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Abstract

Background: The Basic Local Alignment Search Tool (BLAST) is a fundamental program in the life sciences
that searches databases for sequences that are most similar to a query sequence. Currently, the BLAST
algorithm utilizes a query-indexed approach. Although many approaches suggest that sequence search with a
database index can achieve much higher throughput (e.g., BLAT, SSAHA, and CAFE), they cannot deliver the
same level of sensitivity as the query-indexed BLAST, i.e., NCBI BLAST, or they can only support nucleotide
sequence search, e.g., MegaBLAST. Due to different challenges and characteristics between query indexing and
database indexing, the existing techniques for query-indexed search cannot be used into database indexed
search.

Results: muBLASTP, a novel database-indexed BLAST for protein sequence search, delivers identical hits
returned to NCBI BLAST. On Intel Haswell multicore CPUs, for a single query, the single-threaded muBLASTP
achieves up to a 4.41-fold speedup for alignment stages, and up to a 1.75-fold end-to-end speedup over
single-threaded NCBI BLAST. For a batch of queries, the multithreaded muBLASTP achieves up to a 5.7-fold
speedups for alignment stages, and up to a 4.56-fold end-to-end speedup over multithreaded NCBI BLAST.

Conclusions: With a newly designed index structure for protein database and associated optimizations in
BLASTP algorithm, we re-factored BLASTP algorithm for modern multicore processors that achieves much
higher throughput with acceptable memory footprint for the database index.
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Background
The Basic Local Alignment Search Tool (BLAST) [1]
is a fundamental algorithm in life sciences that com-
pares a query sequence to a database of sequences, i.e.,
subject sequences, to identify sequences that are the
most similar to the query sequence. The similarities
identified by BLAST can be used to infer functional
and structural relationships between the correspond-
ing biological entities, for example.

With the advent of next-generation sequencing
(NGS), whether at the outset or downstream from
NGS, the exponential growth of sequence databases is
arguably outstripping our ability to analyze the data.
Specifically, the increasing demands to mine sequence
databases for useful information requires substantial
computing power. Consequently, significant research
effort has been invested into accelerating the BLAST
search algorithm.
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Much of this research effort has focused on the paral-
lelization of BLAST on different parallel architectures
due to its compute- and data-intensive nature. NCBI
BLAST+ [2] uses pthreads to speed up BLAST on a
multicore CPU. On CPU clusters, TurboBLAST [3],
ScalaBLAST [4], and mpiBLAST [5] have been pro-
posed. To achieve higher throughput on a per-node
basis, BLAST has also been mapped and optimized
onto various accelerators, including FPGAs [6, 7] and
GPUs [8, 9, 10, 11, 12, 13]. However, there are few re-
cent studies that focus on improving the performance
of CPU implementations of the widely-used BLAST
algorithm.

Most previous studies [1, 14, 15, 4] adopt query
indexing for sequence search. Query indexing uses
a lookup table to record positions of each word in
the input query. These BLAST algorithms then scan
each database sequence to find short matches, extend
these matches to optimal alignments, and then cal-
culate the final similarity scores. In contrast, other
approaches suggest that database indexing can yield
much faster speed than query indexing [16, 17]. Ex-
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amples of such tools include BLAT [1], SSAHA [18],
MegaBLAST [19], and CAFE [20]. However, these
tools cannot provide the same level of sensitivity as the
BLAST algorithm [17, 21, 22], or support nucleotide
sequence search.

SSAHA and BLAT, for example, are significantly
fast for finding near-identical matches. However, to
reduce memory footprint and search space, both
tools build indexes of non-overlapping words from the
database, which leads to extremely fast search but
compromised sensitivity. More specifically, BLAT, for
example, builds database index with non-overlapping
words of length W . With this approach, the size of
database index is significantly reduced, roughly 1

W the
size of an index with overlapping words. However, it
requires a matching region of 2W − 1 letters between
two sequences for guaranteeing to detect it. CAFE
is another search tool supporting protein sequence
with database index, but the search method and scor-
ing phase are substantially changed. MegaBLAST is
the only BLAST variant based on database index.
MegaBLAST accelerates the search for highly simi-
lar sequences by using a large word size (W = 28)
to reduce the search workload and the memory usage.
However, according to the previous studies [23, 24, 25],
increasing word size could sacrifice the sensitivity and
accuracy. Furthermore, MegaBLAST only supports
nucleotide sequences, as the authors claimed that it
is very challenging to support protein sequence based
on their design.

