
Development of a Portable, GPU-Accelerated
High-Order Discontinuous Galerkin CFD Code

for Compressible Flows on Hybrid Grids
Yidong Xia, Lixiang Luo, Jialin Lou, Hong Luo and Jack Edwards

Department of Mechanical and Aerospace Engineering
North Carolina State University

and

Frank Mueller and Nishanth Balasubramanian
Department of Computer Science

North Carolina State University

February 7, 2014

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

People at NC State

Faculty (Co-PI’s)
Dr. Hong Luo
Professor, Department of Mechanical and Aerospace Engineering

Dr. Jack Edward
Professor, Department of Mechanical and Aerospace Engineering

Dr. Frank Mueller
Professor, Department of Computer Science

Students
Mr. Jialin (Johnny) Lou
Ph.D. student of Aerospace Engineering; current developer of the RDGFLO code

Mr. Nishanth Balasubramanian
Master student of Computer Science; investigation of GPU computing models for CFD programming

Postdocs
Dr. Yidong (Tim) Xia
Current principal developer of the RDGFLO code

Dr. Lixiang (Eric) Luo
Investigation of frontier challenges and solutions in GPU computing; developer of INCOMP3D

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Outline

①  A brief overview

②  Motivation and objective

③  Governing equations of fluid dynamics

④  Discontinuous Galerkin formulation

⑤  OpenACC-based parallelism

⑥  Numerical examples

⑦  Concluding remarks

⑧  Future work

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

GPU Computing in CFD – Overview

GPGPU
General-purpose computing on graphics processing units

•  The utilization of GPU, which typically handles computation only for computer
graphics, to perform computation in applications traditionally handled by CPU.

Why?
The great potential and scalability of GPGPU for CFD applications!

How?
Offload the computing-intensive portion from the host CPUs to the GPU devices.

Programming models
•  OpenCL: the currently dominant open GPGPU programming language

•  NVIDIA’s CUDA: the dominant proprietary framework

•  OpenACC: a collection of directives designed to simplify parallel programming

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

GPU Computing in CFD – Overview

A variety of applications (selected)
•  For the finite difference method (FDM)

q  E. Elsen, P. LeGresley, and E. Darve.
Large Calculation of the Flow over a Hypersonic Vehicle Using a GPU.
J. Comput. Phys., 227(24):10148–10161, 2008.

•  For the finite volume method (FVM)
q  A. Corrigan, F. Camelli, R. Löhner, and J. Wallin.

Running Unstructured Grid-based CFD Solvers on Modern Graphics Hardware.
Int. J. Numer. Methods Fluids, 66(2):221–229, 2011.

•  For the spectral difference method (SDM)
q  B. Zimmerman, Z. Wang, and M. Visbal.

High-Order Spectral Difference: Verification and Acceleration Using GPU Computing.
AIAA Paper, 2013-2491, 2013.

•  For the discontinuous Galerkin method (DGM)
q  A. Klöckner, T. Warburton, J. Bridge, and J. S. Hesthaven

Nodal Discontinuous Galerkin Methods on Graphics Processors.
J. Comput. Phys., 228(21):7863–7882, 2009.

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Motivation & Objectives
Motivation
Tap the power of GPU parallel computing for the aerodynamic design of
Unmanned Aerial Vehicle (UAV) with CFD toolkits

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

MQ-1 Predator UAV (Source: grabcad.com CAD by Chao Wey)

Motivation & Objectives
Objectives
A portable, efficient and ultimately competitive GPU parallelization strategy for
extensible and sustainable high-fidelity CFD code development

An unavoidable debate – CUDA, OpenCL or OpenACC?
It really depends on your needs, e.g., for us, cross-platform portability
•  Support from a wide range of compiler and accelerator vendors
•  C/C++ and Fortran
•  Best performance
•  Less fine-tuning effort, especially for a legacy code package
•  Available computing resource

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

GPU-Computing Framework
Option 1. – based on NVIDIA’s CUDA
•  Why CUDA?

