
Delivering Parallel Programmability to the Masses
via the Intel MIC Ecosystem: A Case Study

Kaixi Hou, Hao Wang, and Wu-chun Feng
Department of Computer Science

Virginia Tech, Blacksburg, Virginia, U.S.A.
Email: {kaixihou, hwang121, wfeng}@vt.edu

Abstract—Moore’s Law effectively doubles the compute power
of a microprocessor every 24 months. Over the past decade,
however, this doubling in performance has been due to the
doubling of the number of cores in a microprocessor rather
than clock speed increases. Perhaps nowhere is this more evi-
dent than with the Intel Xeon Phi coprocessor. This manycore
architecture exhibits not only massive inter-core parallelism but
also intra-core parallelism via a wider SIMD width. However,
for data-intensive applications, the bandwidth constraint of MIC
hinders the full utilization of computational resources, especially
when massive parallelism is required to process big data sets.
Furthermore, the process of optimizing the performance on such
platforms is complex and requires architectural expertise.

To evaluate the efficacy of the Intel MIC ecosystem for
“big data” applications, we use the Floyd-Warshall algorithm
as a representative case study for graph applications. Our
study offers evidence that traditional compiler optimizations can
deliver parallel programmability to the masses on the Intel Xeon
Phi platform. That is, developers can straightforwardly create
manycore codes in the Intel Xeon Phi ecosystem that deliver
significant speedup. The optimizations include reordering data-
access patterns, adjusting loop structures, vectorizing branches,
and using OpenMP directives. We start from the default serial
algorithm and apply the above optimizations one by one. Overall,
we achieve a 281.7-fold speedup over the default serial version.
When compared with the default OpenMP Floyd-Warshall par-
allel implementation, we still achieve a 6.4-fold speedup. We
also observe that the identically optimized code on MIC can
outperform its CPU counterpart by up to 3.2-fold.

Index Terms—Intel Xeon Phi, MIC, graph, Floyd-Warshall,
manycore, programmability

I. INTRODUCTION

To address the power and area constraints of microproces-
sors, the rise of manycore hardware moves towards integrating
a substantial number of symmetric cores on one die. These
manycore accelerators, including graphics processing units
(GPUs) and Intel Xeon Phi coprocessor, are being adopted
in the field of high-performance computing (HPC) due to
their superior performance and energy efficiency compared
with traditional CPUs. For example, Tianhe-2, the No. 1
supercomputer on the June 2014 Top500 list [1] is equipped
with Intel Xeon Phi coprocessors. Compared with traditional
multicore CPUs, Intel Xeon Phi has an increased number
of cores (61), an increased width in the single-instruction,
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multiple-data (SIMD) vector units, and the elimination of
aggressive, on-die hardware optimizations, including out-of-
order execution and branch prediction. Although optimizing
applications on CPUs and GPUs has been studied extensively
in recent years, accelerating applications on Intel Xeon Phi
has not been as well understood due to the evolution of
the architecture. Thus, there remains a major challenge in
developing high-performance applications on Intel Xeon Phi
architecture.

The Intel Xeon Phi coprocessor uses graphics, double data
rate (GDDR) SDRAM as its primary physical memory on
the device, which is distinct from the (slower) DDR SDRAM
in the main memory of the host. In addition to the physical
bandwidth of GDDR on Xeon Phi being much higher than
DDR for the CPU, the compute capability of the coprocessor
is even higher. For example, in our experimental environ-
ment, we have Intel Sandy Bridge-EP processors and Intel
Xeon Phi coprocessor within the same node. We use Stream
benchmarks [2] to get the sustainable memory bandwidth for
both. The Intel Sandy Bridge-EP processor has 665.6 single-
precision GFLOPS (2 × 8 cores × 8 SIMD width × 2.6
GHz × 2 for fused multiply-add instruction, FMA for short)
with 78GB/s sustainable memory bandwidth, leading to 8.54
ops/byte. The Intel Xeon Phi coprocessor has 2148 single
precision GFLOPS (61 cores × 16 SIMD width × 1.1 GHz
× 2 for FMA) with 150GB/s sustainable memory bandwidth,
leading to 14.32 ops/byte. The operations per byte ratio means
that to fully utilize all parallel capability of hardware, the
application should at least contain that amount of operations
for each byte access on the memory. From the point of view
of applications, having higher operations per byte often leads
to greater difficulty in achieving the peak performance of
the hardware. In other words, the bandwidth constraint is
more likely to be encountered on the hardware with higher
number of operations per byte, like with the Intel Xeon Phi
coprocessor.

Modern compiler techniques can automatically vectorize
and speed-up a myriad bunch of applications without much
modification of algorithms on the modern multicore proces-
sors [3]. For applications containing complex loop structures
or data dependency, smart algorithmic adjustments and appro-
priate directives are essential to guide the compiler to generate
effective and efficient codes. As a contrast, explicitly handle
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such optimizations so as to improve application performance
on multicore and manycore processors by utilizing SIMD
intrinsics and Pthreads are also productive as shown in the
previous studies [4], [5], [6]. Common to these studies is
the application specific solution, which requires expertise
knowledge of specific applications and hardware architectures,
leading to the complexity for the manual optimizing and tuning
methods. Furthermore, the obstacles of the portability will
be encountered. For example, with the increasing SIMD unit
width and the evolving SIMD intrinsic sets, the method ex-
plicitly using SIMD intrinsics to get the fine-grained data level
parallelism in previous multicore systems cannot directly boost
the performance of Intel Xeon Phi, which would require tons
of labor work to rewrite whole programs using the upgraded
ISA instructions. As a result, the optimizations using compiler
directives are still promising on this emerging architecture.
Reasonably taking advantage of such resources is of the
significance for the data-intensive applications. However, these
problems are not investigated thoroughly.