Because query indexing usually contains a high per-
centage of empty slots due to few letters in a query,
most of the optimizations of query indexing seek to
reduce the sparsity of the index, e.g., the thick back-
bone and the position array in NCBI BLAST [26]
and the deterministic finite automaton (DFA) in
FSA-BLAST [14]. For database indexing, which is
full of positions from millions of subject sequences
from a database (e.g., about 6 million sequences in
env nr database, and over 85 million sequences in nr
database), the major challenges differ substantially
from query indexing. First, the size of the database
index can be prohibitive, especially for the protein
database, which has the increased alphabet and the
short word length. Second, unlike nucleotide sequence
search, protein sequence search needs to search the hits
of similar words, i.e. the neighboring words rather than
merely and exactly matched words. Including neigh-
boring words increases the size of the index by one
or two orders of magnitude. Third, BLAST employs
input-sensitive heuristics to quickly eliminate unneces-
sary search spaces. However, this heuristic introduces
significant irregularities in memory access patterns and
in control flow paths, e.g. during two-hit ungapped

extension in protein sequence search. Thus, database
indexing that aligns a query to millions of database
sequences instead of a single database sequence itera-
tively will suffer more from such irregularities, leading
to serious performance degradation.

To overcome these challenges of database indexing
for protein sequence search, we propose muBLASTP
(i.e., microprocessor-based BLASTP), a novel BLASTP
algorithm that includes an advanced index data struc-
ture for sequences of the database and a set of op-
timizations for the BLASTP algorithm. The experi-
mental results show that on a modern multicore ar-
chitecture, namely Intel Haswell, for a single query,
the single-threaded muBLASTP can deliver up to a
4.41-fold speedup for alignment stages, and up to a
1.75-fold end-to-end speedup over the single-threaded
NCBI BLAST. For a batch of queries, the multi-
threaded muBLASTP can achieve up to a 5.7-fold
speedup for alignment stages, and 4.56-fold end-to-end
speedup over the multithreaded NCBI BLAST using
24 threads. The experimental results also shows that
on a older generation multicore architecture, namely
Intel Nehalem, for a single query, muBLASTP still can
deliver up to a 3.8-fold speedup for alignment stages,
and up to a 1.94-fold end-to-end speedup over the
single-threaded NCBI BLAST. For a batch of queries,
the multithreaded muBLASTP can achieve up to a
8.59-fold speedup for alignment stages, and 3.85-fold
end-to-end speedups over the multithreaded NCBI
BLAST using 12 threads. In addition to improving
performance significantly, muBLASTP produces iden-
tical hit returned to NCBI BLAST, which is important
to the bioinformatics community.

Implementation
Database index
The most challenging component of muBLASTP is the
design of the database index. The index should include
the positions of overlapping words from all subject se-
quences of the database. Thus, each position contains
the information for the sequence id and the offset in the
subject sequence, i.e., subject offset. For the protein se-
quence search, the BLASTP algorithm uses the small
word size (W = 3), large alphabet size (22 letters), and
neighboring word comparisons. Because these factors
may make the database index very large, we design
our database index with the following techniques: in-
dex blocking, sorting, and compression.

Index blocking

Fig. 1(a) illustrates the design of index blocking. We
first sort the database by the sequence length; parti-
tion the database into small blocks, where each block
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has the same number of letters; and then build the in-
dex for each block separately. In this way, the search
algorithm can go through the index blocks one by one
and merge the high-scoring results of each block in the
final stage. Index blocking can enable the database
index to fit into main memory, especially for large
databases whose total index size exceeds the size of
main memory. By configuring the size of the index
block, we can achieve better performance. For exam-
ple, if the index block is small enough to fit into the
CPU cache, the hit detection and gapped and un-
gapped extension may achieve better data locality.

Another benefit of using index blocking is to reduce
the index size. Without index blocking and assuming a
total of M sequences in the database, we need log2 M
bits to store sequence ids. After dividing the database
into N blocks, each block contains M

N sequences on

average. Thus, we only need log2dMN e bits to store se-
quence ids. For example, if there are 220 sequences in a
database, we need 20 bits to represent the sequence ids.
With 28 blocks, if each block contains 212 sequences,
then we only need a maximum of 12 bits to store the
sequence ids. In addition, because the number of bits
for storing subject offsets is determined by the longest
sequences in each block, after sorting the database by
the sequence length, we can use fewer bits for sub-
ject offsets in the blocks having short and medium
sequences, and more bits only for the blocks having
extremely long sequences. (This is the reason why we
sort the database by the sequence length.)