q Mature and ever-updating GPU parallelization standards for HPC

q  Currently wide user community support

q  Achievable optimal performance with fine-tuning

q  Strong GPU-accelerated library support, e.g., CULA tools

q ……

•  Why not CUDA?
q  Complex and explicit layout of threads on GPU for each kernel function

q  Excessive workload to upgrade an existing CFD package

q  Uncertainty in the vendor’s long-term development strategy

q  Constrained portability of the developed code on non-CUDA devices

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

GPU-Computing Framework
Option 2. – based on OpenACC
Directives for accelerators http://www.openacc-standard.org/

•  Why OpenACC?

q  Simple directive-based GPU parallelization strategy, similar to OpenMP

q Multi-compiler / multi-platform support

q Growing supporting community

•  Why not OpenACC?

q  If a fine-tuned, best-performance code is what you pursue

q  A number of limitations compared with CUDA

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

GPU-Computing Framework
Desirable features of the resulting CFD code
•  Multi-compiler compatibility

q GNU Fortran compiler
q  Intel Fortran compiler
q  PGI Accelerator Fortran compiler (with OpenACC support)
q  CAPS Fortran compiler (with OpenACC support)

•  Cross-platform portability

q  Intel CPUs
q  AMD CPUs / APUs (with potential OpenACC support in 2014)
q  NVIDIA CUDA-enabled GPUs (with OpenACC support)

•  Extensible and sustainable programming schemes
•  Competitive performance

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Legacy CFD Package
RDGFLO – a baseline code for OpenACC-based GPU parallelization
•  A Reconstructed Discontinuous Galerkin finite element FLOw solver

q  High-order solution of compressible flows on 3-D hybrid grids

q  Explicit / implicit solution schemes

q  Domain-partition based MPI parallel computing

Gallery

ONERA M6 wing wing/pylon/finned-
store configuration

Boeing 747 aircraft

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Governing Equations of Fluid Dynamics
The Navier-Stokes equations for unsteady compressible flows

where the summation convention is used. The conservative variable vector U,
advective flux vector F, and viscous flux G are defined by

∂U
∂t

+
∂Fk (U, t)
∂xk

=
∂Gk (U, ∇U, t)

∂xk

U =
ρ

ρui
ρe

!

"

#
#
#

$

%

&
&
&

Fj =
ρuj
ρuiuj + pδij
uj (ρe+ p)

!

"

#
#
#

$

%

&
&
&

G j =
0
τ ij

ulτ ij + qj

!

"

#
#
#
#

$

%

&
&
&
&

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Governing Equations of Fluid Dynamics
The Navier-Stokes equations for unsteady compressible flows (cont.)
The pressure p can be computed from the equation of state (EOS)

which is valid for perfect gas. The ratio of specific heats γ is assumed to be
constant and equal to 1.4.

The viscous stress tensor τij and heat flux vector qj are given by

where T is the temperature of the fluid, Pr the laminar Prandtl number, which is 0.7
for air. µ represents the molecular viscosity, which can be determined through the
Sutherlands law

where µ0 is the viscosity at the reference temperature T0 and S = 110K.

µ
µ0

=
T
T0

!

"
#

$

%
&

3/2
T0 + S
T + S

τ ij = µ
∂ui
∂x j

+
∂uj
∂xi

"

#
$$

%

&
''−
2
3
µ
∂uk
∂xk

δij qj =
1

γ −1
µ
Pr

∂T
∂x j

p = (γ −1)(ρe− 1
2
ρukuk)

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Discontinuous Galerkin Method
Weak formulation of the governing equations

where Bi(x) is the basis function of polynomials of degree p, and N is the
dimension of the polynomial space p.

