GPU Acceleration of CFD Codes
and
Optimizing for GPU Memory Hierarchies

Dr. Frank Mueller
Nishanth Balasubramanian

North Carolina State University

NC STATE UNIVERSITY

Infrastructure: ARC cluster at NCSU

e Hardware

— 2X AMD Opteron 6128 (8 cores each),
120 nodes = ~2000 CPU cores

— NVIDIA GTX480, 6TX680 , 2050, K20c,
— Mellanox nRC 'A Eﬁoo‘r Clust,,

-

-—

v
1o -
: [r'_'.
ol o e
o S
- ,
=
- W .
il
N 3 -
[
. g
'
o
ol
.»J !,
7 g
§l‘ .
| 3

¥ s -
259 EFL IR P 2 s

S —

l—nl-

Scalability Analysis

Cloud Computing ;),:«::

T

piaaSSD

P 44! R G
fodd i o ll i 11)

-
A Ty el e g

e Software
— CUDA BB

— PGT Compilers V13.9 w/ CUDA Fortran & OpenACC support
— OpenMPI & MVAPICH2-1.9 w/ GPUDirect V2 capability
— Torque/Maui job management system

Topic 1: GPU Acceleration for CFD

e CFD targeted: RDGFLO
e an MPI-based parallel discontinuous Galerkin finite element solver
e GPU technology: OpenACC

e Identify compute intensive regions in code
— Run them on GPU

e Aided in porting code to
— At first: single GPU, no MPT

Initial attempt

e Compute intensive regions considered of mainly 2 loops
— where > 50% of run time was spent

e First approach: Naive parallelization
— add OpenACC directives around loops
— with data copy in/out statements

e opened up set of new problems...

Challenges / Solutions

e Compiler Auto Optimizations:
— Compiler matched variables inside/outside kernel
- automatically upgraded them to live out variables
» made code run serially
- since last value of variables needs to be computed
— Solution: variable renaming inside kernel
- ensures that variables not matched by compiler

e Subroutines:
— Subroutine calls not supported in OpenACC
— Manual inlining of essential parts per subroutine

Race condition

e Data dependence check disabled
— compiler too conservative to get good speedups

e Naive parallelization produced incorrect output data

e Race condition:
— Single array location w/ >1 writes from different threads
— Solution: Update data in batches
- indices to be updated were reordered to create batches
- Each batch modifies only unique elements in its batch

e Overheads: extra data structures
— Yo reorder and maintain batch information

Other Subroutines + Results

e Problem: data copy

— Frequent copies CPU <-> GPU: lots of time spent here

e Objective: ensure only 1 copy in + 1 copy out of GPU

o Effect: had o move essential parts
of other subroutines > GPU
— Majority: computation
(w/o memory contention)

— Minority: memory contention
- batching strategy used again

2500

Execution Time

2000 -

1500 -

1000 -

500 -

0

Original code

GPU optimized

B Time (sec)

Future Work

e Status Quo:
— multiple kernels called
- each subroutine parallelized independently

e Future: Once subroutines supported on GPUs in PGI compiler
— single kernel call w/ subroutine calls
- eliminates unnecessary overhead

e Run solver for bigger grid sizes

e Enable MPI
— run on >1 CPU each w/ a GPU + full optimizations

> need ghost cells /halo region
» xfer ghost/helo GPU, -- CPU, €& MPI > GPU, -- CPU,

Topic 2: Caches in GPUs [ISPASS’ 14]

e Architectures feature reconfigurable memory hierarchies
— Support hybrid scratch pad + cache

e NVIDIA: scratch pad “shared” (shmem)/L1 cache per SM
e Intel MIC (KNL): scratch pad “near memory”/L1 cache

SM1
" EAST Rgiters Sharst Memory o
e Which one should be use? X 2 LI Caow)
— Cache: - always best? s |se| |er)oe |
-Transparent, no pgm change =5 +~t~g
— Scratch pad: -) B
-explicit addressing | 4 3

-more control

Matrix Multiply (MM)+FFT

e Tiled 16x16, total 256x256, TB (16, 16) — L1 cache:

— Shmem: MM 0.16 ms - wins! — MM L1 cache: 0.23 ms
— FFT 0.69 ms - wins! — FFT LI cache: 2.36 ms
e Why? o GTX 480
Software -managed cache code | Hardware-manage d cache code
H#define : tx,ty: threadldx.x, threaldx.y; bx,by:blockldx.x, blockldx.y
for (each thread block) for (each thread block)
{ {
__shared__ float #pragma unroll
As[BLOCK_SIZE][BLOCK_SIZE]; for (int k = 0; k < BLOCK_SIZE; ++k)
__shared__ float {
Bs[BLOCK_SIZE][BLOCK_SIZE]; Csub +=
AS(ty, tx) = A[a + WA * ty + tx]; A[a+WA*ty+k]*B[b+k*WB+tx];
BS(ty, tx) = B[b + WB * ty + tx]; }
__syncthreads();
#pragma unroll }
for (int k = 0; k < BLOCK_SIZE; ++k)
Csub += AS(ty, k) * BS(k, tx);
__syncthreads();
}

