HPPAC 2018 in conjunction with IPDPS 2018

Making a Case for Green High-Performance
Visualization via Embedded Graphics Processors

Position Paper

Vignesh Adhinarayanan
Dept. of Computer Science
Virginia Tech
Blacksburg, VA 24061
avignesh@vt.edu

Virginia Tech

Abstract—This paper makes a case for using low-power em-
bedded GPUs for the purpose of executing high-performance
scientific visualization tasks. We compare the greenness (i.e.,
power, energy, and energy-delay product — EDP) of an embedded
GPU with a CPU for commonly encountered visualization tasks
using two real-world applications: (1) Modeling for Prediction
Across Scale — Ocean (MPAS-O) and (2) Particular Ensembles
(PE). Our preliminary results show that the low-power embedded
GPU is capable of handling complex visualization tasks while
consuming less than 50% of the energy consumed by a CPU
server. In addition, we find that the embedded GPU outperforms
the CPU with dynamic voltage-frequency scaling (DVFS) enabled
in a majority of the cases.

I. INTRODUCTION

Power and energy have emerged as first-order design criteria
in high-performance computing (HPC) systems. For example,
the U.S. Department of Energy seeks to build an exascale sys-
tem with a power budget of 20 MW [17]]. Operating such a ma-
chine at the planned power budget would incur an energy bill
that is one-quarter of its acquisition cost even if we consider
the least expensive power in the U.S. (=~ $0.05/kWh) [10].
Under a more typical energy cost (= $0.10/kWh) and a real-
istic projection for power (=40MW in 2020 [2]), the energy
bill for an exascale supercomputer would be as high as its
acquisition cost. As a consequence, researchers should explore
opportunities to reduce the energy consumption of high-
performance supercomputing systems while still delivering
high performance — in other words, improved greenness (i.e.,
power, energy, and energy efficiency). In this paper, we make a
case for greenness on an important class of HPC applications,
namely, high-performance scientific visualization.

A recent trend in high-performance scientific visualization
seeks to move away from post-processing visualization to in-
situ visualization due to I/O constraints [S]]. In a traditional
post-processing pipeline (as shown in Fig. [T), the scientific
simulation runs on the primary CPU cluster. The CPU cluster
then transfers the generated simulation data to the storage
cluster periodically. After the simulation completes, the data
is then transferred to a visualization cluster where images are
rendered using discrete graphics processing units (GPUs). In
contrast, an in-situ pipeline avoids the data transfer into and

Bishwajit Dutta
Dept. of Electrical & Computer Engineering

Blacksburg, VA 24061
bdutta@vt.edu

Wu-chun Feng
Dept. of Computer Science
and Electrical & Computer Engineering
Virginia Tech
Blacksburg, VA 24061
wfeng@vt.edu

0 Store the simulated data on the
storage cluster periodically 9 Visualize on the

m mz. cluster at the end

Storage Cluster Viz. Cluster

o Run the simulation on the
primary cluster

Primary Cluster

CPU Node | [ cPU Node | [ cPU Node

[
[
[
[

Storage Node GPU Node

CPU Node CPU Node CPU Node Storage Node GPU Node

CPU Node CPU Node Storage Node GPU Node

( ) J N J
| ) ] | J N J
[ J [ cpu ode | ) J N J
[ cPuNode ][ cpu Node | [ cpu Node | ( storage Node | [ ePuNode |

Fig. 1. Traditional post-processing visualization pipeline

out of the storage cluster by running both the simulation and
visualization on the primary CPU cluster. Recent studies have
shown that this approach can save as much as 55% energy by
minimizing I/O-related stalls [6]], [4].

However, such an in-situ approach would result in losing
the ability to run the visualization task on a processor that is
specialized for visualization (i.e., GPU). An obvious solution
is to employ graphics processing units (GPUs) on the primary
cluster as well. However, if cost is an issue, data centers
may restrict (or reduce) the availability of discrete GPUs
for application scientists. In a post-processing visualization
pipeline, only the visualization nodes (which are fewer in
number) need graphics-processing capabilities, thus using a
more expensive discrete GPU for this post-processing pipeline
is a viable and cost-effective option. For in-situ visualization,
however, the visualization task runs on the same nodes as
the simulation. Thus, graphics-processing capabilities must be
provided on each node, which may not be viable from a cost
perspective.