Furthermore, index blocking allows us to parallelize
the BLASTP algorithm via the mapping of one block
to a thread on a modern multicore processor. For this
block-wise parallel method to achieve the ideal load
balance, we partition index blocks equally to make
each block have a similar number of letters, instead
of an identical number of sequences. To avoid cutting
a sequence in the middle, if this sequence reaches the
cap of the block size, we put it into the next block.

After the database is partitioned into blocks, each
block is indexed individually. As shown in Fig. 1(b),
the index consists of two parts: the lookup table and
the position array. The lookup table contains aw en-
tries, where a is the alphabet size of amino acids and
w is the length of the words. Each entry contains
an offset to the starting position of the correspond-
ing word. In the position array, a position of the word
consists of the sequence id and the subject offset. For
protein sequence search, the BLASTP algorithm not
only searches the hits of exactly matched words, but it
also searches the neighboring words, which are similar
words. The query index used in existing BLAST tools,
e.g., NCBI BLAST, includes the positions of neigh-
boring words in the lookup table. However, for the

database index in muBLASTP, if we store the posi-
tions for the neighboring words, the total size of the
index becomes extraordinarily large. To address this
problem, instead of storing positions of the neighbor-
ing words in the index, we put the offsets, which point
to the neighboring words of every word, into the lookup
table. The hit detection stage then goes through the
positions of neighbors via the offsets after visiting the
current word. In this way, we use additional stride
memory accesses to reduce the total memory footprint
for the index.

Index compression
As shown in Fig. 1(b), a specific subject offset for a
word may be repeated in multiple sequences. For ex-
ample, the word “ABC” appears in position 0 of se-
quence 1 and 3. In light of this repetition, it is pos-
sible to compress the index by optimizing the storage
of subject offsets. Next, we sort the position array by
the subject offset to group the same subject offsets to-
gether, as shown in Fig. 1(c). After that, we reduce
the index size via merging the repeated subject off-
sets: for each word, we store the subject offset and the
number of positions once and store the corresponding
sequence ids sequentially, as shown in Fig. 1(d). After
the index merging, we only need a small array for the
sorted subject offsets. Furthermore, because the index
is sorted by subject offsets, instead of storing the abso-
lute value of subject offsets, we store the incremental
subject offsets, as noted in Fig. 1(e), and only use eight
(8) bits for the incremental subject offsets. Because the
number of positions for a specific subject offset in one
block is generally less than 256, we can also use eight
(8) bits for the number of positions. Thus, in total, we
only need a 16-bit integer to store a subject offset and
its number of positions.

However, this compressed method presents a chal-
lenge. When we use eight (8) bits each for the incre-
mental subject offset and the number of repeated po-
sitions, there still exist a few cases that the increment
subject offsets or the number of repeated positions is
larger than 255. When such situations are encountered,
we split one position entry into multiple entries to
make the value less than 255. For example, as shown in
Fig. 2(a), if the increment subject offset is 300 with 25
positions, then we split the subject offset into two en-
tries, where the first entry has the incremental subject
offset 255 and the number of repeated position 0, and
the second entry has the incremental subject offset 45
for the 25 positions. Similarly, as shown in Fig. 2(b),
for 300 repeated number of positions, the subject off-
set is split into two entries, where the first entry has
the incremental subject offset 2 for 255 positions, but
the second has the incremental subject offset 0 for an
additional 45 positions.
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Optimized BLASTP algorithm with database index
Because the BLASTP search algorithm introduces a
more irregular memory access pattern when using a
database index (rather than a query index), we pro-
pose and realize hit reordering with two-level binning
in order to mitigate the irregular memory access pat-
tern and irregular control flow, especially for the two-
hit ungapped extension.

