Performance Assessment of A Multi-block
Incompressible Navier-Stokes Solver using Directive-
based GPU Programming in a Cluster Environment

Lixiang (Eric) Luo, Jack Edwards, Hong Luo
Department of Mechanical and Aerospace Engineering

Frank Mueller
Department of Computer Science

North Carolina State University

Supported by Air Force Office of Scientific Research
Basic Research Initiative program grant FA9550-12-1-0442

NC STATE UNIVERSITY [V N

Porting a Legacy Code: INCOMP3D

INCOMP3D is an incompressible Navier-Stokes solver

* Based on the Low Diffusion Flux Splitting Scheme (LDFSS)
upwind finite volume method

e Second or higher order spatial accuracy

* Immersed boundary (IB) method

* Artificial compressibility (AC) method

* Flexible multi-block computational domains consisting of
an arbitrary number of structured mesh blocks

* Implicit time evolution using ILU-preconditioned linear
system solvers

 Two-phase flow modeling capability
* Parallelization by MPI

WY AN NIR® 1\ cONMP3D by GPGPU in a Cluster 2 I

INCOMP3D Capability Showcase

* Contaminant Transport

| 1.0x10% 3810 1.4x10% 53x10” 2.0x10™
A

Three people walking through

_ Movement of a crowd of 150
an airlock

ellipsoidal ‘people’

NC STATE UNIVERSITY [V N

INCOMP3D Capability Showcase

PIV (Rockwell)

N
<

T4 |

== == =« Choi, et al. {2008)
B —eiae Gleseking, et al. (2010)

Menter-Langtry transition (2012)
experimental data

a

006 [~

(y-y e

0.03 -

LES — Smagorinsky model RANS — Spalart Allmaras model

Pitch-up of airfoil at low Reynolds number b’

0

LES of Aerospatiale airfoil near static stall

NC STATE UNIVERSITY Mol EEDY Rcic BT et 4

INCOMP3D Capability Showcase

e Two-Phase Flows

Evolution of conical jet structure with increasing Reynolds
number (left to right) during pressure-swirl atomization

> = &

Flow in an aerated-liquid atomizer (dark blue- aerating gas; light
blue — liquid water)

NC STATE UNIVERSITY [V N

Overarching Goal

* To apply co-design principles to develop a version of
INCOMP3D completely adaptable to GPU and GPU/
CPU architectures while maintaining the full
functionality of the original

* Several challenges to overcome
— Code re-design for maximum efficiency on GPUs
— MPI parallelism
— Implicit solver functionality

WY AN NIR® 1\ cONMP3D by GPGPU in a Cluster 6 I

e
Outline

 |Introduction

* Porting a simplified 2D version
— OpenACC implementation
— CUDA implementation

— Performance comparison

e Porting the full 3D version
— Coloring scheme in flux calculation
— Redesigning the internal data structures
— Making MPI work with OpenACC

— Performance comparison

* Summary

NC STATE UNIVERSITY [V N

Introduction to GPGPU

How GPU Acceleration Works

Application Code

Rest of Sequential
CPU Code

NC STATE UNIVERSITY Mol EEDY Rcic BT et

OpenACC vs. CUDA: Matrix Addition

OpenACC Fortran CUDA Fortran

Real*8, Dimension(N1,N2) :: A, B, C --- Main ---

Real*8, Dimension(N1,N2) :: A_h, B_h, C_h
A=.; B=. Real*8, Device, Dimension(N1,N2) :: A_d, B_d, c_d
I$acc data copyin(A,B) copyout(C) A_d = A_h; B_d = B_h ..

call cu_madd<<< >>>(A_d, B_d, c_d)
I$acc kernels c_h = c_d
Do i=1:N1

Do j=1:N2 Print *, C_h

. . . --- Kernel ---
C(1 1]) = A(11]) + B(11J)
Attributes(global) Subroutine cu_madd(A,B,C)
End Do Real*8, Device, Dimension(N1,N2) :: A, B, C

End Do Integer :: i, j

'$acc end kernels (bTockIdx%x-1)*blockDim%x + threadIdx%x

(bTock1dx%y-1)*blockDim¥%y + threadIdx%y

.i
j

I$acc end data

If (i<=N1 .AND. j<=N2) Then
Print *, C c@,j) = AG,3) + B(i,3)
End If

End Subroutine cu_madd

NC STATE UNIVERSITY [V N

First Attempt: A Simplified Version - IN2D

A much-simplified 2D version using fully explicit time

integration is ported to GPGPU as the first attempt. No
MPI is involved.

