical for for device

selection because (1) the device may be on a remote node which would incur network costs, and (2) the device

may be busy with some other kernel.

While we still use the microbenchmark-based modeling approach for device selection, we will show that we use

functional emulators to obtain the kernel characteristics like instruction mix, memory accesses and cache statistics.

CHAPTER 6. TASK MAPPING WITH MPI-ACC 76

0	

5	

10	

15	

20	

25	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	

Ex
ec
u&

on
	 T
im

e	
(s
ec
on

ds
)	

Ac&ve	 Warps	 per	 SM	

Predicted	

Actual	

Figure 6.2: Validating the performance prediction model for a molecular modeling application.

Figure 6.3: Screenshot of the CampProf tool.

CHAPTER 6. TASK MAPPING WITH MPI-ACC 77

6.3 Device Selection Strategies

The goal of online performance projection is twofold: (1) to accurately rank the GPU devices according to their

computational capabilities and (2) to do so reasonably quickly in support of dynamic runtime scheduling of GPUs.

The actual execution of the kernel on the target GPUs serves as the baseline to evaluate both the accuracy and the

performance of any performance projection technique. However, for a runtime system in cluster environments, it

is infeasible to always run the kernel on all the potential devices before choosing the best device, because of the

additional data transfer costs. Below we discuss the accuracy vs. performance tradeoffs of potential online performance

projection techniques for GPUs.

Cycle-accurate emulation, with emulators such as GPGPU-Sim [21] and Multi2Sim [76], can be used predict the

minimum number of cycles required to execute the kernel on the target device. The accuracy of the projection and the

device support directly depends on the maturity of the emulator. Moreover, the overhead of cycle-accurate emulation

is too high to be used in a runtime system.

Static kernel analysis and projection can be done at (1) the OpenCL code level, (2) an intermediate GPU language

level (e.g., PTX or AMD-IL), or (3) the device instruction level (e.g., cubin). Performance projection from static

analysis will be inaccurate because it does not take into account the dynamic nature of the kernel, including memory-

access patterns and input data dependence. The performance projection will, however, not experience much overhead

and is feasible to be used at runtime.

Dynamic kernel analysis and projection involve a tradeoff between the above approaches. The dynamic kernel char-

acteristics, such as instruction distribution, instruction count, and memory access patterns, can be recorded by using

functional emulators, such as GPU-Ocelot [33] or the functional emulator mode of GPGPU-Sim and Multi2Sim. The

dynamic kernel profile, in conjunction with the target device profile, can be used to develop a performance projection

model. While the accuracy of this approach is better than that of static code analysis, the emulation overhead of this

approach will be larger. On the other hand, the overhead will be much smaller than with cycle-accurate emulation.

CHAPTER 6. TASK MAPPING WITH MPI-ACC 78

6.3.1 Approach

We realize a variant of the dynamic kernel analysis for performance projection while significantly limiting the em-

ulation overhead with acceptable loss in accuracy of projection. Our online projection technique requires that all

the target GPU devices are known and accessible and that the workload’s input data is available. However, we can

intercept OpenCL’s kernel setup and launch calls to obtain the required OpenCL kernel configuration parameters.

As Figure 6.4 shows, our online projection consists of three steps: static profiling, dynamic profiling, and performance

projection. First, we obtain the hardware characteristics through offline profiling (or static profiling). The capability

of the device may vary according to the occupancy1 or the device utilization level. We use microbenchmarks to profile

the devices and their efficiency in response to different occupancy levels.

Mini-
Emulator

(Single
workgroup)

GPU
Kernel

Effective
Instruction
Throughput

Effective
Global Memory

Bandwidth

Effective
Local Memory

Bandwidth

G
P

U
 1

G
P

U
 2

G
P

U
 3

G
P

U
 4

Relative GPU
Performances

Memory
Patterns

Bank Conflicts

Instruction
Mix

GPU 1 GPU 2
GPU

N

……

Instruction and Memory Benchmarks 1) Static Profiling

2) Dynamic Profiling

D
ev

ic
e

P
ro

fi
le

at

 a
ll

O
cc

u
p

an
cy

Le

ve
ls

Perf.
Limiter?

3) Performance Projection

Figure 6.4: The performance projection methodology.

Second, we collect the dynamic characteristics of an incoming kernel at runtime. We leverage existing GPU emulators

and develop a miniature emulator that emulates only one workgroup of the kernel. With such an approach, we can ob-

1Occupancy refers to the ratio of active wavefronts to the maximum active wavefronts supported by the GPU.

CHAPTER 6. TASK MAPPING WITH MPI-ACC 79

tain dynamic workload characteristics including instruction mix, instruction count, local and global memory accesses,

and the coalescing degree. The code for our mini-emulator is invoked by transparently intercepting GPU kernel launch

calls.

Third, with the per-workgroup characteristics and the per-device hardware profile, we project the runtime of the full

kernel execution. Our projection also takes into account various potential performance limiting factors and compares

the tradeoffs among devices. GPU runtime systems can then select the ideal performing device for the purposes of

migration of an already running workload for consolidation or scheduling subsequent invocations in case of repeated

execution.

6.3.2 Offline Device Characterization

Our device characterization focuses on three major components of GPU performance: instruction throughput, local

memory throughput, and global memory throughput. The instruction throughput of a device (or peak flop rate) can be

obtained from hardware specifications, and the memory throughput under various occupancy levels and access patterns

are measured through offline profiling. We use microbenchmarks derived from the SHOC benchmark suite [31] to

measure the hardware’s dynamic memory performance under different runtime scenarios, such as occupancy, type of

the memory accessed, and word sizes. The hardware characteristics are collected only once per device.

For the global memory accesses, the microbenchmarks measure the peak throughput of coalesced accesses for read

and write operations at various occupancy levels. For example, Figure 6.5 shows the coalesced memory throughput

behavior for the AMD Radeon HD 7970 GPU. The throughput for uncoalesced memory accesses are derived by

analyzing the coalesced throughputs along with the workload characteristics that are obtained from the emulator, as

described in Section 6.3.4.

Similar to global memory, the local memory benchmarks measure the throughput of local memory at varying occu-

pancy levels of GPU. Our local memory throughput microbenchmarks do not account for the effect of bank conflicts,

but our model deduces the number of bank conflicts from the emulator’s memory traces and adjusts the projected

CHAPTER 6. TASK MAPPING WITH MPI-ACC 80

10

100

1000

10000

 1/32 1/16 1/8 1/4 1/2 1

Th
ro

u
gh

p
u

t
(G

B
/s

)

Occupancy

Global Memory Read Global Memory Write

Local Memory Read Local Memory Write

Figure 6.5: Memory throughput on the AMD Radeon HD 7970.

performance as described in Section 6.3.4.

6.3.3 Online Workload Characterization

This subsection describes our fully automated approach for dynamically obtaining a workload’s characteristics—in

particular, statistics for both dynamic instructions and dynamic memory accesses — in order to cast performance

projections.

Statistical measures about dynamic instructions include the instruction count, intensity of branch divergence, instruc-

tion mixes, and composition of the very long instructions. The dynamic memory-access statistics include the local

and global memory-transaction count, bank-conflict count, and the distribution of coalesced and uncoalesced memory

accesses. The above runtime characteristics can impact the actual kernel performance in different ways on different

GPUs. For example, the HD 5870 is more sensitive to branching than the HD 7970 [18]. Similarly, the NVIDIA

C1060 has fewer shared memory banks and is more sensitive to bank conflicts than the C2050. Emulators are useful

tools to obtain detailed workload characteristics without extensive source code analysis. However, the time to emulate

the entire kernel is usually orders of magnitude larger than the time to execute the kernel itself. Therefore, off-the-shelf

emulators are not suitable for online projection.

CHAPTER 6. TASK MAPPING WITH MPI-ACC 81

Mini-Emulation

To alleviate the problem of emulation overhead, we propose a technique named mini-emulation, which employs a

modified emulator that functionally emulates just a single workgroup when invoked. Our assumption is that work-

groups often exhibit similar behavior and share similar runtime statistics, which is typical of data-parallel workloads.

Subsequently, the aforementioned runtime statistics of the full kernel can be computed from the number of workgroups

and the statistics of a single workgroup, thereby significantly reducing the emulation overhead.

To emulate both NVIDIA and AMD devices, we adopt and modify two third-party emulators: GPGPU-Sim [21] for

NVIDIA devices and Multi2sim [76] for AMD devices. We note that our technique can employ other emulators

as long as they can generate the necessary runtime characteristics and support the OpenCL frontend. Our modified

mini-emulators accept a kernel binary and a set of parameters as input, emulates only the first workgroup, ignores

the remaining workgroups and outputs the appropriate statistics. We do not change the task assignment logic in the

emulator, i.e., the single emulated workgroup still performs the same amount of work as if it were part of the full

kernel having many workgroups.

Deriving Full Kernel Characteristics

The mini-emulator generates characteristics of only a single workgroup. To cast performance projections, we need to

obtain the characteristics of the full kernel. The scaling factor between the characteristics of a single workgroup and

that of a full kernel depends on the device occupancy, which in turn depends on the per-thread register usage and local

memory usage, which can be obtained by inspecting the kernel binary.

Using device occupancy as the scaling factor, we linearly extrapolate statistics about dynamic instructions and memory

accesses of a single workgroup to that of the full kernel. The derived characteristics of the full kernel can then be used

to project the kernel’s performance.

CHAPTER 6. TASK MAPPING WITH MPI-ACC 82

6.3.4 Online Relative Performance Projection

The execution time of a kernel on a GPU is primarily spent executing compute instructions and reading and writing

to the global and the local memory. Hence, we follow an approach similar to [84] in modeling three relevant GPU

components for a given kernel: compute instructions, global memory accesses and local memory accesses. Moreover,

GPUs are designed to be throughput-oriented devices that aggressively try to hide memory access latencies, instruction

stalls and bank or channel conflicts by scheduling new work. So, we assume that the execution on each of the GPU’s

components will be completely overlapped by the execution on its other components, and the kernel will be bound

only by the longest running component. We then determine the bounds of a given kernel for all the desired GPUs

and project the relative performances. While our three component-based model is sufficiently accurate for relative

performance projection, it is easily extensible to other components such as synchronization and atomics for higher

levels of desired accuracy. We will now describe the approach to independently project the execution times of the

three GPU components.

Compute Instructions (tcompute) When the given OpenCL workload is run through the emulator, our model obtains

the total number of compute instructions and calculates the distribution of instruction types from the instruction traces.

The throughput for each type of instruction can be found in the GPU vendor manuals. We model the total time taken

by the compute instructions as
∑

i(
instructionsi
throughputi

) where i is the instruction type.

Global Memory Accesses (tglobal) The global memory performance of a GPU kernel can be affected by the memory

access patterns within a wavefront, because the coalescing factor can influence the total number of read and write

transactions made to the global memory. For example, in an NVIDIA Fermi GPU, a wavefront (containing 32 threads)

can generate up to 32 128-byte transactions for completely uncoalesced accesses, but as low as a single transaction if

all the accesses are coalesced and aligned. Hence, there can be up to a 32-fold difference in the bandwidth depending

on the coalescing factor on the Fermi GPU. From the memory-access traces generated from the emulators, we can

deduce the coalescing factor and the number of memory transactions generated per wavefront. Since the memory

CHAPTER 6. TASK MAPPING WITH MPI-ACC 83

transaction size and coalescing policies vary with each GPU, we calculate the number of transactions using device-

specific formulas. Since the throughput of global memory also varies with the device occupancy, we inspect our per-

device characteristics database and use the throughput value at the given kernel’s occupancy. We model the time taken

by global memory accesses as trasactions×transaction size
throughputoccupancy

. We calculate the above memory access times separately

for read and write transactions and sum them to obtain the total global memory access time.

Local Memory Accesses (tlocal) The local memory module is typically divided into banks and accesses made to

same banks are serialized. On the other hand, accesses made to different memory banks are serviced in parallel to

minimize the number of transactions. We inspect the GPU emulator’s local memory traces and calculate the degree of

bank conflicts. Also, we use the local memory throughput at the given kernel’s occupancy for our calculations. We

calculate the total time taken by the local memory accesses similar to that of global memory, where we model the read

and write transactions separately and sum them to get the total local memory access time.

The boundedness of the given kernel is determined by the GPU component that our model estimates to be the most

time consuming, i.e. max(tcompute, tglobal, tlocal).

6.3.5 Lessons Learned

In this section, we describe our experimental setup and present the evaluation of our online performance projection

model.

System Setup

Our experimental setup consists of four GPUs: two from AMD and two from NVIDIA. We used the AMD driver

v9.1.1 (fglrx) for the AMD GPUs and the CUDA driver v285.05.23 for the NVIDIA GPUs. The host machines of

each GPU ran 64-bit Linux. We used Multi2sim v4.0.1 for simulating the OpenCL kernels on AMD devices and

GPGPU-Sim v3 for simulating the NVIDIA GPUs.

CHAPTER 6. TASK MAPPING WITH MPI-ACC 84

Table 6.1: Summary of GPU devices.

GPU Architecture
Name

Compute
Units

Peak Per-
formance
(GFlops)

Peak
Memory

Bandwidth
(GB/s)

Memory
Transaction
Sizes (B)

Shared
Memory
Banks

HD5870 Evergreen 20 2720 264 64 32

HD7970 Southern
Islands 32 3790 154 64 32

C1060 Tesla 30 933 102 32,64,128 16
C2050 Fermi 14 1030 144 128 32

Table 6.2: Summary of applications.

Floyd Warshall Fast Walsh Transform Matrix Multiply (global memory) Matrix Multiply (local memory)
Nodes = 192 Size = 1048576 Size = [1024,1024] Size = [1024,1024]

Reduction NBody AES Encrypt-Decrypt Matrix Transpose
Size = 1048576 Particles = 32768 W=1536, H=512 Size = [1024,1024]

Table 6.1 presents the architectural details of the GPUs. Besides the differences in the number of computation units and

memory modules, these devices also represent a variety of GPU architectures. While the AMD HD 5870 is based on

the previous VLIW-based ‘Evergreen’ architecture, the AMD HD 7970 belongs to the new Graphics Core Next (GCN)

‘Southern Islands’ architecture, where it moves away from the VLIW-based processing elements (PEs) to scalar SIMD

units. The architecture of HD 7970 closely resembles the NVIDIA C2050 (Fermi) architecture in terms of the scalar

SIMD units and the presence of a hardware cache hierarchy. The key differences between the NVIDIA C1060 ‘Tesla’

and the NVIDIA C2050 ‘Fermi’ architectures are the hardware cache support, improved double-precision support, and

dual-wavefront scheduling capabilities on the newer Fermi GPU.

