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Exploiting Multigrain Parallelism in Pairwise Sequence Search on Emergent
CMP Architectures

Ashwin Mandayam Aji

(ABSTRACT)

With the emerging hybrid multi-core and many-core compute platforms delivering unprece-
dented high performance within a single chip, and making rapid strides toward the commod-
ity processor market, they are widely expected to replace the multi-core processors in the
existing High-Performance Computing (HPC) infrastructures, such as large scale clusters,
grids and supercomputers. On the other hand in the realm of bioinformatics, the size of
genomic databases is doubling every 12 months, and hence the need for novel approaches to
parallelize sequence search algorithms has become increasingly important. This thesis puts a
significant step forward in bridging the gap between software and hardware by presenting an
efficient and scalable model to accelerate one of the popular sequence alignment algorithms
by exploiting multigrain parallelism that is exposed by the emerging multiprocessor architec-
tures. Specifically, we parallelize a dynamic programming algorithm called Smith-Waterman
both within and across multiple Cell Broadband Engines and within an nVIDIA GeForce
General Purpose Graphics Processing Unit (GPGPU).

Cell Broadband Engine: We parallelize the Smith-Waterman algorithm within a Cell node
by performing a blocked data decomposition of the dynamic programming matrix followed
by pipelined execution of the blocks across the synergistic processing elements (SPEs) of
the Cell. We also introduce novel optimization methods that completely utilize the vector
processing power of the SPE. As a result, we achieve near-linear scalability or near-constant
efficiency for up to 16 SPEs on the dual-Cell QS20 blades, and our design is highly scalable
to more cores, if available. We further extend this design to accelerate the Smith-Waterman
algorithm across nodes on both the IBM QS20 and the PlayStation3 Cell cluster platforms
and achieve a maximum speedup of 44, when compared to the execution times on a single
Cell node. We then introduce an analytical model to accurately estimate the execution
times of parallel sequence alignments and wavefront algorithms in general on the Cell cluster
platforms. Lastly, we contribute and evaluate TOSS – a Throughput-Oriented Sequence
Scheduler, which leverages the performance prediction model and dynamically partitions
the available processing elements to simultaneously align multiple sequences. This scheme
succeeds in aligning more sequences per unit time with an improvement of 33.5% over the
näıve first-come, first-serve (FCFS) scheduler.

nVIDIA GPGPU: We parallelize the Smith-Waterman algorithm on the GPGPU by opti-
mizing the code in stages, which include optimal data layout strategies, coalesced memory
accesses and blocked data decomposition techniques. Results show that our methods provide
a maximum speedup of 3.6 on the nVIDIA GPGPU when compared to the performance of
the näıve implementation of Smith-Waterman.
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two näıve methods and (b) Execution times for various execution configurations. 68

4.32 Comparison of the benefits of all the discussed optmization techniques. . . . 69

xi



List of Tables

2.1 Global Alignment Vs. Local Alignment. . . . . . . . . . . . . . . . . . . . . 10

4.1 Comparison of the the execution parameters in the model that performs wave-

front computations within a Cell system against those on a cluster of Cell nodes. 43

4.2 Distribution of nucleotide sequences in the NT database. . . . . . . . . . . . 50

4.3 Performance comparison between the FCFS approach and parallel execution

on a realistic data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xii



Chapter 1

Introduction

1.1 Motivation

Until recently, computational horsepower doubled every 18-24 months simply by increasing

the clock speed of a processor. However, that era is now over with processor clock speeds

having stalled out in the sub-4.0 GHz range. Instead, while computational horsepower

continues to double, it does so via a doubling of the number of cores per processor in both

multi-core and many-core architectures.

Commodity processors that are based on replicating scalar cores are arguably plagued by

limitations in performance and power consumption. Consequently, this has led to a bit of

unconventional thinking on the part of Sony, Toshiba, and IBM with their Cell Broadband

Engine (BE), and nVIDIA with their GeForce General Purpose Graphics Programming Unit

(GPGPU) cards. The Cell B.E contains heterogeneous cores and specialized accelerators

on the same chip and drives the Sony PlayStation 3 game console, while the present day

GPGPUs comprise of simplistic, yet several tens of accelerator cores inside one chip to

1
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tremendously enhance the performance of graphics-based applications.

The new pieces of computing hardware boast of extremely impressive aggregate single-

precision floating-point performances, thus providing the necessary computational horse-

power for scientific computing. However, the integration of accelerators with more conven-

tional parallel programming paradigms and tools is currently an active research area [5,

13, 21, 9]. The emergent unconventional architectures many times require platform-specific

programming interfaces and complete redesigning of existing algorithms to fully exploit the

hardware. Furthermore, scheduling code on accelerators and achieving efficient parallel ex-

ecution and data transfers between host processors and accelerators is a challenging prob-

lem [13].

Among scientific applications related to bioinformatics, sequence-search algorithms are used

extensively in a wide range of areas from estimating evolutionary histories to predicting

the behavior of newly found genes to identifying possible drugs to curing prevalent dis-

eases. As of April 2005, the NCBI BLAST server received about 400, 000 queries per day

to search against their massive genome databases [39]. This trend has been doubling every

12-18 months and would potentially double at an even faster rate if NCBI had the capacity

to support it. However, the exponential growth in the nucleotide and protein databases

has made the optimal sequence search algorithms, such as the Needleman-Wunsch [37] and

Smith-Waterman algorithms [42], impractical to search on these databases because of their

quadratic time and space complexity.

As a result, this led to the development of algorithmic heuristics such as FASTA [31] and

the BLAST [3] family of algorithms that sacrificed sensitivity for speed, i.e, they are much

faster but missed some fraction of good sequence homologies that the optimal algorithms

would have found. More recent innovations have led to heuristic algorithms that attempt

to bring the sensitivity of sequence alignment as close to Smith-Waterman as possible while
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achieving a more reasonable time and space complexity [33, 30].

The time and space complexity of Smith-Waterman also led to innovations on the non-

algorithmic front — specifically, special-purpose hardware solutions on FPGAs [46, 44, 29]

and linear processor arrays [27]. However, such solutions are quite expensive.

In summary, to address the ever-increasing need to more quickly search biological databases

that are doubling in size every 9-12 months, and hence, growing at a rate faster than we

can compute on them with a single compute node, computational scientists have proposed

a plethora of faster homology sequence searches but at the expense of using heuristics that

reduce the sensitivity of the searches or using expensive hardware to produce ideal sensitivity.

In this thesis, we attempt to achieve high speeds while retaining ideal sensitivity by choosing

to parallelize the Smith-Waterman algorithm on the emerging (and arguably, commodity)

chip multi-processors like the Cell Broadband Engine and the nVIDIA GeForce GPGPU.

In addition, parallelizing the Smith-Waterman algorithm is significant because it follows the

dynamic programming paradigm, which is one of the 13 Dwarfs1 [5] of parallel program-

ming. Thus, a thorough understanding of how this application maps onto the existing novel

parallel computing platforms provides solid insights to design and evaluate future parallel

architectures and programming models.

In this thesis, we first present highly efficient methodologies to parallelize the Smith-Waterman

pairwise sequence alignment algorithm within a Cell chip [1], where we achieve near-constant

efficiency for up to 16 SPEs on the dual-Cell QS20 blades, and our approach is highly scal-

able to more cores, if available. However, by using only one Cell processor for aligning a

pair of sequences, we limit the problem space to aligning sequences smaller than 8KB on

the QS20 Cell blade and smaller than 3.5KB on a PS3 console, due to the inherent memory

constraints of the algorithm. This prevents about 200,000 large-sized sequences from the

1A dwarf is an algorithmic method that captures a pattern of computation and communication.
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NT nucleotide database from being aligned, and NT is just one among the many existing

sequence databases. To alleviate the problem of aligning arbitrarily long sequences, coupled

with the ever-increasing need to accelerate sequence search, we introduce and describe a

scalable model that uses multiple nodes in a cluster of Cell processors to align a single pair

of nucleotide or protein sequences. By simultaneously exploiting multiple layers and granu-

larities of parallelism within the cluster, we achieve maximum speedups of 44× on the IBM

QS20 and 26× on the PS3 Cell cluster platforms, where the base measurement for speedup is

the execution time recorded on a single PPE-SPE combination. We show that our design for

executing parallel wavefront computations within a Cell node serves as a remarkably generic

design template, which can thus be recursively applied to every layer of parallelism in the

Cell cluster. We also present an analytical model to accurately estimate the execution times

of parallel sequence alignments within and across multiple Cell nodes. We achieve an error

rate of less than 3% for sequence alignments within a Cell node and error rates of less than

10% for alignments across Cell nodes on an average.

We then contribute and evaluate TOSS – a Throughput-Oriented Sequence Scheduler, which

follows the greedy paradigm and spatially distributes the available computing resources dy-

namically among simultaneous sequence alignments to achieve better throughput in sequence

search. We use the data generated by the analytical model in deciding the optimal input

configuration for TOSS and achieve an improvement of 33.5% on the QS20 Cell cluster and

about 13.5% on the PS3 cluster over the näıve FCFS scheduler. Thus, we can align ar-

bitrarily large-sized sequences at high speeds by simultaneously exploiting the multigrain

parallelism of the Cell clusters.

Lastly, we parallelize the Smith-Waterman on the CUDA platform of the nVIDIA GPGPU

by incrementally optimizing the code in five stages, including optimal data layout strategies,

coalesced memory accesses and blocked data decomposition techniques to provide an efficient
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mapping of the algorithm to the data parallel architecture of the GPGPU. We show that our

optimizations yield a speedup of 3.6× over the serial implementation of Smith-Waterman.

Thus, we explore various layers of parallelism – across nodes, within nodes and within cores,

which are exposed by the Cell B.E and the nVIDIA GPGPU, and we efficiently parallelize the

optimal pairwise sequence alignment algorithm on each of them. Our design methodology,

combined with the experimental results, help in providing insights into developing future

programming models that help in porting existing legacy codes by effectively utilizing the

potential of emergent CMP architectures to the fullest.

1.2 Related Work

Numerous recent research efforts have explored application development, optimization method-

ologies and new programming environments for the Cell B.E. In particular, recent studies

investigate Cell versions of applications including particle transport codes [40], numerical

kernels [2], FFT [7], irregular graph algorithms [8], computational biology [41], sorting [23],

query processing [24], and data mining [15]. Our research departs from these earlier studies

in that it models and optimizes a parallel algorithmic pattern that is yet to be explored

thoroughly on the Cell B.E, namely wavefront algorithms, which is a generalization of the

Smith-Waterman algorithm. The work closest to our research is a recent parallelization and

optimization of the wavefront algorithm used in a popular ASCI particle transport applica-

tion, SWEEP3D [40], on the Cell B.E. Our contribution differs in three aspects. First, we

consider inter-tile parallelism during the execution of a wavefront across the Cell SPEs, to

cope with variable granularity and degree of parallelism within and across tiles or blocks.

Second, we provide an analytical model for tiled wavefront algorithms to guide the paralleliza-

tion, granularity selection, and scheduling process for both single and multiple wave-front
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computations executing simultaneously. Third, we consider throughput-oriented execution

of multiple wavefront computations on the Cell B.E, which is the common usage scenario of

these algorithms in the domain of computational biology.