In this paper, we make a case for modifying the in-situ
pipeline to run visualization tasks on low-power embedded
graphics processors. Due to the shared processor and moth-
erboard designs for desktop and server computing, embedded
graphics processors are readily available on CPU nodes (but
reserved for driving the display on a desktop computer). For
instance, recent server-based Intel Skylake CPUs, such as the
Intel HD Graphics P530 and Intel Iris Pro Graphics P580,



HPPAC 2018 in conjunction with IPDPS 2018

come equipped with embedded graphics, thereby reducing the
need for discrete GPUs [3]]. As a consequence, these embedded
graphics processors do not incur any additional hardware cost
if used for visualization tasks. Furthermore, they operate at a
fraction of the thermal power envelope of discrete GPUs and
thus do not consume any significant energy (or power) when
the visualization task is not running. Our preliminary experi-
ments with two real-world scientific visualization applications
— (1) Modeling for Prediction Across Scale — Ocean (MPAS-
O) and (2) Particular Ensembles (PE) — show that these
embedded GPUs can handle complex scientific visualization
tasks comfortably while consuming less than 50% of the
energy consumed by the CPUs.

II. RELATED WORK

The problem of improving the greenness of scientific vi-
sualization pipelines has received recent attention due to the
increasing energy cost of data movement [17]. The solutions
previously explored can be classified into four categories.

o In-situ Techniques: These techniques reduce data move-
ment by processing most of the data when it resides in
memory rather than allowing it to move to the storage
subsystem. Specific examples include an image-based ap-
proach to scientific visualization [3]], in-situ sampling [4]],
in-situ analytics [8]], and data compression [[7].

« Work Distribution: The basic premise here is to care-
fully redistribute the simulation and visualization tasks
across the various resources (e.g., nodes or cores) to
minimize data movement [[16]]. For instance, the two tasks
may be distributed to dedicated nodes (or cores) or the
same set of resources may be used for the two tasks, but
in a time-shared manner, which affects intra- and inter-
node data movement and hence affects energy.

« Memory Optimizations: New types of memory such as
NVRAM exhibit lower data-access energy. Some research
papers have looked at optimizing the memory hierarchy
to reduce the energy consumption of scientific visualiza-
tion [9]], [11].

« DVFS-based Techniques: The frequency of the cores
and the other components of a compute node are varied to
tune power and performance. Labasan et al. have looked
at both DVFS and techniques built atop DVFS such
as power sloshing [14].

In contrast to the above work, we explore an underutilized
compute component inside a node (i.e., embedded GPU)
and compare its efficacy versus classical green computing
techniques such as DVFS.

III. METHODOLOGY

In this paper, we perform and present some preliminary
experiments to characterize the greenness of different types
of devices for some commonly encountered visualization
tasks via two real-world applications: Modeling for Prediction
Across Scale - Ocean (MPAS-O) and Particular Ensem-
bles (PE) [1]. Here, greenness may refer to power, energy,

+ Controls,
how the

item will be
displayed.

RENDERER

WRITER

* Saves Data
to a file.

* Datasource
which can be
built in type or
an input file. « It’s a data
processor.
Fore.g. Cut,

DATA SOURCE Clip,
Contour,

\/ﬂc‘

Fig. 2. Four stages of the visualization pipeline

Fig. 3. Glyph filter applied to the MPAS-O data set

or the energy-delay product (EDP). The visualization tasks
proceed in four steps, as illustrated in Fig.

« Data Sources: The raw data is represented as structured
grids for MPAS-O and a point cloud for PE and is read
as a binary file from disk.

« Filter Operations: Filters are functional units that pro-
cess the input data to extract interesting features and form
the core of the visualization pipeline. The visualization
tasks evaluated in this paper include clip, contour, glyph,
and slice. In addition, we studied stream tracer and warp
by filter which are relevant only to PE.

« Rendering: Rendering is the process of generating an
image from a 2D or 3D model. In this paper, we use vol-
ume rendering for the PE data set and surface rendering
for the MPAS-O data set. Fig. [3| shows a sample surface
rendering for MPAS-O.