Table 6.2 summarizes our chosen set of eight benchmarks from the AMD APP SDK v2.7, which are all written in

OpenCL v1.1. We chose benchmarks that exhibited varying computation and memory requirements. We apply our

model-based characterization, as described in Section 6.3.4, to identify the performance bottlenecks in computation,

global memory throughput, and local memory throughput. Figure 6.6 presents the projected normalized execution

times for the AMD and NVIDIA devices and characterizes the applications by the performance limiting components.

Figure 6.6 shows that our set of benchmarks exhibits a good mix of application characteristics, where the benchmarks

are bounded by different GPU components. Our model establishes that the benchmarks FloydWarshall, FastWalsh,

MatrixTranspose, MatrixMultiply (global memory version), and NBody retain their boundedness across all the GPUs,

CHAPTER 6. TASK MAPPING WITH MPI-ACC 85

P
re

d
ic

te
d

 T
im

e
(N

o
rm

al
iz

ed
)

0.01

0.1

1

10

100
C1060 Gmem

Lmem
Compute

0.01

0.1

1

10

100

1000
Fa

st
 W

al
sh

 T
ra

n
sf

o
rm

Fl
o

yd
 W

ar
sh

al
l

M
at

M
u

l (
G

m
e

m
)

N
b

o
d

y

A
ES

En
cr

yp
tD

ec
ry

p
t

R
ed

u
ct

io
n

M
at

M
u

l (
Lm

e
m

)

M
at

ri
xT

ra
n

sp
o

se

C2050

G G G

C

C

C L G

G G G G G

C

C

C

0.01

0.1

1

10

100
HD 5870

0.01

0.1

1

10

Fa
st

 W
al

sh
 T

ra
n

sf
o

rm

Fl
o

yd
 W

ar
sh

al
l

M
at

M
u

l (
G

m
e

m
)

N
b

o
d

y

A
ES

En
cr

yp
tD

ec
ry

p
t

R
e

d
u

ct
io

n

M
at

M
u

l (
Lm

e
m

)

M
at

ri
xT

ra
n

sp
o

se

HD 7970

G G G

C

L
G

L
G

G G G

C
C

G
L

G

Figure 6.6: Analysis of the performance limiting factor. Gmem stands for global memory and Lmem stands for local memory.
MatMul (Gmem) stands for the matrix multiplication benchmark that only uses the GPU’s global memory and MatMul (Lmem)
stands for the matrix multiplication benchmark with the local memory optimizations. The performance limiter of an application is
denoted at the top of each bar: G for Gmem, L for Lmem and C for Compute.

CHAPTER 6. TASK MAPPING WITH MPI-ACC 86

0.1

1

10

100

Fa
st

 W
al

sh
Tr

an
sf

o
rm

Fl
o

yd
 W

ar
sh

al
l

M
at

ri
xM

u
lt

ip
ly

(G
m

em
)

N
b

o
d

y

A
ES

En
cr

yp
tD

ec
r.

R
ed

u
ct

io
n

M
at

ri
xM

u
lt

ip
ly

(L
m

em
)

M
at

ri
xT

ra
n

sp
o

se

R
e

la
ti

ve
 E

xe
cu

ti
o

n
 T

im
e

(N

o
rm

al
iz

e
d

 t
o

 C
1

0
6

0
) C1060 C2050 HD 5870 HD 7970

(a) Actual execution times.

0
10
20
30
40
50
60
70
80
90
100

0.1

1

10

100

Fa
st

 W
al

sh
Tr

an
sf

o
rm

Fl
o

yd
 W

ar
sh

al
l

M
at

ri
xM

u
lt

ip
ly

(G
m

em
)

N
b

o
d

y

A
ES

En
cr

yp
tD

ec
r.

R
ed

u
ct

io
n

M
at

ri
xM

u
lt

ip
ly

(L
m

em
)

M
at

ri
xT

ra
n

sp
o

se

R
e

la
ti

ve
 E

rr
o

r
(%

)

R
e

la
ti

ve
 E

xe
cu

ti
o

n
 T

im
e

(N

o
rm

al
iz

e
d

 t
o

 C
1

0
6

0
) C1060 C2050 HD 5870 HD 7970 Error

(b) Projected execution times by single workgroup mini-emulation.

0
10
20
30
40
50
60
70
80
90
100

0.1

1

10

100

Fa
st

 W
al

sh
Tr

an
sf

o
rm

Fl
o

yd
 W

ar
sh

al
l

M
at

ri
xM

u
lt

ip
ly

(G
m

em
)

N
b

o
d

y

A
ES

En
cr

yp
tD

ec
r.

R
ed

u
ct

io
n

M
at

ri
xM

u
lt

ip
ly

(L
m

em
)

M
at

ri
xT

ra
n

sp
o

se

R
e

la
ti

ve
 E

rr
o

r
(%

)

R
e

la
ti

ve
 E

xe
cu

ti
o

n
 T

im
e

(N

o
rm

al
iz

e
d

 t
o

 C
1

0
6

0
) C1060 C2050 HD 5870 HD 7970 Error

(c) Projected execution times by full kernel emulation.

Figure 6.7: Accuracy of the performance projection model. Gmem stands for global memory and Lmem stands for local memory.

CHAPTER 6. TASK MAPPING WITH MPI-ACC 87

while the boundedness of other applications changes across some of the devices. Figure 6.6 also suggests that the per-

formance limiting components of AESEncryptDecrypt and MatrixMultiply (local memory version) are not definitive

because the projected times are very close and within the error threshold. For example, AESEncryptDecrypt can be

classified as either local memory bound or compute bound for the AMD devices, and MatrixMultiply (local memory

version) can be local memory or global memory bound for the NVIDIA C1060. However, the ambiguity in bounded-

ness does not affect the relative ranking of the GPUs because our model just picks one of the competing components

as the performance limiter.

Analysis

Our online performance-projection technique needs to estimate the relative execution time among devices within a

small amount of time. Therefore, we evaluate our technique from two aspects: modeling accuracy and modeling

overhead.

Accuracy of Performance Projection In this section, we evaluate the ability of our technique to project the relative

performance among target GPUs. Figure 6.7a shows the actual execution time of all benchmarks on our four test

GPUs, and Figures 6.7b and 6.7c show the projected execution times by the single workgroup mini-emulation and the

full kernel emulation, respectively. All the numbers are normalized to the performance of NVIDIA C1060.

Optimal Device Selection: The main purpose of our performance projection model is to help runtime systems choose

the GPU that executes a given kernel in the smallest amount of time. We define the device selection penalty to be the

|T (B)−T (A)|
T (A) × 100, where T (A) is the runtime of the kernel over its best performing GPU and T (B) is the runtime

of the kernel over the recommended GPU. Figure 6.7 shows that our model picks the best device for all cases except

one: the AES-Encrypt application. In this case, our model picks the AMD Radeon HD 7970, whereas the best device

is C2050, with an optimal device selection penalty of 33.72%.

Relative Performance among Devices: In some cases, the runtime system may want to perform a global optimization

to schedule multiple kernels over a limited number of GPUs. In those circumstances, the runtime may need information

CHAPTER 6. TASK MAPPING WITH MPI-ACC 88

Table 6.3: Performance model overhead reduction – ratio of full-kernel emulation time to single workgroup mini-emulation time.

Application Fast Walsh Transform Floyd Warshall Matrix Multiply Nbody AES Encrypt Reduction Matrix Multiply Matrix Transpose(Global Memory) (Local Memory)
C1060 2882.1 172.7 267.9 3.9 710.4 1710.7 240.7 554.2
C2050 2772.7 182.6 337.4 4.1 784.0 1709.0 196.6 556.1

HD 5870 2761.0 248.5 219.1 4.7 623.4 2629.1 201.5 469.2
HD 7970 2606.9 229.3 217.7 4.0 581.4 2700.0 209.6 457.1

about the kernel’s relative performance among the GPUs in addition to the optimal GPU for each kernel. This helps the

runtime evaluate the tradeoffs of various task-device mappings and make judicious decisions in scheduling multiple

kernels.

We measure the error of the relative performance as follows. Let us consider the kernel’s actual performance on the

four GPUs as one 4D vector, Tactual. Similarly, the kernel’s projected performance on the four GPUs can then be

represented as another 4D vector, Tprojected. T ′actual and T ′projected are the normalized, unit-length vectors for Tactual

and Tprojected, respectively. They reflect the relative performance among the GPUs. We then formulate the error

metric of our relative performance projection to be
||T ′

actual−T
′
projected||√
2

× 100%, which ranges from 0% to 100%

and correlates with the Euclidean distance between T ′actual and T ′projected. Note that
√
2 is the maximum possible

Euclidean distance between unit vectors with non-negative coordinates. For the single workgroup mini-emulation

mode, the average relative error of our model across all kernels in our benchmark suite is 19.8%, with the relative

errors for the individual applications ranging from 10% to at most 40%. On the other hand, if the full-kernel emulation

mode is used, then the average relative error becomes 16.7%.

Limitation of Our Performance Projection Model: We note that the single workgroup mini-emulation mode does not

change the individual application-specific relative errors from the full kernel emulation for most of the applications,

with the exception of Floyd Warshall. A key requirement for the mini-emulation mode is that all the workgroups of the

kernel must be independent of each other and that all the workgroups will execute in approximately the same amount

of time with the same number of memory transactions and instructions. The Floyd Warshall application comprises a

series of converging kernels, where the input of one kernel is dependent on the output of the previous kernel; that is,

there is data dependence between iterations. Since only a single workgroup is being emulated in the mini-emulation

mode, all the data elements are not guaranteed to be updated by the program iterations, thereby causing the memory

CHAPTER 6. TASK MAPPING WITH MPI-ACC 89

0.E+00
2.E+06
4.E+06
6.E+06
8.E+06
1.E+07
1.E+07
1.E+07

Fa
st

 W
al

sh
Tr

an
sf

o
rm

(C
2

0
5

0
)

Fa
st

 W
al

sh
Tr

an
sf

o
rm

(C
1

0
6

0
)

Fl
o

yd
 W

ar
sh

al
l

(C
2

0
5

0
)

Fl
o

yd
 W

ar
sh

al
l

(C
1

0
6

0
)

M
at

ri
xM

u
lt

ip
ly

(G
m

em
 o

n
C

2
0

5
0

)

M
at

ri
xM

u
lt

ip
ly

(G
m

em
 o

n
C

1
0

6
0

)P
ro

je
ct

e
d

 G
lo

b
al

 M
e

m
o

ry

Tr
an

sa
ct

io
n

s
Full Kernel Emulation

Single Workgroup Mini-Emulation

Figure 6.8: Global memory (Gmem) transactions for select applications.

and compute transactions to change over iterations. Since Floyd Warshall is a global memory-bound application, we

compared the projected global memory transactions of the mini-emulation mode and the full kernel emulation modes

for similar global memory bound kernels (Figure 6.8). We see that for the Floyd Warshall application, the projected

global memory transactions using the mini-emulation mode is 2.5× less than the projected transactions from the full

kernel emulation mode for the C1060 GPU. For the C2050 GPU, this difference is less: 10%. The data-dependent and

iterative nature of the Floyd Warshall application introduces errors into our mini-emulation–based projection model,

which may cause our model to pick the wrong GPU in some cases.

Overhead of Performance Projection The overhead of our online projection includes time spent in online workload

characterization as well as casting the projected performance for each device. Because hardware characterization is

done offline, once for each hardware, it does not incur any overhead at the time of projection. Among the two sources of

overhead, casting performance projection need only calculate a few scalar equations; it has a constant and negligible

overhead. The major source of overhead comes from the online workload characterization using mini-emulation,

which functionally emulates one workgroup to collect kernel statistics.

The state-of-the-art technique to obtain detailed runtime statistics of a kernel is full kernel emulation. As Table 6.3

shows, our mini-emulation approach reduces the emulation overhead by orders of magnitude. Meanwhile, it obtains

the same level of details about runtime characteristics. In fact, the mini-emulation overhead is often comparable to

CHAPTER 6. TASK MAPPING WITH MPI-ACC 90

kernel execution time with small or moderate-sized inputs and will be further dwarfed if the kernel operates over a

large data set, as is often the case for systems with virtual GPU platforms. Such a low overhead makes it worthwhile

to employ our technique to schedule kernels with large data sets; it also allows the runtime system to evaluate the

task-device mapping in parallel with the workload execution, so that it can migrate a long running workload in time.

Below we further study the relationship between input data size and the overhead of mini-emulation.

Impact of Input Data Sizes: Figure 6.9 shows the performance impact of the input data size on the full-kernel

emulation and single workgroup mini-emulation overheads. Figure 6.9a shows that the full-kernel emulation overhead

for the reduction kernel increases with data size. The reduction kernel launches as many workitems as the data

elements, thereby having a one-to-one mapping between the workitem and the data element. As the data size grows,

the number of workitems also increases, so that each workitem and workgroup has a constant amount of computation.

Since each workitem of the kernel is simulated sequentially on the CPU, the overhead of the full-kernel emulation also

increases for larger data sizes. On the other hand, our mini-emulation scheme simulates just a single workgroup to

collect the kernel profile irrespective of the number of data elements. That is why we see a constant overhead for the

mini-emulation scheme for reduction kernel.

Figure 6.9b shows that both the full kernel emulation overhead and the mini-emulation overhead for the matrix multi-

plication kernel increases with data size. However, we observe that the rate of increase of overhead (slope of the line)

is linear for the mini-emulation mode, while it is cubic for the full kernel emulation mode. The matrix-multiply kernel

launches as many workitems as the output matrix size, but unlike the reduction kernel, each workitem and workgroup

do not have a constant amount of computation. The load on each workitem increases linearly with the matrix length

(we choose only square matrices for the sake of simplicity). This is why we see that the mini-emulation overhead

increases linearly with the matrix length for the matrix-multiplication kernel.