Examplel: steady state, Re=200

Example 2: time-accurate, Re=3000, t=20s
EEERS

Velocity Magnitude: 0.1 0.20.30405060.70.809 1 1112131415161.71.81.9

L (B RUNAISSNERE 1\ COMP3D by GPGPU in a Cluster

10

OpenACC Implementation of IN2D

* All computation-intensive tasks inside the main loop
must be carried out by GPU

e (Calculations in the main loop must be redesigned to
allow massive parallelization
— Parallelizing the computation of the whole grid

 Data management is optimized for minimal CPU-GPU
transfer

— All essential arrays remain on GPU main memory

— Temporary data arrays are created directly on GPU memory when
necessary, avoiding CPU-GPU transfers

* The modular structure of the code is preserved

— OpenACC directives facilitates writing codes in a modular fashion

WY AN NIR® 1\ cONMP3D by GPGPU in a Cluster 11 I

-
CUDA Implementation of IN2D

A CUDA Fortran version of INS2D is implemented

— To understand the inner working of GPGPU
— To explore the potential and limit of GPGPU

* One step beyond ACC: to minimize data transfer

between GPU main memory and L1/shared memory
— Residual calculation and time marching are carried out locally within a
thread block.

— Residual array are not transferred in/out L1 cache/shared memory;
time step is local to each thread, thus eliminating the time step array.

— Overlapping blocks are used, since residual calculation depends on data
outside the block.

— Main loop consists of one monolithic kernel, since shared memory is
only consistent inside a block.

WY AN NIR® 1\ cONMP3D by GPGPU in a Cluster 12 I

CUDA: Overlapping Blocks

* Why overlapping?

* Residual calculation at (i,j) depends on
fluxes at (i,j), (i-1,j) and (i,j-1):
RIT=flijTx —fLi—=1,)Tx+ /LTy —
o j—1Ty

* Blocks overlap by 1 row/column

* The top row and left-most column is not

updated by the current block. Instead, the

blocks on the left/top updates those rows
and columns

* Boundary blocks relies on boundary
conditions, such as “A” and “B”
* Flux calculation is redundant on the
overlapped rows/columns

NC STATE UNIVERSITY Mol EEDY Rcic BT et

13

Performance Assessment

 ACC and CUF both achieved
significant speedup over CPU

 CUF achieved better performance,
10000 -

Example: steady-state flow inside a
channel with 3 circular obstacles,
Re=200. All results (in seconds) are
obtained using nVidia c2050.

but requires much more effort to

5000

v

port and maintain
— Direct access of shared memory

allows greater flexibility on

algorithms.
— Easier to make mistakes; harder to

debug.

 ACC provides a good compromise

100

200

300

Main loop run time (seconds)

between CPU and CUF

34x _—

/I%x

— Good speedup (~10x), with
moderate effort on porting.

31x
29x

— Easier to debug and maintain.

100
Grid size (10°)

200

300

NC STATE UNIVERSITY Progress on GPU-Accelerated CFD Solvers

14

Full 3D Version

 Upwind schemes must be carefully selected

— Must be re-designed for massive parallelization
— Large stencil must be avoided

* More complex data structures

— The original version has an internal data structure designed for reactive
flow simulations

— Multiple blocks can be mapped to one processor, which requires careful
arrangement of block information

— Must remain flexible enough for further expansion

e MPI is inevitable

— Dictated by the size of 3D problems
— Must be able to work with GPU
— Calls for efficient data packing algorithm on GPU

WY AN NIR® 1\ cONMP3D by GPGPU in a Cluster 15 I

-
Coloring Scheme in Flux Calculation

Fluxes are calculated on 3 directions. On the inner-most direction a difference is
carried out to calculate residul. For example, on the “i” direction
do k=keo,k1 ; do j=jo,j1
do i=i@,il
q(i) = ..
end do
do i=i@,il
b(i,j,k) = b(i,j,k) - (q(i)-q(i-1))
end do
end do ; end do

Data dependence prevents massive parallelization. New algorithm:
do ipass=90,1 I Odd/even passes
I$acc loop independent
do k=ko, k1l
I$acc loop independent
do j=j0,j1
I$acc loop independent
do i=i@+ipass,il,?2
q= ..
b(i:ij) = b(i:j:k) - q
b(i+1,j,k) = b(i+l,j,k) + ¢
end do ; end do ; end do
end do

NC STATE UNIVERSITY [V .

Expandable Data on GPU: Array of Arrays (AOA)

* A discretized description of a number of field
variables /Y7 (i=1.../V) defined on a given grid can
be organized as Fortran arrays /47 (i=1.../).

e The number of total variables /is determined at
runtime.

* The size of /U7 is determined at runtime.

o /Ui can be accessed in different shapes in different
parts of the code.

