
International Parallel and Distributed Processing Symposium, Orlando, FL, May-June 2017

Characterizing and Modeling Power and Energy for
Extreme-Scale In-situ Visualization

Vignesh Adhinarayanan∗, Wu-chun Feng∗, David Rogers†, James Ahrens†, Scott Pakin†

∗Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061
†Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, New Mexico 87545

{avignesh, wfeng}@vt.edu, {dhr, ahrens, pakin}@lanl.gov

Abstract—Plans for exascale computing have identified power
and energy as looming problems for simulations running at that
scale. In particular, writing to disk all the data generated by these
simulations is becoming prohibitively expensive due to the energy
consumption of the supercomputer while it idles waiting for data
to be written to permanent storage. In addition, the power cost
of data movement is also steadily increasing. A solution to this
problem is to write only a small fraction of the data generated
while still maintaining the cognitive fidelity of the visualization.
With domain scientists increasingly amenable towards adopting
an in-situ framework that can identify and extract valuable
data from extremely large simulation results and write them to
permanent storage as compact images, a large-scale simulation
will commit to disk a reduced dataset of data extracts that will
be much smaller than the raw results, resulting in a savings in
both power and energy.

The goal of this paper is two-fold: (i) to understand the role
of in-situ techniques in combating power and energy issues of
extreme-scale visualization and (ii) to create a model for perfor-
mance, power, energy, and storage to facilitate what-if analysis.
Our experiments on a specially instrumented, dedicated 150-node
cluster show that while it is difficult to achieve power savings
in practice using in-situ techniques, applications can achieve
significant energy savings due to shorter write times for in-situ
visualization. We present a characterization of power and en-
ergy for in-situ visualization; an application-aware, architecture-
specific methodology for modeling and analysis of such in-situ
workflows; and results that uncover indirect power savings in
visualization workflows for high-performance computing (HPC).

Keywords-energy, energy efficiency, green computing, in-situ
visualization, power, scientific visualization, scientific workflow

I. INTRODUCTION

Future supercomputers are expected to be power-limited.
For instance, the U.S. Department of Energy has capped the
power consumption of the upcoming exascale supercomputer
(projected to arrive in 2022–23) at 20 MW [1], [2]. For these
power-limited supercomputers, it is important to utilize the
allocated power effectively. However, an analysis of power
usage of production supercomputers has revealed that these
machines, on an average, use only 40–55% of their budgeted
power [3]. A “trapped capacity” of more than 45% could ad-
versely affect the ambitious performance goals of the exascale
initiative. Like power, energy consumption has also emerged
as an important issue. A typical estimate of one million dollars
per megawatt means that over 40% of the acquisition cost of
a supercomputer goes towards paying energy bills [1]. Thus,

plans for exascale computing have identified power and energy
as looming problems for simulations running at that scale.

This paper deals with addressing power and energy is-
sues for an important class of applications: scientific data
visualization and analytics. We explore using in-situ analysis
and visualization methods to reduce energy consumption and
increase power utilization. In-situ techniques identify and
extract valuable data from extremely large simulation results
and write them to permanent storage in a compact form. They
therefore reduce the data movement to storage and I/O wait
time. Past studies have shown that off-chip data movement
is very expensive; its energy cost can be 100 times that
of a floating-point operation [4]. Thus, by reducing off-chip
data movement, in-situ techniques can be expected to reduce
energy. In addition, reducing I/O wait times decreases the time
that CPUs idle on I/O, which in turn, means that CPUs are
busy doing more useful work, thus increasing CPU utilization.
This increased utilization implies that the CPUs are consuming
more power, thus harnessing trapped capacity. With in-situ
analysis and visualization already being a core tool in scientific
workflows at exascale—they help scientists find important
features in data, extract valuable information, and investigate
more manageable and compact results from large scientific
simulations—we expect that existing in-situ frameworks can
also help address power and energy challenges [2].

This paper studies the role of in-situ techniques in reducing
power and energy for coupled simulation-visualization appli-
cations. While past work in this space used analytical power
models to study in-situ pipelines [5], we use real measure-
ments on supercomputers. To our knowledge, this is the first
study of power and energy consumption that considers power
consumed not only by a reasonably-sized compute cluster
(150 nodes) but also by the associated storage subsystem
when both are used concurrently in a scientific simulation with
high I/O requirements. Our contributions in this paper can be
summarized as follows:

• a characterization of power and energy of compute and
storage subsystems for in-situ analysis and visualization,

• an application-aware, architecture-specific methodology
for modeling and analysis of in-situ analysis and visual-
ization, and

• results that reveal the nature of indirect energy savings in
HPC visualization workflows.



International Parallel and Distributed Processing Symposium, Orlando, FL, May-June 2017

Our experimental results show that an in-situ pipeline runs
51% faster, consumes 50% less energy, and occupies 99.5%
less disk space than a post-processing pipeline for an ocean
simulation application. The power consumption, however, re-
mains unaffected. While the results are along expected lines,
ours is the first work that confirms (1) experimentally, (2)
at a reasonable scale, (3) in a controlled environment, and
(4) while simultaneously measuring both compute and storage
subsystems.

The rest of the paper is organized as follows. We pro-
vide background on visualization techniques in Section II
and discuss related work in Section III. Our characterization
methodology is presented in Section IV with characterization
results in Section V. The model developed based on the
characterization results and the applications of the model are
presented in Section VI and Section VII, respectively. Then,
we discuss opportunities for power reduction in Section VIII.
Finally, we draw conclusions from our experiments in Sec-
tion IX.

II. BACKGROUND

In this section, we provide some background on the two
major types of visualization pipelines, namely post-processing
and in-situ pipelines. We track their origins and traditional use
cases. We bring attention to a modern trend, where scientists
are forced to adopt in-situ pipelines due to the disparity
between compute and storage performance in modern high-
performance computing (HPC) systems. Finally, we formulate
some hypotheses about in-situ techniques and their role in
addressing emerging power and energy issues.