Our research also parallels efforts for porting and optimizing key computational biology al-

gorithms, such as phylogenic tree construction [11] and sequence alignment [41]. The work

of Sachdeva et. al [41] relates to ours, as it explores the same algorithm (Smith-Waterman),

albeit in the context of vectorization for SIMD-enabled accelerators. We present a signifi-

cantly extended implementation of Smith-Waterman that exploits pipelining across multiple

accelerators in conjunction with vectorization and optimizes task granularity and multiple

query execution throughput on the Cell. We also extend this work through a generic model

of wavefront calculations on the Cell B.E, which can be applied to a wide range of applica-

tions using dynamic programming for both performance-oriented and throughput-oriented

optimization.

Recently proposed programming environments (languages and runtime systems) such as

Sequoia [21], Cell SuperScalar [9], CorePy [36] and PPE-SPE code generators from single-

source modules [19, 45], address the problem of achieving high performance with reduced

programming effort. Our work is oriented towards simplifying the effort to achieve high

performance from a specific algorithmic pattern on the Cell B.E, and is orthogonal to related

work on programming models and interfaces. An interesting topic for future exploration is

the expression of wavefront algorithms with high-level language constructs, such as those

provided by Sequoia and CellSs, and techniques for automatic optimization of key algorithmic

parameters in the compilation environment of high-level parallel programming languages.

Efforts to parallelize the Smith-Waterman algorithm across a cluster of workstations to

address the speed and memory problems have exploited only a single layer of parallelism at

the node level [14, 48]. We provide a comprehensive methodology to extract the maximum
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potential out of each layer of parallelism in the multiple levels that are available on the Cell

cluster.

While the contribution of Filip et. al [12] is the only other work that models a cluster of

Cell nodes by exploiting the inherent multiple layers of parallelism, our work is specific to

modeling wavefront algorithms and the Smith-Waterman algorithm in particular, thereby

providing a higher prediction accuracy of the execution times for the algorithms in the

domain of computational biology. To the best of our knowledge, no other work exploits

multigrained parallelism to effectively schedule sequence alignments dynamically to achieve

large throughputs.

Smith-Waterman has previously been implemented on the GPGPU by using graphics prim-

itives [47, 32], and recently on the CUDA platform [34]. While the older implementations

that use graphics primitives report good speedups over the serial implementations, they are

now obsolete and we do not learn much from them in terms of developing general program-

ming models on the latest GPGPUs, which mostly use regular C-style libraries. The CUDA

implementation of Smith-Waterman too reports impressive speedup values, but suffers from

the following limitations – it follows a coarse-grained parallelization approach of assigning a

single sequence alignment to each thread on the device, and this severely restricts the maxi-

mum sequence size that can be aligned. Moreover, it is not clear if only the alignment score

is computed or the actual alignment is generated. Our implementation follows fine-grained

parallelization by distributing the task of aligning a single sequence among all the threads

on the GPGPU, followed by actually generating the optimal sequence alignment.
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1.3 Document Overview

The rest of this thesis is organized as follows: Chapter 2 introduces the sequence alignment

concepts and popular sequence search algorithms that are relevant to our study. Chapter 3

describes the architecture and programming model employed in the emergent chip multipro-

cessors – in particular the Cell B.E and the nVIDIA GeForce GPGPU. Chapter 4 introduces

and elaborates our strategies to exploit multigrain parallelism on the emergent CMP archi-

tectures to enhance the performance of pairwise sequence search. Chapter 5 concludes the

thesis.



Chapter 2

Pairwise Sequence Search

2.1 Sequence Alignment Basics

A biological sequence is a succession of letters representing the structure of a real or hy-

pothetical DNA or protein molecule or strand. The alphabet set representing the sequence

is different for the nucleotides and the proteins. In this thesis, we have based our studies

on aligning DNA sequences that comprises of the alphabet set {A, C, T, G}, but the same

underlying principles can be applied to protein alignment as well. Sequences can be derived

from the biological raw material through a variety of sequencing methods.

Sequence alignment is a process of arranging a group of nucleotide or protein sequences to

determine similar regions, so that useful insights into the functional, structural, or evolution-

ary relationships between the sequences can be provided. In this thesis, we focus on pairwise

sequence alignment rather than multiple sequence alignment, i.e. our focus is on aligning a

single pair of sequences.

The process of aligning entire sequences against each other is called as global alignment. This

9
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Table 2.1: Global Alignment Vs. Local Alignment.

Original Sequences GTGTACGCCATAT

GTACCCAAT

Global Alignment GTGTACGCCATAT

| ||| ||| ||

G__TAC_CCA_AT

Local Alignment GTGTACGCC_ATAT

|||| || ||

GTAC_CCAAT

approach is useful if the sequences are closely related to each other and most of the residues

(a single character in a sequence) match against each other. If the sequences are loosely

related to each other, it might be more interesting to find smaller regions of similarity within

the sequences, and this process is called local alignment.

Table 2.1 shows examples of local and global alignments. If the sequences are sufficiently

similar to each other, there is no significant difference between local and global alignments.

Each alignment is quantified with an alignment score, and the aim of any sequence alignment

algorithm should be to optimize the alignment so that the score is maximized. The score

of an alignment is calculated by using a scoring system, that typically comprises of two

subsystems:

• The substitution matrix, M : Each entry in the substitution matrix, M(i, j), indicates

the score of aligning the characters i and j. If M(i, j) is positive, then there is a

match between i and j, and the score is referred to as a reward. A higher positive

score indicates a better match. If M(i, j) is negative, then it is a mismatch between i

and j, and the score is a penalty. PAM [18] and BLOSUM [25] substitution matrices

are typically used for protein alignment, while DNA alignment typically uses a single

match-score and a single mismatch-score.
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• The gap-scoring scheme: Gaps are introduced between the amino acid or nucleotide

residues so that similar characters get aligned to potentially increase the alignment

score. These gaps are usually denoted by a ‘–’ in the output alignment. They are

considered to be a type of a mismatch and incur some penalty. We consider the system

with affine gap penalties which means that there are two types of gap penalties:

1. Gap-open penalty (o): This is the penalty for starting (or opening) a gap in the

alignment

2. Gap-extension penalty (e): This is usually a less severe penalty than the gap-open

penalty. It is imposed for extending a previously existing gap in the alignment by

one unit.

Thus, if there are k consecutive gaps in an alignment, then the total gap penalty

incurred by that gap is o+ k × e.

2.2 Optimal Sequence Alignment Algorithms: Needleman-

Wunsch and Smith-Waterman

Several sequence alignment algorithms have been proposed in the past, among which we

discuss the optimal algorithms in this section, and we briefly introduce the faster, but less

accurate heuristic algorithms in the next section.

The dynamic programming algorithmic paradigm is used to produce optimal global align-

ments via the Needleman-Wunsch algorithm [37], and optimal local alignments via the Smith-

Waterman algorithm [42]. Due to the high similarity in the execution pattern of the above

two algorithms, we explain their core strategy in a combined fashion, while deviating to

discuss the minor differences as and when necessary. The algorithms can be partitioned into
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two phases: (1) matrix filling – to find the optimal alignment score and (2) backtracing – to

generate the optimal alignment.

• Matrix filling: The optimal alignment score is computed by filling out a dynamic pro-

gramming matrix, starting from the northwest corner and moving towards the south-

east corner, following the wavefront pattern. The matrix is filled based on the scoring

system, as discussed previously. The recursive data dependence of the elements within

the dynamic-programming matrix can be explained by the following equations:

DPN [i, j] = e+max


DPN [i− 1, j]

DPW [i− 1, j] + o

DPNW [i− 1, j] + o

(2.1)

DPW [i, j] = e+max


DPN [i, j − 1] + o

DPW [i, j − 1]

DPNW [i, j − 1] + o

(2.2)

DPNW [i, j] = M(Xi, Yj) +max


DPN [i− 1, j − 1]

DPW [i− 1, j − 1]

DPNW [i− 1, j − 1]

(2.3)

Equations (2.1), (2.2), and (2.3) indicate the presence of three weighted matrices and

also imply a three-dimensional (3D) dependency among the elements of the matrix as

shown in Figure 2.1.

The elements of the matrix DPN are dependent only on the northern neighbors of

the three available weighted matrices. Similarly, DPW and DPNW have elements that

depend only on their respective western and northwestern neighbors of the available
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Figure 2.1: Optimal Sequence Alignment: 3D dependencies

three weighted matrices, thereby maintaining the wavefront pattern.

The maximum value in the matrix denotes the optimal local alignment score, while

the element at the southeast corner of the matrix (not required to be the maximum)

indicates the optimal global alignment score.

• Backtracing: This stage of the algorithm yields the highest scoring (local or global)

alignment. The backtrace begins at the matrix cell that holds the optimal alignment

score and proceeds in a direction opposite to that of the matrix filling, until a cell

that satisfies the terminating condition is encountered. Backtrace for global alignment

terminates only at the northwest cell of the matrix, while backtrace for local alignment

stops when a cell with score zero is encountered. In both the cases, the path traced by

this operation generates the optimal alignment.

Backtracing sequential post-processing operation and requires the entire matrix to be stored

in memory before-hand. Based on this background, we define robustness of an alignment in

the following way – if the algorithm performs both the phases (matrix filling and backtrace)
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of a sequence alignment, then the alignment it termed to be robust. The memory requirement

of a robust alignment is more severe than that of a non-robust alignment.

2.3 Heuristic Algorithms

While the dynamic programming methods generate the optimal sequence alignments, they

suffer from quadratic space and time complexity. This has rendered the above algorithms

useless in practical scenarios where query sequences are regularly searched against ever-

expanding sequence databases. Many approximation algorithms have thus been developed

to work around the sequence search problem.

2.3.1 BLAST: Basic Local Alignment Search Tool

The original BLAST algorithm [3] performs three basic steps:

1. In the first step, BLAST searches for exact matches or seeds of a small fixed length W

between the query sequence and every sequence in the database. By default, W = 11

is used for the initial seeds when aligning DNA sequences.

2. In the second step, BLAST performs an ungapped alignment (alignment that does not

consider gaps) by extending the seed in both directions until the score drops beyond

a pre-determined threshold score. If a high-scoring ungapped alignment is found, the

algorithm passes the query-database sequence pair to the third step.

3. In the third step, BLAST performs a gapped alignment between the query and the

database sequence using a variation of the Smith-Waterman algorithm. Statistically

significant alignments are then returned as output.
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Although BLAST gains over its predecessors relative to speed, it sacrifices on sensitivity

(defined in Appendix A), i.e. BLAST misses onfinding several optimal sequence alignments

that the ideal Smith-Waterman algorithm would havefound [6]. Several variations of the

original BLASTalgorithm have emerged to improve the sensitivity of the sequencesearch

while maintaining the high speed [28, 4, 10, 16].

2.3.2 FASTA

FASTA [31] is a local sequence alignment software package that differs from BLAST in the al-

gorithmic front but provides the same result, i.e. aligns DNA or protein sequences quickly by

compromising the sensitivity of the sequence search. The FASTA algorithm initially observes

the pattern of word-to-word matches (or identities) of a given length, and marks potential

matches before performing a more time-consuming optimized dynamic programming based

algorithm like Smith-Waterman. This approach ensures that the sequence database has been

substantially pruned to get rid of irrelevant sequences, and finds more practical significance

in searching extremely large sequence databases. The length of the identity controls the

sensitivity and speed of the program. The FASTA algorithm can be divided into four stages:

1. Identify the identities in each sequence comparison.

2. Recalculate the scores of the regions by using the scoring matrices. Trim the ends of

the region to include only the parts that contribute to the highest score.

3. In an alignment if several initial regions with scores greater than a threshold value are

found, check whether the trimmed initial regions can be joined to form an approximate

alignment with gaps.

4. Use the ideal Smith-Waterman algorithm to calculate an optimal score for the chosen
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alignment.