Hit reordering with two-level binning
The two-hit ungapped extension in protein sequence
search requires searching for two-hit pairs, where two
hits are on the same diagonal and close together, to
trigger ungapped extensions. The traditional method,
namely the last-hit array-based method, is commonly
used in query-indexed BLAST. The last-hit array
method uses an array to record the last hit of each
diagonal. When a new hit is detected, the algorithm
checks the distance between the newly found hit and
the last hit in the same diagonal of the last-hit array
and updates the last hit with the new hit. Although
the algorithm scans the subject sequence from the be-
ginning to the end, the diagonal access for a new hit
can be random. The random memory accesses on last-
hit arrays is a critical problem for database-indexed
BLAST, which aligns a query to thousands of subject
sequences at once (rather than aligning a subject se-
quence to a single query, as is done in query-indexed
BLAST). Therefore, to improve the performance of
finding two-hit pairs, we propose a new method that
reorders hits with two-level binning.

As shown in Fig. 3, each bin is mapped to a diagonal
in the first level of binning, and the hits are grouped
into bins by diagonal ids, which are calculated by sub-
ject offsets minus query offsets. Because query offsets
can be calculated by subject offsets minus diagonal ids,
we only store the sequence ids and subject offsets di-
rectly from the index in order to to minimize memory
usage.

After the first-level binning, hits having the same di-
agonal ids are placed into the same bins. However, in
each bin, the hits from different sequences are inter-
leaved. Thus, we design a second level of binning to
reorder the hits by sequence ids. In contrast to first-
level binning, where the bin id is equal to the diagonal
id, second-level binning sets the bin id to the sequence
id. Because we scan the bins of the first-level binning
one by one, the hits in a second-level bin are sorted
naturally by the diagonal id. As shown in Fig. 4, a hit
in the second-level bin contains the subject offset and
the diagonal id. With the second-level binning, hits
from different sequences are put into different bins and
sorted by diagonal ids. After that, we can quickly de-
tect two-hit pairs by scanning every second-level bin.

To improve the performance of the two-hit ungapped
extension further, we filter out the hits that cannot be
used to trigger the ungapped extension (instead of di-
rectly putting all the hits into the second-level bins).
This optimization, as captured in Fig. 4, can dramati-
cally reduce processing overhead by reducing memory
usage, and in turn, improving performance.

Specifically, before writing a hit into a second-level
bin, we check its distance to the last hit in last-hit
array. Only if the distance of the current hit to the
last hit satisfies the distance thresholds, i.e., less than
threshold A and greater than or equal to overlap, the
hit can be put into the second-level bins. As the num-
ber of sequences in a index block can be adjusted by
configuring the size of the index block, the size of the
last-hit array may be small enough to fit in the cache:
not only in the last-level cache (LLC) on the Haswell
CPU in our evaluation but also in the L2 cache. As
a result, this optimization to ungapped extension ex-
hibits excellent data locality when accessing the re-
ordered hits, thus improving performance. Moreover,
because our optimization filters out the majority of
hits, we also significantly reduce the time spent on
memory-write operations, and in turn, improve per-
formance further.

If the subject offsets are unsorted in the database
index, as shown in Fig. 5(a), the binning method can
introduce random memory accesses, which would ad-
versely impact performance. However, sorting the sub-
ject offsets in the database index, as shown in in
Fig. 1(c), can resolve this problem. Once the index
sorting is complete, as shown in Fig. 5(b), both the
reads on the database index and the writes on the
first-level binning are contiguous, thus improving the
binning performance via better data locality.

Optimizations via multithreading
In BLAST algorithm, the query sequence is aligned to
each subject sequence in the database independently
and iteratively. Thus, we can parallelize the BLAST
algorithm with OpenMP multithreading on the multi-
core processors in a compute node, e.g., our pair of 12-
core Intel Haswell CPUs or 24 cores in total. However,
achieving robust scalability on such multicore proces-
sors is non-trivial, particularly for a data-/memory-
intensive program like BLAST, which also introduces
irregular memory access patterns as well as irregular
control flow. At a high level, two major challenges ex-
ist for parallelizing BLAST within a compute node: (1)
cache and memory contention among threads on differ-
ent cores and (2) load balancing among these threads.

Because the alignment on each query is independent,
a straightforward approach to parallelization maps the
alignment of each query to a thread. However, this ap-
proach results in different threads potentially accessing
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different index blocks at the same time. In light of the
limited cache size, this approach results in severe cache
contention between threads. To mitigate this cache
contention and maximize cache-sharing across threads,
we exchange execution order, as shown in Algorithm 1.
That is, the first two stages, i.e., hit detection and
ungapped extension, which share the same database
index, access the same database block for all batch
query sequences (from Line 6 to 10). So, we apply the
OpenMP pragma on the inner loop to make different
threads process different input query sequences but on
the same index block. Then, threads on different cores
may share the database index that is loaded into mem-
ory and even cache. The aligned results for each index
block are then merged together for the final alignment
with traceback, as shown on Line 9.