Matrix Multiply+FFT: GPGPUSIm Analysis

e Shmem: 0.16 ms > wins - why? e L1 cache version
— b thread blocks (TBs) = regs limit — 5 TBs, no conflict misses (sim.)
— Latency: 44us, +12% instr. (copies) — Latency 80us (TLP hides this)

— 1 mem block access / warp — 2 cache block accesses / warp
-Same bank+row (32 banks) - Block size 128B
-Due to user-based mapping - Due to phys. addr. map > L1
e Matmult: shmem good for e FFT: L1 write misses high
— High memory-level parallelism: — Allocate-on write L1 policy bad!
Accesses from threads overlapped - Verified in simulation
— Classical cache misses — Associativity/capacity don’ t
- do not matter much matter here

-Confirmed w/ fully assoc L1
— Memory coalescing almost for freel

11

Marching Codes (MC) + Path Finder (PF)

e Shmem:

— MC 0.139 ms
— PF 0.108 ms

e MC: Max. b acti

ve thread

blocks / SM = only 5 warps

active

e PF: need syncth

e L1 cache:
— MC 0.115 ms > wins! Why?
— PF 0.096 ms > wins! Why?

e Max. 8 active thread blocks / SM

- no artificial shmem limit

e PF: fewer address calculations

m@d@}afewhShmem | hardware_managed cache

triangle voxel data.

MC extracts a geometric isosurface from a volume dataset.
<Generatetriangles> kernel is a key step; it looks up the fields values and generates the

Each TB 32 threads: NTHREADS, each grid 1024 TB: NBLOCKS, generate 32768 voxels

Cacl_vertex_pos();

Lookup_filed();

_shared float vertlist{12*NTHREADS];
_shared float normlist[12*NTHREADS];

//each tb in shared memory

//i:0~11

Compute_vertlist ([tidx+i*NTHREADS]);
Compute_normlist([tidx+i*NTHREADS]);

//each tb
Write_global();

Cacl_vertex_pos();
Lookup_filed();
float vertlist[12];
float normlist[12];

//each thread in local memory
//i: 0~11

Compute_vertlist ([i]);
Compute_normlist([i]);

//each thread
Write_global();

Marching Codes + PathFinder

e Thread-level parallelism (TLP) study

e Control # thread blocks (TBs)
— Via fake shmem array (limits TBs)

~N 0o

H8TBs

o)
|

B 7TBs

W6 TBs

B 5TBs

Execution Time
(normalize to shared memory code)

[y
I

B4 7TBs

N w £y (2}
I I I I

W 3TBs

2TBs

o
1

FFT MC cv HG

e 4 benchmarks: best performance NOT at max. # TBs!
— Problem: L1 capacity vs. TB pressure for L1 space

13

GTX 480

e shmem wins, except for PF, MC

e On average (geom. Mean): 55.7% performance win

Normalized exec. time

500%
450%
400%
350%
300%
250%
200%
150%
100%
50%
0%

M shared mem

L1 D-Cache

L

HG FFT MV STO FWT LPS MT DWT NW MM NQU SP BP Blur PF

MC GM

GTX 680

e shmem wins, except for PF, MC
e more ALUs, less latency compared to GTX480 - higher wins!

550%
500%
450%
400%
350%
300%
250%
200%
150%

TSI

HG FFT MV STO FWT LPS MT DWT NW MM NQU SP BP Blur PF MC GM

m shared mem

L1 D-cache

Normalized exec. time

Scratch Pad vs. Cache Conclusion

e In-depth study
— reveals interesting, unexpected tradeoffs

e TLP can significantly hide performance impact of L1 cache misses

e more subtle factors for performance & energy:
— Key reasons for differences:

e shmem: +MLP and coalescing
e D-cache: +Improved TLP and store data into registers

e Most benchmarks favor shmem
—>Justifies software complexity to manage them

16

Topic 3: Memory Tracing, Cache Analysis

e ScalaMemTrace: AddessSPm
— Tool built at NCSU o ScalaMemTrace
— uses PIN to instrument —,ml;lmm_
loads/stores of a program : T '
— creates compressed memory traces A Al e
as RSDs/PRSDs E* g e || e
| wn Emaaionunt |18 ([T

e Reuse Distance := # of distinct accesses

Operating System

b/w 2 memory accesses Hordwar
time: 1 23456 7 8 9 10 11 12
access: dacbccgef a £ b
distance: |<— 5 distinct accesses —)”

e used to predict hit/misses in a cache given its configuration

17

Application of Memory Tracing

e to predict cache performance
— Assumes regular array accesses - GPU kernels

e # hits/misses calculated @ every loop level
- provide better understanding of cache/memory performance