However, the actual GPU execution time itself increases in a cubic manner with the matrix length; thus, our mini-

emulation mode is asymptotically better and will take less time than running the kernel on the device for larger data

sizes. Figure 6.10 shows that as the matrix length increases, the GPU execution time approaches the kernel mini-

emulation time for the NVIDIA C2050 GPU. We were unable to store even larger matrices on the GPU’s 3GB global

CHAPTER 6. TASK MAPPING WITH MPI-ACC 91

0.01

0.1

1

10

100

65536 131072 262144 524288 1048576

K
e

rn
e

l E
m

u
la

ti
o

n
 T

im
e

 (
s)

Data Size (x)

Full Kernel Emulation (C2050)

Single Workgroup Emulation (C2050)

Full Kernel Emulation (HD 7970)

Single Workgroup Emulation (HD 7970)

(a) Kernel: Reduction.

0.1

1

10

100

1000

10000

64 128 256 512 1024

K
e

rn
e

l E
m

u
la

ti
o

n
 T

im
e

 (
s)

Data Size (x = y = z)

Full Kernel Emulation (C2050)

Single Workgroup Emulation (C2050)

Full Kernel Emulation (HD 7970)

Single Workgroup Emulation (HD 7970)

(b) Kernel: Matrix Multiplication (using local memory).

Figure 6.9: Kernel emulation overhead – full kernel emulation vs. single workgroup mini-emulation.

memory; but we can infer that for even larger matrix sizes, our mini-emulation technique will outperform the actual

GPU execution. On the other hand, if the mini-emulation time remains constant, as with the reduction kernel, then

it is obvious that the mini-emulation approach will cause the least overhead for larger data sizes, thereby making our

model amenable to dynamic decision-making runtime systems.

6.4 Design and Implementation of the Task Mapping Runtime

In this section we explain the design of the MultiCL runtime system for optimal task mapping and discuss key opti-

mization tradeoffs and our evaluation. Specifically, we explain the overhead vs. optimality tradeoff between the static

CHAPTER 6. TASK MAPPING WITH MPI-ACC 92

0.0001

0.001

0.01

0.1

1

10

100

64 128 256 512 1024 2048 4096 8192

K
e

rn
e

l E
xe

cu
ti

o
n

 T
im

e
 (

s)

Data Size (x = y = z)

Actual Device Execution (C2050)

Single Workgroup Emulation (C2050)

Figure 6.10: Kernel emulation overhead – single workgroup mini-emulation vs. actual device execution.

and dynamic command-queue scheduling strategies. For dynamic device selection, we describe techniques for over-

head reduction, such as efficient device-to-device data movement for data-intensive kernels, mini-kernel profiling for

compute-intensive kernels, and data caching and data reuse for future kernel invocations.

6.4.1 The SnuCL Runtime Framework

SnuCL [46] is a cross-platform OpenCL implementation that provides the programmer with a single platform view

of a disparate set with OpenCL devices, where the OpenCL devices can be from multiple vendor platforms. SnuCL

provides two programming modes to the end user: (1) single mode, and (2) cluster mode. The single mode provides the

standard OpenCL programming interface to the programmer, with the added functionality of unifying all the different

vendor platforms and devices under a single “SnuCL” platform. Programmers write OpenCL code as before, but can

also share data, share kernels and synchronize across devices from all supported vendor platforms. In the SnuCL

cluster mode programming model, there is one host node and multiple backend nodes. SnuCL enables the application

to use all the OpenCL devices in the host and backend nodes in the cluster as if they were on the host node itself. The

programmer writes OpenCL programs for a single process or address space, and the SnuCL cluster mode uses MPI as

the underlying communication library to perform data resolution across the backend nodes and devices in the system.

We focus on the single mode of SnuCL, where the programmer writes MPI+OpenCL programs, where the OpenCL

code is meant to be executed within a single node but across all available devices within the node. The programmer has

CHAPTER 6. TASK MAPPING WITH MPI-ACC 93

NVIDIA
GPU

NVIDIA
GPU

AMD
APU

Intel
Xeon Phi

Xeon
CPU

AMD
CPU

Altera
FPGA

N
V

ID
IA

O

p
en

C
L

A
M

D

O
p

en
C

L
In

te
l

 O
p

en
C

L
A

lt
er

a
C

L

Sn
u

C
L

P
la

tf
o

rm

(S
in

gl
e

 M
o

d
e

)

NVIDIA GPU

NVIDIA GPU

AMD APU

Intel Xeon
Phi

Intel Xeon
CPU

AMD CPU

Altera FPGA

N
V

ID
IA

O

p
en

C
L

A
M

D

O
p

en
C

L
In

te
l

 O
p

en
C

L

A
lt

er
a

C
L

Sn
u

C
L

P
la

tf
o

rm

(C
lu

st
e

r
M

o
d

e
)

M
ai

n
 M

em
o

ry

M
em

o
ry

M

em
o

ry

M
em

o
ry

Main Memory

A
M

D

A
P

U

A
M

D

C
P

U

Xe
o

n

X
eo

n

P
h

i

FP
G

A

N
V

G

P
U

N
V

G

P
U

M
em

o
ry

Figure 6.11: Left: SnuCL’s ‘single’ mode. All OpenCL platforms within a node are aggregated under a single platform. Right:
SnuCL’s ‘cluster’ mode. All OpenCL devices and platforms across a cluster of nodes are a provided with the view of a single OS
image with a shared resource abstraction. SnuCL helps in sharing data, sharing kernels and synchronization across devices from
different platforms.

to manually choose the OpenCL device for each kernel and data transfer operation, i.e. there is no automatic device

selection. Figure 6.11 shows the different programming abstractions provided by SnuCL.

6.4.2 Designing the MultiCL Runtime System

The SnuCL runtime creates a scheduler thread per user process, but the default scheduler thread statically maps the

incoming commands to the explicitly chosen target device—that is, manual scheduling. MultiCL is our extension of the

SnuCL runtime, with the added functionality of automatic command-queue scheduling support to OpenCL programs.

MultiCL’s design is depicted in the left portion of Figure 6.12. The user’s command queues that are created with

the SCHED OFF flag will be statically mapped to the chosen device, whereas those that have the SCHED AUTO flag

are automatically scheduled by MultiCL. Further, the user-specified context property (e.g.: AUTO FIT) determines

the scheduling algorithm for the pool of dynamically mapped command queues. Once a user queue is mapped to the

device, its commands are issued to the respective device specific queue for final execution.

The MultiCL runtime consists of three modules: (1) device profiler, where the execution capabilities (memory, com-

CHAPTER 6. TASK MAPPING WITH MPI-ACC 94

pute and I/O) of the participating devices are collected or inferred; (2) kernel profiler, where kernels are transformed

and their execution times on different devices are measured or projected; and (3) device mapper, where the participat-

ing command queues are scheduled to devices so that queue completion times are minimal. The OpenCL functions

that trigger the respective modules are shown in the right portion of Figure 6.12.

Device Profiler

The device profiler, which is invoked once during the clGetPlatformIds call, retrieves the static device profile

from the profile cache. If the profile cache does not exist, then the runtime runs data bandwidth and instruction

throughput benchmarks and caches the measured metrics as static per-device profiles in the user’s file system. The

profile cache location can be controlled via environment variables. The benchmarks are derived from the SHOC

benchmark suite [31] and NVIDIA SDK, and are run for a wide range of data sizes ranging from being latency bound

to bandwidth bound. Benchmarks measuring host-to-device (H2D) bandwidths are run for all the CPU socket–device

combinations, whereas the device-to-device (D2D) bandwidth benchmarks are run for all device–device combinations.

These benchmarks are included as part of the MultiCL runtime. Bandwidth numbers for unknown data sizes are

computed using simple interpolation techniques. The instruction throughput of a device (or peak flop rate) can also

be obtained from hardware specifications and manually included in the device profile cache. The benchmarks are run

again only if the system configuration changes, for example, if devices are added or removed from the system or the

device profile cache location changes. However, in practice, the runtime just reads the device profiles from the profile

cache once at the beginning of the program.

Kernel Profiler

Kernel execution times can be estimated by performance modeling or performance projection techniques, but these

approaches are either done offline or they are impractical because of their large runtime overheads. We follow a

more practical approach in that we run the kernels once per device and store the corresponding execution times as

part of the kernel profile. While this approach may cause potential runtime overhead to the current programs, we

CHAPTER 6. TASK MAPPING WITH MPI-ACC 95

clGetPlatformIds

clCreateProgramWithSource
clBuildProgram

(clEnqueue*)*

clWaitForEvents
clFinish

Device
profiling

(static)

Kernel
feature

extraction
(static)

Kernel
profiling

(dynamic)

Device
mapping

(dynamic)

Sy
n

ch
.

Ep
o

ch

End of
Program

D0 D1 Dn D2

D0 D1 D2 Dn
…

…

AUTO_FIT
Scheduler

? ?

Queues

SCHED_OFF SCHED_AUTO_*

St
at

ic

M
ap

p
in

g

vi
a

Sn
u

C
L

Device Pool

Figure 6.12: Left: MultiCL runtime design and extensions to SnuCL. Right: invoking MultiCL runtime modules in OpenCL
programs.

CHAPTER 6. TASK MAPPING WITH MPI-ACC 96

discuss several ways to mitigate the overhead in this section. Also, our experiments indicate that, upon applying the

runtime optimizations, the runtime overhead is minimal or sometimes negligible while the optimal device combina-

tions are chosen for the given kernels. Static kernel transformations, like minikernel creation, is performed during

clCreateProgramWithSource and clBuildProgram, whereas dynamic kernel profiling is done at synchro-

nization points or at user-defined code regions.

Device Mapper

Each clEnqueue- command is intercepted by the device mapper and the associated queue is added to a ready

queue pool for scheduling. Once the scheduler is invoked and maps the queue to a device, the queue is removed

from the queue pool. On the one hand, the scheduler can actively be invoked for every kernel invocation, but that

approach can cause significant runtime overhead due to potential cross-device data migration. On the other hand, the

runtime can simply aggregate the profiled execution costs for every enqueue command, and the scheduler be invoked

at synchronization epoch boundaries or at any other user-specified location in the program. The scheduler options

discussed in the previous section can be used to control the frequency and location of invoking the scheduler, which

can further control the overhead vs. optimality tradeoff.

6.4.3 Static Command-Queue Scheduling

Users can control which command queues participate in static queue scheduling (SCHED AUTO STATIC) and which

of them are scheduled dynamically (SCHED AUTO DYNAMIC). In the static command-queue scheduling approach,

we use the device profiler and device mapper modules of our runtime and do not perform dynamic kernel profiling; in

other words, we statically decide the command-queue schedules based only on the device profiles. Users can select this

mode as an approximation to reduce scheduling overhead, but the optimal device may not be selected at certain times.

The MutliCL runtime uses the command queue properties (compute intensive, memory intensive, or I/O intensive) as

the selection criterion and chooses the best available device for the given command queue.

CHAPTER 6. TASK MAPPING WITH MPI-ACC 97

6.4.4 Dynamic Command-Queue Scheduling

In the dynamic command-queue scheduling approach, we use the kernel profiling and device mapping modules of our

runtime and selectively use the device profiling data. That is, we dynamically decide the command-queue schedules

based only on the kernel and device profiles.

Reducing Overhead in Kernel Profiling

While dynamic kernel profiling performs more accurate task-device mapping, it incurs non-negligible profiling over-

head. Users can choose runtime options to mitigate the runtime overhead associated with dynamic kernel profiling.

Next, we discuss three techniques to reduce the kernel profiling overhead.

Kernel Profile Caching for Iterative Kernels We cache the kernel profiles in memory as key-value pairs, where

the key is the kernel name and the value is its performance vector on the devices. The cached kernel profiles are used

to schedule future kernel invocations, and our approach significantly reduces kernel profiling overhead. We define a

kernel epoch as a collection of kernels that have been asynchronously enqueued to a command queue. Synchronizing

after a kernel epoch on the command queue will block until all the kernels in the epoch have completed execution.

We also cache the performance profiles of kernel epochs for further overhead reduction. The key for a kernel epoch is

just the set of the participating kernel names, and the value is the aggregate performance vector of the epoch on all the

devices. The user can provide runtime options to either batch schedule kernel epochs or individual kernels.

Iterative kernels benefit the most from the kernel profile cache because of kernel reuse. However, some kernels may

perform differently across iterations, or their performances may change periodically depending on the specific phase

in the program. The user can set a program environment flag to denote the iterative scheduler frequency, which tells

our scheduler when to recompute the kernel profiles and rebuild the profile cache. In practice, we have found iterative

kernels to have the least overhead, because the overhead that is incurred during the first iteration or a subset of iterations

is amortized over the remaining iterations.

CHAPTER 6. TASK MAPPING WITH MPI-ACC 98

Mini-kernel Profiling for Compute-Intensive Kernels While the kernel profile caching helps iterative applications,

noniterative applications still incur profiling overhead, and this is especially true for compute intensive kernels. To

choose the best device, we need to know only the relative kernel performances and not necessarily the absolute kernel

performances. Therefore, we create a profiling and modeling technique called minikernel profiling, where we run just a

single workgroup of the kernel on each participating device and collect the relative performances in the kernel profiles.

Our approach dramatically reduces runtime overhead, as discussed in Section 6.5. Our assumption is that workgroups

often exhibit similar behavior and share similar runtime statistics, a situation typical of data-parallel workloads.

Creating the mini-kernel source and compiling the binary object: One approach for running a single workgroup

is simply to launch the kernel with a single workgroup configuration: global work size equals the local work size.

However, some kernels assign work to each workgroup proportional to the problem size, whereas other kernels assign

constant work to each workgroup but the number of workgroups is proportional to the problem size. If we launch a

kernel with a single workgroup, the work distribution logic in the kernel may make the workgroup work on the entire

problem size, and thus it does not guarantee a reduction in the profiling overhead. To solve this problem, we create

a new mini-kernel for every kernel in the program and store the mini-kernel source in memory. The mini-kernel is

created by modifying the source kernel logic to create a conditional that allows just the first workgroup to execute the

kernel and force all the other workgroups to return immediately (e.g., Figure 6.13). We launch the mini-kernel with the

same launch configuration as the original kernel, so the amount of work done by the first workgroup in the mini-kernel

does not change. Our approach thus guarantees reduction in the profiling overhead.

