Accelerated Solvers for CFD

Co-Design of Hardware/Software for Predicting MAV
Aerodynamics

Eric de Sturler; Virginia Tech — Mathematics

Email: sturler@vt.edu

Web: http://www.math.vt.edu/people/sturler

Co-design Workshop, Virginia Tech, February 7,2014

People

* Faculty

o Eric de Sturler, Chris Roy, Adrian Sandu, Danesh Tafti
* Postdocs

> Xiao Xu

> Amit Amritkar
* Graduate Students

> Katarzyna Swirydowicz,
o Arielle Grim McNally

Overview

e Current Efforts
* Long Term Plan

> Parallel, Accelerated Solvers and Preconditioners for
CFD Applications

e Quick Intro to Krylov Methods and Preconditioners
e Recycling Krylov Subspaces for Gen|DLEST
o (but results for an acoustics problem)

e GPU Preconditioners for SENSEI (LDC)

e Conclusions and Future Work

Current Efforts

* Integrating innovative iterative solvers and
preconditioners in CFD codes

> GENIDLEST (Tafti) — Recycling Solvers rGCROT (+
rBiCGStab)

> SENSEI (Roy) — Fast Preconditioning (plus recycling)
* Faster Krylov-based time integrators (Sandu)

e Solvers that have better convergence, especially for
sequences of problems — Krylov recycling

e GPU Acceleration, especially preconditioners

* New solvers with better opportunities to optimize
multiple matvecs, precvecs, orthogonalizations in
addition to faster convergence

» Updating preconditioners and further efficient variants
of preconditioners

Long Term Plan (including CFD appl.s)

e Basic issue is “#iterations vs cost per iteration”

e All methods consist of different arrangements of matvecs,
precvecs, dots, daxpy (and computing preconditioners)

Faster Preconditioners on GPUs

e Preconditioners with high level of fine grained parallelism and
little data movement

> Often not as effective (more iterations)
* Precludes ILU and preconditioners related to/based on it
> Domain decomposition has local (approx) solve

e SAl very fast on GPUs (matvec); can improve convergence by
multilevel extension

* FSAIl promising too (matvec-like but more effective than SAl)
* Multigrid also promising if smoother fast

Long Term Plan

Solvers and Preconditioners

Many problems require solving slowly changing systems
for many parameters, many rhs, in nonlinear iteration or
optimization, etc: Improve convergence across systems

Recycling Krylov subspaces (select and reuse)
Recycling preconditioners (update and reuse)

Faster solver allows weaker preconditioner for cheaper
iterations

Solver variants that allow substantially faster
implementations of main kernels by rearranging parts of
algorithm (possibly over multiple iterations) — recycling
solvers have advantageous over standard solvers

Use model reduction to solve multiple systems much
faster

Important Trends

Simulations increasingly part of larger analysis, including
design, uncertainty/reliability, inverse problems

Simulations often involve parameters/parameter space

Simulations involve wide ranges of scales and multi-
physics. Drastically reduce effective number of unknowns:
model reduction, parameterizing problems, adaptive
meshing

Move from generic models with idealized properties to
realistic models individualized by parameterization (with
uncertainty) — models first calibrated and then simulated

Simulation also used to find parameters that cannot be
measured directly

New architectures for HPC require new algorithms, but
significant support for solving many related problems

Krylov Methods Crash Course

Solve Ax = b, initial solution z , residual , = b — Az,

Solve for error, Ae, = 7, ; find update from search space

Generate space: K (A, 7“0) — span {ToaATO,AQT’O,...,Am‘lr }

0
Find update » € K (A, ro) by minimizing

e error in suitable norm (typically special matrices only)
e residual in suitable norm (e.g., GMRES)

Implemented through orthogonal projection (in suitable
inner product) — can be expensive.

Alternatively, give up on minimization and compute a
cheap projection. Fast but possible robustness problems,
e.g, BICGStab.

Preconditioning

What if convergence slow? Precondition the system.

Replace Az =bby PAPZ = Pbandz = P
Where
1. Fast convergence for PlAP2 and

2. Products with P and P, is cheap

3.Computing P and P, not too expensive

Often A ~ LU (ILU)anduse L 'AU'or U 'L 'A

Forward-backward solve often slow on GPUs
Generally problematic for parallelism — do only for
diagonal blocks (subdomain or grid line, etc)

Krylov Methods Crash Course

Consider Az = b (or prec. system PAx = Pb)
Given z, and r, = b — Az, find optimal update » in

K™ (A1) = span{r,, Ar,,..., A" ', }:

b— Az, + Z)H2 & min

2eK™ (A,ro)

min
2eK™ (A,r0>

T, — Az”2
Let K = [7“0 Ar, A27’0 ---Am_lrol, then z = K (,

and we must solve the least squares problem
AK (~1n, & [ATO A’r, ---Amrolg“ T

Set up and solve in elegant, efficient, and stable way:
GCR - Eisenstat, Elman, and Schulz '83
GMRES - Saad and Schulz '86