In this paper, we take the Floyd-Warshall algorithm as
one case study of data-intensive applications to show how to
use simple algorithmic adjustments with appropriate compiler
directives to increase the application’s performance on Intel
Xeon Phi. The algorithmic adjustment includes the data block-
ing to improve the data locality of the memory access and the
loop reconstruction for the efficient data-level parallelism. The
compiler directives contain a set of pragmas to take advantage
of both intra- and inter-core parallelism. Besides, we explore
to search for the best combination of compiler and runtime
parameters on Intel Xeon Phi by using a statistical tree-based
partitioning approach, i.e., Starchart introduced in [7]. After
applying these optimizations, we tune our implementation to
achieve significant speedup and demonstrate the simplified
programmability on Intel Xeon Phi. In our evaluations, we
have observed up to 281.7-fold and 6.4-fold speedup on
Intel Xeon Phi over the default serial implementation and
the parallel OpenMP implementation, respectively. We also
observe that the exactly same optimized implementation on
Intel Xeon Phi can get up to 3.2-fold speedup over that on
Intel Xeon multicore processor.

The remaining of this paper is organized as follows. Sec-
tion II will provide the necessary background for our research.
Section III will describe the methodology we used to optimize
the Floyd-Warshall algorithm on Intel Xeon Phi. Section IV
will present the evaluation results. Section V will discuss the
related work in this field. We will summarize our research and
present the future work in Section VI.

II. BACKGROUND

A. Intel Xeon Phi Coprocessor

The Intel Xeon Phi coprocessor in our experiments consists
of 61 in-order cores, each of which contains 32 512-bit SIMD
registers and supports 4 hardware threads in an effort to hide
memory access latency. To achieve the power efficiency, the
cores operate at a relatively lower frequency and fewer pipeline
stages. The memory hierarchy of Xeon Phi contains two levels

of cache, i.e. 32 KB L1 data cache and 512 KB L2 cache.
The Intel Xeon Phi coprocessor is physically connected to the
host via PCIe. There are two programming models supported
by the coprocessor. One is the offload mode, and the other
is the native mode. The offload mode provides an explicit
way to transfer data between host and coprocessor, just like
using GPU. In contrast, the native mode reflects another salient
feature of Intel Xeon Phi, i.e., the operating system installed on
the coprocessor supports x86-compatible programs to execute
directly, just like on traditional multicore CPUs. With the
native mode, we can run OpenMP or Pthread applications
without any modification on the coprocessor. In this paper,
we will focus on the native mode.

Not only providing inter-core parallelism with numerous
physical cores, the Intel Xeon Phi is also offering a rich
ISA (Instruction Set Architecture) to support a quantity and
a variety of vector, shuffle, and scalar operations. These new
operations enhance the arithmetic computation performance
and the data processing functionality. More importantly, this
provides application developers the flexibility to take ad-
vantage of the intra-core parallelism by efficiently utilizing
wider 512-bit SIMD registers. For example, the fused vector
multiply-add operations provide more accurate results, the
swizzle operations work as the lightweight version of their
shuffle counterparts, and the reduction operations improve the
programmability of using vectors. On the other hand, in order
to use SIMD instructions, we usually prepare the data to each
slot of the vector in advance, which will inevitably bring
certain overheads. For example, considering the fact that the
512-bit register is comprised of 4 128-bit lanes, programmers
often need to carry out the intra-lane and cross-lane shuffle
operations to accommodate data for the subsequent SIMD
operations, leading to performance penalty and increased
complexity. This requires us to keep the balance between the
benefits of using SIMD and the overheads caused by the data
rearranging.

B. Floyd-Warshall Algorithm

The shortest path problem belongs to one of the basic
and classic problems in the graph theory. There are two
major variants of the shortest path problem: first is the single
source shortest paths (SSSP) problem to compute the least-cost
distance between the given pairs of vertices, and second is the
all-pairs shortest paths (APSP) problem to compute the least-
cost distances between all pairs of vertices in the graph. The
Floyd-Warshall algorithm [8], [9] is a dynamic programming
solution for APSP problem by using an increasing subset of
the entire vertices as intermediate steps along the way. It
has the complexity of O(n3) to keep track of the shortest
path for all pairs of vertices. Algorithm 1 exhibits the naive
Floyd-Warshall algorithm, which compares all the possible
paths between each pair of vertices from u to v through
the intermediate vertex k. The |V | represents the number of
vertices. The dist matrix keeps the original distances at the
beginning and then changes to the shortest distances between
each pair of vertices. Thus, dist[u][v] represents the current
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optimal distance from the vertex u to v. The path matrix is used
to store the highest intermediate vertex on the path of each pair.
Thus, path[u][v] denotes the index of highest intermediate
vertex that vertex u goes through to vertex v. The path flow
reconstruction can be conducted recursively based on the path
matrix.

