
Eliminating Irregularities of Protein Sequence Search on Multicore Architectures

Jing Zhang1, Sanchit Misra2, Hao Wang1, Wu-chun Feng1

1Dept. of Computer Science, Virginia Tech, {zjing14, hwang121, wfeng}@vt.edu
2Parallel Computing Lab, Intel Corporation, sanchit.misra@intel.com

Abstract—Finding regions of local similarity between biolog-
ical sequences is a fundamental task in computational biology.
BLAST is the most widely-used tool for this purpose, but
it suffers from irregularities due to its heuristic nature. To
achieve fast search, recent approaches construct the index from
the database instead of the input query. However, database
indexing introduces more challenges in the design of index
structure and algorithm, especially for data access through the
memory hierarchy on modern multicore processors.

In this paper, based on existing heuristic algorithms, we
design and develop a database indexed BLAST with the iden-
tical sensitivity as query indexed BLAST (i.e., NCBI-BLAST).
Then, we identify that existing heuristic algorithms of BLAST
can result in serious irregularities in database indexed search.
To eliminate irregularities in BLAST algorithm, we propose
muBLASTP, that uses multiple optimizations to improve data
locality and parallel efficiency for multicore architectures and
multi-node systems. Experiments on a single node demonstrate
up to a 5.1-fold speedup over the multi-threaded NCBI BLAST.
For the inter-node parallelism, we achieve nearly linear scaling
on up to 128 nodes and gain up to 8.9-fold speedup over
mpiBLAST.

Keywords-BLAST; Pairwise sequence alignment; Database
index; Multicore; MPI

I. INTRODUCTION

The Basic Local Alignment Search Tool (BLAST) [1]

performs the fundamental task in life sciences to identify

the most similar sequences from the database to a given

query sequence. The similarities identified by BLAST can be

used to infer functional and structural relationships between

the corresponding biological entities. Although optimizing

BLAST is a rich area of research using multi-core CPUs,

many-core GPUs, and clusters and clouds [2], [3], [4], [5],

[6], [7], [8], [9], [10], [11], [12], [13], [14], BLAST is still

a major bottleneck in biological research. In fact, in a recent

human microbiome study that consumed 180,000 core hours,

BLAST consumed nearly half the time [15]. It still requires

urgent attention in higher level applications.

BLAST adopts a heuristic method to identify the similar-

ity between the query sequence and subject sequence from

the database. Initially, the query sequence is decomposed

into short words with fixed length; and the words are

converted into the query index, i.e., a lookup table [16] or

a deterministic finite automaton (DFA) [17], to store the

positions of words in the query sequence. BLAST reads the

words from the subject sequence and identifies high scoring

short matches, i.e., hits, from the query index. Based on

two or more hits near enough to each other, BLAST forms

the local alignment without the insertions and deletions,

i.e., gaps, (called two-hit ungapped extensions), and then

generates the further extension based on the local alignments

but allows the gaps. Although such a heuristic can efficiently

eliminate unnecessary search space, it makes the execution

of program unpredictable and the memory access irregular,

leading to the limited scope of SIMD parallelism and the

increase of trips to memory.

With the advent of next-generation sequencing (NGS),

the exponential growth of sequence databases is arguably

outstripping the ability to analyze the data. In order to

deal with huge databases, a range of recent approaches of

BLAST build the index based on the subject sequences

of database instead of the input query [18], [19], [20],

[21], [22]. Although these alternatives building the database

index in advance and reusing it for multiple queries can

improve the overall performance, there are more challenges

in the parallel design on multi-core processors. In fact, most

of the tools have to use longer, non-overlapping, or non-

neighboring words to reduce the size of database index,

and consequently reduce the number of hits and extensions,

to fit in the memory. However, as reported by [23], [24],

[25], these methods compromise the sensitivity and accuracy

compared to the query indexed methods.

In this paper, following the existing heuristic algorithm,

we first implement a database indexed BLAST that includes

the overlapping and neighboring words, and provides exactly

the same accuracy as query indexed BLAST, i.e., NCBI-

BLAST. Then, we identify that directly using the existing

heuristic algorithms on the database indexed BLAST will

suffer further from irregularities: when it aligns a query to

multiple subject sequences at the same time, the ungapped

extension, which is the most time-consuming stage, will

access the memory randomly across different subject se-

quences. Even worse is that the penalty from random mem-

ory access cannot be offset by the cache hierarchy even on

the latest multi-core processors. To eliminate irregularities

in BLAST algorithms, we propose muBLASTP, a multi-

threaded and multi-node parallelism of BLAST algorithms

for protein sequence search. It includes four major optimiza-

tion techniques: (1) decoupling hit search and ungapped

extension based on their different memory access patterns,

(2) sorting hits to remove the irregular memory access

and improve data locality in ungapped extension, (3) pre-

2017 IEEE International Parallel and Distributed Processing Symposium

1530-2075/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPS.2017.120

62

IEEE IPDPS, Orlando, Florida, USA, May, 2017

filtering hits not near enough to reduce the overhead of

hit sorting, (4) refactoring the data partitioning method

to improve the load balance and remove the overhead of

contention and synchronization for both intra-node and inter-

node parallelisms. We carry out the experiments for single

node on a dual socket Intel R© Xeon R© Haswell processor

and multi-node on the Stampede supercomputer containing

a dual socket Intel R© Xeon R© Sandy Bridge processor per

node. Our experimental results show significant performance

improvements. Compared to the query index based NCBI-

BLAST and the database index based NCBI-BLAST, our

method can deliver up to 5.1-fold and 3.9-fold speedups,

respectively, on a single node. Using 128 nodes, our method

can deliver nearly linear scaling and gain up to 8.9-fold

speedup over mpiBLAST. To guarantee that every change on

the algorithm does not affect outputs, we verify the outputs

of every stage in muBLASTP are the same to NCBI-BLAST.

II. BACKGROUND AND MOTIVATION

A. Preliminaries

BLAST is a family of programs to approximate the results

of the Smith-Waterman algorithm [26], [27], an optimal

local-alignment algorithm. Instead of comparing the entire

sequence, BLAST uses a heuristic method to reduce the

search space. With only a slight loss in accuracy, BLAST

executes significantly faster than the Smith-Waterman. In

this paper, we focus on BLAST for protein sequence search,

called BLASTP, which is more complicated than the other

variants, e.g., BLASTN for nucleotide sequence search,

because there are 24 possible characters (20 characters for

amino acids, 4 additional ones for special protein states)

in protein sequences while only 4 characters (A/C/T/G) in

nucleotide sequences. The BLASTP algorithm consists of

the four stages as below:

Hit detection finds high-scoring short matches (i.e., hits)

between the query sequence and the subject sequence from

database. The index, which is built on the query or subject

sequences, records the positions of words with fixed length

W . Typically, W is 3 in BLASTP and the words can be

overlapped. For example, in Figure 1(a), ABC at the position

0 and BCA at the position 1 are overlapping words in the

subject sequence. In order to improve the accuracy, the

neighboring words, which contains the word itself and the

similar words to the word, are also considered to be the

hits. For example, the neighboring words ABC and ABA are

treated as the hit to each other in Figure 1(a). For the query

indexed search, the hit detection scans the subject sequence

from left to right, and searches each word in the query index

to find the hits. For the database indexed search, the hit

detection scans the query sequence from top to bottom.