« Writers: The final output is written as a raster graphics
image file onto the disk.

We performed our experiments on a SuperMicro worksta-

tion equipped with two 8-core Intel Xeon E5-2665 processors
and a Matrox G200 graphics processor, which is integrated



HPPAC 2018 in conjunction with IPDPS 2018

onto the motherboard. Relevant details of the hardware plat-
form are presented in Table

TABLE I
HARDWARE DETAILS

CPU GPU
Device  2x Intel Xeon E5-2665 Matrox G200
Operating Frequency 1200 MHz - 2400,MHz 84 MHz
Memory 64 GB DDR3 32MB SGRAM
TDP  230W (i.e., 115W*2) 4W

We measured the power consumption of these platforms
using a WattsUp Pro power meter. All experiments were
repeated three times and their median values reported in
the subsequent section. Because the CPU supports dynamic
voltage and frequency scaling (DVFS), we also ran our ex-
periments at different frequencies, ranging from 1200 MHz
to 2400 MHz in steps of 200 MHz, and compared the CPU’s
greenness versus that of the embedded GPU. For software, we
used ParaView v5.0.1 compiled with MESA libraries for the
CPU and OpenGL libraries for the embedded GPU.

IV. PRELIMINARY RESULTS

Table [lI| presents the execution time, dynamic power, dy-
namic energy, and EDP for the embedded GPU for various
visualization tasks and data sets. The values presented in this
table are normalized with respect to the CPU running at its
base frequency of 2.4 GHz.

TABLE I
NORMALIZED EXECUTION TIME, DYNAMIC POWER, ENERGY AND EDP
FOR THE EMBEDDED GPU.

[ Visualization Task | Data Set | Time | Power [ Energy | EDP |

Clip MPAS-O 0.37 0.05 0.02 | 0.01
PE 4.61 0.10 048 | 2.20

Contour MPAS-O 4.21 0.09 0.37 1.57

PE 5.37 0.24 1.27 T 6.79

Glyph MPAS-O 1.15 0.10 0.11 0.13

PE 1.01 0.06 0.01 0.01

Slice MPAS-O 4.62 0.08 0.37 1.65

PE 4.76 0.15 0.69 | 3.29

Stream Tracer PE 3.65 0.17 0.57 2.09
Wrap By Vector PE 4.87 0.14 0.66 | 3.23

We clearly see that there exists a trade-off between per-
formance and power for the two devices. While the CPU
exhibits better performance for nearly all of our visualization
tasks, the GPU consistently consumes less power. This trade-
off results in widely different energy and EDP characteristics
for the two devices. The embedded GPU consumes lower
energy than the CPU in nine out of ten cases whereas the
CPU exhibits a lower EDP in seven out of ten cases. Moving
forward, we expect power and energy to have a greater
weight in the E™ D™ energy-delay model [12]. Therefore, we
expect embedded GPUs to be increasingly useful for high-
performance visualization in the future.

Next, we investigate the extent to which DVFS affects the
performance and greenness of the devices. Results are only

presented for the PE data set due to space limitations. Fig. [
presents the performance, power, energy, and EDP for the CPU
using DVFS with different filters, respectively. In particular,
Fig. shows mixed results for visualization performance
in that the DVFS-controlled CPU (solid line) outperforms
the embedded GPU (dotted line) on four of the six filters:
clip, contour, slice, and stream tracer, while the embedded
GPU convincingly outperforms the CPU for the glyph and
wrap-by-vector filters. Fig. shows the power consumed
by the CPU at various frequencies for different filters. Note
that the GPU frequency cannot be changed and is fixed in
these experiments. While DVFS helped reduce CPU’s power
consumption significantly for all six filters, the embedded GPU
remained the greener device in terms of power.

While previous experiments suggest that the embedded GPU
consumed lower energy than the CPU for all visualization
tasks, if we reduce the operating frequency of the CPU, we
can make the CPU into the greener device with respect to
energy, as in the case with the slice and wrap-by-vector filters
(as shown in Fig. (c)). However, DVFS tuning for CPUs
may also negatively affect their EDP as observed in the case
of the stream tracer filter (as shown in Fig. @]) Overall,
our results show a complex interplay between the various
parameters under study and suggest that the embedded GPUs
deserve further investigation for high-performance scientific
visualization.