Algorithm 1 Naive Floyd-Warshall Algorithm
1: INPUT: Distance matrix dist
2: OUTPUT: Updated Distance matrix dist storing the short-

est distances between each pair of vertices; Path matrix
path for path flow reconstruction

3: for k = 0 to |V | do
4: for u = 0 to |V | do
5: for v = 0 to |V | do
6: if dist[u][k] + dist[k][v] ≤ dist[u][v] then
7: dist[u][v]← dist[u][k] + dist[k][v]
8: path[u][v]← k
9: end if

10: end for
11: end for
12: end for

III. METHODOLOGY

In this section, we use Floyd-Warshall algorithm as a case
study to explore the parallel programmability on Intel Xeon
Phi. We attempt to start from the optimizations of the single-
threaded version through exploiting better memory access
pattern and data level parallelism. In an attempt to understand
the SIMD instructions adopted by the compiler, we also
show our preliminary implementation that uses the SIMD
intrinsics explicitly to exploit the data level parallelism. Then,
we achieve thread level parallelism by inserting appropriate
OpenMP directives before loops. Finally, we use a statistical
method to search the best combination of the compiler and run-
time parameters for the optimized Floyd-Warshall algorithm
on Intel Xeon Phi.

A. Improve Data Reuse

The high ratio of data access to computation is a challenge
generally encountered by the parallel graph processing [10].
The high ratio may cause applications to be memory band-
width bound, thereby leading to the under-utilization of com-
puting resources. This motivates the need to put the reusable
data into the cache. As a widely accepted optimization to
enhance the data reuse, the data blocking [11] can help
mitigate the negative effects of memory bandwidth bottlenecks
in numerous graph algorithms. A typical loop transformation
for data blocking involves a well-designed combination of
loop splitting, interchanging, and fusing. However, due to
the data dependency in the three-level nested loop of Floyd-
Warshall algorithm shown in Algorithm 1, directly applying
the aforementioned blocking techniques on such loops is
impractical. Thus, we first change the naive Floyd-Warshall

algorithm to the blocked Floyd-Warshall algorithm [12] to
improve the data locality.

As shown in Figure 1 and Algorithm 2, the whole matrix
dist is divided into blocks, whose dimension size is donated
as block size. The computations are divided into three steps
based on the data dependency among the blocks: (1) update
the block (k, k) along the diagonal. In each iteration, the block
(k , k) is self-dependent, meaning that only the data inside this
block are used for the computation; (2) update the blocks
(k , j ) on the same row and the blocks (i , k) on the same
column with the block (k , k); (3) update remaining blocks
(i , j ), whose computation depends on the blocks (i , k) on its
row and the blocks (k , j ) on its column. The performance
of the blocked Floyd-Warshall algorithm is affected by many
factors, including the loop structure, the block size, and the
underlying hardware features. Accordingly, we will carry out
the loop reconstruction in Section III-B and explore the best
combination of parameters in Section III-E, respectively. With
these optimizations, the performance of the blocked algorithm
will significantly outperform the naive implementation.

Step 2
(k, j)

Step 2
(i, k)

Step 1
(k, k)

Step 3
(i,j)

|V|
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g
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|

Fig. 1. The procedure of the blocked Floyd-Warshall algorithm and the data
dependency in each step (the working area has been padded to the multiple
of block size.)

B. Data Level Parallelism

The core computation of Floyd-Warshall algorithm, shown
in the innermost loop of the Algorithm 1 and Algorithm 2,
is updating the distance matrix based on the results of the
comparison between two reals, which represent the cost of
different routes. Although the presence of control flow may
generally invalidate the auto-vectorization attempts of the
compiler, it is still possible to auto-vectorize such codes since
the comparisons in the “if” statements can be implemented
as the masked operations [13]. However, in practice, for the
blocked Floyd-Warshall, the compiler is still stalled on solving
such loops and reports that the existence of potential vector
dependence has prevented the auto-vectorization attempts.
Therefore, we need to modify the implementation and tell
the compiler it is safe to make the vectorization. Before we
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Algorithm 2 Blocked Floyd-Warshall Algorithm
1: function UPDATE(int k0, int u0, int v0)
2: for k = k0 to MIN(k0 + block size,|V |) do
3: for u = u0 to MIN(u0 + block size,|V |) do
4: for v = v0 to MIN(v0 + block size,|V |) do
5: if dist[u][k] + dist[k][v] ≤ dist[u][v] then
6: dist[u][v]← dist[u][k] + dist[k][v]
7: path[u][v]← k
8: end if
9: end for

10: end for
11: end for
12: end function
13: //main function
14: for k = 1 to |V | : block size do
15: //step 1: update diagonal block (k, k)
16: call UPDATE(k, k, k)
17: //step 2: update blocks (k, j) on the row
18: for j = 1 to |V | : block size do
19: call UPDATE(k, k, j)
20: end for
21: //step 2: update blocks (i, k) on the column
22: for i = 1 to |V | : block size do
23: call UPDATE(k, i, k)
24: end for
25: //step 3: update other blocks (i, j)
26: for i = 1 to |V | : block size do
27: for j = 1 to |V | : block size do
28: call UPDATE(k, i, j)
29: end for
30: end for
31: end for

describe our adjustment of the algorithm, we first introduce
several directives that guide the Intel compiler to vectorize
these loops. More information can be found in the guide of
the Intel compiler [13].