The Taylor-basis discontinuous Galerkin (DG(p)) solution in each element

For example, the underlying piecewise linear polynomial DG(P1) solution

where (xc, yc, zc) is the coordinate of the element center.

d
dt

UhBi dΩΩe
∫ + FknkBi dΓΓe

∫ − Fk
∂Bi
∂xk

dΩ
Ωe
∫ =

 GknkBi dΓΓe
∫ − Gk

∂Bi
∂xk

dΩ
Ωe
∫ , 1≤ i ≤ N

U = UiBi
i=1

N

∑

U =U+ ∂U
∂x

Δx
#

$
%

&

'
(
x − xc
Δx

+
∂U
∂y

Δy
#

$
%

&

'
(
y− yc
Δy

+
∂U
∂z

Δz
#

$
%

&

'
(
z− zc
Δz

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Discontinuous Galerkin Method
Hierarchical WENO reconstruction
•  A quadratic polynomial DG(P2) solution is obtained via a hierarchical

WENO reconstruction approach in each element
1)  Least-squares reconstruction to obtain an initial quadratic solution

2)  WENO reconstruction for the second derivatives to maintain linear stability

3)  WENO reconstruction for the first derivatives to maintain nonlinear stability

•  Reference articles

q  H. Luo, Y. Xia, S. Li, and R. Nourgaliev.
A Hermite WENO Reconstruction-Based Discontinuous Galerkin Method for the Euler
Equations on Tetrahedral grids.
J. Comput. Phys. 231(16):5489–5503, 2012.

q  H. Luo, Y. Xia, S. Spiegel, R. Nourgaliev, and Z. Jiang.
A Reconstructed Discontinuous Galerkin Method Based on a Hierarchical WENO
Reconstruction for Compressible Flows on Tetrahedral Grids.
J. Comput. Phys. 236:477–492, 2013.

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Discontinuous Galerkin Method
Semi-discrete form
A system of ordinary differential equations (ODEs) in time

where M is the mass matrix and R is the residual vector.

Three-stage TVD Runge-Kutta (TVDRK3) time stepping

M dU
dt

=R

U(1) =Un +ΔtM−1R(Un)

U(2) =
3
4
Un +

3
4
U(1) +ΔtM−1R(U(1))()

Un+1 =
1
3
Un +

2
3
U(2) +ΔtM−1R(U(2))()

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Design of OpenACC Parallel Regions
Computing-intensive regions
1.  ~65% Internal & boundary face integral: loop over mesh faces Τe

2.  ~25% Domain integral: loop over mesh elements Ωe

3.  ~5% TVDRK3 time stepping: loop over mesh elements Ωe

FknkBi dΓΓe
∫

Fk
∂Bi
∂xk

dΩ
Ωe
∫

GknkBi dΓΓe
∫

Gk
∂Bi
∂xk

dΩ
Ωe
∫

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Design of OpenACC Parallel Regions
Example: a readily vectorizable region
Domain integral: loop over mesh elements Ωe

OpenMP version

!$omp parallel
!$omp do
do ie = 1, Nelem
 do ig = 1, Ngp
 !... contribution to this element
 rhsel(:, :, ie) = rhsel(:, :, ie) + flux
 enddo
enddo
!$omp end parallel

OpenACC version

!$acc parallel
!$acc loop
do ie = 1, Nelem
 do ig = 1, Ngp
 !... contribution to this element
 rhsel(:, :, ie) = rhsel(:, :, ie) + flux
 enddo
enddo
!$acc end parallel

Fki ∂B ∂xk dΩΩe
∫

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Design of OpenACC Parallel Regions
Example: a region that is not readily vectorizable
Face integral: loop over mesh faces Τe

OpenMP version

!$omp parallel
!$omp do
do ifa = Njfac+1, Nafac
 do ig = 1, Ngp
 !... contribution to the face-left element
 rhsel(:, :, iel) = rhsel(:, :, iel) - flux
 !... contribution to the face-right element
 rhsel(:, :, ier) = rhsel(:, :, ier) + flux
 enddo
enddo
!$omp end parallel

OpenACC version

!$acc parallel
!$acc do
do ifa = Njfac+1, Nafac
 do ig = 1, Ngp
 !... contribution to the face-left element
 rhsel(:, :, iel) = rhsel(:, :, iel) - flux
 !... contribution to the face-right element
 rhsel(:, :, ier) = rhsel(:, :, ier) + flux
 enddo
enddo
!$acc end parallel

FknkBi dΓΓe
∫

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Design of OpenACC Parallel Regions
A common method for avoiding “race condition” in face integral
•  Perform face integral at the element level

q  All the computing is implemented as loops over mesh elements

•  Overheads
q  Lead to redundant computation of face integrals (doubled!)

