
Interactions 
 Implicit SENSEI-LDC code (with Roy group) 
◦ GPU-based solver and preconditioner development for the 

SENSEI package 
◦ Effective Solvers and Preconditioners on GPUs for CFD 

Applications, in preparation (Parallel Computing), K. 
Swirydowicz, E. de Sturler, X. Xu, and C.J. Roy. 

◦ Effective Parallel Preconditioners for CFD Applications, SIAM 
Annual Mtg 2014, K. Swirydowicz, E. de Sturler, X. Xu, and C.J. 
Roy. 
 

 Recycling solver in GENIDLEST code (with Tafti group) 
◦ Krylov subspace recycling based solvers in GENIDLEST, including 

new hybrid methods (starting simulation with rGCROT, then 
switching to rBiCGStab with rGCROT recycle space) 

◦ Recycling Krylov subspaces for CFD Applications, in preparation 
(Computer Methods in Applied Mechanics and Engineering), A. 
Amritkar, E. de Sturler, K. Swirydowicz, D. Tafti, K. Ahuja. 



2. Publications 

 All in preparation: 
◦ Effective Solvers and Preconditioners on GPUs for CFD 

Applications, in preparation (Parallel Computing), K. 
Swirydowicz, E. de Sturler, X. Xu, and C.J. Roy. 

◦ Recycling Krylov subspaces for CFD Applications, in preparation 
(Computer Methods in Applied Mechanics and Engineering), A. 
Amritkar, E. de Sturler, K. Swirydowicz, D. Tafti, K. Ahuja. 

◦ Preconditioning Parameterized Linear Systems, in preparation 
(SIAM J. Scientific Computing), A.K. Grim McNally, M. Li, E. de 
Sturler, S. Gugercin. 

 
 
 

 



Plans for Next Year (and beyond) 

 Finish 3 papers mentioned on previous slide 

 GPU testing/tuning of multilevel SAI preconditioners, AINV 
preconditioners, and develop other variations 

 Develop preconditioner updates in SENSEI/GENIDLEST (recycle 
preconditioners from one system to next) 

 Collaborate with CS group in library development for key 
components in solvers and preconditioners on GPUs 

 Port recycling solvers rGCROT, rGCRODR, rBiCGStab to GPUs 

 Collaborate with Hong and Edward groups on preconditioners 

 Parameter analysis for rBiCGSTAB for further development 

 Explore optimizations on GPU of computational kernels for 
recycling solvers 

 Analyze solver and preconditioner components with respect to the 
computational dwarves 
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People 

 Faculty 
◦ Eric de Sturler, Chris Roy,  Adrian Sandu, Danesh Tafti 

 Postdocs 
◦ Amit Amritkar, Xiao Xu (until May 2014) 

 Graduate Students 
◦ Katarzyna Swirydowicz,  Arielle Grim McNally, Joe 

Derlaga 
 

 SENSEI Solvers, GPU Preconditioners – Kasia, Xiao, Joe, 
Chris, EdS 

 GENIDLEST Recycling Solvers – Amit, Kasia, Danesh, 
EdS 

 Informal collaboration with Wu Feng, Tom Scogland, … 
 



Overview 

 Goal: Develop Fast Parallel Iterative Solvers and 
Preconditioners for CFD Applications 
◦ Short Term: GPU Acceleration 
◦ Longer Term: Add Coarse Grain Parallelism (DD) 

 Quick Intro to Krylov Methods and Preconditioners 
and Current Trends 

 Preconditioners for SENSEI (LDC) on GPUs 
 Recycling Krylov Subspaces for GenIDLEST  
 Updating preconditioners 
 Conclusions and Future Work 
 



Iterative Solvers and Preconditioners for CFD 

 Solution of linear systems often dominates run time 
 All Krylov subspace solvers have same components 
◦ matvecs, dot products, vector updates (axpy) 
◦ preconditioner computation, precvecs 

 Balance number of iterations vs cost per iteration 
 Solve many systems: 
◦ Time steps 
◦ Nonlinear iteration 
◦ Parameter studies 
◦ … (and all of these combined) 

 Matrix sometimes fixed, sometimes changes slowly 
 Exploit for faster solution time 

 



Important Trends 

 Simulations increasingly part of larger analysis, including 
design, uncertainty/reliability, inverse problems 
◦ Many solutions/simulations of slowly varying problems 
◦ Time-dependent, nonlinear, or inverse problems, 

parameter dependence, uncertainty 
 Want to solve problems faster: faster solvers 
◦ Make each iteration cheaper 
◦ Reduce number of iterations (across all solutions)  