Two-hit ungapped extension finds the pairs of hits close

together, and extends hit pairs to basic alignments without

gaps. The ungapped extension algorithm uses an array,

called last hit array lasthit, to update the position of last

found hit for each diagonal. When a hit is found, the

algorithm computes its distance to the last found hit of the

diagonal. If the distance is less than a predefined threshold,

the ungapped extension is triggered in both backward and

forward directions. In Figure 1(a), when the hit (4,4) is found

in the diagonal 0, the algorithm checks the distance to the

last hit (0,0) in the same diagonal, and triggers the ungapped

extension, which ends at the position (7,7). Then, the ending

position will be written back to the position 0 of last hit

array for diagonal 0. Figure 1(b) shows the details of the

ungapped extension. The extension starts at the end of the

second hit (6,6), and extends to both left and right. For the

left extension starting at the position 6, where letters in both

query and subject sequence are “A”, the accumulated score

increases by 1. The right extension starts at position 7, where

the letters are mismatched, the accumulated score decreases

by 1. The ungapped extension stops when the accumulated

score drops a threshold -2 below the highest accumulated

score during the extension.

(a) Hit detection

(b) Ungapped extension

Figure 1: An example of BLAST algorithm for the most

time-consuming stages — hit detection and ungapped ex-

tension.

The third stage Gapped extension performs a gapped

alignment with dynamic programming on the high-scoring

ungapped regions to determine if they can be part of a larger,

higher-scoring alignment. The fourth stage Traceback re-

aligns the top-scoring alignments from the gapped extension

using a traceback algorithm, and produces the top scores.

63

IEEE IPDPS, Orlando, Florida, USA, May, 2017

The ranked results will be then returned back to the user.

Because the third and fourth stages are not considered as

the performance bottleneck, we focus on optimizing the hit

detection and ungapped extension in this paper, and apply

the optimizations proposed in the previous research [4] to

improve their performance on multi-core processors.

B. Motivation

The existing BLAST algorithm executes the first three

stages interactively: once a hit is detected, the algorithm

immediately triggers the ungapped extension, if the distance

to the last hit in the same diagonal is smaller than the

threshold, and then triggers the gapped extension. For the

query indexed BLAST, since the subject sequences are

aligned one by one to the query, only one last hit array is

needed for the query sequence. Moreover, because most of

the protein sequences are short enough, e.g., no more than

2K characters, the query indexed BLAST can achieve good

performance thanks to the cache systems on modern multi-

core processors, even though the memory access pattern on

those data structures are totally random.

(a) LLC miss rate (b) TLB miss

(c) Stalled cycle(%) (d) Execution time

Figure 2: Profiling numbers and execution time of the query

indexed NCBI-BLAST (NCBI) and the database indexed

NCBI-BLAST (NCBI-db) when searching a query of length

512 on env nr database.

However, irregular memory access in the database indexed

search can lead to a severe locality issue. Because each

word in a database index is including positions from tons

of different subject sequences, the algorithm has to keep

multiple last hit arrays, one for each subject sequence.

When the algorithm scans the query sequence successively,

a new hit may occur in any last hit array, and the ungapped

extension may be triggered for any subject sequence. As

a consequence, the execution path of the program will

jump back and forth across different subject sequences,

leading to the cached data of last hit arrays and subject

sequences flushed out before reuse. Figure 2(a) and 2(b)

compares the LLC (Last-Level Cache) and TLB (Translation

Lookaside Buffer) miss rate, respectively, between NCBI-

BLAST with the query index (NCBI) and NCBI-BLAST

with the database index (NCBI-db), when searching a real

protein sequence having 512 letters on env nr database. Note

that NCBI-db (described in Section III) uses the database

index with overlapping and neighboring words to provide

the same results as the default NCBI-BLAST. It is clear

the database indexed method has much higher LLC and

TLB miss rate, which results in much higher stalled cycle

percentage (Figure 2(c)). As a result, Figure 2(d) shows the

overall performance of database indexed NCBI-BLAST is

even worse than that using the query index, which is anti

the motivation of database index design.

III. BUILDING DATABASE INDEX

In this section, we introduce how to build the database

index. Different with previous studies, our database index

includes the overlapping words and neighboring words,

so that the database indexed BLAST can keep the same

accuracy as query indexed BLAST, e.g., NCBI-BLAST. In

the database index, we put the words (W = 3) as the

key, and the subject sequence ID and the position (offset)

in the subject sequence as the value. Because the size of

database for protein sequences is increasing substantially

and exceeding the capacity of main memory, we use the

index blocking technique to partition the database index to

multiple blocks.

Fig. 3(a) illustrates the details of index blocking. We sort

the subject sequences of database by their lengths, divide

the subject sequences into multiple blocks, each of which

has similar number of characters, and build an index for

each block. To avoid cutting a sequence in the middle, if a

sequence exceeds the block boundary, we put it in the next

block. With the index blocking, the BLAST algorithms can

go through the blocks one by one, and then merge the top-

ranking results of each block after the four stages (presented

in Section II-A). The index blocking can make the database

index of huge databases for protein sequences fit into the

main memory, especially when we enable the overlapping

words. Furthermore, by configuring the size of index block

properly, we can fully utilize the cache hierarchy to achieve

the best performance. We will evaluate the variable perfor-

mances with different block sizes in Section V. To compress

the size, we further optimize the index that records the local

offset of sequences in each block instead of the absolute

sequence IDs to save several bits.

Unlike BLAST for nucleotide sequences (i.e., BLASTN),

which only cares about exact matches, BLASTP algorithms

need to search the neighboring words. When building the

query index, most BLASTP tools, e.g., NCBI-BLAST, also

store the positions of neighboring words for each word.

This method can get all positions of the original word and

its neighboring words through contiguous memory accesses

but result in heavy redundant positions. The redundant

64

IEEE IPDPS, Orlando, Florida, USA, May, 2017

(a) Index blocking (b) Index structure

Figure 3: An example of building a database index.

positions will extremely increase the size of database index.

To overcome this problem, we build an additional lookup

table that contains the neighboring words of each words.