A. Terminology

The terms post-processing and in-situ visualization have
been used in the literature to refer to a number of different
techniques. We will first define these terms as they are used
in this paper. In a traditional post-processing visualization, as
shown in Figure 1(a), a simulation is performed; and at the end
of each iteration of the simulation, raw data is written to the
storage system. This storage system is typically a parallel file
system in HPC environments. After the simulation is complete,
the data is transferred to a rendering cluster where an image
is rendered for each iteration. This is in contrast with in-situ
visualization, as shown in Figure 1(b), where the simulation
and visualization tasks are performed on the same machine
concurrently. Instead of saving the raw data at the end of each
iteration, an image corresponding to the data is rendered and
saved to disk. The image thus produced is typically orders of
magnitude smaller than the raw data.

B. Use Cases for In-situ Techniques

Earlier work on in-situ visualization viewed the technique
as a way to monitor simulations. Ma [6] coupled a parallel
computational fluid dynamics (CFD) solver with a volume
renderer to create an in-situ pipeline. Such a coupling would,

Simulation

Disk Write

Visualization

Disk Write

Disk Read

Simulation

Visualization

Disk Write

(a) Post-processing pipeline

Simulation

Disk Write

Visualization

Disk Write

Disk Read

Simulation

Visualization

Disk Write

(b) In-situ pipeline

Fig. 1: Types of visualization pipelines

for example, enable scientists to quickly identify incorrect
initial conditions in a simulation and abandon these incorrect
simulations early on. This, in turn, could potentially save
valuable supercomputing time.

A related use case is computational steering, in which the
visualization is performed alongside the simulation in order to
guide the simulation towards a better solution. Early examples
include Haimes’s work [7], in which computations in a CFD
simulation can be inspected while the simulation is still run-
ning. Another example involves the use of in-situ techniques
to guide convergence in protein-folding problems [8].

While in-situ techniques have their own advantages, they
are not well-suited for exploratory research. That is, to make
good use of in-situ pipelines, the analysis and visualization
tasks need to be defined ahead of time. As such, post-
processing visualization techniques became the de facto stan-
dard in high-performance computing. However, the balance
has recently shifted to in-situ techniques due to storage per-
formance and capacity constraints in HPC systems.

Until recently, it was practical to write the raw data for
every iteration or timestep of a simulation. However, over
time, HPC systems have grown in compute performance at
a much faster rate than I/O performance. As a consequence,
it is no longer practical to save a simulation’s raw data every
iteration. Scientists are forced to save their data only every
few steps using a technique known as temporal sampling.
However, understanding the simulation becomes difficult when
the sampling frequency gets too low. Owing to this shift in
bottleneck towards storage, in-situ techniques are becoming
more popular. Several frameworks such as ParaView [9],
VisIT [10], DataSpaces [11], and ADIOS [12] now support
in-situ analytics and visualization. A number of applications
are also making use of these frameworks to overcome storage
bottlenecks [13]–[15].

While the advantage of in-situ techniques in terms of
storage capacity is obvious, its impact on performance is
not so straightforward to discern. On the one hand, when
one adopts an in-situ pipeline, one can expect to reduce



International Parallel and Distributed Processing Symposium, Orlando, FL, May-June 2017

execution time due to reduced I/O time (from the orders
of magnitude smaller output). On the other hand, running a
visualization task on an HPC system can consume additional
supercomputing time. One can expect in-situ techniques to
show better performance only if the additional time spent in
performing visualization and analysis tasks on supercomputers
is less than the saved I/O time. In practice, the vast majority
of applications studied [13], [15]–[19] have observed better
performance using in-situ pipelines.

C. Energy and Power Issues with In-Situ Techniques

The capacity and performance advantages of in-situ tech-
niques are well documented. In addition to these, we also
expect in-situ techniques to address power and energy issues.

Today’s supercomputers do not use the entire power budget
available to them as applications rarely sustain peak floating-
point operations per second (FLOPs) for their entire execution.
The reason for this ranges from limited parallelism in applica-
tions to memory and I/O stalls. When an application exhibits
low power utilization, it leads to higher energy consumption.
Higher energy consumption leads to more money spent on
energy bills. In-situ techniques have the potential to increase
power utilization while simultaneously reducing unnecessary
power expenditure and reducing net energy consumption.

First, in-situ techniques reduce the amount of data that
moves outside a node to the file system. Off-chip and off-node
data movement consume two orders of magnitude more power
and energy than on-chip data movement. This can be expected
to save a significant amount of power and energy on the
storage side, even on typical HPC systems where capacity is
relatively small. The savings can be expected to be even higher
for in-situ techniques for big-data systems that have much
larger storage. Second, reducing data movement also reduces
I/O wait time. Because energy is the integral of instantaneous
power over time, we also expect in-situ techniques to save
overall energy (on both the storage and compute side). In
addition, reducing I/O wait time keeps the compute units more
utilized, which should result in increased power utilization
(or reduced trapped capacity). In summary, based on first
principles, we can expect the following hypotheses to hold
true:
Hypothesis 1: In-situ techniques reduce the power (and con-
sequently energy) consumption of the storage subsystem.
Hypothesis 2: In-situ techniques reduce the overall energy
consumption (i.e., on both storage and compute).
Hypothesis 3: In-situ techniques increase the overall power
consumption and thus power utilization. In other words, in-
situ techniques can harness trapped capacity.
In this paper, we test these hypotheses from first principles.