Algorithm 1 Optimized multithreaded muBLASTP
1: function muBLASTP(Q, S, I)
2: Input: Q: queries, S: subject sequences, I: database index
3: Output: Print Result(R)
4: for Index block Ib in I do
5: #pragma omp parallel for schedule(dynamic)
6: for Query Qi in Q do
7: H = Hit Detection(Ib,Qi)
8: U = Ungapped Extension(H,Sb,Qi)
9: Gi = Gi +Gapped Extension(U,Sb,Qi)

10: end for
11: end for
12: #pragma omp parallel for schedule(dynamic)
13: for Query Qi in Q do
14: Ri = Traceback(Gi,Qi,S)
15: end for
16: end function

For better load balancing, and in turn, better per-
formance, we leverage the fact that we already have a
sorted database with respect to sequence lengths. We
then partition this database into blocks of equal size
and leverage OpenMP dynamic scheduling.

Discussion
In muBLASTP, we use the composition-based statis-
tics presented in [27], which is also the default method
used in NCBI BLAST. For other composition-based
statistics methods in NCBI BLAST, such as [28], our
current code base does not support it. We leave this
work for the future versions.

Moreover, the current version of muBLASTP can
only produce the identical results to NCBI BLAST
when both use the default output format (i.e., “pair-
wise” format) and the default composition-based
statistics method. As a result, our software can only
generate the similar results to NCBI BLAST if any
other parameter is set. In the future updates of this
software, we will add the supports for different for-
mats, making muBLASTP to be a comprehensive tool
as NCBI BLAST.

Results
We conducted our experimental evaluations on two dif-
ferent multicore CPU platforms — Haswell platform
and Nehalem platform. Haswell platform consists of
two Intel Haswell Xeon CPUs (E5-2680v3), each of
which has 12 cores, 30MB shared L3 cache, and 32KB
L1 cache and 256KB L2 private cache on each core.
Haswell platform also has 128GB of 2133-MHz DDR
main memory. Nehalem platform consists of two In-
tel Nehalem Xeon CPUs (E5645), each of which has 6
cores, 12MB shared L3 cache, and 32KB L1 cache and
256KB L2 private cache on each core. Nehalem plat-
form also has 24GB of 1600-MHz DDR main memory.
In the experiments, all programs are compiled by an
Intel C/C++ compiler 15.3 with the compiler option
-O3 -fopenmp. In the experiments, all performance
numbers are average values of multiple runs.
Databases. We used three typical protein NCBI

databases from GenBank [29]: uniprot sprot, env nr
and nr. The uniprot sprot database includes approxi-
mately 300,000 sequences with a total size of 250 MB
and whose median length and average length are 292
and 355 amino acids (or letters), respectively. The
env nr database consists of about 6,000,000 sequences
with the total size at 1.7 GB and whose median length
and average length are 177 and 197 amino acids (or let-
ters), respectively. The nr database consists of about
85,000,000 sequences with the total size at 53 GB and
whose median length and average length are 292 and
366 amino acids (or letters), respectively.

Fig. 6 shows the distribution of sequence lengths for
the uniprot sprot, env nr and nr databases. The sizes
of most sequences from the two databases lie in the
range from 60 amino acids to 1000 amino acids and
with only a handful of sequences longer than 1000
amino acids. Similar observations are also reported in
other studies [30, 31, 17].
Queries. The performance of BLAST depends in

part on the query length. Based on the length distri-
bution shown in Fig. 6, we evaluated the performance
of our single-thread muBLASTP using three sets of
queries with different lengths — around 100, 500 and
1000 — where each query set contains 50 queries. For
the evaluation of our multithreaded muBLASTP, we
built three query batches, each containing 100 queries
with lengths around 100, 500, and 1000, respectively.
In addition, we constructed a mixed-length batch of se-
quences by randomly selecting 100 queries of arbitrary
size in order to evaluate the real world performance of
multithreaded muBLASTP, especially with respect to
scalability and load balancing. Table 1 captures the
statistical profile of query lengths from our mixed-
length query batches of the uniprot sprot, env nr and
nr databases, respectively. The details for queries are
given in Additional file 1.
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To align queries with muBLASTP, as the following
commands, we first formatted and sorted the database
using the formatdb and sortdb program, respectively.
And then, we indexed the database with a config-
urable block size using the indexdb program, and fi-
nally aligned queries against the database using the
mublastp program.