• pragma vector always: vectorize the loop regardless of
the efficiency, but the prerequisite is that the compiler
has to believe it is safe to do so.

• pragma ivdep: tell the compiler the potential dependen-
cies don’t exist and it is safe to ignore them.

• pragma simd: launch user-mandated vectorization, which
is the most aggressive directive.

Therefore, in this algorithm, the use of the pragma ivdep is
sufficient to tell the compiler that the potential dependencies
can be safely ignored and then make the innermost loop
vectorized. This directive works fine with the step 1 (line
16) and the first loop in step 2 (line 19) of Algorithm 2.
However, while dealing with the remaining two loops, the
compiler reports “Top test could not be found” indicating the
loop doesn’t fulfill the requirements of auto-vectorization. This
is caused by the compiler’s analysis of the vector dependencies
and the existence of the MIN operations. In Algorithm 2,
we use the data padding technique to generate more efficient

codes for SIMDization by aligning the data of each row. As
a double-edged sword, the additional operations are necessary
to check whether the data can fill the whole block in the last
block of the column. As a result, three MIN operations are
used in the UPDATE function to avoid the computation on the
padded area, shown in Figure 1, when the value of |V | is not a
multiple of block size. The top portion (version 1) of Figure 2
illustrates the effective computation area and its corresponding
codes. Because of the presence of such boundary checking in
the loops, especially the innermost one, the compiler fails to
generate efficient SIMDized codes. Even if we replace such
MIN operations with variables prior to the loops (version 2),
the same problem is still encountered. In order to resolve this
problem, we modify the code by conducting the redundant
computation on the padded area (version 3). Since we don’t
take the results of the redundant computation back as input,
i.e., set k always within 1 to |V |, we can guarantee the
correctness of the result. In the codes of version 3 in the
Figure 2, we remove both MIN operations in the two innermost
loops and at the same time make sure that the elements
outsides the boundary (dark gray area) don’t be used as inputs
by keeping the MIN operation in the outermost loop to load
data. After such loop reconstructions, all the innermost loops
in Algorithm 2 can be efficiently auto-vectorized by Intel
compiler.

C. Manual DLP Optimization

To better understand the mechanisms of the auto-
vectorization adopted by the compiler, we also explore the
SIMD operations by explicitly using the intrinsics from Intel
Xeon Phi’s ISA. The pseudo-code for the core computation
of Floyd-Warshall algorithm is listed in Algorithm 3. The
intermediate vertex between any pair of vertices along the
possible shortest paths is designated by k. The result of the
vector comparison operation between the old and new distance
values, stored in SIMD variable upd v and sum v respectively,
is represented by one 16-bit mask cmp m, where each bit is set
to one if the comparison of corresponding pair of elements is
true. Once the mask is available, it is then served as the write
mask for the masked variant of store operation to update the
distance and path values in the destination memory dist and
path.

In our experiments, we have observed better performance
of the auto-vectorization described in the previous subsection
than our manual implementation in this subsection. Since this
is only our preliminary work to explore the vectorization
on Xeon Phi, there still exists optimization space for better
performance, such as prefetching. On the other hand, the
outperforming result of the auto-vectorized code illustrates
even with the traditional techniques, i.e., the data blocking,
the loop reconstruction, and the proper pragmas, the compiler
can generate the highly efficient code.

D. Thread Level Parallelism

As we move to a higher level of optimization, we use
OpenMP pragmas to exploit thread-level parallelism of In-
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void update(int k0, int u0, int v0) {
    for(k=k0;k<MIN(k0+BLOCK_SIZE, size);k++){
        for(u=u0;u<(u0+BLOCK_SIZE);u++) {
#pragma ivdep           
            for(v=v0;v<(v0+BLOCK_SIZE);v++) {
                if(dmat[u][v]>dmat[u][k]+dmat[k][v])
                    dmat[u][v]=dmat[u][k]+dmat[k][v];
                    pmat[u][v]=k;

}}}}

void update(int k0, int u0, int v0) {
    for(k=k0;k<MIN(k0+BLOCK_SIZE, size);k++) {
        for(u=u0;u<MIN(u0+BLOCK_SIZE,size);u++) { 
#pragma ivdep         
            for(v=v0;v<MIN(v0+BLOCK_SIZE,size);v++) {
                if(dmat[u][v]>dmat[u][k]+dmat[k][v])
                    dmat[u][v]=dmat[u][k]+dmat[k][v];

       pmat[u][v]=k;
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void update(int k0, int u0, int v0) {
    for(k=k0;k<MIN(k0+BLOCK_SIZE, size);k++) {
        int b_u=MIN(u0+BLOCK_SIZE,size);        
        for(u=u0;u<b_u;u++) {
#pragma ivdep           
            int b_v=MIN(v0+BLOCK_SIZE,size);            
            for(v=v0;v<b_v;v++) {
                if(dmat[u][v]>dmat[u][k]+dmat[k][v])
                    dmat[u][v]=dmat[u][k]+dmat[k][v];

       pmat[u][v]=k;
}}}}
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Fig. 2. Three versions of the loop structure modification. Only the loops in
version 3, modified by inserting redundant calculations, are SIMD-friendly