III. RELATED WORK

Our work is closely related to Gamell et al. who evaluated
the performance and energy trade-offs in an in-situ combustion
simulation on a large-scale system [5]. Our work differs from

theirs in the following ways. First and foremost, their analysis
of power and energy is based on analytical models while
ours is based on measurements from a real power meter.
Second, their study emphasizes the power consumed by the
interconnect whereas ours focuses on the entire supercomputer
along with the storage subsystem (i.e, the file system). Third,
our tests are run on a dedicated supercomputer with no
interference from other applications, while the same cannot be
said for theirs. Fourth, they study topological analysis – a data
analytics task. We study the visualization of eddy currents –
a visualization task. Fifth, they study a combustion simulation
application whereas we study a climate change application.
Finally, even though we both studied the energy cost associated
with data movement, we arrive at vastly different conclusions.
These differences are summarized in Table I. Nevertheless,
the biggest difference between the two works comes from
using real power meters on multiple individual components
of a dedicated supercomputer and the different conclusions
we draw.

TABLE I: Comparison with related work [5]

Paper Related Work [5] Our Work
Power Estimated Measured

Component Interconnect Storage and Compute
Application Combustion Simulation Climate Simulation
Interference Unknown No

Task Topological Analysis Tracking Eddies

Other work in this area includes a multi-dimensional trade-
off study on in-situ techniques, which consider quality of
results in addition to energy and performance [20]. Another
paper investigates using NVRAM-based deep memory hierar-
chy to speed up in-situ and in-transit data analytics [21]. They
also study the power behavior of such an architecture. Rodero
et al. explore yet another dimension in this problem space; they
analyze how best to distribute the simulation and visualization
tasks within a supercomputing cluster [22]. Adhinarayanan et
al. compare power and energy of in-situ and post-processing
workflows, but their comparison is limited to a single node,
which is not representative of large-scale machines [23].

IV. METHODOLOGY

We test our initial hypothesis by creating and running
post-processing and in-situ visualization pipelines on a su-
percomputer. We instrument the different components of the
supercomputer and perform a multi-dimensional measurement
study. The experimental details are elaborated in this section.

A. General Approach

We create in-situ and post-processing visualization
pipelines of a real application (namely, climate simulation) by
creating hooks from the simulation to an appropriate visualiza-
tion framework such as ParaView. The coupled application is
run on an instrumented supercomputer supported by a parallel
file system. From the instrumentation, we can obtain power
readings for the different components such as compute and



International Parallel and Distributed Processing Symposium, Orlando, FL, May-June 2017

storage. For storage and performance results, we read the
values directly from the supercomputer.

We run the application on the entire supercomputer so that
the power readings are not affected by any other interfering
application. We measure and compare the following metrics
for in-situ and post-processing pipelines: performance, power,
energy, and storage requirements. To make best use of super-
computer time, we ran many smaller problems at different
application configurations. To quantify energy and storage
savings for larger problems, we create empirical models from
the initial measurements and extrapolate for realistic configu-
rations used by climate scientists.

B. Experimental Setup

We now describe our HPC test system, our power-
monitoring setup, and the scientific application used as a driver
for our study.

HPC system For our characterization experiments, we used
Caddy, a 150-node/2400-core cluster located at Los Alamos
National Laboratory. Each node contains two sockets of 8-core
Intel E5-2670 Sandy Bridge CPUs running at 2.6 GHz as well
as 64 GB of DRAM. Nodes are interconnected using a QLogic
InfiniBand QDR network.

A storage cluster running a Lustre file system is attached
to this supercomputer. The storage cluster consists of five
nodes, which are configured as follows: one node serves as
the master node, two nodes are used for metadata servers
(MDS), and two nodes are used as object storage servers
(OSS). The storage cluster provides 7.7 TB of storage and over
160 MB/s of bandwidth for random reads and writes. Note that
this storage cluster is private to Caddy, so interference from
other clusters is eliminated. We also ran our test application
on the entire cluster so that we are measuring only the power
consumed by our application.

Power monitoring Here, we describe the setup used for
monitoring the power consumption of the compute compo-
nents and the storage components for the hardware setup used
in this study.

The storage cluster was mounted on a Raritan intelligent
rack, which is equipped with metered PDUs that are capable
of measuring the power consumption at the power inlet. The
frequency of data collection was set to one measurement per
minute, which is the maximum possible for this type of power
meter. Within this one-minute interval, multiple measurements
are made and an average power value for that interval is
reported. From this average power profile, we calculate other
derived metrics such as energy.

Because the compute cluster that we used was not instru-
mented to collect power at the rack-level, we used the Appro
power monitoring interface [24] to collect the power profile at
the cage level, where a cage is a group of ten nodes. Like the
rack-level power meter used for the storage cluster, this power
meter is capable of providing an average power estimation

every minute. We collected data from 15 such power monitors,
covering all 150 nodes.

One uniqueness of our work is that we measure the
power consumption of both the supercomputer and the storage
system at the same time while running an application that
stresses both compute and storage. This is one of the major
improvements over previous work on supercomputer power
measurements. While compute and storage power have been
studied separately, they have not previously been evaluated
simultaneously in a single, dedicated system of reasonable
scale. In addition, due to storage system being a shared
resource (unlike the compute system, which is only spatially
shared), it is rarely ever studied on a per-application basis. As
a point of comparison, only 3 out of 500 supercomputers report
the power consumed by the storage system to Green500, which
tracks the power consumed by the top supercomputers [25].

Application For our investigation, we use a climate-
simulation application known as Modeling for Prediction
Across Scales (MPAS) [26]. More specifically, we use the
ocean component of MPAS (MPAS-O) to compare the dif-
ferent types of visualization pipelines (namely, in-situ and
post-processing) with different system configurations. The
visualization task here is to identify and track eddies, which
are rotating bodies of fluid surrounded by shearing fluid [27].