2.3.3 PatternHunter

The PatternHunter [33, 30] family of algorithms aim to resolve the sensitivity issue of BLAST

while maintaining its high speed. While BLAST initially looks for k consecutive residue

matches as seeds, the PatternHunter algorithm uses non-consecutive k letter matches as

seeds. This ‘spaced-seed model’ is represented as a 0-1 string, where ones in the model

indicate a required match, while zeroes indicate ‘dont-care’ positions.

The authors of PatternHunter extended their idea of spaced seeds to use multiple spaced

seed models and created PatternHunterII [30]. In such an approach, a set of several seed

models are selected first. Then all the hits produced by all the seed models are examined

to produce local alignments. This obviously increases the sensitivity because more hits are

generated than by using single seed models. In their paper, the authors have also described

methodologies to generate the optimal spaced seeds that generate highly sensitive local

alignments.

The software solutions to the sequence search problem presented thus far have tried to

speedup the sequence alignment process by trading-off sensitivity. However, in this thesis,

we choose to improve the performance of the Smith-Waterman algorithm 1 on emergent

hardware accelerators, such as the Cell Broadband Engine and the GPGPU, so that ideal

sensitivity is maintained.

1The speedup strategy for the Smith-Waterman local alignment algorithm is also applicable to the
Needleman-Wunsch global alignment algorithm



Chapter 3

Emergent CMP Architectures

Until recently, computational horsepower doubled every 18-24 months simply by increasing

the clock speed of a processor. However, that era is now over with processor clock speeds

having stalled out in the sub-4.0 GHz range. Instead, while computational horsepower

continues to double, it does so via a doubling of the number of cores per processor in both

multi-core and many-core architectures.

Commodity processors that are based on replicating scalar cores are arguably plagued by

limitations in performance and power consumption. Consequently, this has led to a bit of

unconventional thinking on the part of Sony, Toshiba, and IBM with their Cell Broadband

Engine (BE), which contains heterogeneous cores and specialized accelerators on the same

chip and drives the Sony PlayStation 3 game console1. The Cell BE possesses an aggregate

single-precision floating-point performance of 204.8 Gflops, thus providing the necessary

computational horsepower for scientific computing such as the pairwise sequence searching

found in Smith-Waterman.

Until recently, Graphics Processing Units (GPUs) were used mainly for processing images

1This computer is a game console that currently costs a mere $399.

17
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and geometric information at high speeds. The steadily increasing demand for advanced

graphics within common software applications has made high-performance graphics systems

ubiquitous and affordable. Now that GPUs have evolved into fully programmable devices and

key architectural limitations have been eliminated, they have become an ideal resource for

acceleration of many arithmetic and memory bandwidth intensive scientific applications [43].

In this chapter, we briefly describe the architecture of the two emergent Chip-Multiprocessors

(CMP) – the Cell Broadband Engine and the GPGPU belonging to the NVIDIA GeForce

family, along with the programming model that we employ to execute the Smith-Waterman

algorithm on them.

3.1 Cell Broadband Engine (B.E)

3.1.1 Architecture

Figure 3.1 illustrates the various modules within the Cell Broadband Engine. The Cell is

a heterogeneous processor which integrates a total of 9 cores: a two-way SMT PowerPC

core (the Power Processing Element or PPE), and 8 tightly coupled SIMD-based processors

(the Synergistic Processing Elements SPEs) [20]. The components of the Cell processor

are connected via a high bandwidth Element Interconnect Bus (EIB). The EIB is a 4-ring

structure, capable of transmitting 96 bytes per cycle, for a maximum theoretical memory

bandwidth of 204.8 Gigabytes/second. The EIB can support more than 100 outstanding

DMA requests.

The PPE is a 64-bit SMT processor running the PowerPC ISA, with vector/SIMD multime-

dia extensions. The PPE boasts two levels of on-chip cache, L1-I and L1-D with a capacity

of 32 KB each, and L2 with a capacity of 512 KB. Each SPE has two main components,
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Figure 3.1: The Cell Broadband Engine architecture. Source – IBM Corporation. [35]

the Synergistic Processor Unit (SPU) and the Memory Flow Controller (MFC). The SPU

has 128 registers, each 128 bits wide, and 256KB of software-managed local storage. Each

SPU can access only local storage with direct loads and stores and main memory through

the MFC by using DMAs. The SPU has a different ISA than the PPE, and leverages vec-

tor execution units to implement Cell-specific SIMD intrinsics on the 128-bit wide registers.

The MFC is used for performing memory transactions between the local storage and main

memory. The SPU and MFC are decoupled enough to enable partial or total computation-

communication overlap. Single-precision floating point operations are dual-issued and fully

pipelined on the SPEs, whereas double-precision floating point operations have a 13-cycle

latency, with only the last 7 cycles pipelined. No other instructions can be issued in the same
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instruction slot with double-precision floating point instructions and no instructions of any

kind are issued for 6 cycles after a double-precision instruction is issued. These limitations

reduce severely the performance of Cell/BE when it performs double-precision floating point

arithmetic. Theoretical performance peak of the Cell processor with all eight SPUs active

and fully pipelined double precision FP operation is 21.03 Gflops. In single-precision FP

operation, the Cell BE is capable of a peak performance of 230.4 Gflops [17].

3.2 NVIDIA GeForce 8800 GTS 512MB

This section summarizes the many-core architecture of the NVIDIA Geforce GPUs and the

CUDA programming model from the CUDA Programming Guide [38]. The NVIDIA GeForce

8800 series GPGPU cards can be programmed in the C language by using the CUDA (Com-

pute Unified Device Architecture) library and API (Application Programming Interface).

When programmed through CUDA, there is no need to map the function primitives to

graphics API like before; the GPU is simply viewed as a highly data-parallel compute device.

The data-parallel, compute-intensive portions of applications running on the host processor

are off-loaded onto the GPU. The kernel is the portion of the program that is compiled to

the instruction set of the device, and then downloaded to the device before execution. Data

can be copied from the host memory to the device memory or vice versa through optimized

Direct Memory Access (DMA) calls.

3.2.1 Architecture

The many-core design of the device is implemented as a set of 16 multiprocessors as illustrated

in Figure 3.2. At any given clock cycle, each of the 8 processors in the multiprocessor executes
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the same instruction, but operates on different data (SIMD – Single Instruction, Multiple

Data architecture). Each multiprocessor has on-chip memory of the following four types

1. A set of 8192 local 32-bit registers per processor

2. 16KB of parallel shared data cache that is common to all the processors

3. A read-only constant cache that speeds up data reading from the constant memory

that is present on the device

4. A read-only texture cache that speeds up data reading from the texture memory that

is present on the device

The device memory consists of 512MB of read-write global memory and 64KB of read-only

constant memory, the threads on the device can only read from the constant and texture

memories but can read and write to the global memory. The local and global memory spaces

are not cached.

3.2.2 Programming Model

The host launches multiple kernels onto the device in succession. Each kernel is executed as a

bunch of threads organized as a grid of thread blocks as shown in Figure 3.3. The dimensions

of the blocks and the grid of thread blocks are specified before the kernel launch. The ID

of the blocks and the threads within each block can be retrieved by the CUDA built-in 2-

or 3-dimension structures. Threads can only be synchronized within a thread block but not

across blocks.

A thread that is executed on the device can access only the on-chip and device memory

modules as shown in Figure 3.3. A grid of thread blocks is executed on the device such that
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Figure 3.2: The nVIDIA GeForce 8800 GTS 512MB architecture. Source – CUDA Program-
ming Guide. [38]

each multiprocessor processes batches of blocks one batch after the other. A thread block can

be mapped to execute on only one multiprocessor, but a single multiprocessor can execute

multiple thread blocks at any time. The on-chip shared memory is common to the threads

within a block, while the global, constant and texture memory modules are shared across all

the the thread blocks in the grid. The device memory can be read from or written to by the

host via DMA calls and are persistent across kernel launches by the same application.

Since there is no synchronization mechanism between blocks, threads from two different

blocks of the same grid cannot safely communicate with each other through global memory

during the execution of the kernel. The exitof a kernel provides an implicit barrier to all the

threads that are executed on thedevice.
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Programming Model Memory Model

Figure 3.3: The GPGPU Programming and Memory model. Source – CUDA Programming
Guide. [38]



Chapter 4

Exploiting Multigrain Parallelism for

Pairwise Sequence Search

This chapter presents efficient techniques of parallelizing the Smith-Waterman sequence

alignment algorithm on the Cell B.E and the GPGPU compute platforms. We first present

Cell-SWat – a highly scalable parallel design of the Smith-Waterman that exploits multigrain

parallelism across and within a cluster of Cell-based nodes. We then introduce CUDA-SWat

– a multi-layered parallel implementation of Smith-Waterman using CUDA on the nVIDIA

GeForce 8800 GTS 512MB graphics platform. In both the cases, we first describe the ex-

perimental platform and then proceed to explain our parallel design techniques and finally

present the experimental results.

24
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4.1 Cell-SWat: Smith-Waterman on the Cell B.E.

4.1.1 Experimental Platform

Our experiments were conducted on two disjoint clusters of compute nodes hosting the Cell

processor. One of them is a cluster of 20 PlayStation 3 nodes built at Virginia Tech for

about $8,000, and the other is the Cellbuzz cluster of 14 QS20 dual-Cell blades located at

Georgia Tech. While most of the PS3 nodes were available to us in a dedicated mode, we

had restricted access of up to 7 QS20 blades on the Cellbuzz cluster due to its public and

busy nature. We therefore report numbers for up to the same number of nodes on both

the clusters to provide a fair performance comparison between the platforms. The nodes on

both systems are connected through a GigE switch and communicate with each other via the

MPICH2-1.0.7-rc2 MPI library calls. We used the IBM Cell SDK 2.1 for developing parallel

codes within the Cell B.E. Each PS3 and QS20 node runs Linux FC5, compiled for the 64-bit

PowerPC architecture. Only six of the eight SPEs are accessible to the programmers on the

PS3, as one SPE is reserved by the proprietary hypervisor and another is hardware disabled.

Also, each PS3 console is provided with less than 256MB of main memory. Each QS20 blade

comprises of two 3.2 GHz Cell processors sharing 1 GB of XDRAM (512 MB per processor)

based on the NUMA architecture. This unique processor setup enables the threads on the

2 PPE cores to share 16 SPEs, thereby giving 10 additional accelerators per Cell node, as

compared to a PS3 console.

4.1.2 Design, Implementation and Results

In this section, we discuss how the multigrain parallelism that is exposed by our experimental

platform is effectively exploited to deliver optimal performance, in terms of both speed and
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robustness of pairwise sequence alignment. The processing elements within the cluster of

Cell nodes can be hierarchically grouped together at three different levels of computational

granularity, i.e. Cell nodes, SPEs within each node, and vector processing units within each

SPE, as shown in Figure 4.1.

Cell

•Streaming macro-tiles

•Streaming tiles

•Backtrace(find_max) parallelization

Cluster of Cell nodes

PPE

•Backtrace(find_max) parallelization

•Vectorization

•Data Layout strategy

Cell B.E.

Vector 

processor

SPEs

Figure 4.1: Multigrained parallelism exposed by the Cell cluster and our optimizations of
parallel sequence alignment at each layer.

We first introduce and explain our strategy to parallelize the Smith-Waterman sequence

alignment algorithm in particular, and wavefront algorithms in general, within and across

the SPEs on a single Cell node. We also develop an analytical model that accurately predicts

the performance of aligning sequences within a Cell node [1].