q  Require an additional element-face connectivity array

•  Reference articles on unstructured DG/FV methods (with CUDA)

q  A. Corrigan et al. Running Unstructured Grid-based CFD Solvers on Modern
Graphics Hardware. Int. J. Numer. Methods Fluids, 66(2):221–229, 2011.

q  Tristan Cabel and Stephane Lanteri. Discontinuous Galerkin Time-Domain Solver on
GPU Based Systems. Plafrim meeting, May 31, 2011

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Design of OpenACC Parallel Regions
An alternative approach to avoiding “race condition” in face integral
•  Face renumbering (coloring method)

q  renumber the faces and split them into several groups.

q  Any two faces that share a common cell do not reside in the same group.

q  The original face loops are nested in a sequential loop over groups.

An example of “face renumbering & grouping”
Before

Physical boundary faces Partition boundary faces Internal faces

After

4 groups 3 groups 6 groups

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Design of OpenACC Parallel Regions
Example: face loops after “face renumbering & grouping”
The original face loops are nested in a sequential loop over groups.
OpenMP version

Nfac1 = Njfac
do ipass = 1, Npass_ift
 Nfac0 = Nfac1 + 1
 Nfac1 = fpass_ift(ipass)
 !$omp parallel
 !$omp do
 do ifa = Nfac0, Nfac1
 do ig = 1, Ngp
 !... contribution to the face-left element
 rhsel(:, :, iel) = rhsel(:, :, iel) - flux
 !... contribution to the face-right element
 rhsel(:, :, ier) = rhsel(:, :, ier) + flux
 enddo
 enddo
 !$omp end parallel
enddo

OpenACC version

Nfac1 = Njfac
do ipass = 1, Npass_ift
 Nfac0 = Nfac1 + 1
 Nfac1 = fpass_ift(ipass)
 !$acc parallel
 !$acc do
 do ifa = Nfac0, Nfac1
 do ig = 1, Ngp
 !... contribution to the face-left element
 rhsel(:, :, iel) = rhsel(:, :, iel) - flux
 !... contribution to the face-right element
 rhsel(:, :, ier) = rhsel(:, :, ier) + flux
 enddo
 enddo
 !$acc end parallel
enddo

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Design of OpenACC Parallel Regions
 “Face renumbering & grouping” vs. “element loops”
•  Advantages

q  No redundant computation.

q  Least intrusion to the original code structures.

q  Recoverable to CPU parallel computing.

•  Disadvantages
q  Sequential groups lead to overheads in initializing more parallel kernels.

•  Remarks

1.  No direct comparison of these two strategies is yet conducted for our
solver. It is unknown which will render better performance on GPU.

2.  Since portability is our design priority, the current approach is a preferred,
although optimal performance might be compromised.

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Hardware/Software Resource
CPU
•  2-way SMPs with AMD Opteron 6128 (Many Core) with 8 cores per socket

(16 cores per node)
q  32 GB DRAM
q  2.0 GHz core-speed for 6128 Opteron (single core)

GPU
•  NVIDIA Tesla K20c

q  Memory amount: 5.0 GB
q  Stream processors: 2496

Software (64 bit)
•  Operating system

q  CentOS 5.7 Linux x86 64
•  Compilation & runtime suite

q  PGI Accelerator Fortran Compiler (ver. 13.4)
q  OpenMPI (ver. 1.5.5)

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Performance Assessment
Timing measurements
Unit running time Tunit

where the running time Trun refers to the time recorded for completing the time
marching loop with a given iteration number Ntime.

Tunit =
Trun

Ntime×Nelem
×106 (microsecond)

Control sets (simulations in double-precision arithmetic)
GPU-1 Parallel computing with 1 GPU device

CPU-1 Serial computing with 1 CPU core

CPU-16 Parallel computing with 16 CPU cores (domain partitioning + MPI)

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Example 1. Subsonic Flow past a Sphere
Subsonic flow past a sphere at M∞ = 0.50 and α = 0°.