 New architectures for HPC require new algorithms 
 Adapt solvers to new architectures (GPUs, multicore) 
◦ Focus: sparse matvecs, preconditioners, inner products 
◦ On GPUs sparse matvec and precvec bottleneck 
◦ Exascale machines: inner products 

 Opportunities in solving many related problems 



Krylov Methods Crash Course 

Consider Ax b   (or prec. system PAx Pb ) 
Given 0x  and 0 0r b Ax  , find optimal update 

m
z  in  

 
  1

0 0 0 0, span{ , , , }m mK A r r Ar A r  : 

 
 

 
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0 0 22, ,
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m mz K A r z K A r
b A x z r Az

 
     

Let 2 1
0 0 0 0

m
mK r Ar A r A r     , then mz K  , 

 
and we must solve the least squares problem 

 2
0 0 0 0 0

m
mAK r Ar A r A r r        

Set up and solve in elegant, efficient, and stable way: 
GCR – Eisenstat, Elman, and Schulz '83 
GMRES – Saad and Schulz '86  



Minimum Residual Solutions: GMRES 

Solve Ax b : Choose 
0

x ; set 
0 0

r b Ax  ;  

1 0 0 2
v r r , 0k  . 

while 
2k

r ‖ ‖  do 

 1k k  ; 
1k k

v Av  ; 
 for 1j k  , 
  *

, 1j k j k
h v v   ; 

1 1 ,k k j k j
v v h v    ; 

 end 
 

1, 1 2k k k
h v   ; 

1 1 1,k k k k
v v h    ;    (

1 kk k
AV V H ) 

 Solve/Update LS 
1 0 2 2

min kr H      

end 

0k k
x x V   ;  

0 1 kk k
r r V H    or 

k k
r b Ax   



BiCGStab        van der Vorst '92 

from: Iterative Solvers for 
Large Linear Systems,  
H.A. van der Vorst 
Cambridge University Press 



Preconditioning 

What if convergence slow? Precondition the system. 
 
Replace Ax b  by 

1 2 1
PAP x Pb  and 

2
x P x   

Where 
1.  Fast convergence for 

1 2
PAP  and 

2.  Products with 
1

P  and 
2

P  is cheap 

3. Computing 
1

P  and 
2

P  not too expensive  

 

Often A LU  (ILU) and use 1 1L AU  or 1 1U L A   
 
Forward-backward solve often slow on GPUs  
Generally problematic for parallelism – do only for 
diagonal blocks (subdomain or grid line, etc) 



Sparse Approx. Inverse Preconditioners 

Preconditioners are matvec like (no solves)  
Consider Ax b AMx b    

 
(1) Sparse Approximate Inverse – SAI / SPAI 

Pick sparsity pattern of M  and min. 
F

AM I  

Embarrasingly parallel, many tiny LS problem 

Pattern often subset of kA  (dynamic possible) 
 
 
(2) Factorized Sparse Approximate Inverse – FSAI  

Compute 1 TA ZDW     (biconjugation process)  
with Z , W  sparse, uppertriangular, D  diagonal  



Solvers for Nonsymmetric Matrices  

 Two types of methods 
 Optimal – minimum number of iterations (e.g., GMRES) 
◦ Full orthogonalization of search space 
◦ m iterations: ~ 1

2⁄ 𝑚2 orthogonalizations (2𝑚2𝑁), 𝑚 
matvecs+precvecs (some further vector operations) 
◦ 𝑂 𝑚𝑚  storage (grows with iteration count) 
◦ Typically restarted, increases iterations (better strat.s) 

 Nonoptimal, short recurrences (e.g., BiCGStab) 
◦ More iterations, possible breakdown (rare) 
◦ Few (fixed 𝑘) orthogonalizations per iteration 
◦ m iterations: 𝑘𝑘 orthogonalizations (4𝑘𝑘𝑘), 𝑚 

matvecs+precvecs (some further vector operations) 
◦ no restarts, occasional accuracy problems 



Faster Preconditioners on GPUs 

 Efficiency requires preconditioners with high level of fine 
grained parallelism and little data movement 
◦ Often not as effective (more iterations) 

 Precludes ILU and related preconditioners (slow) 
◦ Domain decomposition has local (approx) solve 

 SAI very fast on GPUs (matvec), but more iterations  
◦ Improve convergence by multilevel extension  
◦ all matvec type operations 
◦ not needed for all problems 

 FSAI/AINV promising too (but needs GPU testing) 
◦ LU like but sparse approximations to inverse factors 

 Multigrid also promising if smoother is fast (matvec-like) 



LDC Problem 
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Incompr. Navier-Stokes with Artificial Viscosity 



Sparse Matvec Timings 

 Matrix format determines performance 
◦ CSR, DIA, JAD, etc. 