As shown in Figure 3(b), the neighboring word lookup

table puts each word as the key (e.g., ABB), and put its

neighboring words as the values, (e.g., ABB, ABC, etc.). In

hit detection, we first get all neighboring words of a word,

and then loads corresponding positions for each neighbor.

Although this two-level structure of database index requires

slightly extra memory accesses, it can dramatically reduce

the total size of the index.

IV. REMOVING IRREGULARITIES OF BLASTP

A. Decoupling First Three Stages

As discussed in Section II-B, with the database index, the

BLAST algorithms have to operate on multiple last hit arrays

simultaneously, because one word can induce multiple hits

at different subject sequences. The interleaving execution

of hit detection, ungapped extension, and gapped extension

will lead to random memory accesses across different last

hit arrays and subject sequences. In order to avoid the data

swapped in and out of the cache without being fully reused,

we decouple these three stages. That means after loading one

index block, the hit detection will find all hits, and store hits

in a temporal buffer. Because the hits for a single subject

sequence may be distributed randomly in this buffer, we add

an additional stage, i.e., hit reordering, before the ungapped

extension and the following gapped extension.

A new data structure is introduced to record the hits for

fast hit reordering. A hit should contain the subject sequence

ID, diagonal ID, subject position (offset) and query position

(offset). For the sequence ID and diagonal ID, we pack them

into one 32-bit integer as the key, in which the sequence ID

uses the higher bits and the diagonal ID uses the lower bits.

With this packed key, sorting hits by the key once, hits are

sorted in the order for both sequence IDs and diagonal IDs.

For the subject offset and query offset, since a subject offset

or query offset can be calculated with each other in a given

diagonal as diagonal id−query offset or diagonal id−
subject offset, we only keep one of these two offsets, e.g.,

the query offset as shown in Figure 4, and calculate the other

in the runtime of ungapped extension. We realize that today’s

protein database may contain very long sequences (∼ 40k
characters). We don’t build the index for such extreme cases.

Instead, we use a method proposed recently in [14] to divide

the extremely long sequence into multiple short sequences

with the overlapped boundaries and use an assembly stage

to extend the ungapped extension and gapped extension after

finishing the extension inside each short sequence.

B. Hit Reordering with Radix Sort

As shown in Figure 4, the hit detection algorithm will put

hits for different subject sequences in successive memory

locations in the temporal hit buffer. For the word ABC, the

hit detection will put the hits (0,0) and (0,4) for the subject

sequence 0 in the hit buffer, and then put the hits (0,0),

(0,4), and (0,6) for the subject sequence 1 into the following

memory locations of the hit buffer. Because the ungapped

extension can only operate on hits in the same diagonal of a

given subject sequence, we have to reorder the out of order

hits in order.

The radix sort and merge sort are two candidates for the

hit reordering. The radix sort has the O(n) computational

complexity, but it requires several passes over each element,

leading to higher bandwidth utilization. The merge sort has

the higher computational complexity, i.e., O(n log n), but

it can be highly efficient due to the ease of vectorization

and bandwidth friendly. Recent studies [28], [29], [30],

[31], [32] compared the performance of radix sort and

merge sort in modern multi-core processors, and revealed

the best scenarios for each method. In our applications, we

implement both methods with the optimizations proposed

in previous research, and find the radix sort is better for

hit reordering due to the following reasons. First, thanks to

the index blocking technique, each block has hundreds of

kilobytes to several megabytes of hits, which can fit into the

LLC of multi-core processors in our evaluation. Therefore,

the radix sort does not have severe memory bandwidth

issue. Second, because we sort the subject sequences when

building the database index, each block has the similar

length of sequences and so does the length of diagonals.

As a result, the radix sort operating on the sequence IDs

65

IEEE IPDPS, Orlando, Florida, USA, May, 2017

and diagonal IDs can finish sorting all hits by using similar

passes. Thus, the fixed length of keys is friendly to the

radix sort. Third, in the hit detection, the query sequence

is scanned from the beginning to the end, and the hits are

already in the order of query offsets. Because we need to

keep such an order in the key-value sort, the radix sort is

a better choice considering the merge sort may lose a little

bit performance to achieve the stable sort. There are two

ways to implemented the radix sort, one is beginning at

the least significant digit, called LSD radix sort; and the

other is beginning at the most significant digit, called MSD

radix sort. Although MSD radix sort has less computational

complexity because it may not need to examine all keys,

MSD radix sort is too slow for small datasets, e.g., hundred

kilobytes in our case. Therefore, we choose LSD radix sort

to reorder the hits after the hit detection stage.

A B C A A B

Subject Sequence 0
0 1 2 3 4 5

A
B
C
B
A
B
A

0,00

1

2

3

4

5

6

0,4

4,0

Q
ue

ry
 S

eq
ue

nc
e

A
6

(query_offset, subject_offset)

C
A
B

7

8

9

A C
7 8

A
9

6,7

B B C B A C

Subject Sequence 1
0 1 2 3 4 5

B
6

B C
7 8

(0,0)
0, -1

(0,4)
0, -1

(1, 0)
0, -1

(1, 4)
0, -1

(1, 6)
0, -1

(0, -4)
4, -1

(0,0)
4, -1

(0, 1)
6, -1 …

Key (seqId, diagId):32

qOffset:16 dist:16

4,4

0,0 0,4 0,6

Sorted Hits

Radix Sort

(0, -4)
4, -1

(0,0)
0, -1

(0,0)
4, -1

(0, 1)
6, -1

(0,4)
0, -1

(1, 0)
0, -1

(1, 4)
0, -1

(1, 6)
0, -1 …

(0, 0)
4, 4

(1,0)
3, 3 …

Filtering

Unsorted Hits

Hit Pairs

3,3

(1,0)
3, -1

(1, 0)
3, -1

Figure 4: Hit-pair search with hit reordering

Algorithm 1 illustrates BLAST algorithms on the database

index. To achieve better data locality, the algorithm loads

the index blocks one by one (line 1), and go through all

input queries for the index block in the inner loop (line 2).

For each query in the inner loop, the hit detection function

hitDetect() scans the current query, and find hits for all

subject sequences in the index block (line 3). All hits are

sorted with the key, including the sequence ID and diagonal

ID, by LSD radix sort (line 4). After the hits are sorted,

they are passed to the filtering stage (line 7) to pick up

the hit pairs near enough along the same diagonal (line 9),

and store into the internal buffer HitPairs. In the ungapped

extension, the for loop starting from line 15, the hit pairs are

extended one by one in the order of subject sequence IDs

and diagonal IDs. Thus, this method can reuse the subject

sequence during the ungapped extension, while the previous

methods cannot, because they issue the ungapped extension

immediately within the hit detection and have to jump from

one subject sequence to another. Before doing the ungapped

extension, the algorithm will also check if the current hit pair

is covered by the extension of previous hit pair (line 16). If

it is, the algorithm will skip this hit pair.