V. CONCLUSION

In this paper, we evaluated the greenness of CPU and the
embedded GPU across four different metrics—performance,
power, energy, and EDP. We found that the embedded GPU
outperforms the CPU in terms of power and energy even
when DVEFS is enabled on the CPU. On the other hand, the
CPU does better in terms of performance and energy. Moving
forward, with power and energy becoming first-class citizens,
we believe embedded GPUs will form a major part of in-situ
visualization pipelines. While much work is still yet to be done
in the area of energy-efficient high-performance visualization,
we believe our initial work in this paper spurs interest in low-
power embedded GPUs for scientific visualization.

In the future, we plan to expand the initial characterization
presented in this paper to include more applications, more
visualization filters, and more hardware devices including
discrete GPUs. We believe such a study will help visualization
scientists in making greener and less expensive simulations in
the context of high-performance computing (HPC).

ACKNOWLEDGEMENTS

This work is supported by a grant from the U.S. Department
of Energy (DOE) Office of Advanced Scientific Computing
Research (ASCR) via DE-SC0012637.

REFERENCES
[1] Particular Ensembles. http://www.uni-kl.de/sciviscontest/, 2016.

[2] The Next Generation of HPC Technology Dominates Green500. Scien-
tific Computing World, Nov 2016.


http://www.uni-kl.de/sciviscontest/

HPPAC 2018 in conjunction with IPDPS 2018

Execution Time (s)

Clip 15 Contour Glyph
1.6 ’ 504\
1.2 1.0 - 4.5+
4.0+
0.8 3.5+
05—~ 3'0 i
0_4_ S ——— — D [ S A ———
T T T T T T T T T T T T
12 16 20 24 12 16 20 24 12 16 20 24
Slice StreamTracer WrapByVector
1.6 Jresemmrmereegemmmel| | preseesmesmesqessas 1.6 remsrapereegeeees
1.2+ 1.5 1.2
0.8 1.07 0.8 1
044 T o4 T—0u
T T T 0.5 T T T T T T T
12 16 20 24 12 16 20 24 12 16 20 24
Frequency

(a) Performance

Clip Contour Glyph
214 ] i
12 200
18 = 10 ) 150 —
15 / 100- _~
12+ 81 / 50 -
R EETCT TP TP PPPPPPY 6- | T O S I [ e e pepepupepu pyupapepeg
T T T T T T T T T T T T
3 12 16 20 24 12 16 20 24 12 16 20 24
é Slice StreamTracer WrapByVector
wrrs A PR AN A /
154/ ENVARRN 57
134 [\ / 204 —| 13- v
11— \ {15+ L
9 T T T T I- ------ I""-"I""".I 9 I' T T T
12 16 20 24 12 16 20 24 12 16 20 24
Frequency
(c) Energy

[3]

[4]

[51

[6]

[7]

[8]

[9]

[10]

Clj Contour Glyph
60 P g0 yp
50 —
4 60 -
40 30
- r 40+
30 ] 20 / -
s | — — e T 107 — | — | — T | — | — I T
5 12 16 20 24 12 16 20 24 12 16 20 24
= Slice StreamTracer WrapByVector
O 50 » ,
o | 1| 50+ /
407 30 1 40 1
30+ - 1
— 204 30
20 204 /
04 10 109
T T T T T T T T T T T T
12 16 20 24 12 16 20 24 12 16 20 24
Frequency
(b) Power
Clip Contour Glyph
---------------------------------------- 600 —
15.0 1
125+ " 400-"
4 104
10.0 N 200 -
157 54 N
‘,J- T T - ] T T T T 7I I_" = "I ------ I- ------ T
2 12 16 20 24 12 16 20 24 12 16 20 24
% Slice StreamTracer WrapByVector
T romn s | B T T T ST IIT
15+ 204\ 15
124
10+
N 15 9 ]
54 a‘,"/(‘ \ 6-_ N
T T —r 10 T T T T T E—
12 16 20 24 12 16 20 24 12 16 20 24
Frequency
(d) EDP

Fig. 4. Greenness results for PE data set at different CPU frequencies. Solid line = CPU, Dotted Line = GPU

Intel HD Graphics P530 & Iris Pro Graphics P580 Performance Guide.
https://www.intel.com/content/dam/www/public/us/en/documents/
guides/hd- graphics-pS530-p580-performance- guide.pdf, 2017.