Algorithm 3 Pseudo-code for implementing the 16-wide com-
parison of Floyd-Warshall algorithm

1: for k = k0 to k0 + simd width do
2: path v = avx512 set1(k)
3: row v = avx512 load(dist[k][v0])
4: for u = u0 to u0 + simd width do
5: col v = avx512 set1(dist[u][k])
6: sum v = avx512 add(col v, row v)
7: upd v = avx512 load(dist[u][v0])
8: cmp m = avx512 compare mask(sum v, upd v,>)
9: avx512 mask store(dist, sum v, cmp m)

10: avx512 mask store(path, path v, cmp m)
11: end for
12: end for

tel Xeon Phi’s manycore architecture. OpenMP provides a
portable way to parallelize serial programs on shared memory
parallel systems with many convenient features including the
run-time specification of thread number, thread affinity to
cores, as well as clauses defining lists of private or shared
variables [14]. In our algorithm, because of the data depen-
dencies from the different passes through the outermost loop,
i.e., line 14 of Algorithm 2, this loop is not a good candidate

for OpenMP parallelization. Even for the inner loops, each
computing step relies on the previous step’s result, as shown
in Figure 1. The loops in step 2 and 3, i.e., line 18, 22, and
26, exhibit most parallelism opportunities and dominate the
overall performance. When taking all these into account, we
decide to apply OpenMP pragmas on them to improve the
performance.

E. Select Appropriate Configuration Settings

Our Floyd-Warshall algorithm adopts multiple optimizations
with many configurable parameters, such as the block size,
thread number, and runtime scheduling policy. The choice
of appropriate combination of parameters is a real challenge,
because the amount of possible combinations are numerous
and sometimes the parameters are affected by each other.
For example, the number of threads per core might affect
the block size, because the threads are sharing the same
physical resources. The poor configuration will cause severe
performance downgrade. One possible solution to find the
appropriate combination of parameters is the exhaustive study,
but this is time-consuming and impractical. Especially, when
we need to adjust the size of the input datasets, we have to
re-calculate the best combination of parameters exhaustively.

To obtain some insights of the parameters, some statis-
tical machine learning methods are proposed in previous
research [7], [15], [16] to prune the optimization space. In
this paper, we adopt a tree-based partition approach, known as
Starchart [7]. The general idea can be described as below. First,
the construction of this tree is based on the performance values
from randomly selected samples, which have the format of
(par1, par2, ..., parn, perf ). The parn represents the possible
value of parameter n, while the perf can be defined according
to the optimized objective, such as the execution time or the
power measurement. Then, the differences of the squared sum
between the original whole set and the subsets partitioned
by the possible values of parameters will be calculated. The
parameter which creates the maximum gap in current level
of partitions will be selected and then the execution will be
moved on to the partitions of the two subsets of next level. This
method is based on the application design parameters rather
than performance counter measurements to search for the best
configuration settings. The generated view of the partition tree
can be used to provide insights of the significance of each
parameter and even their relationships. Since the tool Starchart
provides the detailed examples to accomplish the parameter
selection, we use this tool and choose five parameters to
implement the parameter selection, which are listed in the
Table I below. The pool of input values consists of 480
samples generated from our optimized version with various
combinations of the five parameters. We follow the guide of
the paper [7] and randomly select 200 samples to build the
partitioning tree step by step shown in Figure 3.

In the Figure 3 below, we can see that the algorithm exhibits
different behaviors given the two scales of input number of
vertices. In both cases, the choice of appropriate block size
and thread number is most significant, which means these two
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TABLE I
PARAMETER OVERVIEW

Parameter Name Values Description
Data Size 2000,4000 number of vertices

(small, large)
Block Size 16,32,48,64 block dimension

(multiple of SIMD width)
Task Allocation blk,cyc1,cyc2, block or cyclic (various

cyc3,cyc4 chunk sizes) scheduling
Thread Number 61,122,183,244 OpenMP thread number
Thread Affinity balanced,scatter, thread binding

compact to each core

200 samples
mean = 1.47 s

Data Size 

∈{2000}

Data Size 

∈{4000}

97 samples
mean = 0.72 s

103 samples
mean = 2.17 s

Block Size 

∈{16,32,48}

Block Size 

∈{64}

70 samples
mean = 0.60 s

27 samples
mean = 1.05 s

Thread Num 

∈{61}

Thread Num 

∈{122,183,244}

21 samples
mean = 3.20 s

82 samples
mean = 1.91 s

Thread Num 

∈{61}

Thread Num 

∈{122,183,244}

20 samples
mean = 0.72 s

50 samples
mean = 0.56 s

Block Size 

∈{16}

Block Size 

∈{32,48,64}

27 samples
mean = 2.15 s

55 samples
mean = 1.79 s

7 samples
mean = 0.50 s

43 samples
mean = 0.57 s

Task Alloc 

∈{block}

Task Alloc 

∈{cyc1,cyc2,cyc3}

Thread Num 

∈{61,122}

Thread Num 

∈{183,244}

14 samples
mean = 1.99 s

41 samples
mean = 1.73 s

7 samples
mean = 1.96 s

34 samples
mean = 1.68 s

Task Alloc 

∈{block}

Task Alloc 

∈{cyc1,cyc2,cyc3}

Fig. 3. The tree-based partitioning view of the compiler and runtime
parameters of the Floyd-Warshall algorithm on Intel Xeon Phi