Algorithm 1: Database Indexed BLASTP Algorithms

with Hit Reordering

input : DI: database index, Q: query sequences
output: U : high-scoring ungapped alignments

1 foreach database index block dIdxBlki in DI do
2 foreach sequence qi in Q do
3 hits← hitDetect(dIdxBlki, qi);
4 sortedHits← radixSort(hits);
5 reachedPos← −1;
6 reachedKey ← −1;
7 foreach hiti in sortedHits do
8 distance← hiti.qOffset− reachedPos;
9 if reachedKey == hiti.key and

distance < threshold then
10 hiti.dist = distance;
11 HitPairs← HitPairs+ hiti;
12 reachedPos← hiti.qOffset;
13 reachedKey ← hiti.key;
14 extReached← −1 reachedKey ← −1;
15 foreach hiti in HitPairs do
16 if reachedKey == hiti.key and

extReached > hiti.qOffset then
17 skip this hit;
18 else
19 ext← ungappedExt(hiti, lastHit, S, qi);
20 if ext.score > thresholdT then
21 U ← U + ext;
22 extReached← ext.end;
23 else
24 extReached← hiti.qOffset;
25 reachedKey ← hiti.key;

C. Hit Pre-filtering
Although we have applied the highly efficient radix sort

in the hit reordering, the overhead to sort millions of hits

per block are not negligible. We introduce a pre-filtering

stage before the hit reordering to filter out hits that cannot

trigger the ungapped extension. We use the similar idea of

the last hit array: an array is created for a subject sequence to

record the current hit in each diagonal; instead of triggering

ungapped extension immediately when a hit pair is detected,

the hit pair is put into the hit buffer. Because we only

use these last hit arrays in the hit detection in which we

don’t access any subject sequence, we do not have the

cache swapping issue in the last hit array method. Figure 5

illustrates the optimized BLAST algorithms with the hit pre-

filtering.
Figure 6 illustrates the number of hits that will be sorted

in the hit reordering stage with and without the hit pre-

filtering. There are only less than 5 percent of hits left after

pre-filtering. As a result, the overhead in radix sort can be

reduced dramatically.
Algorithm 2 shows the optimized BLAST algorithms with

pre-filtering. In the inner loop, the two-dimensional array

66

IEEE IPDPS, Orlando, Florida, USA, May, 2017

(1, 0)
3, 3

(0,0)
4, 4 …

Filtering

Hit Pairs

… …
… 0 1 3 4 … 0 1 2 3 4

Subject Sequence 0 Subject Sequence 1

LastHit Array

5 6
…
…-4

…
…

Radix Sort

(0, 0)
4,4

(1,0)
3,3 … Sorted Hit Pairs

A B C A A B

Subject Sequence 0
0 1 2 3 4 5

A
B
C
B
A
B
A

0,00

1

2

3

4

5

6

0,4

4,0

Q
ue

ry
 S

eq
ue

nc
e

A
6

(query_offset, subject_offset)

C
A
B

7

8

9

A C
7 8

A
9

6,7

B B C B A C

Subject Sequence 1
0 1 2 3 4 5

B
6

B C
7 8

4,4

0,0 0,4 0,6

3,3

Key (seqId, diagId):32

qOffset:16 dist:16

Figure 5: Hit reordering with pre-filtering

0%
1%
2%
3%
4%
5%
6%
7%

0 5 10 15 20Pe
rc

en
ta

ge
 o

f h
its

 re
m

ai
ne

d

Query id

query128 query256 query512
Figure 6: Percentage of hits remained after pre-filtering

with different query length — 128, 256 and 512 from

uniprot sprot database

lastHitArr is used to record the last hits in diagonals of

subject sequences. When a hit is detected (line 4), the algo-

rithm calculates its diagonal ID and sequence ID (line 5), and

accesses the last hit in this diagonal (line 7). If the distance

is smaller than the threshold, this hit pair is stored into the

hit pair buffer (line 10). The corresponding position of last

hit array is also updated to the current hit (line 11). After

pre-filtering, all hit pairs will be sorted using the radix sort

(line 12). Note that Algorithm 1 also has a filtering stage

after the hit reordering (post-filtering) to filter out the hit

pairs that cannot trigger the ungapped extension. We apply

the pre-filtering in our evaluations to reduce the overhead of

hit reordering.

D. Intra-node and Inter-node Parallelisms

Because different query sequences can be aligned to

subject sequences of the database independently, we can par-

allelize the BLAST algorithms by using the multi-threading

programming models on multi-core processors in a compute

node, and MPI across multiple nodes. However, there are

still many challenges to get good performance, especially

in the cache sharing among multiple threads of intra-node,

Algorithm 2: Database Indexed BLASTP Algorithms

with Pre-filtering and Hit Reordering

input : DI: database index, Q: query sequences
output: U : high-scoring ungapped alignments

1 foreach database index block dIdxBlki in DI do
2 foreach sequence qi in Q do
3 hits← hitDetect(dIdxBlki, qi);
4 foreach hitj in hits do
5 diagId← hit.subOff − hit.queryOff ;
6 seqId← hit.seqId;
7 lastHit← lastHitArr[seqId][diagId];
8 distance← hit− lastHit;
9 if distance < thresholdA then

10 hitPairs←
createHitPairs(hit, lastHit);

11 lastHitArr[seqId][diagId]← hit.subOff ;
12 sortedHitPairs← hitSort(hitPairs);
13 extReached← −1;
14 foreach hitPairi in sortedHitPairs do
15 if hitPairi.end.subOff > extReached then
16 ext← ungappedExt(hitPairi, S, qi);
17 if ext.score > thresholdT then
18 U ← U + ext;
19 extReached← ext.end.subOff ;
20 else
21 extReached←

hitPairi.end.subOff ;

and communication and synchronization of MPI processes

of inter-node.

1) Intra-node Parallelism: Algorithm 3 shows the design

of multi-threaded BLAST algorithms with OpenMP. To fully

utilize the cache after loading one index block, we parallel

the inner loop (line 3). When multiple threads execute

BLAST search for different queries in parallel, the index and

subject sequences can be reused and shared among threads

sharing the cache.

