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Rosenbrock methods require the solution of linear
systems only

» Initial value problem (semi-discrete PDE)

y'(t)=fy), ylto) =0, to<t<tm, y(t),f(y)cR".

» Solution by an s-stage Rosenbrock method:
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» The Jacobian matrix, J,, = 0f/dy |,_, appears explicitly.
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Rosenbrock-W order conditions

» TTW-trees (bi-colored, leaves full, empty vertices singly branched)
» Full nodes ~ exact derivatives, empty nodes ~ A.
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Definition: ROK method in autonomous form

Arnoldi: compute H and 'V for Kys (I, fn)
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The Krylov approximation property reduces the set of
relevant trees considerably

TW trees TK tree
l
k
J Frft -
l
. k‘ l
j Ak fifr N > k
33 " I s
J [ AkLfE
l
' k
J A Ak fr

Co-design of time stepping algorithms. Rosenbrock schemes. [5/28]
February 7, 2014, AFOSR Workshop. [http://csl.cs.vt.edu]



ROK methods

» ROK conditions up to order three = ROS conditions
» There is one additional T K -tree and ROK condition for order four

l m
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Theorem (Type 1 order conditions)

A Rosenbrock-K method of type 1 has order p iff the underlying Krylov space
has dimension M > p, and the following order conditions hold:

ij¢j(t) = % VteT withpt) <p,

J
S by 65(t) =0 Ve TK\T withp(t) <p.
J
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Convergence and Stability

For accuracy:
» M is small and independent of problem size.

For stability:

» Intuitively M should be sufficiently large such that the Krylov space
contains the stiff subspace of the underlying problem (see also Weiner et
al)

» How to automatically choose M so that the method is stable is a topic of
ongoing work.
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Definition: LIKE method in autonomous form

Arnoldi: compute H and 'V for Kys (3, fn)
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ROK methods outperform traditional ROS solvers on a
two dimensional shallow water test problem
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Figure : Performance comparison on shallow water equations using centered finite
differences on a 32 x 32 cartesian grid, N = 3072.
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LIKE methods outperform traditional exponential
solvers on a two dimensional shallow water test
problem
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Figure : Performance comparison on shallow water equations using centered finite
differences on a 32 x 32 cartesian grid, N = 3072.
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IMplicit-EXplicit time stepping schemes |

» Challenges:

o Stiff problems Stiffness results from widely varying time scales, i.e., some
components of the solution decay much more rapidly than others

o Explicit methods are efficient for nonstiff problems; require extremely small
time steps for stiff problems

o Implicit methods allow for large time steps for stiff problems;
computationally expensive

» One way to attach stiff problems efficiently: IMEX method partition the system
into two part based on stiffness y' = f (¢, y) + g(t,y); treat stiff part implicitly while
nonstiff part explicitly
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IMplicit-EXplicit time stepping schemes Il

IMEX splittips

> Existing IMEX families:
e IMEX Linear Multistep Method (poor stability)
e IMEX Runge-Kutta methods (order reduction)
» Goal: to develop new IMEX Methods with several properties:

e no order reduction
e good stability
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IMEX DIMSIM

A two-way partitioned DIMSIM: (A, B) implicit, (A, B) explicit
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Derivation: Assume
y:m—l—z,m':f(:mz):f(x+z),z/:g(x7z):g(x+z),

we do not need to know what = and z are. It works as if the combined state y is
advanced through integration.

Starting procedure: Approximate h*z® (to), h* 2 (t), using finite differences on
small step solutions.
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Properties of IMEX DIMSIM

» High stage order Order. Order p, stage order ¢, number of external
stages r, number of internal stages s are relatedby p=gq=1r = s.

» Implicit part is L-stable and constrained explicit stability region is
maximized using optimization technique . DIMSIMs are constructed with
Runge-Kutta stability.

» No additional coupling condition.

Theorem (Zhang and Sandu, 2012)

> Partitioned DIMSIM has order p and stage order q = p { each
individual method has order p and stage order q = p.

> Partitioned DIMSIM has order p and stage orderq = p — 1 ¢
each constituent method has order p and stage order q = p — 1.
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Avoid order reduction

Consider the van der Pol equation (Boscarino, 2007)
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Gravity waves |
GMSH-DG code (UCLouvain): discontinuous Galerkin method in space
discretization

Governed by the compressible
Euler equation

dp
ot

+ V- (puu+pl) = —pge,

9pd
ot

p : density

u : velocity

0 : potential temperature
I:a2 x 2 identity matrix Figure : Evolution of the gravity
p : pressure (linearly related to p6) wave: perturbation of the potential

The prognostic variables are temperature at the initial time (top),
p, pu, pb after 450 seconds (middle) and after

900 seconds (bottom).
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Gravity waves Il

Error
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(a) Convergence

(b) Work-precision diagram
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Parallelizing ROK methods |

We target the Rosenbrock-Krylov (ROK) class of methods.

» Implicit method
» Based on Rosenbrock implicit methods
» Uses a Krylov subspace method

» Inexpensive

» Requires only a linear solve
» Operates in a reduced space
» Matrix-free
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Parallelizing ROK methods |l

Sources of ROK methods’ advantages:
» Linearization inherited from Rosenbrock methods.
» Accuracy is not required in the solution to the linear system.
» Uses a Krylov subspace approximation to the Jacobian of the ODE.
» Approximates Jacobian vector products using a finite difference.
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Notes about the multicore results

Experiments were performed on the gravity waves problem.
Three types of integrators were tested:

» ERK: an explicit Runge-Kutta method
» DIRK: a diagonally implicit Runge-Kutta method
» ROK: a Rosenbrock-Krylov method

Speedups are calculated using a serial implementation as a baseline.
Tests were performed on a quad socket machine using AMD Magny-Cours
CPUs with a total of 48 cores.
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Runtime for multicore parallel solvers on the gravity
waves problem
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Figure : Solver runtimes for various core counts.
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Slowdown for multicore parallel solvers on the gravity
waves problem
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Figure : Slowdown of DIRK and ERK methods compared to the ROK solver.
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Parallel efficiency for multicore parallel solvers on the
gravity waves problem
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Figure : Parallel efficiency of the different solvers.
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Notes about the GPU resulis

Experiments were performed on the shallow water equations.
Two Arnoldi implementations were tested:

» cuKrylov: Basic cuBLAS implementation
» gtKrylov: Our optimized implementation

Speedups are calculated using a serial implementation as a baseline.
Tests were performed on a AMD Magny-Cours CPU and an NVIDIA Quadro
4000 GPU.
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Right hand side speedup for the shallow water
equations problem on GPUs
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Figure : GPU RHS speedup over serial CPU.
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Total solver speedup for the shallow water equations
problem on GPUs
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Figure : GPU solver speedup over serial CPU.
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