However, to address the ever-increasing need for higher speeds and larger memory footprints

in the sequence search and wavefront computations, we need to simultaneously extract per-

formance from every layer of the multi-grained parallel architecture. Hence, we leverage our



Ashwin M. Aji Chapter 4. Parallel Pairwise Sequence Search 27

techniques to parallelize within a Cell node and introduce optimization techniques that ex-

ploits parallelism at the cluster level in conjunction with the lower micro-architectural layers,

as depicted in the Figure 4.1. To emphasize on the generality of the problem, our discus-

sions in this section will henceforth refer to parallelizing wavefront algorithms. But, it must

be noted that our design methodology is in particular applicable to the Smith-Waterman

sequence alignment algorithm. We also extend our earlier analytical model to accurately

predict the execution time of the wavefront algorithms for different input and system con-

figurations. We show that our design for executing parallel wavefront computations within

a Cell node serves as a remarkably generic design template, and can thus be recursively

applied to every layer of parallelism within the Cell cluster.

Parallel Wavefront within a Cell Node

The wavefront algorithm is an important pattern utilized in a variety of scientific applica-

tions, including particle physics, motion planning, and computational biology [26]. Compu-

tation proceeds like a wavefront filling a matrix, where each cell of the matrix is evaluated

based on the values of cells computed earlier. The algorithm advances through the matrix by

computing all anti-diagonals starting from the northwest corner, as shown in Figure 4.2(a).

The computation carries dependencies across anti-diagonals, that is, each element of the ma-

trix depends on its respective northern, western, and northwestern neighbors, as shown in

Figure 4.2(b). The Smith-Waterman algorithm directly falls into the category of wavefront

algorithms.

While consecutive anti-diagonals are dependent, the cells lying on the same anti-diagonal

are independent and can be processed in parallel. Processing individual matrix elements

in parallel incurs high communication overhead which can be reduced by grouping matrix

cells into large, computationally-independent blocks, which are more suitable for parallel
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Figure 4.2: A general wavefront algorithm (a) and its dependencies (b).

processing. This common optimization strategy is outlined in Figure 4.3. We refer to each

block of matrix cells as a tile. The coarsened basic unit of work does not change the properties

of the wavefront algorithm – the algorithm advances through the matrix by computing anti-

diagonals which are composed of multiple tiles.

The most important aspects of the wavefront algorithm are tile computation and communi-

cation among processes which perform computation on different tiles. We describe each of

the two steps and their implementation on the Cell/BE in more detail next.

Tile Computation The Cell/BE contains multiple accelerator cores capable of performing

independent asynchronous computation. To map the wavefront algorithm to the Cell/BE

we assign independent tiles for processing on different SPEs. Assuming the matrix is divided

in square tiles, as presented in Figure 4.3, the execution starts by processing tile t1. Due

to the computational dependencies across anti-diagonals, the tiles lying on the anti-diagonal

t2 can be processed only after t1 has been computed. Although the described behavior

limits the amount of parallelism exposed by the application, the utilization of the SPE cores

increases as the algorithm advances through the matrix. Starting with the anti-diagonal t8,

the number of tiles available for parallel processing is equal to or exceeds the number of

SPEs on a single Cell chip, and all SPEs can be used for tile processing.
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Figure 4.3: Tiled wavefront on a PS3 with 6 SPEs.

While different scheduling strategies can be used for assigning the units of work to SPEs, we

focus on predetermined tile-SPE assignment in this study. Our scheduling scheme achieves

perfectly balanced SPE work assignment, while at the same time enables complete utilization

of the Cell chip. We change the algorithm computation direction, and instead of computing

entire anti-diagonals, the algorithm advances through the block-rows, as shown in Figure 4.3.

The height of each block-row is equal to the total number of SPEs. For anti-diagonals which

contain more tiles than the number of available SPEs, the part of the anti-diagonal which

belongs to the block-row is computed, and the computation shifts to the next anti-diagonal.

Note that this is legal execution since the computation of each tile depends on its north,

west, and northwest neighbor. The same process repeats until the algorithm reaches the

right edge of the matrix, after which the computation continues in the next block-row. The

matrix is split into multiple block-rows and possible underutilization of the Cell processor

might occur only in the last row, if the height of the row is smaller than the number of SPEs.
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This can easily be avoided by resizing the tiles in the last block-row.

While working on an anti-diagonal in a block-row, each SPE is assigned a single tile. Along

with the algorithm, the SPEs advance through the block-row towards the right edge of the

matrix. After reaching the edge, each SPE continues processing the tiles contained in the

next block-row. No two SPEs reach the edge of the matrix at the same time, which causes

computation overlap of consecutive block-rows, which is shown in Figure 4.4 (processing the

end of the first block row overlaps with the beginning of the second block row). Simultaneous

processing of different block-rows enable high utilization of the Cell processor – the idle SPEs

are assigned work units from the next block-row.

‘m’ 

block 

X

Y

S tiles

Computation 

overlap
block 

rows

Y

n tiles

Block 

Row

Figure 4.4: Matrix divided into block rows.

Computation-Communication Communication patterns that occur during the tile com-

putation are shown in Figure 4.5. We describe step-by-step communication-computation

mechanism performed by each SPE while processing a tile:

1. To start computing a tile, an SPE needs to obtain boundary data from its west,

north, and northwest neighbor. The boundary elements from the northern neighbor
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Figure 4.5: Computation-Communication pattern between tiles.

are fetched to the local storage from the local storage of the SPE which was processing

the northern neighbor. The boundary elements of the west neighbor do not need to

be fetched due to the fact that each SPE advances through a tiled row, and therefore

each SPE already contains the required data. The necessary boundary elements of

the northwestern neighbor also reside in the local storage of the SPE which processed

the northern neighbor, and are fetched along with the boundary elements from the

northern neighbor.

2. In the second step, the SPE proceeds with the tile computation.

3. Finally, the SPE moves the tile to main memory for post-processing and notifies the

SPE which works on the south neighboring tile that the boundary elements are ready

for transfer.

The above steps describe the processing of non-boundary tiles. Boundary conditions can be

easily checked and the redundant steps can be avoided.
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The Performance Prediction Model To capture the performance of the wavefront

algorithm on the Cell/BE, we developed an analytical model capable of accurately predicting

the total execution time of the algorithm. As an input, the model takes several application

specific parameters and estimates execution time on a variable number of cores. We start

the discussion about the model by introducing the following equation:

T = TF + Tserial (4.1)

In Equation (4.1), T represents the total time taken by the algorithm, TF is the time the

algorithm uses to fill the matrix, and Tserial is the time taken by the inherently sequential

part of the algorithm.

If we denote the time needed to compute one tile as TT ile and the time used to fetch and

commit the data necessary for tile computation as TDMA, then the total time spent processing

a single tile can be represented as TT ile + TDMA. Since all elements of a single anti-diagonal

(in a block-row) are processed in parallel, the time to process the entire anti-diagonal (in a

block-row) can also be represented as TT ile+TDMA. The total number of tiled anti-diagonals

should be carefully counted, since it involves overlaps of anti-diagonals between adjacent

block rows. By inspecting Figure 4.4, we estimate the total number of anti-diagonals to be

(n · m) + S, where m represents the total number of block-rows, n represents the number

of anti-diagonals per block-row, and S is the number of anti-diagonals containing less tiles

than the number of SPEs and therefore their processing does not utilize the entire Cell chip.

In Figure 4.4, these diagonals are represented in the upper left corner of the matrix. S

depends on the number of SPEs, and therefore we can denote it as S(Nspe), where Nspe is

the number of available SPEs. From the above discussion, we represent the total time T
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from Equation (4.1) as:

T = (TT ile + TDMA) · [(m× n) + S(Nspe)] (4.2)

We can further decompose m as:

m =
Y

TSize ·Nspe

(4.3)

where Y represents elements (not tiles) in the y-dimension of the matrix, TSize represents

the size of a tile, and Nspe is again the number of available SPEs (equal to the height of the

block-row). Also, we can decompose n as:

n =
X

TSize
(4.4)

where X represents elements (not tiles) in the x-dimension of the matrix,

Combining Equations (4.1), (4.2), (4.3), and (4.4), we derive the final modeling equation:

T = (TT ile + TDMA) ·
(

X · Y
T 2
Size ·Nspe

+ S(Nspe)

)
+ Tserial (4.5)

To employ the model as a run-time tool capable of determining the most efficient execution

configuration, we need to estimate all parameters included in the model. The parameters

TT ile and TDMA need to be measured before they can be plugged into the model. The

measurement can be performed during a short sampling phase, which would occur at the

beginning of the program execution or via offline microbenchmarks. By knowing TT ile and

TDMA for a single tile size (Tsize), we can accurately estimate the same parameters for any tile

size. This is due to the fact that each tile is composed of the matrix cells that require equal

amount of processing time. X and Y depend on the input data set and can be determined

statically. Nspe, S(Nspe) and Tsize are related to the number of SPEs used for parallelization



Ashwin M. Aji Chapter 4. Parallel Pairwise Sequence Search 34

and the tile size. These parameters can iterate trough different values, and those that provide

the most efficient execution will be used for the algorithm execution. Parameter Tserial does

not influence the parallel execution of the program, and we can disregard this parameter

while searching for the most efficient parallel configuration.

Implementation Details and Optimizations

Tile representation Each tile is physically stored in memory, as a 1D array, by storing

adjacent anti-diagonals next to each other. This is depicted in Figure 4.6. This arrangement

makes it easier to perform vector operations on the tile by taking one anti-diagonal at a

time.

C G A T

0 0 0 0 0

G 0 0 3 1 0

A 0 0 1 6 4

A 0 0 0 4 5A 0 0 0 4 5

T 0 0 0 2 7

0 0 0 0 0 0 0 0 3 0 0 0 1 1 0 0 0 6 0 0 4 4 2 5 7

Figure 4.6: Tile representation in memory.

Vectorization of the tile for the SPE We assign each tile to execute on individual SPEs.

To extract the true potential of the SPEs, the data has to be vectorized before being operated

upon. The vectorization process that we follow is described by Figure 4.7. A two-dimensional

(2D) representation is shown in the figure (instead of 3D) for the sake of simplicity. During

a tile vectorization process, we process one anti-diagonal at a time following the wavefront
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Figure 4.7: Tile vectorization.

pattern. To effectively utilize the SIMD capabilities of the SPE, the anti-diagonal must

be divided into as many vectors as possible. The number of elements on the anti-diagonal

keeps changing for every anti-diagonal and cannot be perfectly partitioned into vectors in

some cases. In these cases, the remainimg elements undergo a serial computation. Upon

vectorization, we obtained the speedup and execution time curves shown in Figure 4.8(a) and

(b), respectively. These timings were recorded for input sequence lengths of 8 KB. Figure 4.8

indicates reduced speedup when the number of SPEs exceeds 6. The reason is the backtrace

phase, which is completed solely on the PPE and does not depend on the number of SPEs.

The sequential backtrace calculation on the PPE is the next bottleneck for optimization.

The backtrace optimization The backtrace begins at the matrix cell that holds the

largest alignment score; therefore, a find max operation is needed. Initially, our implemen-

tation executed this function on the PPE after the entire matrix was filled up. To reduce

the high PPE overhead caused by the backtrace operation, we optimized find max by paral-

lelizing it across SPEs. The local optimum score calculated by each SPE is passed on to the

PPE at the end of the matrix filling phase. From this data, the PPE calculates the overall
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Figure 4.8: Speedup (a) and timing (b) charts before optimizing the backtrace operation.

optimum score by performing at most S if checks, where S is the number of SPEs used. This

optimization had a considerable impact on the achieved speedups (as shown in Figure 4.9).
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Figure 4.9: Speedup (a) and timing (b) charts after optimizing the backtrace operation.