formatdb <− i database>

sortdb <− i database> <−o sor ted database>

indexdb <− i so r ted database> \
[− s b l o c k s i z e (K l e t t e r s ) , d e f au l t 128 ]

mublastp <− i query> <−d sor ted database> \
[− t number of threads ]

In experiments, we compared muBLASTP with
NCBI BLAST (version 2.3.0), which was configured
and built with the following commands.

. / c on f i gu r e CC=i c c CXX=icpc \
−−without−gui −−without−debug

make

make i n s t a l l

We formatted database, and ran NCBI BLAST with
default parameters, as noted below.

makeblastdb <−in database> <−dbtype prot>

b la s tp <−query query> <−db database> \
[−num threads number of threads ]

As the usage of indexdb program shown above, the
index block size is a configurable variable. By default,
its value is set to 128K amino acids (or letters), mak-
ing the index block size around 256 KB and fitting
into the L2 cache (256 KB on both Haswell and Ne-
halem). The reason to set the index block size based
on the L2 cache is that since the L2 cache is private
for each core, we could avoid heavy cache contentions
across different threads in the multithreading mode if
the index data can be located from the L2 cache. If
muBLASTP is running with a single thread, we could
increase the index block size and try to fully utilize the
L3 cache as well as the L2 cache. Because increasing
index block size may generate much more hits in each
block, the practical values are 2048K amino acids (let-
ters) on Haswell and 1024K amino acids on Nehalem
in our experiments for the single thread mode.

Index size
Table 2 shows the raw file (FASTA format) size for the
corresponding database (“Database” row), the corre-
sponding index file size with neighboring words (“In-
dex w/ neighbors” row), the index file size without
neighboring words (“Index w/o neighbors” row), and
the compressed index file size (“Compressed index”
row). Except “Database” row, the latter three refer
to the different indexing mechanisms presented in this
paper. According to Table 2, the database index with
neighboring words, when compared to the database
index without neighboring words, can be on the order
of 20 times larger. Index compression achieves 1.47-
fold compression rate for the uniprot sprot database,
1.46-fold compression rate for the env nr database,
and 1.47-fold compression rate for the nr database.
As a result, the compressed (database) index for the
uniprot sprot database is 2 times the size of the origi-
nal database while it is 1.8 times the size of the origi-
nal env nr database, and it is 1.6 times the size of the
original nr database. Because we embedded the offsets
to neighboring words into the database index, our in-
dex without neighboring words can achieve identical
results as the index with neighboring words but with
significantly less memory usage.

Performance comparison for alignment stages
To evaluate the performance improvement with index
structure and re-factored BLAST algorithm, we used
gettimeofday() functions to measure the execution
time of all four alignment stages for both muBLASTP
and NCBI BLAST without I/O.

Single-threaded muBLASTP vs. single-threaded NCBI
BLAST.
Fig. 7 shows the speedups of singled-threaded
muBLASTP over single-threaded NCBI BLAST on
Haswell platform, using different query lengths.
muBLASTP achieves 2.22∼3.35-fold, 1.17∼1.7-fold,
and 1.06∼1.3-fold speedups over NCBI BLAST on
the uniprot sprot database with queries of length 100,
500, and 1000, respectively. For the env nr database,
muBLASTP achieves 2.24∼3.51-fold, 1.3∼1.77-fold,
and 1.26∼1.39-fold speedups with queries of length
100, 500 and 1000, respectively. For the nr database,
muBLASTP achieves 2.3∼4.41-fold, 1.34∼1.5-fold,
and 1.21∼1.26-fold speedups with queries of length
100, 500 and 1000, respectively. muBLASTP achieves
higher speedup on the larger database because the
BLAST algorithm on a large database needs to pro-
cess significantly more hits, i.e., spending more time
on hit detection and two-pair hit ungapped extension,
which are the stages that our optimizations focus on.