X

Y

Z
X

Y

Z
X

Y

Z
X

Y

Z

Figure. Pressure contours plotted on the surface triangular meshes of a sequence of four
successively refined tetrahedral grids

 Unit time (microsecond) Speedup
Nelem GPU-1 CPU-1 CPU-16 vs. CPU-1 vs. CPU-16

2,426 20.2 176.8 14.8 8.8 0.73

16,467 10.7 182.8 12.6 17.0 1.18

124,706 9.3 182.8 13.0 19.6 1.40

966,497 8.8 198.9 13.1 22.6 1.49

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Example 1. Subsonic Flow past a Sphere
Subsonic flow past a sphere at M∞ = 0.50 and α = 0°.

100

101

102

103

103 104 105 106

M
ic

ro
se

co
nd

s
/ e

le
m

en
t /

 ti
m

e-
st

ep

Number of elements

NVIDIA GPU
AMD CPU(1 Proc)

AMD CPU(16 Procs)

 8

 10

 12

 14

 16

 18

 20

 22

 24

103 104 105 106

Sp
ee

du
p

Number of elements

NVIDIA GPU vs. AMD CPU(1 Proc)
AMD CPU: 16 Procs vs. 1 Proc

Unit running time vs. Nr. of elements Speedup vs. Nr. of elements

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Example 1. Subsonic Flow past a Sphere
Subsonic flow past a sphere at M∞ = 0.50 and α = 0°.

GPU-1 CPU-16 CPU-1

Anim. Comparison of runtime performance rendered by pressure contours on the
surface meshes

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Example 2. Transonic Flow over a Boeing 747
Transonic flow over a Boeing 747 aircraft at M∞ = 0.85 and α = 2◦

Figure. Mach number contours plotted on the surface triangular meshes

Unit time (microsecond) Speedup
Nelem GPU-1 CPU-1 CPU-16 vs. CPU-1 vs. CPU-16

253,577 11.5 243.8 16.4 21.2 1.43

1,025,170 10.6 249.4 16.6 24.5 1.57

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Example 2. Transonic Flow over a Boeing 747
Transonic flow over a Boeing 747 aircraft at M∞ = 0.85 and α = 2◦

101

102

103

105 106

M
ic

ro
se

co
nd

s
/ e

le
m

en
t /

 ti
m

e-
st

ep

Number of elements

NVIDIA GPU
AMD CPU(1 Proc)

AMD CPU(16 Procs)

 10

 15

 20

 25

 30

105 106

Sp
ee

du
p

Number of elements

NVIDIA GPU vs. AMD CPU(1 Proc)
AMD CPU: 16 Procs vs. 1 Proc

Unit running time vs. Nr. of elements Speedup vs. Nr. of elements

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Example 2. Transonic Flow over a Boeing 747
Transonic flow over a Boeing 747 aircraft at M∞ = 0.85 and α = 2◦

GPU-1 CPU-16 CPU-1

Anim. Comparison of runtime performance rendered by Mach number contours on
the surface meshes

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Example 3. Viscous Flow past a Sphere
Subsonic flow past a sphere at M∞ = 0.5 and Re = 118

Triangular surface meshes Streamtraces on the symmetry plane

Unit time (microsecond) Speedup
Nelem GPU-1 CPU-1 CPU-16 vs. CPU-1 vs. CPU-16

200,416 14.6 259.9 20.5 17.8 1.41

925,995 13.9 257.2 20.6 18.5 1.48

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Example 3. Viscous Flow past a Sphere
Subsonic flow past a sphere at M∞ = 0.5 and Re = 118

GPU-1 CPU-16 CPU-1

Anim. Comparison of runtime performance rendered by Mach number contours
along with streamtraces on the symmetry plane

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Example 4. Large Eddy Simulation (to be completed soon…)

Lid-driven cubical cavity at Mb = 0.2 and Re = 10,000

Instantaneous Mach number iso-surfaces
in the cubical domain

Instantaneous Mach number contours on
spanwise mid-plane

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Concluding Remarks
 RDGFLO with OpenACC
•  Performance on single GPU

q  An average scaling factor of over 20.0x vs. 1 CPU core
q  An average scaling factor of over 1.4x vs. 16 CPU cores