Experimental Results

We present results from experiments on a single, dedicated dual-Cell/BE QS20 blade. We

chose the QS20 blade over the PS3 for this experiment because of the availability of more

SPE cores on the QS20, and thus our design can be tested extensively. We conducted these
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experiments by aligning sequences of realistic sizes as are currently present in the NCBI

Genbank nucleotide (NT) database. There are approximately 3.5 million sequences in the

NT database. Of those, approximately 95% are 5 KB in size or less [22]. For the tests,

we chose eight randomly generated sequence pairs of sizes varying from 1 KB to 8 KB in

increasing steps of 1 KB, thus covering most of the realistic sequence sizes. We randomly

generated the input sequences because the complexity of the Smith-Waterman algorithm is

dependent only on the sequence length and not on the sequence contents. We repeated the

tests for the above sequence lengths by varying the number of SPE threads from 1 to 16

to test the scalability of our implementation on up to two fully utilized Cell processors. To

measure the effect of tile granularity on the execution times, we repeated all of the above

experiments for tile sizes of 8, 16, 32 and 64 elements. To measure the speedup of our

implementation, we executed the serial version of Smith-Waterman on a machine with a 2.8-

GHz dual-core Intel processor and 2-GB memory, and we used one of the two cores present

on the chip. We believe that using the Intel processor as a basis for calculating speedup on

the Cell is more realistic than using the PPE core, which has very limited computational

capacity compared to the SPEs. Using the PPE core as a basis for speedup calculation would

only inflate the results with not much added value.

Speedup Figure 4.10(a) and (b) illustrates the achieved speedup and efficiency with dif-

ferent numbers of SPEs. Similar curves were observed for all eight sequence sizes.

The speedup curves indicate that our algorithm delivers perfect linear speedup or near-

constant efficiency for up to 16 SPEs, irrespective of the tile size, and it is highly scalable

for more cores if they are available on the chip. The figure also shows that as the tile size

increases, more speedup is achieved. This is because more data is locally available for each

SPE to work upon, and there is less communication overhead between the SPEs. We were
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Figure 4.10: The obtained (a) speedup and (b) efficiency for input sequences of length 8KB.
The number of SPEs varies from 1 to 16.

not able to choose a tile size of more than 64 elements because the memory required to work

on a single tile exceeded the capacity of the local store of the SPE.

Model Verification To verify our model, we initially experimentally measured Ttile, TDMA

and Tserial by varying the other parameters of Equation (4.5). We chose an example sequence

pair of 8KB in size and tile size of 64 for this experiment. The measured values for this

configuration were Ttile = 0.00057s, TDMA = 10−6s and Tserial = 0.015s. By varying S

from 1 to 16, we generated a set of theoretically estimated execution times. The theoretical

estimates from our wavefront model was then compared to the actual execution times, as

seen in Figure 4.11(a) and (b). Similar results were observed for all the other sequence sizes

and tile sizes as well. This shows that our model estimates accurately the execution time

taken to align two sequences of any size, using any number of SPEs or any tile size. The

model error is within a range of 3% on average.
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Figure 4.11: Chart showing theoretical (a) timing estimates and (b) normalized times of our
model (labeled theory) against the measured execution times (labeled practice).

Parallel Wavefront across Multiple Cell Nodes

In this section, we leverage the design presented in the previous section to execute wavefront

algorithms on multiple SPEs spread across a cluster of Cell nodes. The purpose of the new

design is twofold: (1) to speedup the current implementations further by utilizing more

synergistic processing elements and (2) to accommodate problem sizes that do not fit into

the main memory of a single node.

The methodology that we discuss here is similar to the tiled-wavefront approach, but it works

at a coarser granularity of computation, communication and data elements. We decompose

the original matrix into multiple equal-sized sub-matrices called macro-tiles. Each macro-tile

is further divided into multiple tiles, where each tile by itself contains a bunch of individual

matrix elements as shown in Figure 4.12. Each macro-tile will be executed on a single node

in the Cell cluster, thus remaining faithful to the one-one mapping between the larger data

granularity and the processor size.

The data representation at the highest level of granularity will now consist of many macro-

tile-rows, macro-tile-columns and macro-tile-diagonals. The bigger basic unit of work has not
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Figure 4.12: Recursive decomposition of the matrix into macro-tiles and tiles.

changed the wavefront properties of the algorithm – the macro-tiles on the same macro-tile-

diagonal are computationally independent and can be processed concurrently on different

nodes. The algorithm advances through the matrix by processing anti-diagonals that com-

prise of many macro-tiles. We have already shown a highly efficient model to process the

tiles within a macro-tile across the SPEs in a single Cell system in the previous section. We

now present the scheduling scheme for computing the various macro-tiles of the matrix on

a cluster of Cell systems, and discuss the computation-communication pattern of the active

nodes in the cluster next.

Macro-tile Scheduling We assign the computation of macro-tiles on different nodes in

the cluster in a manner that is similar to scheduling tiles on different SPEs. The macro-

tile-rows of the matrix are cyclically assigned to the available nodes for computation as

shown in Figure 4.13. Execution begins by processing macro-tile m1 on node N1. The
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subsequent iterations process the macro-tiles along the anti-diagonals labeled m2, m3, m4, etc

concurrently on increasing number of nodes, until all the available nodes are busy. The anti-

diagonals are processed in a pipelined fashion that induces an unavoidable initial pipeline-

setup latency, which can be significant for certain input configurations of realistic datasets.

This overhead is one of the main parameters to be evaluated before selecting the optimum

computation configuration, and is faithfully characterized in the execution model that we

present later in this section. Beginning from the iteration in which the anti-diagonal contains

more macro-tiles than the number of available nodes, the computation moves across to the

next anti-diagonal along the same macro-block row, as shown in Figure 4.13.
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Figure 4.13: Macro-tiled wavefront on a PS3 with 6 SPEs.

Computation-Communication Communication between the nodes processing the macro-

tiles is done through the interconnection network via explicit message passing routines. We

can observe that as the granularity of the computed data increases with that of the processing
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elements, the granularity of communication follows suit. The computation-communication

patterns that can be observed while processing a macro-tile is shown in Figure 4.14, and

categorically explained below:

1. Before computing the macro-tile, each node fetches the required boundary data ele-

ments from the node that processed the north macro-tile. The communication between

nodes is done via explicit message passing routines, and the tag associated with the

message will suffice as the synchronization mechanism between nodes processing adja-

cent macro-tiles. The required boundary elements from the west macro-tile are already

present in the main memory of the node because the same node computes an entire

macro-tile-row.

2. In the second step, the node processes all the tiles within the macro-tile as explained

before in the section on parallel wavefront algorithms within a Cell node.

3. Finally, the processed tile is transferred to other forms of storage for future processing.

[Optional]

The above steps are repeated by all the nodes until the entire matrix is computed.

The Performance Prediction Model We begin our discussion about the execution

model by comparing the execution and system parameters of the wavefront computations

that are executed on stand-alone Cell systems against those on a cluster of Cell nodes, as

shown in Table 4.1.2.

From the above-mentioned table, we observe that as we move up the processor hierarchy, the

model performs identical operations, but on coarser units of computation, communication

and memory. Hence, the execution model that we developed to accurately predict the run-

ning times of wavefront algorithms within a single Cell node can be generalized to wavefront
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Table 4.1: Comparison of the the execution parameters in the model that performs wavefront
computations within a Cell system against those on a cluster of Cell nodes.

Within the Cell B.E. Across a cluster of Cell B.Es
Stream Processors SPE PPE
Basic Unit of work Tile Macro-tile

Parallel Execution Code SPE thread Individual process
Medium for Communication Bus (DMA) Interconnection Network (MPI)

Storage for intermediate results (cache) Local Storage of the SPE Main memory

computations across multiple Cell machines by simply replacing the fine-grained parameters

with the coarse-grained counterparts.

We first review our analytical model for predicting the execution times of wavefront compu-

tations of a single macro-tile on a stand-alone Cell system as shown in Equation (4.6):

TMTile = (TT ile + TDMA) ·
(

X · Y
T 2
Size ·Nspe

+ S(Nspe)

)
+ Tppe misc (4.6)

where,
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TMTile = Total time to compute a single macro-tile

TT ile = Time to compute a single tile

TDMA = Time to fetch and commit the necessary data for tile computation

TSize = Size of the tile along the X or Y dimension

Nspe = Number of SPEs used

S(Nspe) = Function of the number of SPEs used

Tppe misc = Time taken by the inherently sequential (miscellaneous) part of the algorithm

X, Y = Input sequence lengths

As discussed, we replace the fine-grained parameters from Equation (4.6) with coarse-grained

ones that are specific to wavefront computations on a Cell cluster as shown in Equation (4.7).

T = (TMTile + TComm) ·
(

X · Y
MT 2

Size ·Nnodes

+ S(Nnodes)

)
+ Tmisc (4.7)

where,

T = Total time taken

TMTile = Time to compute a single macro-tile (Equation (4.6))

TComm = Time to communicate the necessary data for macro-tile

computation and transfer of intermediate results to storage

MTSize = Size of the macro-tile along the X or Y dimension

Nnodes = Number of nodes used

S(Nnodes) = Function of the number of nodes used – this parameter

characterizes the initial pipeline setup latency

Tmisc = Time taken by the inherently miscellaneous part of the algorithm

X, Y = Input sequence lengths
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While we include the parameter Tmisc in our model for completeness, we disregard it while

using our model for finding the optimal system configuration because it bears no influence

on the running times of our parallelization strategy.

To make use of our model to predict the running times, we need to measure the parameters

TT ile, Tppe misc, TDMA and TComm before they can be plugged into the model. This is done

during a short sampling phase, which would occur at the beginning of the program execution

or by running micro-benchmarks, such as the dmabench program that ships with the Cell

SDK, before actually deploying the algorithm on the execution platform. If we accurately

measure TT ile and TDMA for a single tile size Tsize, and measure TComm for a single macro-tile

size MTsize, we can accurately estimate the same parameters for any tile and macro-tile size

respectively. This is because the DMA/communication times are proportional to the size of

the data array that is transferred, and the tile computation time is proportional to number

of elements in the tile. The remaining variables can iterate through different values, and the

optimal configuration can be used for purposes of deployment.

Experimental Results

Model Verification In this section, we verify the accuracy of the execution model that

we discussed in the previous section by running the Smith-Waterman algorithm across the

cluster of Cell processors.

To verify the model, we initially measured TT ile, TDMA, Tppe misc and TComm for TSize = 64

and MTSize = 3150 for both the QS20 and PS3 clusters. The input query sequences were

both 51KB in length. We could access up to 7 QS20 Cell blades for the purpose of this

experiment, and hence we show validation results for up to the same number of nodes on the

PS3 cluster to have a fair comparison of our model verification between the two platforms.
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Also, we do not perform the post-processing step for the following experiments because of

the overhead of writing large amounts of the intermediate results to disk, and hence trade-off

robustness for speed. We generated a set of theoretically estimated times by iterating Nspe

from 1 to 16 on the QS20 blades and from 1 to 6 on the PS3. We varied Nnodes from 1 to 7

on both the platforms for each value of Nspe. The theoretically generated times were then

compared against the actual execution times as shown in Figures 4.15 and 4.16.
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Figure 4.15: Chart comparing theoretically estimated times of our model against the mea-
sured execution times for sequence alignment across 5 nodes of (a) PS3 cluster and (b) QS20
cluster.