To accomplish the tasks we perform the following steps.
First, we solve an unstructured grid problem in order to
simulate the ocean. From the raw dataset produced by the
simulation, we derive a metric known as Okubo-Weiss, which
is used to identify eddies. For the post-processing pipeline, the
Okubo-Weiss metric is extracted at the end of each timestep
of the simulation and written as a netCDF file. We use the
PIO library, which in turn uses parallel netCDF so that the
output can be written to the parallel file system faster. After the
simulation is complete, the netCDF files from each timestep
are read back and visualized in parallel using the ParaView
framework. An example image produced from the simulation
showing the eddies using the Okubo-Weiss metric is shown in
Figure 2.

For the in-situ pipeline, the extracted Okubo-Weiss metric
is not written directly as netCDF. Instead, it is passed to the
Paraview Cinema framework [28], where it is visualized and
then written to the disk. To accomplish this, we used Catalyst
adaptors [29] that seamlessly copy simulation data structures
to Paraview data structures. While this incurs additional mem-
ory operations, it also avoids large data transfers to the storage
system.

For all the direct measurements reported in this paper,
we use the following problem sizes. We use a grid size of
60 km for the ocean simulation. The simulation is run for a
simulated period of six months. Each time step corresponds
to a simulated period of half an hour. We evaluate the in-
situ pipeline and the post-processing pipeline in three different
configurations: the output products are written once in every
(i) 8 simulated hours, (ii) 24 simulated hours, and (iii) 72



International Parallel and Distributed Processing Symposium, Orlando, FL, May-June 2017

Fig. 2: Visualization of Okubo-Weiss field across the earth. The goal of the visualization task is to identify and track eddies
which are rotating bodies of fluids surrounded by shearing fluids. Green regions represent rotation and blue regions represent
shears. The visualization was generated with ParaView.

simulated hours. The output product can be either netCDF
files or images depending on the type of pipeline being run.

V. EXPERIMENTAL RESULTS

In this section, we present the characterization results for
the various pipelines studied. The metrics reported include
performance (i.e., execution time), power, energy, and storage.

Performance Figure 3 presents the execution time of in-situ
and post-processing pipelines for the three different application
configurations used in this study. The execution time reduced
by 51% when going from a post-processing pipeline to in-situ
pipeline and when the output products of the simulation were
written every 8 simulated hours. The execution time improved
by 38% and 19% when the frequency of writing the output
was reduced to once every 24 hours and once every 72 hours,
respectively. The reason for this improvement is that in the
latter cases, the simulation phase (rather than the I/O and
visualization phases) consumed a greater share of the overall
execution time. Because this part of the pipeline is not affected
by in-situ techniques, we see a diminishing benefit.

Power Next, we compare the power consumption of in-situ
and post-processing pipelines. To perform this comparison,
we first obtain the power profile for each pipeline from the
rack-level power meters. An example profile obtained for
a post-processing pipeline is shown in Figure 4. From this
profile, the average power consumed by the pipeline for the
compute and storage components are calculated and summed
up. The resulting values for total average power are presented
in Figure 5.

As can be seen from the figure, there is practically no
difference in the power consumed by the various pipelines

0

500

1000

1500

2000

2500

3000

once 8 hours once 24 hours once 72 hours

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Sampling Rate

insitu

post-proc

Fig. 3: Comparison of execution time of in-situ and post-
processing pipelines at three different sampling rates

0

20

40

60

P
o

w
e

r 
(K

W
)

Time → 

Compute Storage

Fig. 4: An example power profile for the compute and storage
cluster shown for a post-processing pipeline



International Parallel and Distributed Processing Symposium, Orlando, FL, May-June 2017

0

10

20

30

40

50

once 8 hours once 24 hours once 72 hours

A
ve

ra
ge

 P
o

w
e

r 
(K

W
)

Sampling Rate

insitu post-proc

Fig. 5: Comparison of power consumption of in-situ and post-
processing pipelines at three different sampling rates

studied. The expectation among the visualization community
was that in-situ techniques will help save a significant amount
of power as data movement is expected to be a big power
consumer [5], [30]. However, that popular hypothesis is in
fact belied by our measurements.

To explain our observation, we present the power pro-
portionality of the storage subsystem that we obtained by
benchmarking the storage cluster. The power consumed by
the storage system at idle is 2273 W, and the power consumed
at full load (i.e., maximum I/O bandwidth) is 2302 W. That
is, full-load power represents a negligible 1.3% increase over
idle power. For comparison, the compute cluster consumed
about 15 kW at idle and 44 kW when running our workload—
a 193% increase. Clearly, the storage subsystem in a HPC data
center is one of the least power-proportional components and
needs improvement. Thus, even though the storage bandwidth
decreased from over 150 MB/s to almost zero when we moved
to an in-situ pipeline, we did not save any power. The lesson
learned is that reducing storage bandwidth does not noticeably
improve power consumption in today’s HPC systems.

Looking at this from another perspective, while data move-
ment is a significant source of power consumption, the part
of the storage hierarchy affected by in-situ techniques moves
very little data. In our cluster, the storage bandwidth (the part
that gets affected) is at most 160 MB/s. In comparison, the
data movement occurring within a single node is of the order
of 1 TB/s. Therefore, unless the data reduction happens at the
register or cache levels, we should not expect to see a decrease
in overall power consumption.

Energy Figure 6 compares the energy consumption of the
two visualization pipelines. Energy consumed was calculated
as the product of average power and execution time for
each pipeline. Because power was nearly constant, the energy
consumed closely tracks execution time. The energy consumed
by in-situ across the three sampling rates was 50%, 38% and
19% lower than by post-processing, respectively. This shows
that in-situ can have a significant impact on the operating cost
of the HPC data center as the energy cost of a data center over
its lifetime is rapidly approaching its acquisition cost [31].