Fig. 8 shows the speedups of singled-threaded
muBLASTP over single-threaded NCBI BLAST on
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Nehalem platform, using different query lengths.
muBLASTP achieves 1.6∼3.17-fold, 1.33∼1.47-fold,
and 1.09∼1.3-fold speedups over NCBI BLAST on
the uniprot sprot database with queries of length 100,
500, and 1000, respectively. For the env nr database,
muBLASTP achieves 2.38∼3.8-fold, 1.3∼1.53-fold,
and 1.14∼1.25-fold speedups with queries of length
100, 500 and 1000, respectively. For the nr database,
muBLASTP achieves 2.0∼3.21-fold, 1.1∼1.49-fold,
and 1.00∼1.25-fold speedups with queries of length
100, 500 and 1000, respectively.

Multithreaded muBLASTP vs. multithreaded NCBI
BLAST.
When using query batches of different lengths, Table 3
shows that our multithreaded muBLASTP on Haswell
platform achieves up to a 5.7-fold speedup over multi-
threaded NCBI BLAST when using the uniprot sprot
database, up to a 2.67-fold speedup when using the
env nr database, and up to a 1.94-fold speedup when
using the nr database.

Table 3 shows that our multithreaded muBLASTP
on Nehalem platform achieves up to a 8.2-fold speedup
over multithreaded NCBI BLAST when using the
uniprot sprot database, up to a 4.52-fold speedup
when using the env nr database, and up to a 8.59-
fold speedup when using the nr database. In this
case, muBLASTP achieves much higher speedups on
the smaller uniprot sprot database, which indicates
that muBLASTP delivers better scalability than NCBI
BLAST on smaller databases.

We also tested muBLASTP performance with query
batches of mixed lengths. Table 3 shows that on
Haswell platform muBLASTP achieves a 4.16-fold
speedup over NCBI BLAST on uniprot sprot database,
a 1.41-fold speedup over NCBI BLAST on env nr
database, and a 1.49-fold speedup on nr database.
Table 3 also shows that on Nehalem platform
muBLASTP achieves a 2.82-fold speedup over NCBI
BLAST on uniprot sprot database, a 2.34-fold speedup
over NCBI BLAST on env nr database, and a 4.1-fold
speedup on nr database.

Multithreaded muBLASTP vs. single-threaded
muBLASTP.
We also evaluated parallel efficiency of multithreaded
muBLASTP. Table 4 shows that multithreaded
muBLASTP using 24 threads on Haswell platform
can achieve 19.8∼21.6-fold speedups over single-thread
muBLASTP with query batches of different lengths
on different databases. Table 4 also shows that multi-
threaded muBLASTP using 12 threads on Nehalem
platform can achieve 10.7∼11.6-fold speedups over
single-thread muBLASTP with query batches of dif-
ferent lengths on different databases.

End-to-end performance comparison
To evaluate the end-to-end performance of muBLASTP,
we measured the end-to-end execution time of the pro-
gram via Linux time command. To minimize the im-
pacts disk I/O, we loaded database and index into
RAM disk, i.e., tmpfs, which is a memory based file
system for fast and stable disk I/O.

Single-threaded muBLASTP vs. single-threaded NCBI
BLAST.
Fig. 9 shows the speedups of singled-threaded
muBLASTP over single-threaded NCBI BLAST on
Haswell platform, using different query lengths.
muBLASTP achieves 1.12∼1.63-fold, 1.22∼1.33-fold,
and 1.01∼1.13-fold speedups over NCBI BLAST on
the uniprot sprot database with queries of length 100,
500, and 1000, respectively. For the env nr database,
muBLASTP achieves 1.5∼1.75-fold, 1.05∼1.2-fold,
and 1.26∼1.39-fold speedups with queries of length
100, 500 and 1000, respectively. For the nr database,
muBLASTP achieves 1.6∼1.74-fold, 1.27∼1.41-fold,
and 1.05∼1.17-fold speedups with queries of length
100, 500 and 1000, respectively.

Fig. 10 shows the speedups of singled-threaded
muBLASTP over single-threaded NCBI BLAST on
Nehalem platform, using different query lengths.
muBLASTP achieves 1.16∼1.89-fold, 1.25∼1.39-fold,
and 1.02∼1.2-fold speedups over NCBI BLAST on
the uniprot sprot database with queries of length 100,
500, and 1000, respectively. For the env nr database,
muBLASTP achieves 1.57∼1.94-fold, 1.09∼1.47-fold,
and 1.01∼1.16-fold speedups with queries of length
100, 500 and 1000, respectively. For the nr database,
muBLASTP achieves 1.67∼1.87-fold, 1.2∼1.31-fold,
and 1.02∼1.09-fold speedups with queries of length
100, 500 and 1000, respectively.