factors affect the performance most and are prior parameters
to be considered. As a contrast, the other parameters, such as
thread affinity, can be “ignored” if we don’t have a suitable
block size. The poor choice of the significant parameters may
hide the effects caused by the less significant parameters.
Aggregating the results from the view of Figure 3, we select
the block size of 32, thread number of 244, OpenMP allocation
method block for number of vertices le 2000 and cyclic for
number of vertices > 2000, and OpenMP thread affinity
balanced. In the experimental section of strong scaling, we
will also show the results of the effects by using different
types of thread affinity. Note that although 240 threads are
usually adopted because one core takes charge of the micro-
OS on Xeon Phi, we still observe better performance achieved
by using 244 threads.

IV. PERFORMANCE ANALYSIS

We carry out our experimental evaluations on a compute
node with Intel Xeon Phi coprocessor. This compute node
consists of two Intel Xeon processor E5-2670 running at
2.60 GHz along with 64 GB DDR3 SDRAM, and one Intel
Xeon Phi Knight Corner coprocessor. The detailed hardware
configuration is presented in Table II. The operating system
on the host is the 64-bit CentOS distribution with the 2.6.32-
279 Linux kernel. The Linux micro OS in the coprocessor
is Intel MIC Platform Software Stack release 2.1 on the
2.6.38.8 Linux kernel. The compiler we used is the icc from
the Intel Composer XE 2013 [17]. We use the flag -mmic
and default optimization -O2 to compile the codes for the
native mode. We use OpenMP 3.1 [14] to parallelize the outer
loops and “pragma ivdep” in the inner loops as described in
the previous section. In our evaluations, we use the graph
generator GTgraph [18] to create input datasets of vertices.
This tool allows users to specify the number of vertices and
edges.

TABLE II
TESTING PLATFORMS

Intel CPU Intel Xeon Phi
Code Name Sandy Bridge Knight Corner
Cores 8 ×2 61
Clock Frequency 2.60 GHz 1.238 GHz
Hardware Threads 2 4
SIMD Width 256-bit 512-bit
L1/L2/L3 Cache (KB) 32/256/20480 32/512/-
Memory Type DDR3 GDDR5
Memory Size (GB) 8×8 16
Stream Bandwidth 78 GB/s 150 GB/s

A. Performance Improvements

In this section, we first choose one dataset consisting
of 2000 vertices to illustrate the performance improvements
brought by each optimization, including the data blocking,
the directive-based SIMDization, the loop reconstruction, and
the OpenMP-based parallelism. Then, we compare the default
Floyd-Warshall algorithm parallelized by OpenMP with our
optimized algorithm over various scales of input data sets.
Moreover, we show the performance of the same optimized
codes on CPU to demonstrate the programming portability
between CPU and MIC.

1) Step-by-step Performance Improvement: Figure 4 shows
the performance benefits after applying different levels of
optimizations presented in Section III. Counter-intuitively,
the blocked modification of the algorithm downgrades the
performance by 14%. There are two major reasons. First, the
blocked version brings redundant computations in the step
2 and the step 3. For example, the blocks (i , k) and (k , j )
are recomputed in the step 3, even though they have been
updated in the step 2. Second, the loop structure hinders
the compiler to generate efficient code. In this algorithm,
the performance degradation most comes from the second
reason. Therefore, after applying the loop reconstruction by
removing the MIN operations of two innermost loops, we
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can successfully achieve 1.76-fold speedup over the default
version.

By using the SIMD directives, we can reach another 4.1-
fold speedup over the blocked version from 102.1s to 24.9s.
Actually, we also tried to apply SIMD directives (pragma
ivdep) on the blocked version without loop reconstruction.
Unfortunately, it turns out that the loops inside the last two
UPDATE function, i.e., line 23 and 28 in Algorithm 2, cannot
be correctly auto-vectorized. After removing the MIN opera-
tions, all the innermost loops are successfully vectorized. Note
that even we substitute the MIN operations with corresponding
variables whose values are given by the MIN operations before
the loops, as shown in the version 2 of Figure 2, we cannot
vectorize the loops neither. After checking the assembly codes,
we believe that the MIN operations in the nested loops (k , i , k)
and (k , i , j ) prevent the compiler from analyzing the correct
data dependencies and generating efficient codes. In the future,
we need to design more experiments to investigate how the
compiler optimizations are hindered by such operations.