The mini-kernel profiling approach is conceptually similar to the mini-emulation technique that we explored previ-

ously [58]. The purpose of mini-emulation is to indirectly compute the relative performance of kernels by collecting

kernel characteristics from modified emulators, whereas the purpose of mini-kernel profiling is to directly collect the

relative performance of kernels by running single workgroups on available devices. Also, mini-emulation modifies

a few emulators to functionally emulate a single workgroup, whereas mini-kernel profiling involves quick on-the-fly

string substitutions in the kernel source itself to create a conditional statement that forces just a single workgroup to

execute through the kernel.

CHAPTER 6. TASK MAPPING WITH MPI-ACC 99

1 // Actual kernel code
2 __kernel void foo(...) {
3 /* kernel code */
4 }
5
6 // Mini-kernel code
7 __kernel void foo(...) {
8 /* return if this is not first workgroup */
9 if(get_group_id(0)+get_group_id(1)+get_group_id(2)!=0)

10 return;
11 /* kernel code */
12 }

Figure 6.13: Mini-kernel example.

We intercept the clCreateProgramWithSource call and create the mini-kernel by simple string manipulation

techniques. We intercept the clBuildProgram call and build the program with the new mini-kernels into a separate

binary. We store each mini-kernel object as a shadow kernel within the original kernel object in our runtime and

invoke them during kernel profiling. While this method doubles the cost of building the OpenCL source at runtime,

we consider this to be initial setup cost that does not change the actual runtime of the program. We note also that the

mini-kernel profiling approach requires access to the kernel source to perform the above optimization.

Data Caching for I/O-Intensive Kernels One of the steps in kernel profiling is to transfer the input data sets from

the source device to each participating device before running the mini-kernels on them. Clearly, the data transfer cost

adds to the runtime overhead. If there are n devices, the brute-force approach is to do device-to-device (D2D) data

transfers n − 1 times from the source device to every other device, followed by an intra-device data transfer at the

source. However, the current vendor drivers do not support direct D2D transfer capabilities across vendors and device

types. Thus, each D2D transfer is performed as a device-to-host (D2H) and host-to-device (H2D) double operation

via the host memory, which means that there will be n − 1 D2H and n − 1 H2D operations2. However, we realize

that the host memory is shared among all the devices within a node. Therefore, we optimize the data transfer step by

doing just a single D2H copy from the source device to the host, followed by n−1 H2D data transfers. In addition, we

cache the incoming data sets in each destination device so that if our runtime mapper decides to migrate the kernel to

a different target device, the required data is already present in the device. With this optimization, however, we trade

2GPUDirect for NVIDIA GPUs has very limited OpenCL support.

CHAPTER 6. TASK MAPPING WITH MPI-ACC 100

off increased memory footprint in each device for less data-transfer overhead.

6.5 Evaluation

We describe the experimental setup and demonstrate the efficacy of our runtime optimizations using a benchmark suite

and a real-world seismology simulation application.

Our experimental node has a dual-socket oct-core AMD Opteron 6134 (Magny-Cours family) processor and two

NVIDIA Tesla C2050 GPUs. Each CPU node has 32 GB of main memory, and each GPU has 3 GB of device

memory. We use the CUDA driver v313.30 to manage the NVIDIA GPUs, and the AMD APP SDK v2.8 to drive the

AMD CPU OpenCL device. We compile our programs using GCC v4.6.3 on the Linux kernel v3.2.35. The network

interface is close to CPU socket 0 and the two NVIDIA GPUs have affinity to socket 1, which creates non-uniform

host-device and device-device distances (and therefore data transfer latencies) depending on the core affinity of the

host thread. The MultiCL runtime scheduler incorporates the heterogeneity in compute capabilities as well as device

distances when making device mapping decisions.

6.5.1 NAS Parallel Benchmarks (NPB)

The NAS Parallel Benchmarks (NPB) [20] are designed to help evaluate current and future parallel supercomput-

ers. The SnuCL team recently developed the SNU-NPB suite [68], which consists of the NPB benchmarks ported

to OpenCL. The SNU-NPB suite also has a multidevice version of the OpenCL code (SNU-NPB-MD) to evaluate

OpenCL’s scalability. SNU-NPB-MD consists of six applications: BT, CG, EP, FT, MG, and SP. The OpenCL code

is derived from the MPI Fortran code that is available in the “NPB3.3-MPI” suite and is not heavily optimized for

the GPU architecture. For example, Figure 6.14 shows the relative execution time of the single device version of the

benchmarks on the CPU and the GPU in our experimental system. We can see that most of the benchmarks run better

on the CPU but the degree of speedup varies, whereas EP runs faster on the GPU. This means that the device with

the highest theoretical peak performance and bandwidth, that is the GPU, is not always the best choice for the given

CHAPTER 6. TASK MAPPING WITH MPI-ACC 101

kernel.

Each SNU-NPB-MD benchmark has specific restrictions on the number of command queues that can be used depend-

ing on its data and task decomposition strategies, as documented in Table 6.4. Also, the amount of work assigned

per command queue differs per benchmark, that is, some create constant work per application and work per command

queue decreases for more queues while others create constant work per command queue and so, work per application

increases for more queues. In order to use more command queues than the available devices in the program, one

could write a simple round robin queue-device scheduler, but an in-depth understanding of the device architecture and

node topology is needed for ideal scheduling. Also, some kernels have different device-specific launch configuration

requirements depending on the resource limits of the target devices, and by default, these configurations are specified

only at kernel launch time. Moreover, such kernels are conditionally launched with different configurations depending

on the device type (CPU or GPU). In order to dynamically choose the ideal kernel-device mapping, a scheduler will

need the launch configuration information for all the target devices before the actual launch itself.

We enable MultiCL’s dynamic command-queue scheduling by making the following simple code extensions to each

benchmark: (1) we set the desired scheduling policy to the context during context creation, and (2) we set individual

command-queue properties as runtime hints at command-queue creation or around explicit code regions. In some

kernels, we also use the clSetKernelWorkGroupInfo function to separately express the device-specific kernel

launch configurations to the runtime, so that the scheduler can have the flexibility to model the kernel for a particular

device along with the correct corresponding kernel launch configuration. These simple code changes, together with

the MultiCL runtime optimizations, enable the benchmarks to be executed with ideal queue-device mapping. The

application developer has to only think about the data-task decompositions among the chosen number of command

queues, while at the same time, not worry about the underlying node architecture.

Table 6.4 also shows our chosen MultiCL scheduler options for the different benchmarks. The iterative bench-

marks typically have a ‘warmup’ phase during the loop iterations, and we consider them to be ideal candidates

for explicit kernel profiling because they form the most representative set of commands that will be consistently

submitted to the target command queues. For such iterative benchmarks, we set the command queues with the

CHAPTER 6. TASK MAPPING WITH MPI-ACC 102

Table 6.4: Summary of SNU-NPB-MD benchmarks, their requirements and our custom scheduler options.

Bench. Classes Cmd. Queues MultiCL Scheduler Option(s)
BT S,W,A,B Square: 1,4 SCHED EXPLICIT REGION,

clSetKernelWorkGroupInfo
CG S,W,A,B,C Power of 2: 1,2,4 SCHED EXPLICIT REGION
EP S,W,A,B,C,D Any: 1,2,4 SCHED KERNEL EPOCH,

SCHED COMPUTE BOUND
FT S,W,A Power of 2: 1,2,4 SCHED EXPLICIT REGION,

clSetKernelWorkGroupInfo
MG S,W,A,B Power of 2: 1,2,4 SCHED EXPLICIT REGION
SP S,W,A,B,C Square: 1,4 SCHED EXPLICIT REGION

SCHED EXPLICIT REGION property at creation time and trigger the scheduler explicitly around the warmup code

region. We call clSetCommandQueueProperty with SCHED AUTO and SCHED OFF flags to start and stop

scheduling respectively. Other code regions were not considered for explicit profiling and scheduling, because they did

not form the most representative command set of the benchmark. We also did not choose the SCHED KERNEL EPOCH

option for iterative benchmarks, because the warmup region spanned across multiple kernel epochs and the aggre-

gate profile of the region helped to generate the ideal queue-device mapping. On the other hand, the EP bench-

mark (random number generator) is known to be very compute-intensive and not iterative. At command-queue cre-

ation time, we simply set the SCHED KERNEL EPOCH and SCHED COMPUTE INTENSIVE properties as runtime

hints, which are valid for the queue’s lifetime. In the BT and FT benchmarks, we additionally use our proposed

clSetKernelWorkGroupInfo OpenCL API (Section 4.2) to set CPU- and GPU-specific kernel launch param-

eters. The parameters that are later passed to clEnqueueNDRangeKernel are ignored by the runtime. This ap-

proach decouples the kernel launch from a particular device, thus enabling the runtime to dynamically launch kernels

on the ideal device with the right device-specific kernel launch configuration.

We evaluate each benchmark with problem sizes from the smallest (S) to the largest problem size that fits on each

available device. Figure 6.15 shows a performance comparison of MultiCL-based automatic scheduling with manual

round-robin techniques as the baseline. The benchmark class in the figure denotes the largest problem size for that

application that could fit on the device memories, and each benchmark uses four command queues. One can schedule

four queues among three devices (2 GPUs and 1 CPU) in 34 ways, but for our demonstration purpose, we showcase

a few explicit schedules that we consider are more likely to be explored by users – (1) CPU-only assigns all four

command queues to the CPU, (2) GPU-only assigns all four command queues to one of the GPUs, (3) Round-robin

CHAPTER 6. TASK MAPPING WITH MPI-ACC 103

0

0.5

1

1.5

2

2.5

3

3.5

4

BT CG EP FT MG SP

R
e

la
ti

ve
 E

xe
cu

ti
o

n
 T

im
e

CPU

GPU

Figure 6.14: Relative execution times of the SNU-NPB benchmarks on CPU vs. GPU.

1

10

100

1000

10000

BT.B CG.C EP.D FT.A MG.B SP.C

Ti
m

e
 (

s)

Explicit CPU only Explicit GPU only

Round Robin (GPUs only) Round Robin #1

Round Robin #2 Auto Fit

Figure 6.15: Performance overview of SNU-NPB (MD) for manual and MultiCL’s automatic scheduling. Number of command
queues: 4. Available devices: 1 CPU and 2 GPUs.

CHAPTER 6. TASK MAPPING WITH MPI-ACC 104

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

BT.B CG.C EP.D FT.A MG.B SP.C CPU
only

GPU
only

Round
Robin
(GPUs
only)

Round
Robin

#1

Round
Robin

#2

MultiCL Scheduling (Auto Fit) Manual Scheduling

N
o

rm
al

iz
e

d
 K

e
rn

e
l D

is
tr

ib
u

ti
o

n

GPU 1

GPU 0

CPU

Figure 6.16: Distribution of SNU-NPB (MD) kernels to devices for manual and MultiCL’s automatic scheduling. Number of
command queues: 4. Available devices: 1 CPU and 2 GPUs.

(GPUs) assigns two queues each to the two GPUs, (4) Round-robin #1 assigns two queues to one GPU, one queue to

the other GPU and one queue to the CPU, and (5) Round-robin #2 assigns two queues to the CPU and one queue to

each GPU. Given that five benchmarks perform better on the CPU and EP works best on the GPU, we consider some

of the above five schedules to form the best and worst queue-device mappings and expect the MultiCL scheduler to

automatically find the best queue-device mapping.

We define the modeling overhead of our scheduler as the difference between the performance obtained from the ideal

queue-device mapping and the performance obtained from the scheduler driven queue-device mapping, expressed

as a percentage of the ideal performance, that is Tscheduler map−Tideal map

Tideal map
∗ 100. Figure 6.15 shows that automatic

scheduling using the MultiCL runtime achieves near optimal performances, which indirectly means ideal queue-device

mapping, and the geometric mean of the overall performance overhead is 10.1%. The overhead of FT is more than

the other benchmarks, which we analyze in the next paragraph. Figure 6.16 shows how the performance model in

MultiCL’s scheduler has distributed the kernels among the available devices. A close comparison with the benchmarks’

CPU vs. GPU performance from Figure 6.14 indicates that our scheduler maps queues to devices in a near ideal

manner. For example, Figure 6.14 indicates that the BT and MG benchmarks perform much better on the CPU than

the GPU, and Figure 6.16 indicates that our scheduler has assigned most of the kernels from all iterations to the CPU

CHAPTER 6. TASK MAPPING WITH MPI-ACC 105

1

2

4

8

16

32

64

128

256

0.00%

50.00%

100.00%

150.00%

200.00%

250.00%

300.00%

350.00%

400.00%

1 2 4 8

D
at

a
Tr

an
sf

e
r

Si
ze

 P
e

r
Q

u
e

u
e

 (
M

B
)

 N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

Command Queue Count (Benchmark: FT.A)

Profiling Overhead

Ideal Application
Execution

Figure 6.17: Data transfer overhead for the FT (Class A) benchmark.

and almost none to the GPU. Similarly, EP performs best on the GPU (Figure 6.14) and we see that our scheduler has

assigned all kernels to the GPU. The other benchmarks are still better on the CPU, but to a lesser degree, and thus we

see that the CPU still gets a majority of the kernels, but the GPUs too get their share of work. We see similar trends

for the other problem classes and other command queue numbers as well.

Effect of Data Transfer Overhead in Scheduling

The FT benchmark distributes the input data among the available command queues, that is, data per queue decreases

as the number of queues increase. MultiCL’s kernel profiling module copies the input data only once per device for

performance modeling; hence, the cost is amortized for more command queues, and our modeling overhead reduces.

While Figure 6.15 indicates that the modeling overhead in FT is about 45% when compared to the ideal queue-device

mapping and when four command queues are used, Figure 6.17 indicates that the modeling overhead decreases with

increasing command queues. While the other benchmarks work on similar data footprints in memory, they do not

transfer as much data as FT, and thus exhibit apparently negligible data transfer overhead while scheduling.

