Background and Overview

- Computations on extremely large datasets are increasingly important to progress in a wide variety of commercial and scientific domains.
- Systems such as MapReduce and GraphLab make the ability to harness distributed compute power more readily available.
- Scalable parallelism requires runtime knowledge of application data structures and access patterns.
- Our goal is to develop performance portable abstractions that allow the runtime system to infer application access patterns and localities.

Collaborative Research: XPS: CLCCA:
Performance Portable Abstractions for Large-Scale Irregular Computations
Sandhya Dwarkadas and Michael L. Scott
University of Rochester
Srinivas Aluru
Georgia Institute of Technology

Research Highlights

- Deterministic Parallel Ruby provides scalable parallelism for scripting languages.
- Sharing-Aware Mapping provides users and application developers the ability to harness scalable parallelism in a topology-oblivious manner.

Locality-Aware API

- Algorithmic abstractions that capture access locality.
- Initial target application subclass: tree-based data representation.
 - Computational biology
 - Genome assembly
 - Molecular dynamics

Proposed API Extensions for Trees

\[
generate(u) \rightarrow (CS(u), \text{DEPENDENCY}) \quad (1)
\]
\[
combine(u, v) \rightarrow u', \quad v \in CS(u) \quad (2)
\]

Example: Quad-Tree Representation

- Runtime is responsible for the distributed representation and storage of the tree.

Deterministic Parallel Ruby

- Split-merge parallelism.
- Automatic checking of branch independence.
- TARDIS race detector.
- Language-level (semantic) conflict detection.

Dynamic Enforcement of Determinism in a Parallel Scripting Language [PLDI 2014]

Sharing-Aware Mapping (SAM)

- Reality: Programmers and users must be aware of hardware topology and non-uniform sharing.
- Need better support to improve programmer and user productivity.

- SAM uses low-cost hardware performance counters commonly available on modern processors to identify and separate data and resource sharing.
- Results demonstrate that adaptive online sharing-aware mapping at the scheduler level effectively localizes traffic due to sharing and minimizes resource contention for improved fairness.

Data Sharing or Resource Contention: Toward Performance Transparency on Multicore Systems [Usenix ATC 2015]

Average speedup = 1.23
Min speedup = 0.96
Max speedup = 1.72