 JAgged Diagonal (JAD) most efficient for LDC  
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Average Iterations & Solution Times for LDC Step 

 Faster precvec reduces run times, even with increased 
iterations (3x to 5x) 

 Full orthogonalization dominates for GMRES/SAI 
 With SAI use cheaper solver: BiCGStab  
 More iterations but further run time improvement 
 Proper combination solver/prec. matters: 
◦ BiCGStab/ILUT slower than GMRES/ILUT 

Problem GMRES(40) 
ILUT 
ms        MV 

GMRES(40) 
SAI 
 ms     MV 

Bicgstab 
ILUT 
 ms     MV 

Bicgstab 
SAI 
 ms     MV 

101 (30.6K) 207        (21) 189      (99) 213       (23) 47.4    (116) 

151 (68.4K) 392        (24) 186      (83) 423       (27) 48.3      (96) 

251 (190K) 769        (23) 253      (73) 807       (25) 75.9      (80) 

301 (272K) 1.18e3    (23) 293      (72) 1.27e3   (26) 93.3      (80) 

Iterations in (preconditioned) matrix-vector products 



Speedups 

Problem GMRES(40) 
ILUT 
ms        

GMRES(40) 
SAI 
Speedup 

Bicgstab 
ILUT 
Speedup 

Bicgstab 
SAI 
Speedup 

101 (30.6K) 207        1.10     (189) .972       (213) 4.37     (47.4) 

151 (68.4K) 392        2.11     (186) .927       (423) 8.12     (48.3) 

251 (190K) 769        3.04     (253) .953       (807) 10.1     (75.9) 

301 (272K) 1.18e3    4.03     (293) .929   (1.27e3) 12.6     (93.3) 



GMRES Runtime - Breakdown 

Problem GMRES(40) 
ms           #PMV 

PrecVec Mult  
ms          % 

GS orthog. 
 ms        % 

101      30.6K 207            20.6 183          89 17.9        7 

151      68.4K 392            23.8 360          92 25.3        5 

251      190K 769            23.2 721          94 36.4        5 

301      272K 1.18e3        23.4 1.12e3      95 43.5        4 

Problem GMRES(40) 
 ms       #PMV 

PrecVec Mult 
 ms          % 

GS orthog. 
 ms         % 

101     30.6K 189       99.3 11.1         6 157         83 

151     68.4K 186       83.5 12.7         7 160         85 

251     190K 253       73.4 21.5         8 200         79 

301     272K 293       71.9 26.4         9 229         78 

GMRES with ILUT preconditioner 

GMRES with SAI preconditioner 



Convergence Results with Multilevel SAI 

# matvecs 

𝐥𝐥
𝐥 𝟏

𝟏
𝒓

 

Efficient implementation on GPUs is in progress 



Solving Sequences of Linear Systems 

 GENIDLEST/SENSEI solve sequence of slowly changing 
linear systems (sometimes matrix constant) 

 Common feature of many applications 
 Application requires solution of hundreds to thousands of 

large, sparse, linear systems (millions for MCMC) 
 Improve convergence across systems 
 Recycle previously computed results for faster solution 
◦ Update old solutions (standard) 
◦ Update & reuse search spaces: Krylov subspace recycling 
◦ Update preconditioners (Arielle) 

 Faster kernels by rearranging parts of algorithm, possibly 
over multiple iterations – recycling solvers have advantages 
over standard solvers (future work) 



Krylov Subspace Recycling 

 Krylov methods build search space; pick solution by 
projection 

 Building search space often dominates cost 
 Initial convergence often poor, reasonable dimension 

search space needed, then superlinear convergence 
 Get fast convergence rate and good initial guess 

immediately by recycling selected search spaces from 
previous systems 

 Recycling reduces iterations, but overhead per iteration 
 Several ways to select the right subspace to recycle 
◦ Approximate invariant subspaces, canonical angles 

between successive spaces, subspace from previous 
solutions, … 



rGCROT Performance 

 CPU performance 
◦ Turbulent channel flow case (64x64x64) 
◦ Intel i5-2400 CPU @ 3.1 GHz 
◦ Solution of pressure Poisson equation 

 
 
 
 

 Reuse the Krylov subspace as the matrix doesn’t change 
 Use BiCGSTAB like solver 
◦ Faster  

2
5 

10 time steps BiCGSTAB rGCROT 

Total time (s) 44 157.5 

Average number of 
iterations 62 iterations 8 iterations 



Hybrid approach 

 
 
 
 