Algorithm 3: Optimized Multi-threaded Implementation

input : DI: database index, Q: query sequences
output: G: top-scoring gapped alignments with traceback

1 foreach database index block dIdxBlki in DI do
2 #pragma omp parallel for schedule(dynamic);
3 foreach sequence qi in Q do
4 hits← hitDetect(dIdxBlki, qi);
5 sortedHitPairs← hitF ilterAndSort(hits);
6 ungapExts← ungapExt(sortedHitPairs);

gapExts[i]← gappedExt(ungappedExts);
7 #pragma omp parallel for schedule(dynamic);
8 foreach qi in Q do
9 sortedGapExts[i]← sortGapExt(gapExts[i]);

G← traceback(sortedGapExts[i]);

2) Inter-node Parallelism: Because the BLAST algorithm

is input-sensitive and the execution time is unpredictable,

the load balance of BLAST on multiple nodes could be

a critical problem. The existing methods partition input

queries, database, or both. For example, mpiBLAST [9]

partitions the compute nodes evenly to multiple groups, as

67

IEEE IPDPS, Orlando, Florida, USA, May, 2017

well as the database to multiple blocks. Each node group has

all database blocks, while each node of the group only has

one or several database blocks. At runtime, a dedicated super

node is responsible for scheduling input queries to a node

group. After searching all database blocks on multiple nodes

of the group, the results are merged, sorted, and returned

back (only the top picks). This method is also used on cloud

with MapReduce model [11], [12], [10]. In this paper, we

follow this idea on large scale clusters, but only consider

one group of compute nodes.
3) Data Partitioning: We also improve the data parti-

tioning for the load balance. First, we sort the database

by sequence length, and distribute sequences into database

blocks/partitions in a round robin manner, which can make

every database block to have nearly same number of sub-

ject sequences following a similar distribution of sequence

length. We dispatch the database blocks to compute nodes

evenly, and then build the database index on each node in

parallel. At runtime, we duplicate the input queries to all

compute nodes, and we can get roughly same execution time

for a given query on each blocks. Second, in order to further

reduce the possible skew between MPI processes on multiple

nodes, instead of merging results for individual queries, we

merge results after the local alignment for all queries in

a batch. We also build a data partitioning framework that

can automatically generate a given partitioning algorithm

on top of MPI and MapReduce to implement and tune

performance of different partitioning algorithms, which is

presented in [33].

V. PERFORMANCE EVALUATION

A. Experimental Setup

Platforms: We evaluate our optimized BLASTP algo-

rithms with the database index on modern multi-core CPUs.

For the single-node evaluations, the compute node consists

of two Intel R© Xeon R© Haswell CPUs (E5-2680v3), each of

which has 12 cores, 30MB shared L3 cache, and 32KB L1

cache and 256KB L2 cache on each core. For the multi-node

evaluations, we use 128 nodes of the Stampede supercom-

puter, that was 10th on the Top 500 list of November 2015.

Each node of our multi-node evaluations has two Intel R©

Xeon R© Sandy Bridge CPUs (E5-2680), where each CPU

has 8 cores, 20MB shared L3 cache, and 32KB L1 cache and

256KB L2 cache on each core. All programs are compiled

by the Intel R© C/C++ compiler 15.3 with the compiler flags

-O3 -fopenmp. All MPI programs are compiled using

Intel R© C/C++ compiler 15.3 and MVAPICH 2.2.

Software and workloads used in performance tests may have been optimized for
performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist
you in fully evaluating your contemplated purchases, including the performance
of that product when combined with other products. For more information go to
http://www.intel.com/performance

0%
5%

10%
15%
20%
25%
30%
35%
40%

Query length

swissprot env_nr
Figure 7: Sequence length distributions of uniprot sprot
database and env nr database.

Databases: We choose two typical protein NCBI

databases from GenBank [34]. The first is uniprot sprot
database, including approximately 300,000 sequences with a

total size of 250 MB. The median length and average length

of sequences are 292 and 355 bases (or letters), respectively.

The second is env nr database, including approximately

6,000,000 sequences with the total size at 1.7 GB. The

median length and average length are 177 and 197 bases

(or letters), respectively.

Figure 7 shows the distribution of sequence lengths for

the uniprot sprot and env nr databases. We observe that

the sizes of most sequences from the two databases are in

the range from 60 bases to 1000 bases and there are only

few sequences longer than 1000 bases. Similar observations

were also reported in previous studies for the protein se-

quence [23].

Queries: According to the length distribution shown in

Figure 7, we randomly pick three sets of queries from

target databases with different lengths: 128, 256 and 512.

To mimic the real world workloads, we prepare the fourth

set of queries with the mixed length. This set follows the

distribution of sequence length of the target databases. Each

set has a batch of 128 queries.

Methods: We evaluate three methods on the single node:

the latest NCBI-BLAST 2.30 that uses the query index,

labeled as NCBI; the NCBI-BLAST 2.30 with the database

index as shown in Section III, labeled as NCBI-db; and

our optimized BLAST, labeled as muBLASTP. Note that

because there isn’t an open sourced BLAST tool using

the database index that can get exactly same results of

NCBI-BLAST, we implement the second method with our

own database index structure but follow the NCBI-BLAST

algorithms. On multiple nodes, we compare the MPI version

of muBLASTP with mpiBLAST (version 1.6.0). All per-

formance results in experiments refer to the end to end run

times from submitting queries to getting the final results. The

database sorting time and index build time is not included,

since the index only need to be built once for a given

database.

68

IEEE IPDPS, Orlando, Florida, USA, May, 2017

0E+00

5E+07

1E+08

2E+08

2E+08

3E+08

3E+08

0

5

10

15

20

25

128 256 512 1024 2048 4096

LL
C

M
is

s

Ex
ec

ut
io

n
tim

e
(s

ec
)

Block size (KB)

NCBI-db:time muBLASTP:time

NCBI-db:LLC misss muBLASTP:LLC miss

(a) 128 length

0E+00

5E+07

1E+08

2E+08

0

5

10

15

20

25

128 256 512 1024 2048 4096

LL
C

M
is

s

Ex
ec

ut
io

n
tim

e
(s

ec
)

Block size (KB)

NCBI-db:time muBLASTP:time

NCBI-db:LLC misss muBLASTP:LLC miss

(b) 256 length

0E+00

2E+08

4E+08

6E+08

8E+08

1E+09

0

10

20

30

40

50

60

128 256 512 1024 2048 4096

LL
C

M
is

s

Ex
ec

ut
io

n
tim

e
(s

ec
)

Block size (KB)

NCBI-db:time muBLASTP:time

NCBI-db:LLC misss muBLASTP:LLC miss

(c) 512 length

Figure 8: Performance numbers of multi-threaded NCBI-db and muBLASTP on uniprot sprot database. The batch has 128

queries. The lengths of queries are 128, 256 and 512.