The model error is consistently within an average error range of 5% on the PS3 cluster and

10% on the QS20 cell cluster. Similar consistent results were observed for the other different

configurations as well.

Speedup Figure 4.17 shows a 3-dimensional illustration of the speedup obtained by ex-

ecuting the parallelized Smith-Waterman for the different combinations of the number of

SPEs and nodes in the PS3 and QS20 Cell clusters. The speedup ranges are shown as color-

coded contours on the chart surface, and we can see that the PS3 cluster scales very well for

more nodes and more SPEs achieving a 26× maximum speedup, while the QS20 Cell cluster



Ashwin M. Aji Chapter 4. Parallel Pairwise Sequence Search 47

60.00%

80.00%

100.00%

E
x

e
cu

ti
o

n
 T

im
e

 (
%

)

Nodes = 5

0.00%

20.00%

40.00%

60.00%

1 2 3 4 5 6

E
x

e
cu

ti
o

n
 T

im
e

 (
%

)

Number of SPEs

Theoretical

Measured

60.00%

80.00%

100.00%

120.00%

E
x

e
cu

ti
o

n
 T

im
e

 (
%

)

Nodes = 5

0.00%

20.00%

40.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
x

e
cu

ti
o

n
 T

im
e

 (
%

)

Number of SPEs

Theoretical Measured

(a) (b)

Figure 4.16: Chart comparing normalized theoretically estimated times of our model against
the measured execution times for sequence alignment across 5 nodes of (a) PS3 cluster and
(b) QS20 cluster.

reports a 44× maximum speedup, where the base measurement for speedup is the execution

time recorded on a single PPE-SPE combination. The scalability of the QS20 cluster drops

beyond an SPE count of 13 because the gain achieved by the extra SPEs is negligible when

compared to the overhead of the MPI communication layer. We use the execution time of

running the parallel Smith-Waterman on a single Cell node, using a single SPE as the basis

for speedup. We observe similar speedup patterns for other input and system configurations

as well.

4.1.3 Throughput Oriented Sequence Search

In this section, we consider a realistic scenario for the use of Smith-Waterman by computa-

tional biologists, where more number of pairwise sequences need to be aligned per time, i.e.

we target to achieve higher sequence throughput. The straightforward approach is to align

the sequence pairs, one pair at a time, in a first-come-first-served (FCFS) fashion – where

each alignment uses all the available compute resources and achieves maximum parallelism
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Figure 4.17: Color-coded contour chart showing speedup ranges on (a) PS3 cluster and (b)
QS20 cluster.

within each sequence alignment. However, we can also achieve parallelism across sequence

alignments where many sequence pairs are aligned at the same time, and each pair uses

lesser computing resources. We analyze the tradeoffs between the above two approaches

by leveraging the performance prediction model that was introduced in Section 4.1.2, for

both within and across compute nodes in a Cell cluster. Lastly, we contribute and evalu-

ate TOSS – a Throughput-Oriented Sequence Scheduler, which follows the greedy paradigm

and spatially distributes the available computing resources dynamically among simultaneous

sequence alignments to achieve better throughput in sequence search. By using TOSS, we

achieve an improvement of 33.5% on the QS20 Cell cluster and about 13.5% on the PS3

cluster over the näıve FCFS scheduler.

Static Sequence Scheduler within a Cell Node

The FCFS approach to align sequence pairs within a Cell node is to simultaneously use all

16 SPEs. By using all the 16 SPEs for one alignment, we achieve maximum parallelism
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within each sequence alignment. However, we can also achieve parallelism across sequence

alignments where many pairs are aligned at the same time, and each pair uses less than

16 SPEs. A simple experiment was conducted by executing 2, 4 and 8 pairs of sequences

in parallel, and this was compared against the FCFS approach. The results are as shown

in Figure 4.18. The results indicate the processing multiple sequences in parallel achieves

higher throughput than processing each sequence separately using all available SPEs. More

specifically, sacrificing some parallelism within each sequence alignment can be traded off

profitably for increasing the number of sequence alignments processed in parallel, via spatial

partitioning of the Cell SPEs.
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Figure 4.18: Comparison of FCFS execution and parallel strategies where 2, 4, and 8 pairs
of sequences are processed in parallel.

We first create a static scheduling algorithm for achieving sequence throughput by deciding

the set of sequence pairs that have to executed in parallel. To test the described strategy, we

obtained the distribution of sequences in the nucleotide (NT) database. However, running

our static scheduler on the entire NT database would take several days, and would not have

any added value in validating our scheduling algorithm. Therefore, we first computed the

distribution of the sequences in the database based on their sizes, as shown in Table 4.2. We

then randomly generated 100 sequence pairs based on the scaled-down distribution, thereby
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Table 4.2: Distribution of nucleotide sequences in the NT database.

Sequence size (KB) Count Count scaled-down to (0–100)
0 – 0.96 553,030 9

0.96 – 1.6 2,239,588 36
1.6 – 2.1 1,389,550 22
2.1 – 3.2 1,229,649 20
3.2 – 30 782,024 12
30 – 60 16,553 0
≥ 60 77,208 1
Total 6,287,602 100

imitating the actual NT database. Since the performance of the Smith-Waterman algorithm

depends only on the sequence size, we can easily extrapolate our results to the entire dataset.

Further, we disregard sequences larger than 3.2KB because the corresponding matrix will

not fit into the available memory within a single Cell node.

Our static scheduling scheme takes equal-sized sequence pairs in batches and executes them

in parallel, provided that they not overflow the available memory. While this scheme is

by no means optimized, it can show the potential of our model by taking into account the

estimated speedup and scalability slopes for each sequence length, while scheduling multiple

alignments. We evaluate the tradeoffs of the FCFS approach versus our scheduling approach

for the experimental work set and the results are shown in the Table 4.1.3. The analytical

model we developed and described in Section 4.1.2 can be used to analyze the different

tradeoffs between FCFS and the various sequence scheduling policies accurately. In the case

of our static scheduling scheme, we are able to improve throughput compared to FCFS and

execution of alignments at the maximum level of available concurrency by 8%.
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Table 4.3: Performance comparison between the FCFS approach and parallel execution on
a realistic data set.

FCFS execution Parallel execution
26.67792s 24.552805s

TOSS: Throughput-Oriented Sequence Scheduler

While there are multiple combinations of possible configurations that can be evaluated before

optimizing the throughput of sequence search, we follow the Greedy algorithmic paradigm

to design a very efficient dynamic sequence alignment scheduler for this study.

Here are some key assumptions and guidelines that we follow while designing TOSS:

• For the sake of simplicity, each sequence in the database will be aligned against a

similar-sized query sequence. The dynamic programming matrix will therefore have

equal number of elements in both the dimensions.

• All nodes have the same amount of physical memory.

• All nodes have the same number of active SPEs.

• The Smith-Waterman algorithm comprises of two phases: (1) matrix filling phase,

where a dynamic programming matrix is filled following the wavefront pattern and (2)

backtrace phase, which is a sequential post-processing operation and requires the entire

matrix to be stored in memory before this operation is performed. Chapter 2 defines

robustness of an alignment in the following way – if the algorithm performs both the

phases (matrix filling and backtrace) of a sequence alignment, then the alignment it

termed to be robust. The memory requirement of a robust alignment is more severe

than that of a non-robust alignment. We prioritize to perform robust alignments if

possible in the following way:
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– If the memory requirement for a robust sequence alignment is within the physical

memory capacity of a single node, we will not align that sequence-pair across

nodes. The matrix filling and the backtrace operations can both be optimally

executed, and thus the robustness of the alignment is maintained.

– If the memory requirement for a robust sequence alignment exceeds the capacity of

the physical memory within a single node, then the sequence will be aligned across

multiple nodes in the cluster. The backtrace operation for that alignment would

require extremely slow and inefficient disk accesses multiple times for storing the

intermediate results. In this case, the backtrace operation will not be performed

as we trade off the robustness of the alignment for speed.

We first discuss the pre-processing steps that have to be executed before deploying TOSS,

and present the pseudo-code for TOSS in Figure 4.19.

Pre-processing steps:

1. Distribute the given sequences into β different categories, based on the memory that

is required to perform a robust alignment for each of the sequences.

(a) Label the categories from A1 through Aβ in the increasing order of memory re-

quirements, i.e. A1 will have the sequences with the least memory requirements

while Aβ will have the sequences with the highest memory requirements, while

maintaining robustness.

2. Split the categories further into two sub-categories: A1 to Aα and Aα+1 to Aβ, such

that the first α groups contain sequences whose memory requirements enable them to

be aligned within a single node, and the next (β − α) groups contain the remaining

larger sequences that have to be aligned across nodes.
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The ‘Greedy’ paradigm 

j <- number of available nodes 1 

Nspe <- number of available SPEs 2 

per node 3 

 

for each group A in (A1 to Aα) 4 

{ 5 

distribute the sequences of A 6 

equally to the available 7 

nodes.  8 

 9 

n <- number of sequences to be 10 

aligned in each of the nodes;  11 

 12 

wA <- number of SPEs in the 13 

speedup chart where the 14 

efficiency (performance per 15 

SPE) is maximum to align a 16 

single sequence of category A; 17 

 

/*wA can be calculated by using 

a combination of our model and 

the memory requirements for a 

robust alignment of sequences 

in the category A. For 

example, on applying our model 

to the sequence set, we may 

discover that aligning 4 

sequences in parallel such 

that each sequence works upon 

2 SPEs is more efficient than 

executing the 4 sequences in a 

first-come-first-served (FCFS) 

fashion by using all 8 SPEs 

for each sequence alignment.*/ 

 18 

sA <- maximum sequences of 19 

category A that can be 20 

optimally aligned in parallel 21 

within a single node; 22 

sA <- Nspe / wA; 23 

 24 

Execute the following 25 

concurrently on nodes (1..j) 26 

{ 27 

    n' = n 28 

    while(n > sA) 29 

    { 30 

concurrently align sA 31 

sequences;  32 

/*each sequence uses wA 

SPEs for alignment*/ 

n = n - sA; 33 

    } 34 

/*Optimization*/ 

Align the remaining 35 

sequences (n'mod sA)  in 36 

parallel by using 37 

(Nspe/(n'mod sA)) number of 38 

SPEs for each alignment 39 

} 40 

} 41 

42 

for each group A in (Aα + 1 to Aβ) 43 

{ 44 

wA <- number of nodes in the 45 

speedup chart where the 46 

efficiency (performance per 47 

node) is maximum to align a 48 

single sequence of category A; 49 

 50 

/*wA can be calculated by using 

a combination of our model 

applied to the sequence 

category A. For example, on 

applying our model to the 

sequence set, we may discover 

that aligning 2 sequences in 

parallel on 4 nodes such that 

each sequence works on 2 

nodes, is more efficient than 

executing the 2 sequences one 

after another in a FCFS 

fashion by using all 4 nodes 

for each sequence alignment.*/ 

 

B <- the set of sequences that 

are executed concurrently in a 

single batch on the j 

available nodes 

Clear(B); 51 

 52 

w <- the cumulative node count 53 

that is required to align the 54 

batch of sequences in B 55 

w <- 0;  56 

for each sequence a in A 57 

{ 58 

if(w < j)  59 

/*we have not yet reached 

the node limit, so we can 

execute more sequences in 

parallel*/ 

{ 60 

  add a to B; 61 

  w = w + wA; 62 

} 63 

else 64 

{ 65 

execute sequences in B 66 

concurrently across j 67 

nodes; 68 

  clear(B); 69 

  w <- 0; 70 

} 71 

    } 72 

     73 

   /*Optimization*/ 

execute the final batch of 74 

sequences in B across j nodes;  75 

/*i.e. the sequences whose 

node count did not add up to w 

in the final batch*/ 

} 76 

Figure 4.19: TOSS: Throughput-Oriented Sequence Scheduler.