•  Extensibility
q  The current parallel strategy can be applied to more functionalities

•  Verified compilers
q  PGI Fortran

•  Verified platform
q  NVIDIA CUDA-enabled GPUs

•  Limitation
q  Memory constraint on GPU device
q  Balance between [optimal GPU parallelism] and [code portability]

•  Publications
q  Y. Xia, L. Luo, H. Luo, J. Edwards, J. Lou, and F. Mueller. OpenACC-based GPU Acceleration of

a 3-D Unstructured Discontinuous Galerkin Method. 52nd AIAA Aerospace Sciences Meeting,
AIAA-2014-1129, January 2014.

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Future Work & Prospect
1. Multi-GPU parallelization via MPI
•  Face grouping algorithm for balanced load over partition-domain regions

Physical boundary faces Partition boundary faces Internal faces

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Future: balanced-load grouping, e.g., in 2 partition domains

4 groups 3 groups 6 groups

4 groups 3 groups 6 groups

Now: simple grouping, e.g., in 2 partition domains

4 groups 3 groups 6 groups

4 groups 3 groups 5 groups

Future Work & Prospect
1. Multi-GPU parallelization via MPI (cont.)
•  Atomic operation: !$acc atomic

q  Declared in OpenACC 2.0
q  Not yet implemented in PGI Accelerator
q Why we need it?

§  Significant simplification of programming
§  Potential huge improvement of scalability

Physical boundary faces Partition boundary faces Internal faces

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Future: atomic operation (no grouping needed), e.g., in 2 partition domains

Future Work & Prospect
2. Implicit time integration
•  Preconditioned linear solver, e.g., GMRES-LU+SGS algorithm

q  The inverse of the approximate block diagonal Jacobian matrix is the least we need
for preconditioning

q  Any direct algorithm of matrix inverse requires some auxiliary arrays, as below

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

OpenMP version

real*8 A(20,20,Nel)
real*8 B(20,20)
real*8 C(20)

!$omp parallel
!$omp do
do ie = 1, Nel
 !... Direct algorithm to invert A(20,20,ie)
 !... with the aid of B(20,20) and C(20)
enddo
!$omp end parallel

OpenACC version

real*8 A(20,20,Nel)
real*8 B(20,20)
real*8 C(20)

!$acc parallel
!$acc loop
do ie = 1, Nel
 !... Direct algorithm to invert A(20,20,ie)
 !... with the aid of B(20,20) and C(20)
enddo
!$acc end parallel

Future Work & Prospect
2. Implicit time integration (cont.)
•  Solution: iterative algorithm for matrix inverse

q  Pros
§  No need of auxiliary arrays, suitable for OpenACC parallel regions
§  Adequate solution efficiency for diagonal-dominant matrix

q  Cons
§  To be explored…

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

OpenMP version

real*8 A(20,20,Nel)
real*8 B(20,20)
real*8 C(20)

!$omp parallel
!$omp do
do ie = 1, Nel
 !... Direct algorithm to invert A(20,20,ie)
 !... with the aid of B(20,20) and C(20)
enddo
!$omp end parallel

OpenACC version

real*8 A(20,20,Nel)

!$acc parallel
!$acc loop
do ie = 1, Nel
 !... Iterative algorithm to invert A(20,20,ie)
 !... with no need of auxiliary arrays
enddo
!$acc end parallel

Development Plans
Recent work
Multi-GPU parallelization via MPI

q  A balanced face grouping algorithm is required over domain partitions.

Challenges for implementing implicit time integration
q  Algorithms suitable for GPU parallel computing
q memory limitation on GPU devices.

Goals
A portable, GPU-accelerated high-order CFD toolkit

q  A complete framework for the reconstructed discontinuous Galerkin (RDG)
method for compressible flows on hybrid grids

AFOSR BRI – Co-Design of Hardware/Software for Predicting UAV Aerodynamics

Impact
A potential, competitive parallel-computing model of CFD programming for
the next-generation HPC hardware/software