0

20

40

60

80

100

120

once 8 hours once 24 hours once 72 hours

En
e

rg
y 

(M
J)

Sampling Rate

insitu

post-proc

Fig. 6: Comparison of energy consumption of in-situ and post-
processing pipelines at three different sampling rates

Storage Figure 7 compares the storage requirements of the
two kinds of pipelines. With increases in storage capacity
lagging behind a supercomputer’s ability to generate data, it
is important for HPC applications to consume no more data
than is absolutely necessary. As Figure 7 indicates, in-situ
techniques help achieve that goal by reducing the required
storage from 230 GB to less than 1 GB when the sampling
rate was set to record output once every 8 hours. For the other
two configurations, the storage requirements decreased from
80 GB and 27 GB, respectively, to negligible amounts. In all
these cases, we observed a data size reduction of over 99.5%.

1

10

100

1000

once 8 hours once 24 hours once 72 hours

Si
ze

 in
 G

B
 (

lo
g 

sc
al

e
)

Sampling Rate

insitu

post-proc

Fig. 7: Comparison of storage requirements for in-situ and
post-processing pipelines at three different sampling rates

A. Summary of Findings

We summarize our major findings below.

• Finding 1: In-situ visualization can result in lower su-
percomputing time even though the supercomputer must
necessarily run the additional task of visualization. This
is due to the significant reduction in I/O wait time.

• Finding 2: In-situ techniques cannot be expected to
lower the power used by the storage system or by data
movement. While this may seem obvious for a HPC
system with a limited storage subsystem, our finding
also applies to big-data systems with larger storage. This



International Parallel and Distributed Processing Symposium, Orlando, FL, May-June 2017

is due to the low dynamic power range of the storage
subsystem.

• Finding 3: In-situ techniques cannot be expected to
improve overall power utilization, and, in turn, harness
trapped capacity.

• Finding 4: In-situ techniques can result in massive sav-
ings in energy bills for coupled scientific applications.

• Finding 5: In-situ techniques will continue to play a role
in combating issues associated with limited storage in
HPC systems.

In all, our findings have disproved two of our initial hypothesis
about in-situ techniques. That is, (i) we cannot expect in-situ
techniques to reduce the power consumption of the storage
subsystem, and (ii) in-situ techinques cannot be relied upon
to harness trapped capacity. The other hypothesis, however,
holds true – in-situ techinques can reduce overall energy
consumption.

VI. MODELING APPROACH

We model the performance, energy, and storage of the
visualization pipelines in order to estimate those metrics at dif-
ferent sampling rates and application configurations. This will
help in evaluating a number of scenarios and answering several
what-if questions. Note that while the model derived here is
architecture-specific and application-aware, the methodology
itself is generic and can be applied to other computing systems
and applications. The symbols used in the model are explained
in Table II.

TABLE II: Summary of symbols used in our model

E Total energy consumed by the visualization pipeline
P Average power consumption for the visualization

pipeline
t Total execution time for a visualization pipeline

tsim Time taken by the simulation phase
ti/o Time taken by the I/O phase
tviz Time taken by the visualization phase
Si/o Size of output (in GB) produced by the simulation
Nviz Number of images produced by the simulation
α Time cost to write 1 GB of raw data; value estimated

by linear solver
β Time cost to generate one image corresponding to one

timestep; value estimated by linear solver
iterref Number of iterations or timesteps in the reference

configuration
iterany Number of iterations or timesteps performed
rateref Output sampling rate used in the reference configuration
rateany Output sampling rate for which performance metrics

must be estimated
tsim.ref Total execution time of the reference configuration
Si/o.ref Size of output produced for the reference configuration
Nviz.ref Number of images produced for the reference configu-

ration
Si/o.any Estimated size of output produced by any given config-

uration
Nviz.any Estimated number of images produced by any given

configuration

The energy consumed by a visualization pipeline can be
expressed as the product of its average power and total

execution time.
E = P · t (1)

As observed in Figure 5, the average power across all sampling
rates can be considered constant. We need to only model the
execution time of the application, which can be expressed as
the time taken for the simulation, I/O, and visualization phases:

t = tsim + ti/o + tviz (2)

Here, the time taken for the simulation phase, tsim, is a constant
for a given number of timesteps or iterations of the simulation.
The time taken for I/O and visualization phases are dependent
on the amount of data written and the number of images
visualized, which in turn are dependent on the sampling
rate. Mathematically, we can express the time taken for an
application as

t = tsim +αSi/o +βNviz (3)

in which α and β denote, respectively, the time taken to write
1 GB of output and to produce one set of images corresponding
to one timestep. Si/o and Nviz are, respectively, the total output
size and number of images. These values can be estimated
easily for any sampling rate given a reference point as they
are linearly dependent on the sampling rate.

We can express Equation 3 in a more generic form:

t =
iterany

iterref
× tsim.ref +αSi/o +βNviz (4)

That is, the simulation time will scale with the number of
iterations or timesteps in the simulation.

We use a linear solver to estimate the values of α and β .
The data collected from three different configuration points,
namely, (i) in-situ, once every 8 hours, (ii) in-situ, once every
72 hours, and (iii) post-processing, once every 24 hours, was
used to solve for α and β . Alternatively, regression techniques
may be used to solve these equations using the following
system of equations:

tsim +0.1α +60β = 676
tsim +0.6α +540β = 1261
tsim +80α +180β = 1322

(5)

Solving this system of equations gives the following values:
tsim=603 , α=1.2, and β=6.3. That is, it takes 603 s to perform
the simulation (for six simulated months), 1.2 s to produce one
image and 6.3 s to read/write 1 GB of data.

Model validation The measured execution time is plotted
against the modeled execution time in Figure 8. We observe
that our model predicts the execution time accurately in all
cases. The absolute error rate achieved was less than 0.5%.