B. Performance with Different Block Sizes

To find the best index block size, we evaluate the per-

formance of database indexed methods, i.e., NCBI-db and

muBLASTP, with different block sizes for the uniprot sprot
database. Figure 8(a) shows the variable performance. We fix

the batch size to 128, having 128 input queries, change the

length of query: 128, 256 and 512, and also change the index

block size from 128 KB to 4 MB, corresponding to 32K to

1M positions in each index block. The figures show obvi-

ously improvements of execution time from muBLASTP in

all cases, and the numbers of LLC miss rate give the hint of

the reason where the performance comes from: much better

cache utilization.

We can also see both the execution time and the LLC miss

rate first decrease when increasing the index block size, but

later increase rapidly after the 512 KB index block size.

The reason for the larger numbers of LLC miss rate for

smaller block sizes is the less efficient use of cache line.

If the index block size is 512 KB, there are nearly 128K

positions (each position is stored in 32-bit Integer). Because

one word has 3 letters, there are 243 = 13824 possible words.

On the average, there are 9 to 10 positions per word (128

* 1024 / 13824), consuming 36 to 40 bytes. Because the

index block stores other information than positions, e.g., the

lookup table for neighboring words, the block size at 512

KB can fully utilize the cache line. If the index block size is

smaller than 512 KB, when positions corresponding to one

word are accessed, the algorithms load a 64 byte cache line

in LLC cache. However, only a part of the cache line has the

positions for the current word, leading to the underutilization

of the cache line. When the index block size is larger than

512 KB, the positions for one word may occupy a full

cache line, or contiguously several cache lines. The hardware

prefetcher may efficiently load the data. However, as shown

in the figure, after 1 MB index block size, the LLC miss

rate increases rapidly. The major reason is the overhead to

access the last hit array. When the block size is 1 MB, there

are nearly 256K positions. Because the length of last hit

array is twice of number of positions, the last hit array

roughly occupies 2 MB memory for each threads, totally

24 MB for 12 threads in our test platform having 30 MB

LLC. If the block size is larger than 1 MB, it is highly

possible the memory access on the last hit array will lead to

severe LLC miss because the last hit array access is random.

Without the optimizations of eliminating irregularities, the

performances of NCBI-db are reduced much more than those

of muBLASTP for larger index block sizes.

Based on the discussion above, to fully utilizing hardware

prefetcher, we need to estimate a proper block size to make

both index block and the lasthit array fit into L3 cache. Since

the lasthit array size for t threads is t∗b∗2, where b is block

size, for the given L3 cache size L3, we can estimate the

optimal block size b by b = L3/(t ∗ 2 + 1).

C. Comparison with Multi-threaded NCBI-BLAST

Figure 9 illustrates the performance comparisons of

muBLASTP with NCBI and NCBI-db on two types of

protein databases. Figure 9(a) and Figure 9(b) show that

muBLASTP can achieve up to 5.1-fold and 3.3-fold

speedups over NCBI on the uniprot sprot and env nr
database, respectively. Compared to NCBI-db, muBLASTP

can deliver up to 3.3-fold and 3.9-fold speedups on the

uniprot sprot and env nr database.

0

20

40

60

80

100

128 256 512 mixed

Ex
ec

ut
in

 ti
m

e
(s

ec
)

Query length

NCBI NCBI-db muBLASTP

(a) uniprot sprot

0
50

100
150
200
250
300
350
400

128 256 512 mixed

Ex
ec

ut
in

 ti
m

e
(s

ec
)

Query length

NCBI NCBI-db muBLASTP

(b) env nr

Figure 9: Performance comparisons of NCBI, NCBI-db and

muBLASTP on uniprot sprot and env nr database.

The figure also illustrates on the larger database, i.e.,

env nr, with the database indexed NCBI-BLAST (NCBI-db)

cannot gain the performance benefit over the query indexed

NCBI-BLAST (NCBI). The major reason is the irregularities

in the BLAST algorithms lead to further more performance

degradation on larger database index. Our optimizations in

muBLASTP are designed to resolve these issues and can

deliver better performance than NCBI-BLAST no matter

which indexing methods are used.

69

IEEE IPDPS, Orlando, Florida, USA, May, 2017

D. Comparison with mpiBLAST on Multiple Nodes

Figure 10 compares the execution time and multinode

scaling of muBLASTP and mpiBLAST on up to 128

nodes. As there is no multithreading in mpiBLAST, we

launch 16 MPI processes per node for mpiBLAST, while

in muBLASTP, we launch one MPI process per node with

16 threads. As expected, our method performs significantly

faster on a single node. On multiple nodes, our method and

mpiBLAST achieve strong scaling efficiencies of 88-92%

and 31-57%, respectively, while scaling from one node (16

cores) to 128 nodes (2048 cores). As a result, on 128 nodes,

we can achieve a speedup between 2.2-fold and 8.9-fold

speedups over mpiBLAST.

1

2

4

8

16

32

64

128

1

4

16

64

256

1024

4096

Sp
ee

du
p

w
rt

 1
6

co
re

s

Ti
m

e
to

 so
lu

tio
n

(s
ec

)

cores

mpiBLAST:time mpiBLAST:speedup

(a) 128 length

1

2

4

8

16

32

64

128

1

4

16

64

256

1024

4096

Sp
ee

du
p

w
rt

 1
6

co
re

s

Ti
m

e
to

 so
lu

tio
n

(s
ec

)

cores

muBLASTP:time muBLASTP:speedup Linear

(b) 256 length

1

2

4

8

16

32

64

128

1

4

16

64

256

1024

4096

Sp
ee

du
p

w
rt

 1
6

co
re

s

Ti
m

e
to

 so
lu

tio
n

(s
ec

)

cores

(c) 512 length

0.5

1

2

4

8

16

32

64

128

1

4

16

64

256

1024

4096

Sp
ee

du
p

w
rt

 1
6

co
re

s

Ti
m

e
to

 so
lu

tio
n

(s
ec

)

cores

(d) mixed length

Figure 10: Comparisons of execution time and speedup of

multi-node implementation of muBLASTP over mpiBLAST

on env nr database.

E. Verification of Alignment Results

To verify that every change or optimization on the BLAST

algorithm does not affect outputs, we verify the outputs of

every stage in our implementations, including NCBI-db and

muBLASTP, are exactly the same as NCBI-BLAST for all

test datasets.

VI. RELATED WORK

Many studies have conducted to improve the performance

of BLAST tools. NCBI BLAST+ [2], [1] uses pthreads

to speedup BLAST on a multicore CPU. On CPU clus-

ters and clouds, TurboBLAST [8], ScalaBLAST [13], mpi-

BLAST [9], Orion [14], Cloudblast [11], and Azureblast [12]

have been proposed. Among them, mpiBLAST is widely

used and can strictly follow the algorithms of NCBI-BLAST,

which is the gold standard. With the efficient task scheduling

and scalable I/O subsystem, mpiBLAST can leverage tens

of thousands of processors to speedup BLAST.