Considering the width of vector instructions on Intel Xeon
Phi, i.e., 512 bits (16), the speedup we achieved is about one
forth of the theoretical speedup. The gap comes from two
major factors. The first is that not all the portion of the code
can be vectorized, leading to the suboptimal speedup. The sec-
ond is due to the memory-bound nature of the Floyd-Warshall
algorithm. Our implementation of the algorithm performs 2
float operations on three floats including dist [u][k ], dist [k ][v ],
dist [u][v ] that means 3×4=12 bytes of data, and thus gener-
ates 0.17 (ops/byte) of memory bandwidth requirements. In
contrast, the Intel Xeon Phi coprocessor can provide 14.32
(ops/byte) (in Section I), indicating the hardware computing
resources are under-utilized in this application since we cannot
be fast enough to feed the computing resources with sufficient
data.
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Fig. 4. The benefits of different optimization methods on the Floyd-Warshall
algorithm (using 2,000 vertices)

We examine the benefits of OpenMP in accelerating com-
putation by exploiting the abundant thread-level parallelism.
We apply the OpenMP pragmas over the step 2 and step 3
(line 18, 22, and 26 in Algorithm 2). The runtime param-
eters include 244 threads and the balanced thread affinity.
The results show that our optimized implementation of the
Floyd-Warshall algorithm benefits most from the thread-level
parallelism, leading to another 40-fold speedup. The speedup
is relevant with the data block and the thread binding. In our
implementation, the working sets of the distance and path
matrix are rearranged block by block so as to match the
requirement of SIMD operations and data reuse in the cache.
Each block having 32×32 floating-point elements will take
up 4 kB memory. As the computing steps move on in each
iteration, more blocks will be loaded into the cache, i.e., 4
kB, 8 kB, 12 kB for the three phases respectively. Because
the possibility of sharing data between neighboring threads is
relatively high, it is more possible to reuse the data in the
L1 cache loaded by the adjacent threads running in the same
core with the balanced thread binding. For example, in the
third computing step, four threads working on the same row
can share the block (i , k), thereby leading to 36 kB occupied
space (4 blocks (k , j ), 4 blocks (i , j ), and 1 shared block
(i , k)) rather than 48 kB. Considering the 32 kB size of the
L1 cache for each core, running the Floyd-Warshall algorithm
using 4 threads per core is preferable, which also explains the
results shown in Section III-E.
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Fig. 5. OpenMP of three different version of Floyd-Warshall algorithms

In Figure 5, we show the performance of three versions
of Floyd-Warshall algorithm with OpenMP enabled over the
growing data sets from 1,000 to 16,000 vertices. In addition,
considering the compatibility of optimizations on Intel Xeon
Phi and x86 CPUs, we also compare the performance of
the totally same code on CPU and on Xeon Phi. The first
version “Default FW with OpenMP (MIC)”is the default
algorithm (shown in Algorithm 1) using OpenMP pragmas
on line 4. Because OpenMP is a general method to accelerate
programs in multicore/manycore systems, we treat this version
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as the baseline. The figure presents that our optimized version
“Blocked FW with SIMD pragmas + OpenMP (MIC)” can
achieve 1.37-fold to 6.39-fold speedup over the baseline. We
also compare the performance of the manual optimization
using SIMD intrinsics denoted as “Blocked FW with SIMD
Intrinsics + OpenMP (MIC)”. This version has 1.2-fold to 3.7-
fold speedup over the baseline but slower than the compiler di-
rective version “Blocked FW with SIMD pragmas + OpenMP
(MIC) ”. After comparing the assembly codes generated by
these two versions, we found that the compiler can generate
more efficient prefetching instructions and conduct better loop
unrolling than the manual optimization we implemented. This
provides a positive evidence of using “simple” techniques to
fill the Ninja gap [3], which is defined as the performance
gap between the code generated by the expert programmers
(prefer to re-design and re-write the programs, sometimes
even use assembly codes) and that generated by the general
programmers (prefer to use “simple” techniques, such as
pragmas of OpenMP). Compared with the performance on
CPU, our optimized implementation can achieve up to 3.2-fold
speedup without any code modifications. This illustrates the
portability benefit of using Intel Xeon Phi as the accelerator
for existing and optimized applications on multicore CPU.

2) Scalability: In this section, we evaluate the strong
scaling of our optimized Floyd-Warshall algorithm over an
increasing number of threads with different thread affinity
types, i.e. balanced, scatter, and compact, on the 61-core Intel
Xeon Phi. All of the experiments are conducted on the graph
with 16,000 vertices.
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Fig. 6. Strong scaling of our optimized Floyd-Warshall algorithm with
different thread affinity types, i.e., balanced, scatter, and compact (using
16,000 vertices)

Figure 6 illustrates the strong scaling of our optimized
Floyd-Warshall algorithm. We change the thread number from
61 threads to 4 × 61 threads where 61 is the number of
physical cores on the coprocessor. The results indicate that
at the beginning using 61 threads with the balanced thread
binding is preferable and with the growth of thread number,
the application can obtain up to 2-fold, 2.6-fold, and 3.8-fold

speedup using balanced, scatter, and compact, respectively.
Therefore, our optimized Floyd-Warshall algorithm exhibits
good strong scaling. As we mentioned in Section IV-A1,
because of the low ratio of computation to memory access, in-
creasing the thread number in each core by the hyper threading
technique, which is designed to hide the data access latency
from the memory, can benefit the performance obviously. Our
experiment provides the insight that is for the memory bound
applications, here the Floyd-Warshall algorithm, set all threads
is an effective method to achieve better performance.