 
 

 Recycling BiCGSTAB (rBiCGSTAB) after rGCROT 
◦ Best of both worlds  
◦ Building the outer subspace initially  
 Using rGCROT, then switch to rBiCGSTAB 
 Other approaches  possible (rGCRODR or First time step 

with BiCGSTAB) 

2
6 

Pros Cons 

BiCGSTAB Faster Irregular convergence for 
stiff problems 

rGCROT 

• Reuse of selected Krylov 
subspace 

• Monotonic residual 
decrease 

Higher cost per iteration 
due to orthogonalizations 



Flow though porous media 

2
7 

 Immersed Boundary Methods with stochastic 
reconstruction for porous media 

 Background mesh of 2.56 million cells (100x800x32)  
 10 time steps 
◦ relative tolerance of 1x10-10 

 16 CPU cores and 46 GB memory 
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Convergence for different solvers (10th time step) 

 New run 
◦ Point Jacobi prec 

◦ Recycling is effective 

 Restarted run 
◦ Point Jacobi prec 

◦ Reduced recycling effects 

28 



 rBiCGSTAB converges fastest in time 
 Further potential for performance improvement 
◦ Size of the outer vector space 
◦ Algorithm for building the outer vector space 
◦ Improving efficiency of kernels 

Time to solution 

2
9 

Solver Iterations Time to solution for  
10th time steps (s) 

BiCGStab 1000 417.6 

rBiCGStab 228 208.5 

GMRES(25) 73 631.2 

rGCROT(10) 41 213.3 



Effect of Preconditioner 

 Preconditioners 
◦ Point Jacobi smoothening 

◦ Symmetric Successive Over-
Relaxation 

 Convergence 
◦ Faster with SSOR 

 Why use Point Jacobi? 

3
0 

On GPU BiCGSTAB 
(Jacobi) 

BiCGSTAB 
(SSOR) 

Time (s) 0.16 0.26 



Effect of number of time steps with rGCROT 

Time steps with 
rGCROT 

Solution time for 10th 
time step (s) 

1 unstable 

2 232.2 

3 231.7 

4 232.2 

5 unstable 

6 240.3 

7 235.9 

8 250.7 

9 259.4 3
1 

Time steps with rGCROT before switching to rBiCGStab 



Updating Preconditioners – Key Idea 

Sequence of systems 
1 1 1

Ax b , 
2 2 2

A x b , … (with small changes) 

Very good preconditioner, 
1

P , for 
1

A : fast convergence for 
1 1

AP  
 
Want cheap updates for 

1
P  such that 

1 1 2 2 3 3
AAP PA P    

Fast solution for all systems, low cost for updating preconditioners 
 
Flexible:   map 

k
A  to 

1
A :   

1 1 1 1
min

k k k k
A M A A M P AP      

 
So, preconditioner 

1k k
P M P   gives fast convergence for 

k
A   

 
SAM (sparse approximate map) for fixed simple nonzero pattern 
• SAI-like (sparse approximate inverse) 
• cheap to compute  
• easy to update for individual columns (even cheaper) 
• update independent of type of preconditioner P  



Results for model reduction problem 

Thruster 80K, 80 nonzeros/row 
Note ILUTP compiled vs computing SAI m-file! 

droptol Total (s) ILUTP GMRES # its  

1.e-6 4083 1011 5.81 12, 12, 12, 11  

1.e-4 733.4 163.4 19.62 176, 211, 179, 230 

ILUTP & SAI update (4 systems), nz(P) = nz(A0) 
droptol Total (s) ILUTP SAI upd GMRES # its 

1.e-6 1301 1039 77.4 5.11 12, 12, 11, 13 

1.e-4 471.7 165 74.5 18.9 176, 181, 178, 170 

ILUTP each system (4 systems) 



Conclusions and Future Work 

 Good insight cost issues of solvers/preconditioners on GPUs 
◦ Analyzed range of preconditioners 

 Much better GPU performance for solver and preconditioner 
(BiCGSTAB / SAI) – factor 12 

 Multilevel correction to SAI yields better convergence 
 Good results for GENIDLEST with recycling 
◦ Switching methods new, efficient approach 
 

 Move rBiCGSTAB and other recycling solvers to GPU  
 Parameter analysis with rBiCGSTAB 
 GPU testing/tuning of multilevel SAI preconditioner 
 Test AINV preconditioner, typically more effective than SAI, also 

multiplicative. Needs testing and GPU tuning. 
 Explore optimizations for recycling solvers 
 Preconditioner updates in SENSEI/GENIDLEST 

3
4 



Nice Fluid Flow Picture 
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