CHAPTER 6. TASK MAPPING WITH MPI-ACC 106

0.1

1

10

100

1000

EP.S EP.W EP.A EP.B EP.C EP.D EP.S EP.W EP.A EP.B EP.C EP.D

Mini-Kernel Modeling Full Kernel Modeling

A
p

p
lic

at
io

n
 E

xe
cu

ti
o

n
 T

im
e

 (
s)

 Modeling Overhead

Ideal Application Execution

Figure 6.18: Impact of mini-kernel modeling for the EP benchmark.

Effect of Mini-kernel Profiling in Scheduling

The EP benchmark does random number generation on each device and is very compute-intensive, and the CPU (non-

ideal device) can be up to 20× slower than the GPU (ideal device) for certain problem sizes. Since the full kernel-

modeling approach runs the entire kernel on each device before device selection, the runtime overhead when compared

to the ideal device combination can also be about 20×. Moreover, running the full kernel means that the modeling

overhead increases for larger problem sizes. On the other hand, our mini-kernel modeling approach just runs a single

workgroup on each device, which incurs a constant modeling overhead for any problem size. Mini-kernel modeling

thus dramatically reduces the modeling overhead to only about 3% of the total execution time for large problem sizes,

while making optimal device mapping. We perform mini-kernel profiling for all the other benchmarks as well, but

since they are not as compute-intensive as EP, its apparent benefits are negligible.

Summary

With MultiCL, we make parametric changes to at most four OpenCL functions in existing benchmarks and trigger the

MultiCL scheduler to automatically schedule the command queues and map them to the ideal combination of devices.

We choose the auto fit global scheduler for the context, while the command queues choose either the explicit region

CHAPTER 6. TASK MAPPING WITH MPI-ACC 107

or kernel epoch local scheduler options. The MultiCL scheduler performs static device profiling to collect the device

distance metrics, then performs dynamic kernel profiling to estimate the kernel running costs, and then computes the

aggregate cost metric from the data transfer and kernel execution costs. We derive the data transfer costs based on the

device profiles and the kernel profiles provide the kernel execution costs. We use the aggregate cost metric to compute

the ideal queue-device mapping. Optimal command-queue-to-device mapping is automatically accomplished with a

reasonably low performance overhead and minor code modifications.

6.5.2 Seismology Modeling Simulation

FDM-Seismology is an application that models the propagation of seismological waves using the finite-difference

method by taking the Earth’s velocity structures and seismic source models as input [53]. The application implements

a parallel velocity-stress, staggered-grid finite-difference method for propagation of waves in a layered medium. In

this method, the domain is divided into a three-dimensional grid, and a one-point integration scheme is used for each

grid cell. Since the computational domain is truncated in order to keep the computation tractable, absorbing boundary

conditions are placed around the region of interest to keep the reflections minimal when boundaries are impinged

by the outgoing waves. This strategy helps simulate unbounded domains. The simulation iteratively computes the

velocity and stress wavefields within a given subdomain. Moreover, the wavefields are divided into two independent

regions, and each region can be computed in parallel. The reference code of this simulation is written in Fortran [61].

Design and Implementation in OpenCL

For our experiments, we extend an existing OpenCL implementation [43] of the FDM-Seismology simulation as the

baseline. The OpenCL implementation divides the kernels into velocity kernels and stress kernels, where each set of

kernels computes the respective wavefields at its two regions. The velocity wavefields are computed by using seven

OpenCL kernels, three of which are used to compute on region-1 and the other four kernels to compute on region-2.

Similarly, the stress wavefields are computed by using 25 OpenCL kernels, 11 of which compute on region-1 and

14 kernels compute on region-2. We have two OpenCL implementations of the simulation: (1) column-major data,

CHAPTER 6. TASK MAPPING WITH MPI-ACC 108

which directly follows Fortran’s column major array structures, and (2) row-major data, which uses row major array

structures and is more amenable for GPU execution. Moreover, since the two wavefield regions can be computed

independently, their corresponding kernels are enqueued to separate command queues.

In our experimental system, the two command queues can be scheduled on the three OpenCL devices in 32 different

ways. Figure 6.19 demonstrates the performance of both versions of the kernels on different device combinations. We

see that the column-major version performs best when all the kernels are run on a single CPU and performs worst

when all of them are run on a single GPU, and the performance difference between the two queue-device mappings is

2.7×. On the other hand, the row-major version is best when the command queues are distributed across two GPUs

and is 2.3× better than the performance from the worst-case mapping of all kernels on a single CPU.

We compare the performance of MultiCL’s two global schedulers, round robin and auto fit, by simply setting the con-

text property to either the ROUND ROBIN or AUTO FIT respectively. FDM-Seismology has regular computation per

iteration, and each iteration consists of a single synchronization epoch of kernels. So, as our local scheduler, we can ei-

ther choose the implicit SCHED KERNEL EPOCH at queue creation time, or choose the SCHED EXPLICIT REGION

and turn on automatic scheduling explicitly just for the first iteration by using clSetCommandQueueProperty.

We use the SCHED KERNEL EPOCH option in our experiments, but the final mapping and modeling overhead is ex-

pected to be the same for the other option as well. Figure 6.19 shows that MultiCL’s auto fit scheduler maps the devices

optimally for both code versions. The performance of the auto fit case is similar to the CPU-only case for the column-

major code and is similar to the dual-GPU case for the row-major version of the code, with a negligible modeling

overhead of less than 0.5%. On the other hand, the round-robin scheduler always chooses to split the kernels among

the two GPUs, which does not provide us the best combination for the column-order version of the code. Figure 6.20

shows that for the auto-fit scheduler, while the first iteration incurs runtime overhead, the added cost gets amortized

over the remaining iterations.

CHAPTER 6. TASK MAPPING WITH MPI-ACC 109

0
200
400
600
800

1000
1200
1400
1600

(G
0

, G
0

)

(G
0

, G
1

)

(G
0

, C
)

(G
1

, G
0

)

(G
1

, G
1

)

(G
1

, C
)

(C
, G

0
)

(C
, G

1
)

(C
, C

)

M
u

lt
iC

L
R

o
u

n
d

 R
o

b
in

M
u

lt
iC

L
A

u
to

 F
it

Manual Scheduling

Ti
m

e
 p

e
r

It
e

ra
ti

o
n

 (
m

s)
 Column-major Data

Row-major Data

Figure 6.19: FDM-Seismology performance overview.

0

1000

2000

3000

4000

5000

Ti
m

e
 (

m
s)

Iteration

Stress Computation

Velocity Computation

Figure 6.20: FDM-Seismology performance details for the AUTO FIT scheduler. The graph shows that the overhead of perfor-
mance modeling decreases asymptotically with more iterations.

CHAPTER 6. TASK MAPPING WITH MPI-ACC 110

Data Marshaling with OpenCL

The FDM-Seismology simulation has data marshaling phases after both the velocity and stress compute phases. The

default version of the code performed data marshaling on the CPU. In this section, we describe the consequences of

performing the data marshaling operations on one of the OpenCL devices, and how the MultiCL scheduler adapts to

the changed workflow.

We have reimplemented all the GPU data marshaling kernels from CUDA (Section 5.3.2) to OpenCL for this purpose.

In the CPU-based data marshaling scenario, the region-1 and region-2 kernels were computed concurrently using

two separate command queues. However, the data marshaling kernels are consecutive and work on both regions

simultaneously, i.e. there is data dependency between regions 1 and 2. To address this data dependency, we create a

third separate command queue that is used to invoke all the data marshaling kernels. We discuss the row-major data

execution mode in this section, but the column-major scenario works similarly.

As a consequence to performing data marshaling on the device, the host-device bulk data transfers before and after

each velocity-stress computation kernel are completely avoided. The need to explicitly bulk transfer data from the

device to the host arises only at the end of the iteration, when the results are transferred to the host to be written to a

file (Figure 6.21). Furthermore, we can use MPI-ACC to perform these data transfers directly among OpenCL devices,

which we discuss in section 6.6. In summary, the application uses three command queues and the MultiCL runtime

handles scheduling them to the available devices.

After every computation phase, the marshaling queue synchronizes with the computation queues, which involves both

execution and data synchronizations. In the CPU-based data marshaling scenario, the two computation queues are

independently scheduled on different OpenCL devices (GPUs) for the entire duration of the application and there was

no cross-queue synchronization. However, the device-based data marshaling scenario required explicit cross-queue

synchronization before and after marshaling. The SnuCL runtime automatically migrates the required data to and

from the target device around the marshaling phase. While splitting the velocity and stress kernels across two devices

reduces the computation cost, the marshaling kernels execute on a single device and incur data resolution cost, which is

CHAPTER 6. TASK MAPPING WITH MPI-ACC 111

GPU CPU Net I/O

Velocity
Kernels

(R1)

gpuMemcpy

Write Results

Data Marshaling (R1 + R2) MPI

Velocity
Kernels

(R2)

Stress
Kernels

(R1)

Stress
Kernels

(R2)

Data Marshaling (R1 + R2) MPI

Figure 6.21: Data marshaling with OpenCL in FDM-Seismology. Data dependency: stress and velocity kernels work concurrently
with independent regions on separate command queues, whereas the data marshaling step works with both regions on a single
command queue.

required to maintain data consistency across the different devices. So, the question is if it is worthwhile to schedule the

compute command queues across two devices and incur data resolution cost, or is it better to schedule all the queues

to a single device and completely avoid the data resolution cost? Our MultiCL runtime schedules all the available

command queues so that the overall execution time, which includes the kernel execution cost and the data resolution

cost for marshaling, is minimized.

Evaluation

In this section, we evaluate the tradeoff between scheduling on multiple devices to reduce the kernel execution (com-

pute) time vs. scheduling on a single device to reduce the data resolution time. To this end, we implement a seismology

“mini-application”, which captures the core computation-communication pattern of FDM-Seismology. Figure 6.22 de-

scribes the pseudo-code of the mini-application. It begins with a compute phase that consists of a compute-intensive

kernel performing a series of multiple and multiply-add operations on two separate data sets on two independent com-

mand queues. The compute phase is followed by a data marshaling phase, which consists of a lightweight kernel

CHAPTER 6. TASK MAPPING WITH MPI-ACC 112

1 // Initialize command queues
2 cl_command_queue queue1, queue2, queue3;
3
4 // Mini-application loop
5 for (...) {
6 // Two independent compute loops
7 compute_data_1(data1, queue1);
8 compute_data_2(data2, queue2);
9 sync(queue1);

10 sync(queue2);
11 // Data resolution happens before marshaling
12 marshal_data(data1, data2, queue3);
13 }

Figure 6.22: Pseudo-code of the seismology mini-application.

running on a single command queue and takes negligible cycles to compute. However, the marshaling kernel refer-

ences both the computed data sets to induce data dependency among the command queues. In summary, the compute

phase is compute-intensive and works independently on two data sets, wheres the marshaling phase is not compute-

intensive but has to resolve dependencies and incurs a data resolution cost. The compute and marshaling phases are

executed for multiple iterations and the average running time is reported. We can control the relative computation and

data resolution costs by modifying the computation loops and working data set sizes respectively.

MultiCL’s AUTO FIT scheduler optimizes for minimal total execution time. If the concurrent kernel execution time

on two devices (T K2), in addition to the data resolution time (T DR) is lesser than the consecutive kernel execution

time on a single device (T K1), then the scheduler will map the compute command queues to separate devices. If

the consecutive kernel execution time on a single device (T K1) is lesser, then the scheduler maps all the command

queues to a single device.

In our experiment, we keep the compute phase constant and only vary the working data set size, so that the data

resolution cost increases for larger working data sets, whereas the compute phase time remains constant for all working

data sets. Figure 6.23 shows the time decomposition for kernel execution and data resolution costs for all queue-GPU

combinations. We ignore the CPU device in this case because the GPUs are about 100× faster than the CPU for this

specific mini-application example, and are irrelevant in our scheduler analysis. We see from a detailed analysis in

figure 6.24 that for smaller data sizes, T K1 > T K2 + T DR and two devices are better to schedule the queues

despite the data resolution cost. For larger data sizes, T K1 < T K2 + T DR and the data resolution cost of using

CHAPTER 6. TASK MAPPING WITH MPI-ACC 113

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(G
0

, G
0

)

(G
0

, G
1

)

(G
1

, G
0

)

(G
1

, G
1

)

(G
0

, G
0

)

(G
0

, G
1

)

(G
1

, G
0

)

(G
1

, G
1

)

(G
0

, G
0

)

(G
0

, G
1

)

(G
1

, G
0

)

(G
1

, G
1

)

(G
0

, G
0

)

(G
0

, G
1

)

(G
1

, G
0

)

(G
1

, G
1

)

(G
0

, G
0

)

(G
0

, G
1

)

(G
1

, G
0

)

(G
1

, G
1

)

Data Size: XS Data Size: S Data Size: M Data Size: L Data Size: XL

Ti
m

e
 (

s)

Relative Problem Working Set Sizes

Data Resolution

Kernel Execution

Figure 6.23: Seismology mini-application performance overview on all queue-GPU combinations. Two GPUs are better for smaller
data sizes, whereas single GPU is better for larger data sizes.

two devices outweigh the advantage of concurrent processing, and running everything on a single device performs

better overall. As the data sizes grow, the case for a single device schedule becomes stronger as well.

While our mini-application was controlled to have a constant compute phase for all working data sets, the compute

phase may vary in real applications. We see from a detailed analysis in figure 6.26 that for all data sizes, T K1 <

T K2 + T DR and the data resolution cost of using two devices outweigh the advantage of concurrent processing,

and running everything on a single device performs better overall. This is because the compute phase time also varies

with the working data set size and there is no tradeoff point in the positive X-axis where two devices would be better

than a single device. As the data sizes grow, the case for a single device schedule becomes stronger as well.

Figure 6.25 shows the time decomposition for kernel execution and data resolution costs for all queue-GPU combina-

tions. We note that while the case for a single GPU may become better for smaller data sizes, the application has a

non-negligible sequential code, which limits the overall parallelism of the application and using multiple GPUs make

lesser sense. Figure 6.25 also shows that our MultiCL scheduler correctly identifies the above trends in the device

mapper module of the runtime, and assigns all command queues to a single device for all data sets.