Given a sample rate, it is also possible to estimate the
storage requirements accurately. The storage size scales lin-
early with the sampling rate. That is, for example, when one
samples at twice the rate of a reference configuration, the
storage requirements double correspondingly:

Si/o.any = Si/o.ref×
rateany

rateref
(6)



International Parallel and Distributed Processing Symposium, Orlando, FL, May-June 2017

600

1100

1600

2100

2600

600 1100 1600 2100 2600

M
o

d
e

le
d

 T
im

e
 (

s)

Measured Time (s)

Fig. 8: Evaluation of our model for execution time. White
squares denote the data points used for constructing the model.
Black triangles denote the data points used in evaluation.

The data presented in Figure 7 is in agreement with Equation 6
for both the in-situ and post-processing cases, which validates
our model for storage requirements. A similar equation is
used to estimate the number of images produced during a
simulation:

Nviz.any = Nviz.ref×
rateany

rateref
(7)

Using our model, one could estimate the execution time,
energy, and storage for any sampling rate rateany and timesteps
iterany with data collected from one short run of the simula-
tion.

VII. APPLICATION OF OUR MODEL

So far, we have evaluated the different visualization
pipelines at arbitrary points in the configuration space. With
the model shown in Equation 4 we can evaluate many sce-
narios and help domain scientists optimize their application
configurations given various constraints. We now present a
selection of examples.

0

2

4

6

8

10

12

14

16

18

1 6 11 16 21 26

St
o

ra
ge

 R
eq

u
ir

em
en

t 
(i

n
 T

B
)

Sampling Rate: Output stored every 'x' simulated days

In-situ

Post-proc

Fig. 9: Storage vs. sampling rate.The x-axis represents how
often the output products are written to the storage system. The
y-axis denotes the storage required to perform a simulation
lasting 100 simulated years.

Storage vs. sampling rate Eddies in the ocean exist for
hundreds of days while traveling hundreds of kilometers [27].
To effectively track their movement in the ocean, the output
has to be written once per simulated day (or even hour).
Climate scientists, however, are forced to make decisions on
the sampling frequency due to the storage constraints they face
instead of requirements imposed by the scientific phenomenon
they study. Our model can be used to make these decisions
for the different kinds of visualization pipelines.

Figure 9 shows how the sampling rate affects the storage
required for the climate simulation application. The x axis
represents how often the output products (i.e., raw data or
images) are written to the storage system. The y axis denotes
the storage required to perform a simulation lasting 100
simulated years. The simulated time used in this analysis is a
typical time range for climate simulation. The storage size of
our experimental setup is 7.7 TB. It is reasonable to expect that
the storage reservation allocated for one user not exceed 2 TB.
Our model shows that climate scientists can run a hundred-
year simulation while storing images at a frequency of once
per day or higher without any issues with respect to storage
if they adopt in-situ visualization. However, when using a
post-processing simulation, they would be forced to run the
simulation at a frequency of only once every 8 days when
faced with a 2 TB storage budget, as shown in Figure 9.

0

20

40

60

80

100

120

140

160

1 5 9 13 17 21

En
er

gy
 (

G
J)

Sampling Rate: Output stored every'x' simulated hours

In-situ

Post-proc

Fig. 10: Energy vs. sampling rate. The x axis represents
how often the output products are written in terms of simu-
lated hours. The y axis represents the energy that would be
consumed while running a hundred-year simulation.

Energy vs. sampling rate Our model can evaluate the
energy that is necessary to run a hundred-year simulation given
a target sampling rate. Figure 10 shows the energy consumed
by the two pipelines at different sampling frequencies. The
x axis represents how often the output products are written in
terms of simulated hours. The y axis represents the energy that
would be consumed while running a hundred-year simulation.
This graph can be used to evaluate the energy that can
be saved from in-situ visualization under different sampling
assumptions. Assume that the climate scientists need to track
the eddies by the hour. In this case, using in-situ techniques



International Parallel and Distributed Processing Symposium, Orlando, FL, May-June 2017

will help them save 67.2% of the energy needed for the
workflow. If the required sampling rate is once every 12
hours, up to 49% energy can be saved using in-situ techniques.
Similarly, 38% of workflow energy can be saved at a sampling
rate of once per day. One could also evaluate the sampling rate
possible for a given energy budget. Note that such constraints
can also be specified in terms of time.

We envision our model being used in an automated frame-
work to decide the sampling rate and the pipeline automati-
cally depending on a given set of constraints.

VIII. DISCUSSION

While our experiments have noted that significant energy
savings are possible from in-situ visualization, we also identify
a few scenarios in which power could be saved. Broadly
speaking, we seek improvements in two areas:

1) Improving the energy proportionality of the storage sub-
system.

2) Effectively managing the I/O wait states on the compute
subsystem.

The storage subsystem consists of several components
that are not directly related to storage (e.g., CPUs). These
components consume a significant amount of power even when
the subsystem is idle. Unlike the actual disks, power manage-
ment techniques (e.g., DVFS) for these components are well-
established. These techniques ought to be incorporated and/or
enabled for the storage subsystem as well. The CPUs, for
instance, should operate at the minimum frequency necessary
to handle the various I/O requests from the client. Also, the
design of the storage subsystem must also be rethought from
a power perspective. The “brawny” CPUs on the storage side
may be replaced with “wimpy” ones with little to no difference
in the storage bandwidth offered by the storage subsystem.

Second, I/O-bound applications such as scientific visual-
ization introduces a lot of I/O wait time during a simulation.
These I/O wait times are typically of short duration, and
several such intervals of I/O wait times occur during a sim-
ulation. Current idle period management techniques in HPC
systems target only prolonged periods of idleness. With several
techniques that operate at the millisecond level coming up
from the computer-architecture community, it may be possible
to manage idle periods during a simulation by putting the
CPUs in a low-power state. Alternatively, techniques that
utilize the idle periods by running a different job may be
embraced. Research solutions for effectively utilizing idle
periods already exist (in, for example, Legion [32]).