V. Adhinarayanan, W. Feng, D. Rogers, J. Ahrens, and S. Pakin.
Characterizing and Modeling Power and Energy for Extreme-Scale In-
situ Visualization. In IEEE Int’l Parallel and Distributed Processing
Symposium (IPDPS), 2017.

V. Adhinarayanan, W. Feng, J. Woodring, D. Rogers, and J. Ahrens. On
the Greenness of In-Situ and Post-Processing Visualization Pipelines. In
IEEE Int’l Parallel & Distributed Processing Symp. Workshops, 2015.
V. Adhinarayanan, S. Pakin, D. Rogers, W. Feng, and J. Ahrens. Perfor-
mance, Power, and Energy of In-Situ and Post-Processing Visualization:
A Case Study in Climate Simulation. In SCI5.

A. S. Berres, V. Adhinarayanan, T. Turton, D. Rogers, and W. Feng.
A Pipeline for Large Data Processing Using Regular Sampling for
Unstructured Grids. Technical report, Los Alamos National Laboratory
(LANL), 2017.

M. Gamell, I. Rodero, M. Parashar, J. C. Bennett, H. Kolla, J. Chen, P.-
T. Bremer, A. G. Landge, A. Gyulassy, P. McCormick, et al. Exploring
Power Behaviors and Trade-offs of In-situ Data Analytics. In IEEE/ACM
Int’l Conference for High Performance Computing, Networking, Storage
and Analysis (SC), 2013.

M. Gamell, I. Rodero, M. Parashar, and S. Poole. Exploring Energy
and Performance Behaviors of Data-Intensive Scientific Workflows on
Systems with Deep Memory Hierarchies. In IEEE Int’l Conference on
High Performance Computing (HiPC), 2013.

N. Gholkar, F. Mueller, and B. Rountree. A Power-aware Cost Model

[11]

(12]

[13]

[14]

[15]

[16]

[17]

for HPC Procurement. In /EEE Int’l Parallel & Distributed Processing
Symposium Workshops (IPDPSW), 2016.

G. Haldeman, I. Rodero, M. Parashar, S. Ramos, E. Z. Zhang, and
U. Kremer. Exploring Energy-Performance-Quality Tradeoffs for Scien-
tific Workflows with In-situ Data Analyses. Computer Science-Research
and Development, 30(2):207-218, 2015.

C.-H. Hsu, W. Feng, and J. S. Archuleta. Towards Efficient Super-
computing: A Quest for the Right Metric. In IEEE Int’l Parallel and
Distributed Processing Symposium (IPDPS), 2005.

S. Labasan, M. Larsen, and H. Childs. Exploring Tradeoffs Between
Power and Performance for a Scientific Visualization Algorithm. In
IEEE Symp. on Large Data Analysis and Visualization (LDAV), 2015.
S. Labasan, M. Larsen, H. Childs, and B. Rountree. PaViz: A
Power-Adaptive Framework for Optimizing Visualization Performance.
In EuroGraphics Symposium on Parallel Graphics and Visualization
(EGPGV), 2017.

T. Ringler, M. Petersen, R. L. Higdon, D. Jacobsen, P. W. Jones, and
M. Maltrud. A Multi-Resolution Approach to Global Ocean Modeling.
Ocean Modelling, 69(0):211 — 232, 2013.

I. Rodero, M. Parashar, A. G. Landge, S. Kumar, V. Pascucci, and P.-T.
Bremer. Evaluation of In-situ Analysis Strategies at Scale for Power
Efficiency and Scalability. In IEEE/ACM Int’l Symposium on Cluster,
Cloud and Grid Computing (CCGrid), 2016.

J. Shalf, S. Dosanjh, and J. Morrison. Exascale Computing Technology
Challenges. In Int’l Conference on High Performance Computing for
Computational Science (VECPAR), 2010.


https://www.intel.com/content/dam/www/public/us/en/documents/guides/hd-graphics-p530-p580-performance-guide.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/guides/hd-graphics-p530-p580-performance-guide.pdf