CHAPTER 6. TASK MAPPING WITH MPI-ACC 114

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

Ti
m

e
 (

s)

Working Set Size of the Problem (bytes) Billions

Kernel Exec. Only (1 Device)

Kernel Exec. Only (2 Devices)

Kernel Exec. (2 Devices) + Data
Resolution

Figure 6.24: Seismology mini-application performance analysis for single device vs. two device configurations. For smaller data
sizes, T K1 > T K2 + T DR, i.e. two devices are better. For larger data sizes, T K1 < T K2 + T DR, i.e. a single device is
better.

0

1

2

3

4

5

6

7

8

(G
0

, G
0

)

(G
0

, G
1

)

(G
1

, G
0

)

(G
1

, G
1

)

A
u

to
 F

it

(G
0

, G
0

)

(G
0

, G
1

)

(G
1

, G
0

)

(G
1

, G
1

)

A
u

to
 F

it

(G
0

, G
0

)

(G
0

, G
1

)

(G
1

, G
0

)

(G
1

, G
1

)

A
u

to
 F

it

(G
0

, G
0

)

(G
0

, G
1

)

(G
1

, G
0

)

(G
1

, G
1

)

A
u

to
 F

it

(G
0

, G
0

)

(G
0

, G
1

)

(G
1

, G
0

)

(G
1

, G
1

)

A
u

to
 F

it

Manual
Scheduling

Manual
Scheduling

Manual
Scheduling

Manual
Scheduling

Manual
Scheduling

Size: XS Size: S Size: M Size: L Size: XL

Ti
m

e
 (

s)

Relative Problem Working Set Sizes (Manual GPU Scheduling vs. MultiCL Auto Fit)

Data Resolution

Kernel Execution

Sequential Code

Figure 6.25: FDM-Seismology application performance overview on all queue-GPU combinations. For all data sizes, a single GPU
is better than using two GPUs. The sequential code cost also provides lesser incentive to move to multiple GPUs.

CHAPTER 6. TASK MAPPING WITH MPI-ACC 115

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

Ti
m

e
 (

s)

Working Set Size of the Problem (bytes) Billions

Kernel Exec. Only (1 Device)

Kernel Exec. Only (2 Devices)

Kernel Exec. (2 Devices) + Data
Resolution

Figure 6.26: FDM-Seismology application performance analysis for single device vs. two device configurations. For all data sizes,
T K1 < T K2 + T DR, i.e. a single device is better.

6.5.3 Programmability Benefits

For all our experiments, we made minimal code changes to the application code, with an average modification of

about four lines of code to the entire program.3 The user is required to add new context properties to set the global

scheduling policy and set the command queue properties for local policies and runtime scheduler hints. The other

runtime features are optional, such as using clSetCommandQueueProperty to explicitly control the local policy

and clSetKernelWorkGroupInfo to set device-specific kernel launch configurations. We have shown that with

minimal code changes to a given OpenCL program, our scheduler can automatically map the command queues to

the optimal set of devices thereby significantly enhancing the programmability for a wide range of benchmarks and

real-world applications. Our scheduler is shown to incur negligible overhead for the seismology simulation.

3We assume that each OpenCL function call can fit in one source line.

CHAPTER 6. TASK MAPPING WITH MPI-ACC 116

6.6 Discussion: Codesigning the Data Movement and Task Scheduler Run-

times

The data movement runtime orchestrates efficient data communication among CPUs and accelerators across nodes. On

the other hand, the task management runtime schedules tasks within a node. Ideally, the data communication runtime

should be independent of the within-node task management runtime, where data pieces that are required for pipelining

or direct communication are fetched through the device-specific programming model, in our case, the command queue

or the GPU stream. The data movement runtime should not rely on device specific data structures, and instead use

device abstractions like command queues to do data communication. However, the current GPU drivers limit the host

side pinned memory pool to be shared among all the available devices, which means that we have to create device

specific pinned memory in the MPI-ACC runtime. While MPI-ACC issues intermediate data transfer commands to

the command queue and not directly to the device, it still needs to query the actual device that is associated with the

command queue to decide the specific memory pool that should be used for pipelining. If all the vendor drivers were

able to share a common pinned memory pool for RDMA transfers, then the MPI-ACC runtime could have simply

chosen any generic host buffer for pipelining and continue to interface with just the high level command queue device

abstractions. Querying for the dynamic command queue’s current device is not supported by the OpenCL standard,

and so we extend the OpenCL specification to include a “latest” device query flag to retrieve the device with the latest

copy of the memory object of interest.

We use point-to-point latency benchmarks and the FDM-Seismology application to evaluate our codesign of the

within- and across-node layers of MPI-ACC. We implement FDM-Seismology application in OpenCL, which in-

cludes all the velocity and stress computations as well as the marshaling kernels on the GPU device. Using MPI-ACC,

we can perform end-to-end device data transfers, while the MultiCL runtime is used to dynamically choose the ideal

device for the set of velocity and stress kernels.

CHAPTER 6. TASK MAPPING WITH MPI-ACC 117

1000

10000

16K 32K 64K 128K 256K 512K 1M 2M 4M

La
te

n
cy

 (
u

s)

Data Size

Auto Buffer Pool

Pool 0

Pool 1

Pool 2

Figure 6.27: Point-to-point communication between OpenCL Device-1 on each node. Best performance is achieved if the interme-
diate buffers for pipelining also correspond to the same device. MPI-ACC automatically chooses the right buffer pool by querying
the queue’s latest device.

Send-Receive Microbenchmark We measure the performance impact of buffer pool choices when moving data

between two remote OpenCL devices using MPI-ACC. In this experiment, we arbitrarily choose device 1 on each

node and perform a ping-pong latency test by modifying the OSU latency benchmark. Figure 6.27 shows that our

codesign of MPI and the OpenCL runtimes help in choosing the right set of buffer pool to perform pipelining, and thus

better performance.

FDM-Seismology with MPI and OpenCL In this section, we evaluate the multi-node configuration of FDM-

Seismology using both the MPI-ACC and MultiCL runtimes. Our MPI-based parallel version of the application

divides the input finite difference model into submodels along different axes such that each submodel can be computed

on different CPUs (or nodes). This domain decomposition technique helps the application to scale to a large number

of nodes. Each processor computes the velocity and stress wavefields in its own subdomain and then exchanges the

wavefields with the nodes operating on neighbor subdomains, after each set of velocity or stress computation. Each

processor updates both regions of its own wavefields after receiving all its neighbors’ wavefields.

The wavefield exchanges with neighbors take place after each set of velocity and stress computations. This MPI com-

munication takes place in multiple stages wherein each communication is followed by an update of local wavefields

and a small post-communication computation on local wavefields. At the end of each iteration, the updated local

CHAPTER 6. TASK MAPPING WITH MPI-ACC 118

wavefields are written to a file.

The velocity and stress wavefields are stored as large multidimensional arrays on each node. In order to optimize the

MPI computation between neighbors of the finite difference (FD) domain grid, only a few elements of the wavefields,

those needed by the neighboring node for its own local update, are communicated to the neighbor, rather than whole

arrays. Hence, each MPI communication is surrounded by data marshaling steps, where the required elements are

packed into a smaller array at the source, communicated, then unpacked at the receiver to update its local data. Data

marshaling can be performed either on the host or on the device, as discussed in the previous section.

With MPI-ACC as the communication library, we still perform data marshaling on the GPU, but communicate the

marshaled data directly to and from the GPU without explicitly using the CPU for data staging. Also, the bulk transfer

of data still happens only once at the end of each iteration to write the results to a file. But, the data marshaling step

happens multiple times during a single iteration and consequently, the application launches a series of GPU kernels.

While consecutive kernels entail launch and synchronization overhead per kernel invocation, the benefits of faster data

marshaling on the GPU and optimized MPI communication outweigh the kernel overheads.

We extend the single node implementation to include MPI-ACC calls to exchange the marshaled data with the neigh-

bors. Once the data is marshaled on the OpenCL devices, the send-receive calls between the nodes are associated with

the marshaling command queue (Figure 6.28).

While the MultiCL scheduler determines the local mapping of command queues with devices, the MPI-ACC runtime

simply interfaces with the high level OpenCL command queues and performs data pipelining across the network. As

previously mentioned, MPI-ACC only queries for the scheduled device to determine the appropriate buffer pool for

pipelining.

CHAPTER 6. TASK MAPPING WITH MPI-ACC 119

1 // Initialize all command queues
2 cl_command_queue queue1, queue2, queue3;
3 // Initialize event object
4 cl_event event;
5
6 // OpenCL extensions for automatic device selection
7 queue1 = clCreateCommandQueue(context, dev, CL_QUEUE_AUTO_DEVICE, ...);
8 queue2 = clCreateCommandQueue(context, dev, CL_QUEUE_AUTO_DEVICE, ...);
9 queue3 = clCreateCommandQueue(context, dev, CL_QUEUE_AUTO_DEVICE, ...);

10
11 // Initialize MPI data types for MPI-ACC
12 MPI_Type_dup(MPI_CHAR, &new_type);
13 MPI_Type_set_attr(new_type, BUF_TYPE, BUF_TYPE_OCL);
14 // Main application loop
15 for (...) {
16 // Velocity Computations
17 compute_velocity_region_1(queue1);
18 compute_velocity_region_2(queue2);
19 sync(queue1);
20 sync(queue2);
21 marshal_velocity_data(queue3, event);
22 // Automatic end-to-end data transfer and synchronization with MPI-ACC
23 MPI_Type_set_attr(new_type, COMMAND_QUEUE, queue3);
24 MPI_Type_set_attr(new_type, EVENT, event);
25 // MPI-ACC call
26 MPI_Isend(buf, new_type, neighbor, ...);
27 MPI_Irecv(buf, new_type, neighbor, ...);
28 MPI_Waitall(...);
29 // Stress Computations
30 compute_stress_region_1(queue1);
31 compute_stress_region_2(queue2);
32 sync(queue1);
33 sync(queue2);
34 marshal_stress_data(queue3);
35 // Automatic end-to-end data transfer and synchronization with MPI-ACC
36 MPI_Type_set_attr(new_type, COMMAND_QUEUE, queue3);
37 MPI_Type_set_attr(new_type, EVENT, event);
38 //MPI-ACC
39 MPI_Isend(buf, new_type, neighbor, ...);
40 MPI_Irecv(buf, new_type, neighbor, ...);
41 MPI_Waitall(...);
42 }
43 MPI_Type_free(&new_type);

Figure 6.28: Pseudo-code of FDM-Seismology using MPI-ACC and MultiCL runtimes.

CHAPTER 6. TASK MAPPING WITH MPI-ACC 120

6.7 Conclusion

We present our concluding thoughts on performance modeling and projection, and also our experiences in designing

and implementing a runtime system for task-device mapping.

6.7.1 Performance Modeling and Projection

We proposed, implemented, and evaluated an online performance projection framework for optimal GPU device se-

lection. The applications of our framework include runtime systems and virtual GPU environments that dynamically

schedule and migrate GPU workloads in cluster environments. Our technique is based on offline device profiling

and online kernel characterization. To automatically obtain runtime kernel statistics with an asymptotically lower

overhead, we propose the mini-emulation technique that functionally simulates a single workgroup to collect per-

workgroup statistics, which can then be used to calculate full-kernel statistics. Our technique is especially suitable for

online performance projection for kernels with large data sets. Our experiments with GPU devices of different vendors

show our technique is able to select the optimal device in most cases.

6.7.2 Task-Mapping Runtime

We introduced MultiCL, our task-mapping runtime, which includes automatic command-queue scheduling capabili-

ties. Our proposed runtime flags can be used to control the scheduling both globally at the context level and locally at

the command queue level. Our runtime optimizations enable users to focus on application-level data and task decom-

position and not worry about device-level architectural details and scheduling. Our runtime scheduler includes static

device profiling, dynamic kernel profiling, and online device mapping. We design novel overhead reduction strate-

gies including mini-kernel modeling for compute-intensive kernels, reduced data transfers, and profile data caching

for future kernel invocations. Our experiments on the NPB benchmarks and a real-world seismology simulation

(FDM-Seismology) demonstrate that the MultiCL runtime scheduler always maps command queues to the optimal

device combination and has an average runtime overhead of 10% for the NPB benchmarks and negligible overhead for

CHAPTER 6. TASK MAPPING WITH MPI-ACC 121

FDM-Seismology. We also discuss and evaluate our codesigning efforts of integrating the across node communication

runtime with the within node task scheduler.

Chapter 7

Conclusions

This dissertation pushed the boundaries of the MPI+X programming model (where X = CUDA, OpenCL, OpenMP,

OpenACC, etc.) and its associated runtime systems for high-performance clusters with heterogeneous computing

devices. We conclude our document with some related research directions and concluding thoughts.

7.1 Related Research Directions

In this section, we describe our work’s applicability in relation to higher level within-node “X” programming models,

and note few directions in which this research can be pursued in the future.

7.1.1 Interoperability With Other “X” Programming Models

Our dissertation focuses on MPI+X programming models, where X was device offload models, like CUDA and

OpenCL. Here, we discuss the interoperability of directive-based programming models, such as OpenMP [7] and

OpenACC [8], with MPI, and how MPI-ACC may be used to enhance the interoperability.

OpenMP (v4.0) [7] and OpenACC [8] are directive-based programming models for writing parallel programs primarily

122

CHAPTER 7. CONCLUSIONS 123

for CPUs and GPUs in single node systems. The programmer writes a serial program with annotations to denote

parallelism, heterogeneity and asynchrony. A compiler translates the annotated code to run on the multiple CPU

cores or one of the available GPU devices. All the above are fork-join models where a single master thread executes

sequentially until a parallel region construct is encountered. The parallel regions fork worker threads on the CPU or

GPU kernels or both, then join back to the master thread to continue the serial execution. Data management in the

annotated regions are host-centric, i.e. data is usually copied in from the host to the device at the beginning of the

region and copied out at the end of the region to maintain data consistency. Special clauses exist in both OpenMP and

OpenACC to perform just copying in or copying out, which provides better data locality and consistency control to

the programmer.

MPI-ACC extends MPI by allowing direct end-to-end data communication among CPUs and other devices. MPI-ACC

also performs automatic synchronization between device execution and data movement. For full interoperability of

MPI-ACC with directive-based models, the data access and synchronization semantics of device data and device tasks

must to be clearly defined by the OpenMP’s and OpenACC’s specifications.