To achieve higher throughput on a single node, BLAST

has also been mapped and optimized onto various accel-

erators, such as GPUs [3], [4], [35], [6], [36], [7]. While

recently many optimizations have been proposed for BLAST

on accelerators, research on multi-core processors is rela-

tively thin, despite the fact that multi-core processors are

the most ubiquitously available hardware to researchers, and

modern multi-core processors are not far behind many-core

processors in peak performance.

Because the hit detection is one of the most time-

consuming parts in BLAST, to achieve higher throughput,

several index structures are developed to boost the hit de-

tection. For example, Deterministic Finite Automaton(DFA),

which is introduced by FSA-BLAST [37], is multiple

times smaller than traditional lookup table and more cache-

conscious, and widely used for fast pattern-matching [38].

To improve cache performance, NCBI-BLAST also intro-

duces a couple of optimizations into lookup table [16].

First is pv array (presence vector), which use a bit array

to present if a cell in the lookup table contains query

positions. The second is thick backbone, where couples of

query positions are embedded into lookup table as there are

few query positions for a cell. However, all these techniques

are designed for the query index, which has many empty

entries and thin entries (few positions in an entry). For the

database index, as there are millions of positions of words

from subject sequences of the database, every entry of word

may contain tons of positions.

Instead of using the query index, a serial of alternative

approaches perform hit detection based on the database

index, such as [19], [21], [18], [20], [22]. Most of these

studies report better performance can be achieved by using

the database index, while in this work, we demonstrate that

once we want to provide the same accuracy with the database

index based methods as NCBI-BLAST, we have to add

the overlapping and neighboring words into the database

index; and then increased index with the irregularities of

traditional BLAST algorithms will kill the performance on

multi-core processors. The preliminary research [22] is the

only database indexed search tool for protein sequence, that

can provide exactly the same accuracy as NCBI-BLAST.

To reorder hits for the ungapped extension, the preliminary

research uses two-level binning method, that groups hits

by diagonal ID first, and then by sequence ID. Compared

with our radix sort with pre-filtering method, the two-level

binning method has a couple of problems: First, it needs

a large amount of preallocated memory for a large number

of bins; Second, without pre-filtering, it suffers from heavy

data movement to bin a huge number of hits.

VII. CONCLUSION AND FUTURE WORK

In this paper, through in-depth performance analysis on

a database indexed BLASTP algorithm based on NCBI-

BLAST, which can provide the exactly same accuracy

70

IEEE IPDPS, Orlando, Florida, USA, May, 2017

as NCBI-BLAST, we first identify that applying original

heuristic algorithm of BLAST on database indexed search

will result in serious performance problem, because of

random memory accesses for ungapped extension across

different subject sequences. To eliminate irregularities in

BLAST algorithm, we propose muBLASTP, an optimized

database indexed BLAST algorithm for protein sequence

search on multicore CPUs and CPU clusters. In muBLASTP,

we decompose hit search and ungapped extension stage,

and sort hits via radix sort to remove irregularities. And

to minimize the overhead of radix sort, we introduce hit

pre-filtering ahead radix sort to filter out hits, which are far

away each other. With refactored data partition mechanism,

we achieve an ideal load balance, and minimum resource

contention and synchronization for both intra-node and inter-

node parallelism. Experimental results that muBLASTP can

achieve up to 5.1-fold speedup over query indexed NCBI-

BLAST, and up to 3.9-fold speedup over database indexed

NCBI-BLAST. On 128-node CPU cluster, our multi-node

implementation can provide linear scaling and achieve up to

8.9-fold speedup over mpiBLAST. In the future work, we

will extend our muBLASTP for very long queries.

ACKNOWLEDGEMENTS

This research was supported in part by the NSF BIGDATA

Program via IIS-1247693 and the NSF XPS Program via

CCF-1337131. We thank Parallel Computing Lab at Intel

Corporation and Advanced Research Computing at Virginia

Tech for support.

REFERENCES

[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic Local
Alignment Search Tool.” J. Molecular Biology, vol. 215, no. 3, pp. 403–410,
1990.

[2] C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. S. Papadopoulos, K.
Bealer, and T. L. Madden, “BLAST+: Architecture and Applications.” BMC
Bioinformatics, vol. 10, p. 421, 2009.

[3] J. Zhang, H. Wang, H. Lin, and W. Feng, “cuBLASTP: Fine-Grained Paral-
lelization of Protein Sequence Search on a GPU,” in 29th IEEE Int’l Parallel
& Distrib. Proc. Symp., 2014.

[4] J. Zhang, H. Wang, and W. Feng, “cuBLASTP: Fine-Grained Parallelization
of Protein Sequence Search on CPU+GPU,” IEEE/ACM Trans. Comput. Biol.
Bioinf., vol. PP, no. 99, pp. 1–1, 2015.

[5] N. Wan, H. Xie, Q. Zhang, K. Zhao, X. Chu, and J. Yu, “A Preliminary Explo-
ration on Parallelized BLAST Algorithm Using GPU,” Computer Engineering
& Science, vol. 31, no. 11, pp. 98–112, 2009.

[6] W. Liu, B. Schmidt, and W. Muller-Wittig, “CUDA-BLASTP: Accelerating
BLASTP on CUDA-enabled Graphics Hardware,” IEEE/ACM Trans. Comput.
Biol. Bioinf., vol. 8, no. 6, pp. 1678–1684, 2011.

[7] K. Zhao, and X. Chu, “G-BLASTN: Accelerating Nucleotide Alignment by
Graphics Processors,” Bioinformatics, vol. 30, pp. 1384–1391, 2014.

[8] R. D. Bjornson, A. H. Sherman, S. B. Weston, N. Willard, and J. Wing,
“TurboBLAST(r): A Parallel Implementation of BLAST Built on the TurboHub,”
in 16th IEEE Int’l Parallel & Distrib. Proc. Symp., 2002.

[9] A. E. Darling, L. Carey, and W.-c. Feng, “The Design, Implementation, and
Evaluation of mpiBLAST,” in 4th Int’l Conf. on Linux Clusters, 2003.

[10] H. Lin, X. Ma, J. Archuleta, W.-c. Feng, M. Gardner, and Z. Zhang, “Moon:
Mapreduce on Opportunistic Environments,” in 19th ACM Int’l Symp. on High
Performance Distrib. Comput. ACM, 2010, pp. 95–106.

[11] A. Matsunaga, M. Tsugawa, and J. Fortes, “CloudBlast: Combining MapReduce
and Virtualization on Distributed Resources for Bioinformatics Applications,” in
4th IEEE Int’l Conf. on e-Science. IEEE, 2008, pp. 222–229.