Minimum Residual Solutions;: GMRES

Solve Az = b: Choose z;setr =b— Ax;

v, =1 [N 2,k:().
while [, [[,> € do
=k +1; 77k+1 = Avk;
for j =1...k,
hj,k — vjfakntl; 6k+1 — 6k+1 - hj,kvj’
end
hk+1,k — Hﬁkﬂrl 2; U1 — 6k+1/hk+1,k; (4 V, = Vk+1H)
Solve/Update LS min |7, H’I“OHQ — H,C :
end
r, =z,+V(;

r=n—-V H(orr =b—Ax,

k+1

Convergence restarted GMRES

Test problem on unit square: 202 x 202 grid points

Interior: —V. (Vu) =0

1og10
0

10t

-12
0

'l
2

Boundary 4 =1 forz =0and y =1

uw=0 elsewhere

—— GMRES(100)
—— full GMRES |
GMRES(50)
—— GMRES(20)
—— GMRES(10) |
—— GMRES(5)

GMRES(m) 200 x 200 unknowns

time (s) |iterations
full 72.888 587
100 40.256 1851
50 41.087 3043
20 63.604 6985
10 111.26 13761
5 199.42 27451

0.5

1 1.5 2 25 3

Iteration count

12

BiCGStab van der Vorst '92

rg is an initial guess; rg = b — Axyg

Choose 7, for example, 7 = rg from: Iterative Solvers for
for i =1, 2:% Large Linear System:s,
Pi—1 = 7" Ti-1 H.A. van der Vorst
g ?5—112 0 method fails Cambridge University Press
Pi =Ti-1
else

Bi—1 = (pi—1/pi—2)(i_1/wi_1)
Pi = ri—1 + Bic1(pim1 — wi—1vi-1)
endif
v; = Ap;;
a; = pi—1/T1v;
S =T;—1 — QyUy
check ||s]|o, if small enough: x; = x; 1 + a;p; and stop
t = As, w; = tTS/tTt
Tj = Tj—1 + o;p; + w;s
T, =85 — w;l
check convergence; continue if necessary
for continuation necessary that w; # 0
end

Solving Sequences of Linear Systems

* Many applications involve a sequence/group of systems
with small or localized changes in space or structure

> Time-dependent/time-like problems, nonlinear
problems and optimization, adaptive discretizations

> Systems depend (nonlinearly) on multiple parameters

° Inverse problems, parameter estimation, Monte Carlo
and MCMC methods, design, model reduction

> Uncertainty quantification, reliability (with design)

» Application requires solution of hundreds to thousands
of large, sparse, linear systems (millions for MCMC)

e Recycle previously computed results for faster solution
> Update old solutions
o Update and reuse search spaces — Krylov recycling

o Update preconditioners

What to Recycle!?

* Krylov methods build search space; solution by
projection
* Building search space often dominates cost

* Initial convergence often poor, reasonable size
search space needed, then superlinear convergence

e Get fast convergence rate and good initial guess
immediately by recycling selected search spaces
from previous systems

* How to select the right subspace to recycle!?
o Approximate invariant subspaces
> Canonical angles between successive spaces

> Subspace from previous solutions

How to Recycle? (GCRO, dS'95)

Solve Az = b with recycled subspace U (for new A):

Compute AU = C, CR = C (QR), U = UR* (implicit)
Now AU=C and CC=1

Set 1, = (I — C’C’*)b, z, =UC b, and v, =1, /||
Augmented Arnoldi: AV =CB+V H

Minimize:

Hb Ax+Uz+VyH—HV H H—H y) C'(z—FBy)H

Solve H,y ~ ¢, |r,| and set = = —By (optimal)
r, =z, +Uz+V yand r, =V (el ||’r0|| —]jmy)

m

Multiple matvecs/precvecs at once, orthogonalizations not
in lock-step (GMRES), msmall more U / C' vectors

Acoustics Problem with Bierman (BMW)

Real Part of the Acoustic FE/IFE mesh
experiment acoustic with solution
FE mesh

Details small model problem:

* 2nd order acoustic Finite Elements

* 6th order acoustic Infinite Elements

* ~10,000 degrees of freedom

* about 150 frequencies to be evaluated

On large realistic problem factor 6 to 10 speedup in time

Discretization

Variational form and resulting matrix components:

/(Vp VG —k*pg)dV — / ipwrypgdS — tkapgdS = 0
JQ J Sy J Sg
Kij — / VN,VN, dV. K,/ = / (VD®; + V(D,D)V(I)j dVv,
o Jee ‘ /&
Mj=1/c* | N:N;dV, My=1/¢ [e(l = (VeVi)@;#;D dV,
J o J 4
Cyj = /,/ oaN;N;dS.]/(/ (VuV®;))D®; — (VDVu);®; — (VO; Vi) DP; dV,

— l/(/ i(pi(l)deS.