Using MPI-ACC outside the region The OpenMP/OpenACC models are primarily host-centric, which works well

when used in conjunction with vanilla MPI, because MPI functions also operate only on host memory. If OpenMP

and OpenACC are also device-centric and directly operate on device buffers, then the programmer can leverage MPI-

ACC and its advanced runtime optimizations for data movement. The resulting will look very similar to a CPU-only

scenario, where MPI-ACC transfers data to the target device, and an annotated loop is executed on the destination

device by assuming that the incoming data is already available on the device and is valid. OpenACC’s deviceptr()

clause is a mechanism to tell the compiler to treat the incoming pointer as a device pointer and not a host pointer, and

can be used with MPI-ACC on CUDA buffers. Figure 7.1 shows a sample pseudo-code, where MPI-ACC is used to

receive CUDA data into a node, and an OpenACC loop operates on the received data. However, the deviceptr

clause requires the device data to be represented by void *, and so this approach will not work with OpenCL buffers

and MPI-ACC.

CHAPTER 7. CONCLUSIONS 124

1 char *d_ptr;
2 cudaMalloc((void *)&d_ptr, sz_bytes);
3 MPI_Type_dup(MPI_CHAR, &type);
4 MPI_Type_set_attr(type, BUF_TYPE, BUF_TYPE_CUDA);
5 MPI_Recv(d_ptr, type, ...);
6 MPI_Type_free(&type);
7 /* MPI-ACC is used to directly receive d_ptr to the device */
8 #pragma acc data deviceptr(d_ptr)
9 #pragma acc parallel

10 /* d_ptr is directly operated upon in the region
11 without any explicit host-device copies */
12 foo(d_ptr);
13 /* Rest of the program */

Figure 7.1: Interoperability of OpenACC with MPI-ACC: device data access within a region.

1 char *d_ptr = malloc(sz_bytes);
2 #pragma acc data copy(d_ptr)
3 {
4 // MPI-ACC, a host method, is invoked in this region
5 // by directly operating on the device data pointer
6 #pragma acc host_data use_device(d_ptr)
7 {
8 MPI_Type_dup(MPI_CHAR, &type);
9 MPI_Type_set_attr(type, BUF_TYPE, BUF_TYPE_CUDA);

10 MPI_Send(d_ptr, type, ...);
11 MPI_Type_free(&type);
12 }
13 /* Other OpenACC code */
14 }
15 /* Rest of the program */

Figure 7.2: Interoperability of OpenACC with MPI-ACC: MPI-ACC from within a region.

The latest OpenMP v4.0 specification does not address the scenario of using device pointers directly within a loop

region, and we want MPI-ACC and other GPU-integrated MPI solutions to motivate the OpenMP standards group to

consider adding direct device access support to OpenMP.

Using MPI-ACC within a region Since MPI-ACC is implemented as a CPU library, OpenMP and OpenACC should

support CPU-callable library interoperability within the annotated regions for data movement across devices. Ope-

nACC’s acc host data use device() pragma can be used to invoke MPI-ACC host calls from within a device

region, and also specify that the GPU’s version of the pointer be used in the MPI call. For example, figure 7.2 shows

how the acc host data use device() pragma is used to send the device pointer by using MPI-ACC, which is

a host method. OpenMP v4.0 does not have such a feature to enable MPI-ACC within an annotated region.

Some of the shortcomings of OpenACC’s pragmas are (1) OpenCL buffers cannot be used in the MPI calls because

CHAPTER 7. CONCLUSIONS 125

1 char *d_ptr1;
2 char *d_ptr2;
3 cudaMalloc((void *)&d_ptr1, sz_bytes);
4 cudaMalloc((void *)&d_ptr2, sz_bytes);
5 #pragma acc parallel async(1)
6 {
7 /* Operate on d_ptr1 */
8 }
9 #pragma acc parallel async(2)

10 {
11 /* Operate on d_ptr2 */
12 }
13 MPI_Type_dup(MPI_CHAR, &type);
14 MPI_Type_set_attr(type, BUF_TYPE, BUF_TYPE_CUDA);
15 /* Handling ACC_ASYNC_VAL can be implemented in MPI-ACC */
16 MPI_Type_set_attr(type, ACC_ASYNC_VAL, 1);
17 MPI_Isend(d_ptr1, type, ...);
18
19 MPI_Type_set_attr(type, ACC_ASYNC_VAL, 2);
20 MPI_Isend(d_ptr2, type, ...);
21 MPI_Type_free(&type);
22 MPI_Waitall(...);
23 /* Rest of the program */

Figure 7.3: Interoperability of OpenACC with MPI-ACC: synchronization.

deviceptr() requires that the device buffer be represented by a void *, and (2) the semantics of how MPI

synchronizes with the gangs of worker threads that are created in the outermost region to perform data movement is

still undefined. Moreover, the MPI implementation should be updated to leverage all the available threads to accelerate

the MPI call itself, similar to the work done in [70].

Synchronizing MPI-ACC with OpenMP/OpenACC tasks OpenMP creates synchronous tasks by default, and

there is no support yet for asynchronous GPU tasks. On the other hand, OpenACC allows asynchronous task creation

and management via the async clause. OpenACC v2.0 supports multiple async queues, which are conceptually

similar to CUDA streams, and the queues can be enumerated. If an async task has to be synchronized with an MPI-

ACC call, e.g.: MPI Send after the OpenACC task completes, its queue number can be passed to MPI-ACC for

automatic synchronization and progress (Figure 7.3).

7.1.2 Future Work

Innovations in the MPI standard have created opportunities for better scalability of MPI applications. Of particular

interest is the MPI 3.0 feature of shared-memory programming directly in MPI. All the MPI ranks in a shared-memory

CHAPTER 7. CONCLUSIONS 126

node can create shared-memory windows and directly read and/or write into it with the consistency semantics of

regular threading models. The scalability that can be achieved with the MPI+MPI shared memory model over the tra-

ditional MPI+OpenMP model looks very promising [37]. While this feature has been added to the MPI 3.0 standard,

it has not been extended to GPU and other accelerator memories. It will be critical to explore how this programming

interface would impact scalability, i.e. will the MPI+MPI model scale better than the MPI+CUDA or MPI+OpenCL

models? There are also key challenges in building the runtime system, in terms of thread synchronization, efficient

virtual memory management, and maintaining memory consistency semantics, while achieving acceptable perfor-

mance. Current cross-vendor driver limitations may be a hindrance in making this idea realize its full potential in the

short-term future.

MPI can be run natively on the Intel Xeon Phi coprocessors in one of three modes: (1) offload mode where all MPI

ranks are run on the host CPU, and the application offloads the compute intensive codes on the Intel Xeon Phi cor-

pocessor, (2) native mode where all MPI ranks are run on the Intel Xeon Phi coprocessor, and (3) symmetric mode

where MPI ranks are run on both the host CPU and the Xeon Phi coprocessor. A thorough comparison of perfor-

mance/programmability challenges and limitations of the above models can be compared to MPI-ACC’s traditional

MPI+X programming model, which includes the OpenCL-specific optimizations anyway.

AMD’s Heterogeneous System Architecture (HSA) [1] provides a low-latency queueing mechanism in the user space,

so that the OS is not involved in kernel launches and other data transfer commands. It will be extremely interesting to

characterize the performance of MPI-ACC (with OpenCL) to be used on top of the HSA runtime, especially for real-

world simulations like the FDM-Seismology application. Since the GPU access latencies will be low, small message

transfers should benefit largely from our optimizations that we discussed in this document.

We can extend the MPI communication semantics to have composite locations as communication end points. For

example, we can imagine a derived datatype that is defined to transfer a message that is aggregated from the main

memory and all the device memories across the network. This is a very useful use-case if coscheduling across cores

is performed within the node. We can investigate the state of the art in PGAS+GPU models and apply our lessons

learned to those models/runtimes.

CHAPTER 7. CONCLUSIONS 127

Compute Node

Accelerator

Device

CPU CPU
Network

Accelerator

Device
Accelerator

Device
Accelerator

Device

CPU CPU

Within Node (X)

Task scheduling

Dynamic device targets

Synchronization with MPI

Within Node (X)

Task scheduling

Dynamic device targets

Synchronization with MPI

Compute Node

Across Nodes (MPI)

Data movement

Dynamic device targets

Synchronization with X

Figure 7.4: Summary of our contributions and extensions to the MPI+X programming model.

7.2 Dissertation Summary

Figure 7.4 depicts a pictorial representation of our contributions in the context of high performance clusters. The

MPI+X programming model has programmability and performance challenges. By extending the MPI programming

model to natively support GPU data structures and by extending the within-node GPU programming interface to enable

automatic device management, we could write high-level scientific application code at scale. We encompass the inter-

and intra-node runtime contributions into “MPI-ACC”.

MPI-ACC provided a natural interface for programmers to specify actual devices or device abstractions as com-

munication targets, whereas the runtime maps the communication or computation request to the ideal device while

maintaining efficient cluster utilization. The data movement and task mapping subsystems within MPI-ACC were

designed, not with a one-size-fits-all policy, but with specific tuned optimizations for different cases. The unified

programming model ensures that the application programmers have to design their applications once, but will benefit

from the evolving optimized runtime.

Our experiments were conducted on HokieSpeed – a 212 TFlop CPU-GPU cluster and on Fire – an eight-node CPU-

GPU cluster, both housed at Virginia Tech. The data movement subsystem of MPI-ACC was evaluated using mi-

crobenchmarks and applications from scientific computing domains like seismology and epidemiology. We validated

CHAPTER 7. CONCLUSIONS 128

via the epidemiology application that the MPI-ACC runtime system performed automatic resource management, and

was more scalable than the manual MPI+X programming approach. We evaluated our task scheduling system and per-

formance projection model for best device selection by using OpenCL as the example GPU programming model and

devices of different generations from both NVIDIA and AMD. Our evaluations on benchmarks and the seismology

simulation showed that our model could accurately choose the best device for the given task with minimal error and

low overhead.

Bibliography

[1] Heterogeneous System Architecture (HSA). http://www.hsafoundation.com.

[2] MPICH: High-Performance Portable MPI. http://www.mpich.org.

[3] MVAPICH: MPI over InfiniBand, 10GigE/iWARP and RoCE. http://mvapich.cse.ohio-state.

edu/.

[4] NVIDIA GPUDirect. https://developer.nvidia.com/gpudirect.

[5] TOP500 Supercomputer Sites. http://www.top500.org/lists/2014/11/highlights.

[6] MPI: A Message-Passing Interface Standard Version 2.2. Message Passing Interface Forum, 2009.

[7] The OpenMP API Specification for Parallel Programming, 2010. http://openmp.org/wp/

openmp-specifications.

[8] The OpenACC Application Programming Interface, 2013. http://www.openacc.org/sites/

default/files/OpenACC.2.0a_1.pdf.

[9] NVIDIA CUDA C Programming Guide, 2014. http://docs.nvidia.com/cuda/pdf/CUDA_C_

Programming_Guide.pdf.

[10] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and N. R. Tallent. HPCToolkit:

Tools for Performance Analysis of Optimized Parallel Programs. Concurrency Computation: Practice and

Experience, 22:685–701, April 2010.

129

BIBLIOGRAPHY 130

[11] A. M. Aji, P. Balaji, J. Dinan, W.-c. Feng, and R. Thakur. Synchronization and Ordering Semantics in Hybrid MPI

GPU Programming. In 3rd Intl. Workshop on Accelerators and Hybrid Exascale Systems (IPDPSW: AsHES).

IEEE, 2013.

[12] A. M. Aji, M. Daga, and W.-c. Feng. Bounding the Effect of Partition Camping in GPU Kernels. In ACM

International Conference on Computing Frontiers, Ischia, Italy, May 2011.

[13] A. M. Aji, J. Dinan, D. Buntinas, P. Balaji, W.-c. Feng, K. R. Bisset, and R. Thakur. MPI-ACC: An Integrated

and Extensible Approach to Data Movement in Accelerator-Based Systems. In 14th IEEE Intl. Conference on

High Performance Computing and Communications (HPCC), 2012.

[14] A. M. Aji, L. S. Panwar, F. Ji, M. Chabbi, K. Murthy, P. Balaji, K. R. Bisset, J. Dinan, W.-c. Feng, J. Mellor-

Crummy, X. Ma, and R. Thakur. On the Efficacy of GPU-Integrated MPI for Scientific Applications. In ACM

Intl. Symposium on High-Performance Parallel and Distributed Computing (HPDC), 2013.

[15] A. M. Aji, L. S. Panwar, F. Ji, M. Chabbi, K. Murthy, P. Balaji, K. R. Bisset, J. Dinan, W.-c. Feng, J. Mellor-

Crummy, X. Ma, and R. Thakur. MPI-ACC: GPU-integrated MPI for Scientific Applications. In (Submitted)

IEEE Transactions on Parallel and Distributed Systems (TPDS), 2015.

[16] A. M. Aji, L. S. Panwar, J. Meng, P. Balaji, and W.-c. Feng. Online Performance Projection for Clusters with

Heterogeneous GPUs. In IEEE International Conference on Parallel and Distributed Systems (ICPADS), Seoul,

South Korea, December 2013.

[17] A. M. Aji, A. J. Peña, P. Balaji, and W.-c. Feng. Optimizing Task-parallel Workloads Via Automatic Command

Queue Scheduling in OpenCL. In (Submitted) IEEE International Conference on Cluster Computing (CLUS-

TER), 2015.

[18] AMD. APP SDK – A Complete Development Platform. http://developer.amd.com/

tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk.

BIBLIOGRAPHY 131

[19] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU: A Unified Platform for Task Scheduling on

Heterogeneous Multicore Architectures. Concurrency and Computation: Practice and Experience, 23(2):187–

198, 2011.

[20] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A. Fatoohi, P. O. Freder-

ickson, T. A. Lasinski, R. S. Schreiber, H. Simon, V. Venkatakrishnan, and S. Weeratunga. The NAS Parallel

Benchmarks. Intl. Journal of High Performance Computing Applications, 5(3):63–73, 1991.

[21] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt. Analyzing CUDA Workloads Using a Detailed GPU

Simulator. In IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), 2009.

[22] C. L. Barrett, K. R. Bisset, S. G. Eubank, X. Feng, and M. V. Marathe. EpiSimdemics: an Efficient Algorithm for

Simulating the Spread of Infectious Disease over Large Realistic Social Networks. In Intl. ACM/IEEE Conference

for High Performance Computing, Networking, Storage and Analysis (SC), 2008.