V. RELATED WORK

Data-intensive applications face some significant challenges
on modern parallel architectures, such as data-driven compu-
tations, irregular data access, and high data load to computa-
tion ratio [10]. There are many studies proposed to resolve
these problems for the graph algorithms on modern CPU
and GPU. Li et al. [19] devise an adaptive runtime system
to switch between different GPU implementations based on
the topology of the input data and runtime parameters to
handle the irregularity of the graphs. Merrill et al. [20]
introduce a scalable BFS implementation on GPUs to resolve
the imbalance problem and achieve significant performance for
various kinds of graphs. Chhugani et al. [21] present another
efficient and scalable BFS on multi-socket, multi-core CPU
inside the single-node. For Floyd-Warshall algorithm, several
researchers have tried to take advantage of modern parallel
architecture to improve the performance. Katz et al. [22] use
the shared memory in GPU to explore the efficiency of Floyd-
Warshall on large-scaled graphs. Matsumoto et al. [23] present
a blocked Floyd-Warshall implementation for the hybrid CPU-
GPU system and focus on reducing the communication over-
head between the host and device. Bluluc et al. [24] use the
Floyd-Warshall as a case study for this genre of algorithms,
including the LU decomposition and transitive closure, to show
the potential performance benefits that can be obtained by
using GPU.

One of the salient trend of the parallelism of processor
design is the growing SIMD width of vector units. In some
applications, the untapped hardware potential prevents the
realizable performance of the parallel architecture from being
effectively exploited. There is a large body of related work on
using manual or automatic vectorization to obtain performance
gains and competitive advantages. Chhugani et al. [25] propose
an efficient implementation of MergeSort using 128-bit SSE
on CPU, which requires programmers to explicitly write
SIMD intrinsics. Park et al. [5] extend this type of research
on the communication avoid FFT algorithm [26] to Intel
Xeon Phi coprocessor. They use the cross-lane instructions
load_unpack and store_pack to reduce the memory
accesses required in the transposition. Satish et al. [3] summa-
rize several compiler auto-vectorization techniques and SIMD-
friendly algorithms. In that paper they also provide a modified
version of MergeSort, where the loops can be auto-vectorized.
Generally, the algorithmic changes to take advantages of the
SIMD instruction set will cause some indispensable overhead
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by increasing the total computational operations. McFarlin
et al. [27] conduct a quantitative analysis of vectorization
efficiency and present one peephole-based automatic SIMD
vectorization system.

With the advent of Intel Xeon Phi co-processors, many
applications from different domains are optimized on this ar-
chitecture. Heinecke et al. [4] optimize the Linpack benchmark
on Intel Xeon Phi using both of the native and hybrid imple-
mentation based on a dynamic scheduling scheme. Wende et
al. [6] extend the Swendsen-Wang multi-cluster algorithms on
Xeon Phi and GPU for the simulation of the two- and three-
dimensional Ising model. In their work, they use the Xeon
Phi’s SIMD intrinsics to optimize the cluster self-labeling
method. Liu et al. [28] use a specialized data structure to
implement an efficient sparse matrix-vector multiplication on
Xeon Phi. For our work in this paper, we focus on using the
“simple” method, including the algorithmic adjustments and
appropriate compiler directives, to tune a graph processing
application and illustrate the parallel programmability on Intel
Xeon Phi.

VI. CONCLUSION

Intel Xeon Phi architecture provides a promising solution
for parallel applications on accelerators, since the program for
multicore CPUs can be running directly on it without any
modification. However, if the intra- and inter-core parallelism
are not utilized appropriately, one can only see a little benefits
of such parallel architecture. Besides, the performance of data-
intensive applications on Xeon Phi coprocessor is constrained
by the memory access bandwidth. Although using AVX-512
registers and SIMD intrinsics of Xeon Phi architecture is
a solution for the bandwidth constraint, the programming
complexity hinders it to be accepted by most of the application
developers. In this paper, we use the Floyd-Warshall algorithm
as the case study of data-intensive applications to show the
step-by-step performance when porting the default program
on Intel Xeon Phi coprocessor. We use the algorithmic adjust-
ments, including the data blocking and the loop reconstruction,
and appropriate compiler directives, to achieve significant
performance gains. With our optimizations, we observed the
281.7-fold speedup over the default serial implementation.
Compared with the default OpenMP implementation, we can
achieve up to 6.4-fold speedup on Intel Xeon Phi. In addition,
we also observe that the exactly same optimized code on Intel
Xeon Phi can get up to 3.2-fold speedup over that on Intel
Xeon multicore processor.

In our experiments, we have observed that the manual
optimization using the SIMD intrinsics doesn’t obtain com-
parable performance gains as the code optimized by the
auto-vectorization of the compiler. There still exist spaces to
optimize performance, such as better prefetching and loop
unrolling. We also plan to extend our work on other classes
of graph processing applications. For example, BFS with the
data-driven computation pattern and the poor data locality,
may have many challenges while being applied on Intel Xeon
Phi. As a result, the road map of our future work has two

branches: first is to use the expertise knowledge to optimize
the graph applications, and try to generalize the common
methods or primitives for the same genre of applications;
second is to use the “simple” method using the algorithmic
adjustments with the traditional optimizations to achieve good
performance. Furthermore, we plan to extend our research on
the large scale systems with Intel Xeon Phi coprocessor to
match the requirement of data processing in big data era.
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