— A typical scenario: 3D access generally, 1D access in a linear system
solver.

* A subroutine interface should maximize its
generality on operating on different field variables.

NC STATE UNIVERSITY [.

The “Extra Dimension” Approach

Since all variables are defined on the same grid, the variables naturally forms
an extra dimension. On a structured i-j-k grid, all variables can be stored on a

2D Fortran array: '\Q
Real, Dimension(:,:), Allocatable :: F_A!l! 6(‘ L
The subroutine which access one ﬁeloy" Jb\Wﬂ be w‘ten as
Subroutine Dosth3(F,ie, g‘\u«qm) =, '\
Real, D1mens*m©”':}e/.)-5)dn0:kl) it F P\C}/VJ
End.-'subl\‘Veg ex“'f\d
-
The 3D subro e can be ralled @@ﬁ
-

Program MyCFDCod®: m
Real, Di ‘\),ltbcatable :: F_ALL

me g \ -
-
Allocate(™ALL(ii*jj*kk,1:N))

Call DoSth3D(F(1,i_var),ie,i1,jo,j1,ke,kl)
- de {—ﬁof the field }
4 rogram variable to be accessed

where ii=i1-i0+1, jj=j1-j0+1 and kk=k1-kO+1.

NC STATE UNIVERSITY [T N

The “Array of Arrays” Approach

Instead of using an extra dimension, each field variable has its own array. The
subroutine which assesses one field variable in 3D remains the same. Extra
allocation statements are needed:

Program MyCFDCode
Type AR1D
Real, Allocatable, Dimension(:) :: a
End Type

Type(AR1D), Dimension(:), Allocatable :: F_ALL

Allocate(F_ALL(N))
Do i_var = 1,N

Allocate(F_ALL(i_var)%a(ii*jj*kk))
End Do

Call DoSth3D(F(i_var)%a,i0,il,jo,jl,ke,kl)

End Program

The difference is that in AOA a whole field array is passed instead of being a
portion as in the “extra dimension” approach. DoSth3D remains the same.

NC STATE UNIVERSITY [N

AOA in OpenACC Fortran

Sample codes:

Subroutine DoSth3D GPU(F,i@,il1,jo,jl,ke,kl)
Real, Dimension(i@®:il,j0:j1,k0:k1) :: F

I$acc kernels [present(F)|

I$acc end kernels
End Subroutine

Program MyCFDCode
|[Use openacc |
Type(AR1D), Dimension(:), Allocatable :: F_ALL

Allocate(F_ALL(N))
Do i _var = 1,N

Allocate(F_ALL(i_var)%a(ii*jj*kk))
End Do
.. ! Initialization on CPU
Do i var = 1,N

[Call acc copyin(F ALL(i var)%a)
End Do

Call DoSth3D GPU(F(i_var)%a,i®,il,j@,j1,ke,k1)

End Program

NC STATE UNIVERSITY [o

Getting OpenACC to Work with MPI

* MPIlimplementation must be aware of GPGPU

— Automatic GPU memory detection and proper handling of GPU data
over a cluster

— Better performance
— Reduced code maintenance effort

— Unified interface maximize portability for further development
— GPU-aware MPI implementations: OpenMPI, MVAPICH2

* MVAPICH?2 is selected for our project
— Widely adopted

— Better utilization of InfiniBand interconnection used by our cluster
— MVAPICH?2 is actively updated

— Expert support, which is critical for any state-of-art endeavor, is readily
available by collaborators in Virginia Tech

WY AN NIR® 1\ cONMP3D by GPGPU in a Cluster 21 I

Detection of OpenACC Variables by MVAPICH2

GPU memory detection in MVAPICH?2 is based on address. However,
the “host_data use_device” construct is only implemented in PGI C
compiler, but not in Fortran. A custom Fortran interface, written in C
is used to resolve this problem.

First, write a C wrapper:

void accmpi_isend(double* restrict accbuf,

int cnt, int datatype, int dest, int tag, int comm,

int* request, int* istat) {
#pragma acc host _data use device(accbuf)

*istat = MPI_Isend(accbuf,cnt,datatype,dest,tag,comm,request);
}

Then, define a Fortran interface for the C function above:
interface
subroutine accmpi_isend(accbuf,cnt,datatype,dest,tag,comm,request,istat) &
bind(c,name="accmpi_isend")
use, intrinsic :: iso_c_binding
real(c_double), dimension(*) :: accbuf
integer(c_int), value :: cnt, datatype, dest, tag, comm
integer(c_int) :: request, istat
end subroutine
end interface

NC STATE UNIVERSITY [T .