— approximate: fast prototyping (not exact)

e Target CFD codes
— contain continuous loops w/ reqular stride memory accesses

o Example from CFD: do ifa = njfac+1
...loop over internal faces...
do ig = 1, ngaus
...update flux into face array (rhsfa)...
enddo
enddo

18

Overview of Memory Tracer

Application

Memory Instrumentation tool (PIN)

Trace Compressor to generate RSDs

Predict cache hits/misses based on cache config

19

Memory Trace Represented as a Tree

Indicates loop

@

Nested loop
PRSD1
Aeaae
—— &
ERCEEE
e

(5o) () o) o o

20

Context-based Reuse Distance Calc.

Node in ftree: loop head / strided data access
Create "left+right context” per loop head

Left context (LC): contains first set of accesses in the loop
— Up to cache size (capacity limit)
Right context (RC): contains last set of accesses in loop
— in order of LRU to MRU (again, cache size capacity limit)
Algorithm:
— for each loop level: LC/RC in tree + memory access
- predict hits/misses locally
— @ next upper loop level: compose LC(child)+RC(parent)
- adjust hits/misses of child due to earlier accesses

Context size bounded: # arrays fitting in cache

21

Assumptions

e For following example:
— Fixed context size
— All arrays of size N
— Size per element is fixed to 4 bytes (sizeof(int)).

e Ingeneral:
— All cold misses counted as capacity misses
— No partial replacement of arrays in cache

22

Example

o Left context (LC): contains first set of accesses in the loop
— Up to cache size (capacity limit)

e Right context (RC): contains last set of accesses in loop
— in order of LRU to MRU (again, cache size capacity limit)

23

Example

e Algorithm:

— for each loop level: LC/RC in tree + memory access
- predict hits/misses locally

— @ next upper loop level: compose LC(child)+RC(parent)
- adjust hits/misses of child due to earlier accesses

,'/ \‘
1t . Main) RC

34562) 32546
RG>
W28 B G456
(Loop1 ‘/—\\
ﬁ,: y
- LC RC
2456 (\Lj[’? 2546
34,56
2456546

24

Example

e Algorithm:

— for each loop level: LC/RC in tree + memory access
- predict hits/misses locally

— @ next upper loop level: compose LC(child)+RC(parent)
- adjust hits/misses of child due to earlier accesses

N

1. B RC
345628 MaN 13254638

3456 [RO S g LC RC
X 5456 e
e B B
/ B -
\Loop1 S
. LG RC . Loop3
2456 ('-°°95 2546 \]j
3456 \I/
2456546 8

25

Example

e Algorithm:

— for each loop level: LC/RC in tree + memory access
- predict hits/misses locally

— @ next upper loop level: compose LC(child)+RC(parent)
- adjust hits/misses of child due to earlier accesses

ic. . . RC
345628Mant684523
?"c::: e
LC % \::::“‘:3—'1‘_:------_
RC ™. SETE
3456 3456 '§C F%C LC RC
/‘” \.4___‘ N 4523 4523
Loop1 " (L ? T
' oop ‘
2556 (toor2) 5556 k]j ‘{’iy
3456
2456546 . 4523

Partial Array Replacement

Approach: find overlapping region first

Hits+misses assigned to conflicting arrays
— Depends on overlap region

Part of an array may be left in cache
— Keeping partial info > increases algorithm complexity

Instead: if only part of array left in cache
— Consider it not present in cache > removed from context

Option (later): use % overlap to remove array from context based

27

Testing

e DineroIV:trace-driven simulator from University of Wisconsin
— as reference: provides hits/misses for uncompressed trace

e compare the total misses (Dinero vs. our ScalaMemTrace)

e Results from compressed traces match DineroIV for
— different cache sizes
— associativity levels
- under given assumptions
- for a cache configuration

28

Current Progress

e Initial implementation
— Single loops: works, validated
— partial array replacement case
— run test cases to check difference Dinero/ScalaMemTrace
- for different cache configs
e Ongoing
— test nested loops

Overall Objective: Provide a quick answer to:
» Which loops should become GPU kernels?

29

Future Work

e identify where most misses occur
— based on cache performance data
— provide suggestions to increase cache hits
— extrapolate to GPU memory usage

e Build multi-processor cache/memory model
— Runs multiple instances of uni-processor cache simulator

e Cache simulator's output > DRAM latency simulator
— predict time taken for memory accesses

» | Extrapolate GPU behavior (1000s threads)
from CPU behavior (memory trace of 10s of threads)

30

Future Work

