Cross-Layer Thermal Reliability Management in 3D Integrated Heterogeneous Processor for Breaking the Power and Bandwidth Walls

Md. Mainul Hassan1, Ajay Sharma1, Byunghyun Jang1, Minsu Choi2, and Yiyu Shi2

1Department of Computer and Information Science, University of Mississippi
2Department of Electrical & Computer Engineering, Missouri University of Science and Technology

Objectives
- 3DHP (3D integrated Heterogeneous Processors) is emerging as a key enabling tech for parallel and scalable heterogeneous computing.
- Objective is to address thermal and reliability integrity issues in 3DHP through a holistic cross-layer approach.

Dynamic Thermal Reliability Management (DTRM) System
- Task assigned to the University of Mississippi as part of this collaborative research project.
- Goal is to reduce thermal hotspots and temperature gradients with minimal possible performance impact for typical workloads on 3DHP via smart thermal and reliability aware task scheduling.
- Leverage techniques such as DWGS (Dynamic Workgroup Scheduling), inherent redundancy (especially on GPU), DVFS (Dynamic Voltage Frequency Scaling), PG (Power Gating).
- Experiments are performed using simulators such as Multi2Sim, McPAT, and HotSpot.

GPU Power Modeling
- Critical for building a realistic and accurate DTRM system.
- Goal is to design a configurable framework to model power and heat dissipation at architectural level.
- Detailed hardware statistics are generated by a cycle accurate architectural simulator called Multi2Sim.
- Power consumption data is generated by McPAT using the generated hardware statistics from Multi2Sim.
- Resulting power consumption data is turned to heat profile by a tool called HotSpot.

Approach

<table>
<thead>
<tr>
<th>Layer (Lead PI)</th>
<th>Issue</th>
<th>Proposed Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runtime Layer</td>
<td>Need for dynamic runtime management for fine-grained runtime</td>
<td>DTRM (dynamic thermal reliability management)</td>
</tr>
<tr>
<td>Architecture</td>
<td>Spatially and temporally varying error rate induced by hotspots</td>
<td>Adaptive EDAC (Error Detection & Correction) & DRAM refresh engine for reliable storage and transfer of data among CPU, GPU, and DRAM dies via TSVs</td>
</tr>
<tr>
<td>Physical Layer</td>
<td>Need for on-chip offline sensing for thermal and mechanical integrity</td>
<td>Distributed temperature and TSView co-sensor framework for 3D stacked CPU+GPU+DRAM heterogeneous processor</td>
</tr>
</tbody>
</table>

Current Progress
- Initial framework for GPU power & heat modeling and heat map visualization are completed.
- Several OpenCL workloads have been ported and developed for the proposed DTRM.
- CPU and memory power modeling are under development.
- Integration of CPU, GPU, and Memory to emulate 3DHP is under planning.

Heat Map Visualization
- Visualize heat map at specific clock cycle while taking into account the interactions across vertical stacks (e.g., CPU and GPU, GPU and Memory).

Future Works
- DTRM software layer will be designed and implemented.
- Power model will be verified.

Current Products
1. Mainul Hassan, "Power and Hotspot Modeling for Modern GPUs," MS Thesis, The University of Mississippi

Acknowledgements
This collaborative research project is being supported by NSF CCF 1337167 and 1337138.