Jsg

fi= —i(r)/ pvy N;dS.

Tire Rolling Noise Modeling

Equations interior and exterior acoustics simulation
A(w)p — (K+iw0—w2M>p = f(w)
RHS depends on excitation frequency (from road texture)

Problem to be solved for w = 100,...,1500 and Aw = 10

Must solve 140 linear systems (for small model problem)
For full problem up to 500 frequencies

Matrix components from interior domain are symmetric;
the components from exterior domain are nonsymmetric

In general, the exterior domain component is not a low
rank update

4

Acoustics — rGCROT vs BiCGStab in # Matvecs

Matrix-vector products

Comparison of Matrix-vector Products

- | —— BiCGStab

I I I I I I I
Q®
® o |
¥ @
D D
O 1)
.
Recycling GCROT) ¥y &
Q)
! _|
o N
o ()
0 O
® \» oD
()
PE & N O
D Q/O\
" © O~ M _
W o "
lo QO M
0 ® O® |
@ ®
() ¢
R | D
Q O PO ©® |
N Q
O
® O =
o (% O
N]
®
()
A .
)
,
n ey
O 24V,
~Y J o, |
@ R AR S0
A SIu
- oo O
RO
.....
®
oot - N
s 2. %, PO N ate e e hatadaeed
| | \ | | | | |

O |
100 200 300 400 500 600 700 800 900 1000 11

Frequency

| | |
00 1200 1300 1400 1500

Preconditioning in SENSEI (LDC)

Standard ILU type preconditioners require mostly
sequential forward/backward solve

o Mitigated by Block ILU (#blocks - #threads)

Parallelizes poorly on GPUs (not high level of fine-
grained parallelism)

In contrast sparse MatVec very fast

Replace by other preconditioners that are more sparse
MatVec like

> Variants of Sparse Approximate Inverses (vary solver)

> Next, combine with multilevel acceleration for
convergence

> Block Jacobi (small blocks)
Solver GMRES, BiCGStab, recycling GCROT (almost)

/ Comparison lterative Solution in LDC

Average iterative solution times for LDC step
* Solution time in ms

* lterations in (preconditioned) matrix-vector products
(BiCGStab — 2/iteration)

GMRES(40) | GMRES(40) | Bicgstab | Bicgstab

ILUT SAI ILUT SAI
ms MV ms MV ms MV MV

101 (30.6K) 207 (21) 189 (99) 213 (23) 474 (116)
I51 (68.4K) 392 (24) 186 (83) 423 (27) 483 (96)
251 (I90K) 769 (23) 253 (73) 807 (25 759 (80)
301 272K) 1.18e3 (23) 293 (72) 127e3 (26) 933 (80)

Speedups

Problem | GMRES(40) | GMRES(40) Bicgstab Bicgstab
ILUT SAl ILUT SAI
ms Speedup Speedup Speedup
101 (30.6K) 207 .10 (189) 972 (213) 437 (474
151 (68.4K) 392 2.11 (186) 927 (423) 8.12 (48.3)
251 (190K) 769 3.04 (253) 953 (807) 10.1 (75.9)

301 (272K) 1.18e3 403 (293) 929 (1.27e3) 12.6 (93.3)

Observations

* Although SAl less effective preconditioner (iterations),
much faster runtimes due to higher flop/s GPU

e For ILUT versions, most time spent in preconditioner
* GMRES expensive in orthogonalizations
> dot product + vector update (axpy)

* Improvement for GMRES limited by cost of
orthogonalizations

* BiCGStab more effective in spite of further increase in
iterations

* Results depend on (problem dependent)
o Convergence vs cost per iteration

> Relative costs of SMV, PV, orthogonalizations

GMRES Runtime - Breakdown

Problem GMRES(40) PrecVec Mult GS orthog
#PMV

101 30.6K 20.6 183 17.9 7
|51 68.4K 392 23.8 360 92 253 5
251 90K 769 23.2 721 94 36.4 5
301 272K 1.18e3 234 |.12e3 95 43.5 4

Problem GMRES(40) PrecVec Mult GS orthog
#PMV

101 30.6K 189 99.3 6 157

151 68.4K 186 83.5 12.7 7 160 85
251 190K 253 73.4 21.5 8 200 79
301 272K 293 71.9 26.4 9 229 78

Conclusions and Future Work

* Good insight into cost issues of solvers/preconditioners

e Much better GPU performance for solver and
preconditioner (BiCGSTAB / SAl) — factor 12

> and working on other preconditioners (BILUT,...)
> add multilevel correction to SAIl for better convergence

* Recycling solvers implemented for CFD codes, start
testing and combine with appropriate preconditioners

> Explore additional optimization space for these solvers

* Explore solver variants that allow faster (fused)
implementations of kernels (across iterations?)

e Extract lessons for Computational Dwarfs