IX. CONCLUSIONS

This work represents, to our knowledge, the first study
of power and energy consumption that considers power
consumed not only by a reasonably sized compute cluster
(150 nodes) but also by the corresponding storage subsystem
when both are used by a scientific simulation with high I/O
requirements. We measured and analyzed the performance,

power, energy, and storage characteristics of two visualization
pipelines—in-situ and post-processing—to test the conven-
tional wisdom that in-situ analysis is superior on all fronts
to a workflow based on data post-processing.

We draw the following two conclusions from the work
presented in this paper. First, in-situ visualization can result
in lower execution times even though a non-simulation task
(i.e., visualization) is run concurrently. This is because of
the significant reduction in I/O wait time resulting from an
over 99.5% reduction is storage requirements. Second, despite
common belief, in-situ techniques cannot be expected to
reduce power consumption from reduced data movement. This
is because (i) the portion of the storage hierarchy that observes
reduced data movement moves only a small amount of data
relative to the rest of the system, and (ii) the storage system
is not power-proportional.

Our approach can inform trade-offs among energy, storage
capacity, and execution time and guide the selection of a visu-
alization pipeline—a capability becoming increasingly critical
as HPC systems approach exascale.

ACKNOWLEDGMENT

We thank Dominic Manno for configuring our Lustre rack’s
power monitoring and setting up the logging system, and Mike
Lang for getting us Caddy’s power readings. We also thank
HB Chen, Parks Fields, Jeff Kuehn, and Daryl Grunau for
their help with setting up the power monitoring infrastructure.

This work was supported in part by a grant from the
U.S. Department of Energy (DOE) Office of Advanced Scien-
tific Computing Research (ASCR) via DE-SC0012637. Los
Alamos National Laboratory is operated by Los Alamos
National Security LLC for the US Department of Energy under
contract DE-AC52-06NA25396.

This document was approved for release under LA-UR-16-
22435.

REFERENCES

[1] N. Gholkar, F. Mueller, and B. Rountree, “Power Tuning HPC Jobs on
Power-Constrained Systems,” in Proceedings of the 2016 International
Conference on Parallel Architectures and Compilation (PACT), 2016,
pp. 179–191.

[2] S. Ahern, A. Shoshani, K.-L. Ma, A. Choudhary, T. Critchlow, S. Klasky,
V. Pascucci, J. Ahrens, W. Bethel, H. Childs et al., “Scientific Discovery
at the Exascale: Report from the DOE ASCR 2011 Workshop on
Exascale Data Management, Analysis, and Visualization,” 2011.

[3] S. Pakin, C. Storlie, M. Lang, R. E. Fields, E. E. Romero, C. Idler,
S. Michalak, H. Greenberg, J. Loncaric, R. Rheinheimer et al., “Power
Usage of Production Supercomputers and Production Workloads,” Con-
currency and Computation: Practice and Experience, vol. 28, no. 2, pp.
274–290, 2016.

[4] J. Shalf, S. Dosanjh, and J. Morrison, “Exascale Computing Technology
Challenges,” in Proceedings of the International Confernce on High
Performance Computing for Computational Science (VECPAR), 2011.

[5] M. Gamell, I. Rodero, M. Parashar, J. C. Bennett, H. Kolla, J. Chen,
P.-T. Bremer, A. G. Landge, A. Gyulassy, P. McCormick, S. Pakin,
V. Pascucci, and S. Klasky, “Exploring Power Behaviors and Trade-
offs of In-situ Data Analytics,” in Proceedings of the 2013 International
Conference on High Performance Computing, Networking, Storage and
Analysis (SC), 2013, pp. 77:1–77:12.



International Parallel and Distributed Processing Symposium, Orlando, FL, May-June 2017

[6] L. Kwan-Ma, “Runtime Volume Visualization for Parallel CFD,” Tech.
Rep., 1995.

[7] R. Haimes, “Concurrent Distributed Visualization and Solution Steer-
ing,” Parallel Computational Fluid Dynamics: Implementations and
Results Using Parallel Computers, vol. 5, 1995.

[8] S. Crivelli, O. Kreylos, B. Hamann, N. Max, and W. Bethel, “Protein-
Shop: a tool for interactive protein manipulation and steering,” Journal
of Computer-Aided Molecular Design, vol. 18, no. 4, pp. 271–285, 2004.

[9] N. Fabian, K. Moreland, D. Thompson, A. Bauer, P. Marion, B. Geveci,
M. Rasquin, and K. Jansen, “The ParaView Coprocessing Library: A
Scalable, General Purpose In Situ Visualization Library,” in Proceedings
of the 2011 IEEE Symposium on Large Data Analysis and Visualization
(LDAV), Oct 2011, pp. 89–96.

[10] B. Whitlock, J. M. Favre, and J. S. Meredith, “Parallel In Situ Cou-
pling of Simulation with a Fully Featured Visualization System,” in
Proceedings of the 11th Eurographics Conference on Parallel Graphics
and Visualization (EGPGV). Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2011, pp. 101–109.

[11] M. Franklin, A. Halevy, and D. Maier, “From Databases to Dataspaces:
A New Abstraction for Information Management,” ACM SIGMOD
Record, vol. 34, no. 4, pp. 27–33, 2005.

[12] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin,
“Flexible IO and Integration for Scientific Codes Through the Adaptable
IO System (ADIOS),” in Proceedings of the 6th International Workshop
on Challenges of Large Applications in Distributed Environments, 2008,
pp. 15–24.