[12] W. Lu, J. Jackson, and R. Barga, “AzureBlast: A Case Study of Developing Sci-
ence Applications on the Cloud,” in 19th ACM Int’l Symp. on High Performance
Distrib. Comput. ACM, 2010, pp. 413–420.

[13] C. Oehmen, and J. Nieplocha, “ScalaBLAST: A Scalable Implementation of
BLAST for High-Performance Data-Intensive Bioinformatics Analysis.” IEEE
Trans. Parallel Distrib. Syst., vol. 17, no. 8, pp. 740–749, 2006.

[14] K. Mahadik, S. Chaterji, B. Zhou, M. Kulkarni, and S. Bagchi, “Orion:
Scaling Genomic Sequence Matching with Fine-Grained Parallelization,” in High
Performance Comput., Netw., Storage and Analysis, SC14: Int’l Conf. for, Nov.
2014, pp. 449–460.

[15] S. Wu, W. Li, L. Smarr, K. Nelson, S. Yooseph, and M. Torralba, “Large
Memory High Performance Computing Enables Comparison Across Human Gut
Microbiome of Patients with Autoimmune Diseases and Healthy Subjects,” in the
Conf. on Extreme Science and Engineering Discovery Environment: Gateway to
Discovery, ser. XSEDE ’13. New York, NY, USA: ACM, 2013, pp. 25:1–25:6.

[16] J. Papadopoulos. (2008) The Developers Guide to BLAST.
http://www.boo.net/ jasonp/DevelopersGuideToBLAST.doc.

[17] M. Cameron, H. E. Williams, and A. Cannane, “Improved Gapped Alignment in
BLAST,” IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 1, no. 3, pp. 116–129,
2004.

[18] W. J. Kent, “BLAT–the BLAST-like Alignment Tool,” Genome Research, vol. 12,
no. 4, pp. 656–664, apr 2002.

[19] Z. Ning, A. J. Cox, and J. C. Mullikin, “SSAHA: a Fast Search Method for
Large DNA Databases,” Genome Res, vol. 11, no. 10, pp. 1725–9, Oct 2001.

[20] A. Morgulis, G. Coulouris, Y. Raytselis, T. L. Madden, R. Agarwala, and
A. A. Schäffer, “Database Indexing for Production MegaBLAST Searches.”
Bioinformatics, vol. 24, no. 24, p. 2942, 2008.

[21] H. E. Williams, “Cafe: An Indexed Approach to Searching Genomic Databases,”
in 21st Int’l ACM SIGIR Conf. on Research and Development in Information
Retrieval, New York, NY, USA, 1998.

[22] J. Zhang, S. Misra, H. Wang, and W. Feng, “muBLASTP: Database-Indexed
Protein Sequence Search on Multicore CPUs,” BMC Bioinformatics, vol. 17,
no. 1, p. 443, 2016.

[23] M. Cameron, “Efficient Homology Search for Genomic Sequence Databases,”
Ph.D. dissertation, School of Computer Science and Information Technology,
RMIT University, Nov 2006.

[24] X. Wu, “Improving the Performance and Precision of Bioinformatics Algo-
rithms,” Master’s thesis, University of Maryland, Aug 2008.

[25] A. Brahme, Comprehensive Biomedical Physics, 1st ed. Elsevier, Oct 2014,
vol. 6.

[26] T. Rognes, “Faster Smith-Waterman Database Searches with Inter-Sequence
SIMD Parallelisation,” BMC Bioinformatics, vol. 12, no. 1, 2011.

[27] K. Hou, H. Wang, and W.-c. Feng, “AAlign: A SIMD Framework for Pairwise
Sequence Alignment on x86-Based Multi-and Many-Core Processors,” in 30th
IEEE Int’l Parallel & Distrib. Proc. Symp., May 2016, pp. 780–789.

[28] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog, Y.-K. Chen,
A. Baransi, S. Kumar, and P. Dubey, “Efficient Implementation of Sorting on
Multi-core SIMD CPU Architecture,” the VLDB Endowment, vol. 1, no. 2, pp.
1313–1324, 2008.

[29] N. Satish, M. Harris, and M. Garland, “Designing Efficient Sorting Algorithms
for Manycore GPUs,” in 23rd IEEE Int’l Parallel & Distrib. Proc. Symp. IEEE,
2009, pp. 1–10.

[30] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. Lee, D. Kim, and P. Dubey,
“Fast Sort on CPUs and GPUs: a Case for Bandwidth Oblivious SIMD Sort,”
in 2010 ACM SIGMOD Int’l Conf. on Management of Data. ACM, 2010, pp.
351–362.

[31] H. Inoue and K. Taura, “SIMD-and Cache-friendly Algorithm for Sorting An
Array of Structures,” VLDB Endow., vol. 8, no. 11, pp. 1274–1285, 2015.

[32] K. Hou, H. Wang, and W.-c. Feng, “ASPaS: A Framework for Automatic
SIMDization of Parallel Sorting on x86-based Many-core Processors,” in 29th
ACM on Int’l Conf. on Supercomputing. ACM, 2015, pp. 383–392.

[33] H. Wang, J. Zhang, D. Zhang, S. Pumma, and W.-c. Feng, “PaPar: A Parallel
Data Partitioning Framework for Big Data Applications,” in 31st IEEE Int’l
Parallel & Distrib. Proc. Symp. IEEE, 2017.

[34] D. A. Benson, K. Clark, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and E. W.
Sayers, “GenBank.” Nucleic Acids Research, vol. 42, pp. D32–7, 2014.

[35] P. D. Vouzis, and N. V. Sahinidis, “GPU-BLAST: Using Graphics Processors
to Accelerate Protein Sequence Alignment.” Bioinformatics, vol. 27, no. 2, pp.
182–188, 2011.

[36] S. Xiao, H. Lin, and W. Feng, “Accelerating Protein Sequence Search in a
Heterogeneous Computing System,” in 25th IEEE Int’l Parallel & Distrib. Proc.
Symp., 2011.

[37] M. Cameron, H. E. Williams, and A. Cannane, “A Deterministic Finite Au-
tomaton for Faster Protein Hit Detection in BLAST.” J. Computational Biology,
vol. 13, no. 4, pp. 965–978, 2006.

[38] X. Yu, W.-c. Feng, D. D. Yao, and M. Becchi, “O3FA: A Scalable Finite
Automata-based Pattern-Matching Engine for Out-of-Order Deep Packet Inspec-
tion,” in the 2016 Sympos. on Archit. for Netw. and Commun. Syst., ser. ANCS
’16. New York, NY, USA: ACM, 2016, pp. 1–11.

71

IEEE IPDPS, Orlando, Florida, USA, May, 2017