Rewriting Data Packing of Ghost Cells

The original INCOMP3D ghost cells are copied one-by-one to a continuous buffer
set up by the solver. It is strictly sequential:
size buffer = 0
do nv = nv@, nvl ; do k = ko,kl,ks ; do j = jO,jl,js ; do i = i@,il,is
size buffer = size_buffer + 1
MPI_buffer(size_buffer) = data(i,j,k,n)
end do ; end do ; end do ; end do

A parallel algorithm using calculated-index:
I$acc kernels
I$acc loop independent
do nv = nvo, nvl
I$acc loop independent
do k = ko, ki1, ks
I$acc loop independent
do j = jo, ji, Js
I$acc loop seq independent
do i = i@, i1, is
MPI buffer(Ki_b*i + Kj _b*j + Kk _b*k + Kn_b*n) = &
data(Ki_d*i + Kj_d*j + Kk_d*k + Kn_d*n)
end do
end do
end do
end do
I$acc end kernels

NC STATE UNIVERSITY [T .

3D Test Domain

* Based on a dynamic stall study.

— The airfoil is reduced to a flat plate. Symmetry allows better block
partitioning and load balancing.

e 7M structured grid cells. 152 blocks mapped to 32
processes.

g

WY AN NIR® 1\ cONMP3D by GPGPU in a Cluster 24 I

Performance Assessment

e Full 3D simulations
* Full GridPro-style block connection is supported

* Performance tests show moderate speedup of 4x
(6GPU/6nodes vs 6CPU/6nodes)

Test case: 200x50x70 (700K) grid, 2000 steps, steady state

6 GPU on 6 node M 110

1 GPU on 1 node I 791
6 CPU on 6 node N 160

6 CPU on 1 node NN 532

O 100 200 300 400 500 600 700 800 900

NC STATE UNIVERSITY [V .

-
Breakdown of Run Times

 Flux calculation are still dominant
— Flux calculation: 3.4x, time integration: 4x.

 Manual data packing is very efficient
— 7.8x speed up

 MPI transfer is faster with GPU, even with extra GPU-
CPU exchanges.

Test case: 7M grid, 2000 steps, steady state, run on 32 nodes.

. I] B Data packing B MPI transfer
32x 2050 79.3 123 O Flux calculation E Time integration
O Other
0 100 200 300 400 500

NC STATE UNIVERSITY [V o

-
Tackling Implicit Methods: BILU

* Implicit methods inherently require some kind of
matrix factorization when solving linear systemes.

* In the case of INCOMP3D, block incomplete LU
factorization (BILU) is used as the preconditioner for
solving linear systemes.

* For each grid point (i,j,k), one 6x6 BILU is carried out,
which is similar to a 6x6 matrix inversion w.r.t.
computation complexity.

* BILU is inherently recursive, with limited parallelism
to be extracted.

— Wavefront ordering is being considered for BILU parallelism

WY AN NIR® 1\ cONMP3D by GPGPU in a Cluster 27 I

-
OpenACC Version of BILU

 OpenACC implementation restrictions prevent direct
porting of existing BILU algorithms

— In PGI’s currently implementation of OpenACC, any indirectly addressed
arrays must be allocated in GPU global memory.

— For a domain block of reasonable size (1076), the temporary arrays
used by the BILU algorithm will take huge amount of GPU global
memory (1076 Xx6x6X3xX8=864Mbytes). Also, caching this amount of

data is very slow.
* Hence, temporary arrays must be local to GPU
threads

— BILU must be manually unrolled.

— References to elements of three temporary 6x6 arrays must be
converted to scalar variables.

— Think of an SIMD scenario, where no indirect addressing is allowed.

WY AN NIR® 1\ cONMP3D by GPGPU in a Cluster 28 I

-
Summary

* Certain CFD algorithms must be redesigned to fit the
characteristics of GPGPU

* OpenACCis a good compromise between speed and
code maintainability/reusability

* Directive-based is a promising approach to port legacy
codes onto GPGPU

* Technical issues still pose hurdles, but the overall
situation is much improved than several years ago

WY AN NIR® 1\ cONMP3D by GPGPU in a Cluster 29 I

-
Upcoming Tasks

* Further profiling

— More profiling data is needed for better understanding of performance
limitations
— MPI profiling can be very tricky

* More complex meshes

— Data packing and MPI transfer bottlenecks may return if data volume
increases significantly

— Unusual connectivity will likely reduce data packing efficiency

e LES simulations and implicit methods
* Further optimization of flux calculation kernels

— Current speed up of flux calculation is only 3.4x, further optimization
should be possible.

WY AN NIR® 1\ cONMP3D by GPGPU in a Cluster 30 I