Ashwin M. Aji Chapter 4. Parallel Pairwise Sequence Search 54

Experimental Results We validate the TOSS algorithm on the scaled-down nucleotide

(NT) database as discussed in the previous section, but make use of all the sequence size

ranges because we are now dealing with multiple Cell nodes and can align sequences of

arbitrary lengths.

We executed TOSS from Figure 4.19 separately on the dual-Cell QS20 Cellbuzz cluster at

Georgia Tech, and on the dedicated 20-node PS3 cluster at Virginia Tech. While we had

dedicated access to the entire PS3 cluster, we could manage to access only four nodes of the

Cellbuzz cluster for the purposes of this experiment, due to the public and busy nature of

the Cellbuzz resource at Georgia Tech. To provide a fair comparison of the performances

between the two clusters, we report the results of our validation experiment for up to four

nodes on both the platforms. We compared the performance of the TOSS scheme against

the näıve first-come-first-served (FCFS) sequence scheduling scheme on each of the above

mentioned platforms.

TOSS uses spatial partitioning of the computing resources to enable concurrent sequence

alignments, while the FCFS scheme utilizes the maximum available computing resources for

every sequence alignment. Figures 4.20 and 4.21 compare the performances of our scheduling

algorithm against the näıve FCFS scheduler on both the PS3 and QS20 Cell clusers. The

horizontal axis of the charts provides the logical view of the layout of the computing elements

at two levels of processor granularity - the Cell nodes and the SPEs within them. The

vertical axis represents the cumulative execution time taken by the corresponding scheduling

algorithm. Each block in the chart area denotes a category of sequence alignments based on

the size of the sequence strings, as indicated by the legend on the right. The width of each

block represents the range of processing elements that collectively process the corresponding

sequence alignments, and the height of the blocks denote the time taken to align the sequences

in the respective category.
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Figure 4.20: Spatial layout of the processing elements on the QS20 cluster Vs. cumulative
execution times taken for (a) FCFS and (b) TOSS.
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Figure 4.21: Spatial layout of the processing elements on the PS3 cluster Vs. cumulative
execution times taken for (a) FCFS and (b) TOSS.

From the Figures 4.20 and 4.21, we show that on realistic datasets, the QS20 cluster out-

performs the PS3 cluster in both the FCFS and the TOSS schemes due to the ready avail-

ability of more SPE cores per Cell node, which is the true workhorse of the parallel Smith-

Waterman algorithm. Also, the two PPE cores on the dual-Cell QS20 blade support the
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execution of up to four concurrent MPI processes, while the PPE core on the PS3 can

handle only up to two simultaneous thread excutions. However, the TOSS algorithm in

conjunction with our execution models for general wavefront algorithms capture the under-

lying hardware characteristics accurately and enhances the throughput of sequence search

by about 33.5% on the QS20 Cell cluster, and by about 13.5% on the PS3 cluster, when

compared against the näıve FCFS scheduler.

4.2 CUDA-SWat: Smith-Waterman on the CUDA plat-

form

4.2.1 Experimental Platform

Our experiments were conducted on a host machine with a dual-core Intel processor, each

core operating at 2.2GHz and running Ubuntu 4.1.2 with the Linux kernel version 2.6.20-16.

The machine is provided with 4 GB of main memory. The device chosen was the nVIDIA

GeForce 8800 GTS 512MB graphics unit and the architectural details are already discussed

in Chapter 3. We used CUDA version 1.1 as the software interface for developing the parallel

Smith-Waterman for the nVIDIA GeForce card.

4.2.2 Design, Implementation and Results

The parallelization strategy for CUDA-SWat leverages the lessons learnt from the design of

Cell-SWat and helps us to choose key optimization techniques over the others. We will begin

with the serial implementation and its performance for different combinations of the input.

We then present a series of five optimization techniques and compare the performance of
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each of the schemes against the baseline näıve implementation.

Näıve Implementation The nVIDIA GeForce card contains 512MB of global memory

which restricts the size of the matrix and hence limits the maximum sequence length to 6KB.

For all the tests, we chose eight randomly generated sequence pairs of sizes varying from 1 KB

to 6 KB, thus covering most of the realistic sequence sizes as discussed in Section 4.1.2.

Figure 4.22 shows the exeution times for the various sequence sizes.
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Figure 4.22: Chart showing execution times for aligning 8 different sequence sizes (Näıve
Implementation).

Diagonalized Data Layout: Host

The first level of optimization is to arrange the data in a way that is suitable for vector

processing as shown in Figure 4.6 in Section 4.1.2. We then execute the Smith-Waterman

algorithm directly on the host and observe the results as seen in Figure 4.23.
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Figure 4.23: Chart comparing the performance of the Näıve Implementation and the Diag-
onalized Data Layout scheme on the host memory.

Diagonalized Data Layout: Kernel Offload

The next step in the optimization process is to offload the matrix filling part onto the device

to efficiently extract the parallelism of the many-core architecture. We follow the wavefront

pattern where anti-diagonals are filled by the device starting from the northwest corner to the

southeast corner of the matrix. We launch the kernel as 1-Dimensional grid of thread blocks,

where each block further contains a single dimension of threads as shown in Figure 4.24.

We distribute the elements on each anti-diagonal among the total threads in the grid of

thread blocks. The dependence between consecutive anti-diagonals force a synchronization

operation after computing each anti-diagonal. However, only the threads within a block can

be synchronized and communication between thread blocks is not currently supported by

CUDA. All the global memory transactions by the device threads can safely be assumed

to be complete only when the kernel exits from the device. This forces us to launch one

kernel for each anti-diagonal of the matrix. Figure 4.25 shows that a maximum of 3.2×

speedup over the näıve implementation can be achieved by offloading the kernel to the

device in conjunction with the diagonalized data representation. This approach achieves a
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24% improvement over the host-run implementation that was discussed in the previous unit.

T1 T1 T1 T1 T1 T1

T2 T2 T2 T2 T2

T3 T3 T3 T3

T4 T4 T4

T5 T5

T6

Computational load for each Kernel

Mapping of threads (Ti) to matrix elements

Figure 4.24: (Left) Mapping of threads to matrix elements and the (Right) variation of the
computational load that is imposed on successive kernels. It also denotes the non-coalesced
data representation of successive anti-diagonals in memory.

Once the entire matrix if filled in the device memory, it is completely transferred to the host

memory before the backtrace operation is performed.

Coalesced Global Memory Access

Although the previous optimization shows some improvement over the host-run code, the

approach is still plagued with two major problems:

• Multiple kernel launches – A kernel launch per anti-diagonal means that a typical

application will have thousands of kernel invocations. We developed a microbenchmark
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Figure 4.25: (a) Chart comparing the performance of the Diagonalized Data Layout scheme
on the device memory with the other two methods and (b) Execution times for various
execution configurations.

that launches empty kernels multiple times onto the device to characterize the effect

of kernel invocations in an application. The results show that, for the chosen problem

sizes, around 41% of the total execution time is currently being spent in kernel launch

alone.

• Non-coalesced global memory access: The CUDA Programming Guide [38] specifies
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that the effective global memory bandwidth significantly depends on the memory access

pattern because global memory is not cached unlike the other memory spaces on the

device.

We deal with the non-coalesced global memory access in this unit and discuss solutions for

the multiple kernel launch problem in the next unit.

Coalesced memory accesses require that (1) only 32-bit, 64-bit, or 128-bit words should be

read from global memory into the registers by each thread, (2) the global memory addresses

simultaneously accessed by consecutive threads during the execution of a single read or write

instruction should be arranged so that the memory accesses can be coalesced into a single

contiguous, aligned memory access and (3) when accessing x-byte words from global memory,

the address location that is accessed by the thread with ID = 0 should be a multiple of 16×x.

The bandwidth for non-coalesced global memory accesses is found to be around an order of

magnitude lower than for coalesced accesses when the accesses are 32-bit words.

Since we currently launch separate kernels to compute every anti-diagonal and we are ac-

cessing integers (4-byte words), we make sure that the start address of every anti-diagonal

is aligned to 64-byte boundaries to ensure that all the writes are coalesced as shown in Fig-

ure 4.26. The skewed dependence between the elements of neighboring anti-diagonals restrict

the degree of coalescing among the reads from global memory. Moreover, we make sure that

the dimension of the blocks and grid of blocks are all powers of 2, to enable all the blocks to

enjoy coalesced memory accesses.

Figure 4.27 shows that a maximum of 3.52× speedup over the näıve implementation can

be achieved by coalescing the global memory accesses in conjunction with the previously

discussed optimizations. This approach achieves a 11% improvement over the non-coalesced

memory access implementation that was discussed in the previous unit.
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Figure 4.26: (Left) Mapping of threads to matrix elements and the (Right) variation of the
computational load that is imposed on successive kernels. It also denotes the coalesced data
representation of successive anti-diagonals in memory.

Tiled Wavefront

This unit discusses the problem of multiple kernel launches and our solution to the problem.

Microbenchmark results reveal that 41% of the total execution time is spent in kernel invoca-

tions. To minimize this overhead, we apply the tiled-wavefront design from Section 4.1.2 to

the GPGPU architecture. The differences between the tiled-wavefront approaches followed

in Cell-SWat and CUDA-SWat are discussed next.

Tile Scheduling Our scheduling scheme assigns a thread block to compute a tile, and

consecutive tile-diagonals are computed one after another from the northwest corner to the
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Figure 4.27: (a) Chart comparing the performance of the Coalesced Global Memory Ac-
cess scheme with the other three methods and (b) Execution times for various execution
configurations.

southeast corner of the matrix. Entire tile-diagonals are processed at once rather than

computing block-rows that is followed by Cell-SWat. Although there are more number of

tiles (or thread blocks) to be computed than the number of multiprocessors, the CUDA

thread scheduler, which is transparent to the developers, will optimize the thread occupancy

on the chip. Hence, our tile scheduling strategy leverages the thread scheduling scheme of



Ashwin M. Aji Chapter 4. Parallel Pairwise Sequence Search 64

the CUDA library.

Computation-Communication Communication patterns that occur during the tile com-

putation are shown in Figure 4.28. We describe step-by-step communication-computation

mechanism performed by each thread block while processing a tile:

Shared Memory

Global Memory

Tiles

Figure 4.28: Computation-Communication pattern between tiles in global memory (unopti-
mized).

1. To start computing a tile, a thread block transfers the corresponding elements from

global memory to the on-chip shared memory. This memory transfer will be coalesced

because we handcraft the allocation of each tile to follow the rules for coalesced memory

accesses. The boundary elements that are required for tile computation are assumed to

be already present within the tile at this stage. We will later explain how we populate

the tile boundary with the appropriate elements.
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2. Next, the thread block proceeds with the tile computation within shared memory.

The threads use block synchronization primitives after computing every anti-diagonal

within the tile.

3. The processed tile is transferred back to its location in global memory.

4. Finally, boundary elements from the current tile are transferred to the boundaries of

the neighboring tiles on the west and south. Memory is thus moved within the global

memory by a single thread in the block, and is thus a non-coalesced memory transfer.

The above steps describe the processing of non-boundary tiles. Boundary conditions can be

easily checked and the redundant steps can be avoided.