[13] J. C. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy, T. Jin,
S. Klasky, H. Kolla, M. Parashar, V. Pascucci, P. Pebay, D. Thompson,
H. Yu, F. Zhang, and J. Chen, “Combining In-situ and In-transit
Processing to Enable Extreme-scale Scientific Analysis,” in Proceedings
of the 2012 International Conference on High Performance Computing,
Networking, Storage and Analysis (SC), 2012, pp. 49:1–49:9.

[14] J. Biddiscombe, J. Soumagne, G. Oger, D. Guibert, and J.-G. Piccinali,
“Parallel Computational Steering for HPC Applications Using HDF5
Files in Distributed Shared Memory,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 18, no. 6, pp. 852–864, 2012.

[15] J. Ahrens, S. Jourdain, P. O’Leary, J. Patchett, D. H. Rogers, and
M. Petersen, “An Image-based Approach to Extreme Scale in Situ
Visualization and Analysis,” in Proceedings of the 2014 International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC), 2014, pp. 424–434.

[16] H. Yu, C. Wang, R. W. Grout, J. H. Chen, and K.-L. Ma, “In Situ
Visualization for Large-Scale Combustion Simulations,” IEEE Computer
Graphics Applications, vol. 30, no. 3, pp. 45–57, May 2010.

[17] H. Karimabadi, B. Loring, P. O’Leary, A. Majumdar, M. Tatineni, and
B. Geveci, “In-situ Visualization for Global Hybrid Simulations,” in
Proceedings of the 2013 Conference on Extreme Science and Engineer-
ing Discovery Environment: Gateway to Discovery (XSEDE), 2013, pp.
57:1–57:8.

[18] V. Vishwanath, M. Hereld, and M. Papka, “Toward Simulation-time
Data Analysis and I/O Acceleration on Leadership-class Systems,” in
Proceedings of the 2011 IEEE Symposium on Large Data Analysis and
Visualization (LDAV), Oct 2011, pp. 9–14.

[19] F. Zhang, C. Docan, M. Parashar, S. Klasky, N. Podhorszki, and
H. Abbasi, “Enabling In-situ Execution of Coupled Scientific Workflow

on Multi-core Platform,” in Proceedings of the 26th IEEE International
Parallel Distributed Processing Symposium (IPDPS), May 2012, pp.
1352–1363.

[20] G. Haldeman, I. Rodero, M. Parashar, S. Ramos, E. Z. Zhang, and
U. Kremer, “Exploring Energy-Performance-Quality Tradeoffs for Sci-
entific Workflows with In-situ Data Analyses,” Computer Science-
Research and Development, pp. 1–12, 2014.

[21] M. Gamell, I. Rodero, M. Parashar, and S. Poole, “Exploring Energy
and Performance Behaviors of Data-Intensive Scientific Workflows on
Systems with Deep Memory Hierarchies,” in Proceedings of the 20th
International Conference on High Performance Computing (HiPC), Dec
2013, pp. 226–235.

[22] I. Rodero, M. Parashar, A. G. Landge, S. Kumar, V. Pascucci, and P.-T.
Bremer, “Evaluation of In-Situ Analysis Strategies at Scale for Power
Efficiency and Scalability,” in Proceedings of the 16th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing (CCGrid).
IEEE, 2016, pp. 156–164.

[23] V. Adhinarayanan, W.-c. Feng, J. Woodring, D. Rogers, and J. Ahrens,
“On the Greenness of In-Situ and Post-Processing Visualization
Pipelines,” in Proceedings of the 2015 IEEE International Parallel and
Distributed Processing Symposium Workshop (IPDPSW). IEEE, 2015,
pp. 880–887.

[24] Appro GreenBlade 2 SR5110–GB512X User Manual, Appro Interna-
tional, Milpitas, California, USA, Nov. 2011, version 1.0.

[25] T. R. Scogland, C. P. Steffen, T. Wilde, F. Parent, S. Coghlan, N. Bates,
W.-c. Feng, and E. Strohmaier, “A Power-measurement Methodology
for Large-scale, High-performance Computing,” in Proceedings of the
5th ACM/SPEC International Conference on Performance Engineering
(ICPE). ACM, 2014, pp. 149–159.

[26] T. Ringler, M. Petersen, R. L. Higdon, D. Jacobsen, P. W. Jones, and
M. Maltrud, “A Multi-Resolution Approach to Global Ocean Modeling,”
Ocean Modelling, vol. 69, no. 0, pp. 211 – 232, 2013.

[27] J. Woodring, M. Petersen, A. Schmeiber, J. Patchett, J. Ahrens, and
H. Hagen, “In Situ Eddy Analysis in a High-Resolution Ocean Cli-
mate Model,” IEEE Transactions on Visualization Computer Graphics,
vol. 22, no. 1, pp. 857–866, 2015.

[28] J. Ahrens, S. Jourdain, P. O’Leary, J. Patchett, D. Rogers, and M. Pe-
tersen, “An Image-based Approach to Extreme Scale in Situ Visualiza-
tion and Analysis,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (SC),
2014, pp. 424–434.

[29] A. C. Bauer, B. Geveci, and W. Schroeder, “The paraview catalyst users
guide,” 2013.

[30] J. Ahrens, “Increasing scientific data insights about exascale class simu-
lations under power and storage constraints,” IEEE Computer Graphics
and Applications, vol. 35, no. 2, pp. 8–11, Mar 2015.

[31] G. Kestor, R. Gioiosa, D. J. Kerbyson, and A. Hoisie, “Quantifying the
energy cost of data movement in scientific applications,” in 2013 IEEE
international symposium on workload characterization (IISWC), 2013,
pp. 56–65.

[32] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing
locality and independence with logical regions,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis (SC), 2012, pp. 66:1–66:11.