[23] J. Berenger. A Perfectly Matched Layer for the Absorption of Electromagnetic Waves. Journal of Computational

Physics, 114(2):185–200, 1994.

[24] K. R. Bisset, A. M. Aji, M. V. Marathe, and W.-c. Feng. High-Performance Biocomputing for Simulating the

Spread of Contagion over Large Contact Networks. BMC Genomics, 13(S2), April 2012.

[25] S. Borkar and A. A. Chien. The Future of Microprocessors. Communications of the ACM, 54(5), 2011.

[26] M. Boyer, K. Skadron, and W. Weimer. Automated Dynamic Analysis of CUDA Programs. In 3rd Workshop on

Software Tools for MultiCore Systems, 2010.

[27] W. M. Brown, P. Wang, S. J. Plimpton, and A. N. Tharrington. Implementing Molecular Dynamics on Hybrid

High Performance Computers - Short Range Forces. Computer Physics Communications, 182(4):898–911, 2011.

[28] J. Bueno, J. Planas, A. Duran, R. M. Badia, X. Martorell, E. Ayguade, and J. Labarta. Productive Programming

of GPU Clusters with OmpSs. In IEEE Intl. Parallel and Distributed Processing Symposium (IPDPS), 2012.

BIBLIOGRAPHY 132

[29] J. W. Choi, A. Singh, and R. W. Vuduc. Model-driven Autotuning of Sparse Matrix-vector Multiply on GPUs.

In ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP), 2010.

[30] M. Daga, T. Scogland, and W.-c. Feng. Architecture-Aware Mapping and Optimization on a 1600-Core GPU. In

17th IEEE International Conference on Parallel and Distributed Systems, December 2011.

[31] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford, V. Tipparaju, and J. S. Vetter. The

Scalable Heterogeneous Computing (SHOC) Benchmark Suite. In 3rd Workshop on General-Purpose Compu-

tation on Graphics Processing Units (GPGPU). ACM, 2010.

[32] C. S. de la Lama, P. Toharia, J. L. Bosque, and O. D. Robles. Static Multi-Device Load Balancing for OpenCL.

In 10th International Symposium on Parallel and Distributed Processing with Applications (ISPA). IEEE, 2012.

[33] G. Diamos, A. Kerr, S. Yalamanchili, and N. Clark. Ocelot: A Dynamic Compiler for Bulk-Synchronous Ap-

plications in Heterogeneous Systems. In ACM Intl. Conference on Parallel Architectures and Compilation Tech-

niques (PACT), 2010.

[34] J. Duato, A. J. Peña, F. Silla, R. Mayo, and E. S. Quintana-Orti. rCUDA: Reducing the Number of GPU-based

Accelerators in High Performance Clusters. In Intl. Conference on High Performance Computing and Simulation

(HPCS). IEEE, 2010.

[35] T. Hamada, T. Narumi, R. Yokota, K. Yasuoka, K. Nitadori, and M. Taiji. 42 TFlops Hierarchical N-body

Simulations on GPUs with Applications in both Astrophysics and Turbulence. In ACM/IEEE Intl. Conf. for High

Perf. Computing, Networking, Storage and Analysis (SC), 2009.

[36] S. Henry, A. Denis, D. Barthou, M.-C. Counilh, and R. Namyst. Toward OpenCL Automatic Multi-Device

Support. In Euro-Par Parallel Processing. Springer, 2014.

[37] T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, and R. Thakur.

MPI+MPI: A New Hybrid Approach to Parallel Programming with MPI Plus Shared Memory. Computing,

95(12):1121–1136, 2013.

BIBLIOGRAPHY 133

[38] S. Hong and H. Kim. An Analytical Model for a GPU Architecture with Memory-Level and Thread-Level

Parallelism Awareness. In ACM International Symposium on Computer Architecture (ISCA). ACM, 2009.

[39] L. Howes and A. Munshi. The OpenCL Specification. Khronos OpenCL Working Group, 2014. https:

//www.khronos.org/registry/cl/specs/opencl-2.0.pdf.

[40] IBM. OpenCL Common Runtime for Linux on x86 Architecture (Version 0.1), 2011.

[41] F. Ji, A. M. Aji, J. Dinan, D. Buntinas, P. Balaji, W.-c. Feng, and X. Ma. Efficient Intranode Communication

in GPU-Accelerated Systems. In 2nd Intl. Workshop on Accelerators and Hybrid Exascale Systems (IPDPSW:

AsHES). IEEE, 2012.

[42] F. Ji, A. M. Aji, J. Dinan, D. Buntinas, P. Balaji, R. Thakur, W.-c. Feng, and X. Ma. DMA-Assisted, Intranode

Communication in GPU Accelerated Systems. In 14th IEEE Intl. Conference on High Performance Computing

and Communications (HPCC), 2012.

[43] Kaixi Hou. FDM-Seismology in OpenCL. Personal Copy.

[44] R. Kaleem, R. Barik, T. Shpeisman, B. T. Lewis, C. Hu, and K. Pingali. Adaptive Heterogeneous Scheduling for

Integrated GPUs. In 23rd ACM International Conference on Parallel Architectures and Compilation Techniques

(PACT), 2014.

[45] J. Kim, H. Kim, J. H. Lee, and J. Lee. Achieving a Single Compute Device Image in OpenCL for Multiple GPUs.

In 16th ACM Symposium on Principles and Practice of Parallel Programming (PPoPP), 2011.

[46] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee. SnuCL: An OpenCL Framework for Heterogeneous CPU/GPU

Clusters. In 26th ACM International Conference on Supercomputing (ICS), 2012.

[47] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih. PyCUDA and PyOpenCL: A Scripting-

based Approach to GPU Run-time Code Generation. Parallel Computing, 38(3):157–174, 2012.

BIBLIOGRAPHY 134

[48] P. Lama, Y. Li, A. M. Aji, P. Balaji, J. Dinan, S. Xiao, Y. Zhang, W.-c. Feng, R. Thakur, and X. Zhou. pVOCL:

Power-Aware Dynamic Placement and Migration in Virtualized GPU Environments. In International Conference

on Distributed Computing Systems (ICDCS), 2013.

[49] O. S. Lawlor. Message Passing for GPGPU Clusters: cudaMPI. In IEEE Intl. Conference on Cluster Computing

and Workshops (CLUSTER), 2009.

[50] Lawrence Livermore National Laboratory. SLURM Generic Resource (GRES) Scheduling. https://

computing.llnl.gov/linux/slurm/gres.html, 2012.

[51] B. C. Lee and D. M. Brooks. Accurate and Efficient Regression Modeling for Micro-architectural Performance

and Power Prediction. In ACM Intl. Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2006.

[52] C.-K. Luk, S. Hong, and H. Kim. Qilin: Exploiting Parallelism on Heterogeneous Multiprocessors with Adaptive

Mapping. In 42nd IEEE/ACM International Symposium on Microarchitecture (MICRO), 2009.

[53] S. Ma and P. Liu. Modeling of the Perfectly Matched Layer Absorbing Boundaries and Intrinsic Attenuation in

Explicit Finite Element Methods. Bulletin of the Seismological Society of America, 96(5):1779–1794, 2006.

[54] J. Meng, V. A. Morozov, K. Kumaran, V. Vishwanath, and T. D. Uram. GROPHECY: GPU Performance Pro-

jection from CPU Code Skeletons. In International Conference for High Performance Computing, Networking,

Storage and Analysis (SC), 2011.

[55] J. Meng and K. Skadron. Performance Modeling and Automatic Ghost Zone Optimization for Iterative Stencil

Loops on GPUs. In 23rd ACM International Conference on Supercomputing (ICS), 2009.

[56] A. Nere, A. Hashmi, and M. Lipasti. Profiling Heterogeneous Multi-GPU Systems to Accelerate Cortically

Inspired Learning Algorithms. In IEEE Intl. Parallel and Distributed Processing Symposium (IPDPS), 2011.

BIBLIOGRAPHY 135

[57] P. Pandit and R. Govindarajan. Fluidic Kernels: Cooperative Execution of OpenCL Programs on Multiple Het-

erogeneous Devices. In IEEE/ACM International Symposium on Code Generation and Optimization (CGO),

2014.

[58] L. S. Panwar, A. M. Aji, J. Meng, P. Balaji, and W.-c. Feng. Online Performance Projection for Clusters with

Heterogeneous GPUs. In 19th IEEE International Conference on Parallel and Distributed Systems (ICPADS),

2013.

[59] PBS WorksTM. Scheduling Jobs onto NVIDIA Tesla GPU Computing Processors using PBS Professional. Tech-

nical report, 2010.

[60] A. J. Peña. Virtualization of Accelerators in High Performance Clusters. PhD thesis, Universitat Jaume I (Spain),

2013.

[61] Pengcheng Liu. DISFD in Fortran. Personal Copy.

[62] J. Phillips, J. Stone, and K. Schulten. Adapting a Message-Driven Parallel Application to GPU-accelerated

Clusters. In ACM/IEEE Intl. Conference for High Performance Computing, Networking, Storage and Analysis

(SC), 2008.

[63] V. T. Ravi, M. Becchi, W. Jiang, G. Agrawal, and S. Chakradhar. Scheduling Concurrent Applications on a

Cluster of CPU–GPU Nodes. Future Generation Computer Systems, 2013.

[64] G. Ruetsch and P. Micikevicius. Optimizing Matrix Transpose in CUDA. http://docs.nvidia.com/

cuda/samples/6_Advanced/transpose/doc/MatrixTranspose.pdf.

[65] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-Z. Ueng, J. A. Stratton, and W.-m. W. Hwu. Pro-

gram Optimization Space Pruning for a Multithreaded GPU. In IEEE/ACM International Symposium on Code

Generation and Optimization (CGO), 2008.

[66] T. Scogland, W.-c. Feng, B. Rountree, and B. R. de Supinski. CoreTSAR: Adaptive Worksharing for Heteroge-

neous Systems. In Supercomputing, pages 172–186. Springer International Publishing, 2014.

BIBLIOGRAPHY 136

[67] T. Scogland, B. Rountree, W.-c. Feng, and B. R. de Supinski. Heterogeneous Task Scheduling for Accelerated

OpenMP. In IEEE Intl. Parallel and Distributed Processing Symposium (IPDPS), 2012.

[68] S. Seo, G. Jo, and J. Lee. Performance Characterization of the NAS Parallel Benchmarks in OpenCL. In IEEE

Intl. Symposium on Workload Characterization (IISWC), 2011.

[69] T. Shimokawabe, T. Aoki, C. Muroi, J. Ishida, K. Kawano, T. Endo, A. Nukada, N. Maruyama, and S. Matsuoka.

An 80-Fold Speedup, 15.0 TFlops Full GPU Acceleration of Non-Hydrostatic Weather Model ASUCA Produc-

tion Code. In ACM/IEEE Intl. Conf. for High Performance Computing, Networking, Storage and Analysis (SC),

2010.

[70] M. Si, A. J. Peña, P. Balaji, M. Takagi, and Y. Ishikawa. MT-MPI: Multithreaded MPI for Many-core Environ-

ments. In 28th ACM International Conference on Supercomputing (ICS), 2014.

[71] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc. GPUPerf: A Performance Analysis Framework for Identifying

Potential Benefits in GPGPU Applications. In ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP), 2012.

[72] K. Spafford, J. Meredith, and J. Vetter. Maestro: Data Orchestration and Tuning for OpenCL Devices. In

Euro-Par – Parallel Processing, pages 275–286. Springer, 2010.

[73] Steve Rennich. CUDA C/C++ Streams and Concurrency. http://developer.download.nvidia.

com/CUDA/training/StreamsAndConcurrencyWebinar.pdf.

[74] J. Stuart and J. Owens. Message Passing on Data-Parallel Architectures. In IEEE International Symposium on

Parallel and Distributed Processing (IPDPS), 2009.

[75] V. Taylor, X. Wu, and R. Stevens. Prophesy: An Infrastructure for Performance Analysis and Modeling of

Parallel and Grid Applications. SIGMETRICS Performance Evaluation Review, 30(4), 2003.

BIBLIOGRAPHY 137

[76] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli. Multi2Sim: A Simulation Framework for CPU-GPU

Computing . In ACM International Conference on Parallel Architectures and Compilation Techniques (PACT),

2012.

[77] V. Volkov and J. Demmel. Benchmarking GPUs to Tune Dense Linear Algebra. In ACM/IEEE Conference on

Supercomputing (ICS), 2008.

[78] H. Wang, S. Potluri, M. Luo, A. Singh, S. Sur, and D. Panda. MVAPICH2-GPU: Optimized GPU to GPU

Communication for InfiniBand Clusters. International Supercomputing Conference (ISC), 2011.

[79] L. Weiguo, B. Schmidt, G. Voss, and W. Muller-Wittig. Streaming Algorithms for Biological Sequence Align-

ment on GPUs. IEEE Transactions on Parallel and Distributed Systems, 18(9):1270–1281, Sept. 2007.

[80] Y. Wen, Z. Wang, and M. O’Boyle. Smart Multi-Task Scheduling for OpenCL Programs on CPU/GPU Hetero-

geneous Platforms. In 21st IEEE International Conference on High Performance Computing (HiPC), 2014.

[81] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos. Demystifying GPU Microarchitec-

ture Through Microbenchmarking. In IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS). IEEE, 2010.

[82] S. Xiao, P. Balaji, J. Dinan, R. Thakur, S. Coghlan, H. Lin, G. Wen, J. Hong, and W.-c. Feng. Transparent

Accelerator Migration in a Virtualized GPU Environment. In IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing (CCGrid), 2012.

[83] S. Xiao, P. Balaji, Q. Zhu, R. Thakur, S. Coghlan, H. Lin, G. Wen, J. Hong, and W.-c. Feng. VOCL: An

Optimized Environment for Transparent Virtualization of Graphics Processing Units. In IEEE Innovative Parallel

Computing (InPar), 2012.

[84] Y. Zhang and J. D. Owens. A Quantitative Performance Analysis Model for GPU Architectures. In ACM

International Symposium on High-Performance Computer Architecture (HPCA), 2011.