Figure 4.29 shows that a maximum of 3.12× speedup over the näıve implementation can be

achieved by applying the tiled wavefront design. This approach achieves a 22% improve-

ment over the host-run implementation with the diagonalized data representation that was

discussed before.

Optimized Tiled Wavefront

This section talks about how the non-coalesced global memory transfer of the boundary

elements between neighboring tiles can be replaced with on-chip buffer copies followed by

coalesced global memory transfers as shown in Figure 4.30.

While we retain most of the computation-communication model from the previous section,

we modify the final step as follows:

4a. In shared memory, the east and south boundary elements of the current tile are first

copied to separate buffers.
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Figure 4.29: (a) Chart comparing the performance of the Tiled wavefront scheme with the
two näıve methods and (b) Execution times for various execution configurations.

4b. The memory allocated for the current tile in shared memory now assumes the role of its

east neighbor and all the elements of the tile are initially ‘cleared’ or assigned the value

0. The east buffer is then copied to the tile’s west boundary. The tile (representing the

east neighbor) is then OR’ed with the east neighboring tile in global memory and since

we are transferring the entire tile, coalesced memory access is assured. The OR oper-

ation - in combination with the non-boundary elements of the tile being 0, populates



Ashwin M. Aji Chapter 4. Parallel Pairwise Sequence Search 67

Shared Memory

Global Memory

E

S

Shared Memory

Global Memory

S

Shared Memory

Global Memory

E

OR

OR

Figure 4.30: Computation-Communication pattern between tiles (optimized).

only the the relevant boundary elements in the east neighbor in global memory.

4c. The memory allocated for the current tile in shared memory now assumes the role of

its south neighbor and all the elements of the tile are initially ‘cleared’ or assigned

the value 0. The south buffer is then copied to the tile’s north boundary. The tile

(representing the south neighbor) is then OR’ed with the south neighboring tile in

global memory and since we are transferring the entire tile, coalesced memory access

is assured. The OR operation - in combination with the non-boundary elements of the

tile being 0, populates only the the relevant boundary elements in the south neighbor

in global memory.

The above steps convert the non-coalesced memory transfers to coalesced ones. Figure 4.31

shows that a maximum of 3.6× speedup over the näıve implementation can be achieved by

performing on-chip buffer copies in conjunction with the tiled wavefront optimization. This
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approach achieves a 15.4% improvement over the non-optimized tiled wavefront implemen-

tation that was discussed in the previous unit.
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Figure 4.31: (a) Chart comparing the performance of the Tiled wavefront scheme with the
two näıve methods and (b) Execution times for various execution configurations.
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4.2.3 Discussion

Figure 4.32 provides all the results from Section 4.2.2 in a combined form for comparing the

various optimization approaches against each other before choosing the best strategy.
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Figure 4.32: Comparison of the benefits of all the discussed optmization techniques.

We see from the figure that although we achieve good speedups when compared to the

serial implementation, there is no incremental improvement in the performance when the

optimizations are applied in succession. In fact, when we try to reduce the number of

kernel launches by tiling the computation (Unoptimized Tiled-Wavefront), we introduce

more non-coalesced global memory accesses and hence the performance drops. The optimized

tiled wavefront then improves the performance by on chip buffer copies, but the values are

comparable to the results of the Coalesced Global Memory Access optimization technique.

Also, the speedup is constant beyond 16 thread blocks for all the optimization techniques.

This is because the high utilization of shared resources per block forces only one active block
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per multiprocessor, and this means that the performance of a kernel that has more thread

blocks than the number of available multiprocessors will not be better than the one with 16

thread blocks (where the chip has 16 multiprocessors).

Moreover, the kernel pre- and post-processing times amount to 35% of the total execution

time, and this is a severe, but unavoidable cost. The backtrace operation has negligible

effects as expected.

We attribute the moderate performance of CUDA-SWat to the inherent problem-architecture

combination – the nVIDIA GPGPU is best suited for data-parallel applications, while the

Smith-Waterman algorithm has data parallelism only withing each anti-diagonal. However,

there are some unaddressed optimization problems that can improve CUDA-SWat further,

which we consider as future work:

• The Smith-Waterman algorithm calls the find max function multiple times during its

execution. Currently each thread compares the calculated value against the value in

a location in global memory that is unique to the thread, and updates the global

memory variable with the maximum of the two values. The above transaction consists

of multiple non-coalesced global memory reads and writes, which causes a loss in the

performance.

• The shared memory access patterns should be investigated further to remove memory

bank conflicts, if any.



Chapter 5

Conclusion

5.1 Concluding Remarks

With the Cell Broadband Engine and the GPGPU platforms delivering unprecedented high

performance within a single chip, and making rapid strides toward the commodity proces-

sor market, they are widely expected to replace the multi-core processors in the existing

high-performance computing infrastructures, such as large scale clusters, grids and super-

computers. This motivation, in conjunction with the ever growing need for speed in the

homology search domain has led us to come up with highly efficient mappings of the opti-

mal Smith-Waterman wavefront algorithm separately on to the nVIDIA GeForce 8800 GTS

512MB card and a cluster of the Cell hybrid multicore processors. We leveraged the gen-

erality of our tiled-wavefront design for executing parallel wavefront computations within a

Cell node and recursively applied the same design to every granularity of parallelism in the

Cell cluster. However, we traded-off robustness for speed when the sequences were aligned

across the Cell nodes. We exploited the multiple layers of parallelism within the platforms to

achieve near-linear scalability on both the IBM QS20 and the PS3 Cell platforms, and a max-
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imum speedup of 3.6× on the GPGPU. We incrementally optimized the Smith-Waterman

code in five stages to enhance its performance on the GPGPU.

We also presented a highly accurate analytical model to estimate the execution times of

parallel sequence alignments, and wavefront algorithms in general, within and across multiple

Cell nodes. We achieve an error rate of less than 3% for sequence alignments within a Cell

node and error rates of less than 10% for alignments across Cell nodes on an average. Finally,

we presented TOSS – a Throughput Oriented Sequence Scheduler, that achieved an improved

sequence throughput of of 33.5% on the QS20 Cell cluster, and 13.5% on the PS3 cluster,

over the näıve FCFS scheduler.

5.2 Future Work

We intend to investigate the integration of our Smith-Waterman implementation on the Cell

and GPGPU into existing sequence alignment toolkits. We would also like to extend our

modeling and implementation methodologies to other wave-front algorithms in general. On

the GPGPU front, we plan to explore further optimization techniques to parallelize sequence

search algorithms within and across multiple GPGPU cards. We then want to understand

the design and scalability issues of exploiting multigrain parallelism that is available on the

emergent CMP architectures to efficiently speedup other sequence search algorithms, such

as BLAST and PatternHunter.



Appendix A

Performance Metrics of Sequence

Search Algorithms

In this section, we define and discuss the metrics that we use to estimate the performance

of sequence-search algorithms in general.

Sequence-search algorithms can be measured on many dimensions such as execution time (or

speed), sensitivity, complexity of implementation, and cost of deployment. While measuring

the execution time of an algorithm and estimating the cost of deployment of the complete

system are straightforward, there is no existing definition that clearly defines and quantifies

the ‘sensitivity’ of a sequence-search algorithm, which we discuss below.

A.1 Sensitivity of Sequence Search

Previous work defined and measured sensitivity in an unconvincing and informal fashion [33,

30]. To address this, we propose a formal definition for sensitivity in the following way.
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Homology search methods are similar to web search algorithms. In the web search domain,

an input query or keyword is searched against a large known document collection. The

output will be a set of relevant web pages that are sorted by closeness or rank. Similarly,

in the realm of homology search, an input query sequence is searched against a large known

sequence database. The output will be a set of relevant sequences similar to the query,

which are sorted by the alignment score or corresponding statistical quantifiers such as E-

Value and P-Value of the alignment. Given the analogy between the homology search and

web search methods, we first explore some of the many definitions and metrics that have

been proposed to measure the performance of information retrieval systems. We then analyze

their relevance to sequence search, and later, modify and adapt those definitions in order to

quantify sensitivity. The information retrieval metrics that are of interest are as follows:

• Precision: Among all the retrieved documents, the fraction of documents that is rel-

evant to the user’s information need is termed as precision. It gives an indication of

the percentage of false-positives that are included in the final result set of the search.

• Recall: Among all the documents relevant to the query, the fraction of the documents

that is successfully retrieved is termed as recall and can be represented by Equa-

tion (A.1). It gives an indication of the percentage of false-negatives that are not

included in the final result set of the search. In other words, recall denotes the power

of the search algorithm to retrieve all the relevant documents.

recall =
|all relevant documents ⋂ retrieved documents|

|all relevant documents|
(A.1)

Relevance to homology search: With respect to sequence-search algorithms, the universal

relevant document group or the absolute result set corresponds to all the sequence alignments

that are generated by the optimal Smith-Waterman algorithm, for a given threshold score.
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Different threshold scores generate different absolute result sets of sequence alignments. False

positives are created by assigning a score that is greater than the optimum to a typically

low-scoring (irrelevant) alignment, which may cause the irrelevant alignment to cross the

threshold score and appear in the final result set. However, no sequence-search algorithm

assigns a score that is higher than the optimum to any alignment. Therefore, false positives

cannot be generated by this class of algorithms, thus eliminating ‘precision’ as a relevant

metric to compare sequence-search algorithms.

False negatives, on the other hand, can be generated by those heuristic algorithms that

are willing not to output some high-scoring (relevant) sequences in order to obtain large

speed improvements. This is typically the case with heuristics such as BLAST, FASTA, and

PatternHunter, for example. Therefore, we consider ‘recall’ as a relevant metric to compare

homology search methods. With this background, we can now define and quantify the term

sensitivity.

Definition Among all the sequence alignments that are generated by the Smith-Waterman

algorithm for a given threshold score, the fraction of the alignments that is successfully gen-

erated for the same threshold score by the algorithm under test is denoted as the sensitivity

of that algorithm for that threshold score.

Let χ represent the set of scores of all the statistically significant alignments1 that are

generated by the Smith-Waterman algorithm. If we consider each element of the set χ as a

potential threshold score, then the sensitivity of the test algorithm at the different threshold

scores in χ can be represented by the Equation (A.2).

sensitivityi =
|Si

⋂
Ti|

|Si|
(A.2)

1The statistical significance of an alignment can be inferred by examining the corresponding E-values and
P-values.
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where,

i ∈ χ, the set of threshold scores

sensitivityi = sensitivity at the threshold score i

Si = result set generated by Smith-Waterman with alignment scores ≥ i

Ti = result set generated by the test algorithm with alignment scores ≥ i

Since no sequence-search algorithm generates false positives, the result set generated by the

test algorithm is contained in the absolute result set generated by Smith-Waterman, i.e.

Ti ⊆ Si. Therefore, Equation (A.2) becomes

sensitivityi =
|Ti|
|Si|

(A.3)

Sensitivity is therefore a function of the threshold score. To assign a unified sensitivity value

to a sequence-search algorithm, we take the mean of sensitivity values at all the threshold

scores in χ, as shown in Equation (A.4). Empirical results show that the sensitivity values

for different threshold scores have very low variance [6], and therefore, their mean value gives

a good estimate of the sensitivity of the algorithm.

Sensitivity =

∑
i∈χ

sensitivityi

|χ|
(A.4)

Therefore, the target for any sequence-search algorithm is to provide a result set that is

identical to that of Smith-Waterman, thereby achieving a perfect sensitivity of 1. If the

sensitivity value is less than 1, it means that the sequence-search algorithm has missed

generating significant alignments.
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