Multithreaded muBLASTP vs. multithreaded NCBI
BLAST.
When using query batches of different lengths, Table 5
shows that our multithreaded muBLASTP on Haswell
platform achieves up to a 4.56-fold speedup over multi-
threaded NCBI BLAST when using the uniprot sprot
database, up to a 2.62-fold speedup when using the
env nr database, and up to a 1.81-fold speedup when
using the nr database.

Table 5 shows that our multithreaded muBLASTP
on Nehalem platform achieves up to a 3.85-fold
speedup over multithreaded NCBI BLAST when using
the uniprot sprot database, up to a 2.2-fold speedup
when using the env nr database, and up to a 1.56-fold
speedup when using the nr database.

We also tested muBLASTP performance with query
batches of mixed lengths. Table 5 shows that on
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Haswell platform muBLASTP achieves a 3.28-fold
speedup over NCBI BLAST on uniprot sprot database,
1.38-fold speedup over NCBI BLAST on env nr
database, and a 1.47-fold speedup on nr database. Ta-
ble 5 shows that on Nehalem platform muBLASTP
achieves a 2.61-fold speedup over NCBI BLAST on
uniprot sprot database, a 1.61-fold speedup over NCBI
BLAST on env nr database, and a 1.24-fold speedup
on nr database.

Multithreaded muBLASTP vs. single-threaded
muBLASTP.
We also evaluated parallel efficiency of multithreaded
muBLASTP with end-to-end execution time. Ta-
ble 6 shows that multithreaded muBLASTP using
24 threads on Haswell platform can achieve up to
a 20.5-fold speedup over single-thread muBLASTP
with query batches of different lengths on different
databases. Table 6 also shows that multithreaded
muBLASTP using 12 threads on Nehalem platform
can achieve up to a 11.1-fold speedup over single-
thread muBLASTP with query batches of different
lengths on different databases.

Conclusions
In this paper, we present muBLASTP, a database-
indexed BLASTP that delivers identical hits returned
to NCBI BLAST for protein sequence search. With
our new index structure for protein databases and
associated optimizations in muBLASTP, we deliver
a re-factored BLASTP algorithm for modern multi-
core processors that achieves much higher through-
put with acceptable memory usage for the database
index. Those optimizations and techniques in index
structure and BLAST algorithm, such as index com-
pression, sorting index, two-level binning, etc., are not
merely beneficial to database-indexed search for pro-
tein sequence, also can be propagated to nucleotide
sequence search and other alignment algorithms.

On a modern compute node with a total of 24 In-
tel Haswell CPU cores, the multithreaded muBLASTP
achieves up to a 5.7-fold speedup for alignment stages,
and up to a 4.56-fold end-to-end speedup over multi-
threaded NCBI BLAST. muBLASTP also can achieve
significant speedups on an older generation plat-
form with dual 6 cores Intel Nehalem CPU, where
muBLASTP delivers up to a 8.59-fold speedups for
alignment stages, and up to a 3.85-fold end-to-end
speedup over multithreaded NCBI BLAST.

In the future, we plan to extend muBLASTP to
many-core architectures, e.g., Intel Xeon Phi, which
currently contains 60 cores and supports 240 threads.
The more complex cache/memory hierarchy may lead
to significant challenges in achieving high throughput

for the multithreaded BLAST algorithm. In addition,
we plan to integrate our database-indexed BLASTP
into mpiBLAST, thus combining intra-node and inter-
node parallelism for even greater performance benefit
on a high-performance computing cluster.
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Fig. 1 An example of building a compressed database index. The figure shows the flow from the original database to the compressed
index. (a) Index blocking phase partitions the sorted database into blocks. (b) Basic indexing phase generates basic index, which
contains positions of all words in the database. (c) Index sorting sorts positions of each word by subject offsets. (d) Index
compression-merge merges positions with the same subject offset. (e) Index compression-increment done on the merged positions
generates increments of subject offsets and sequence ids

Fig. 2 An example of resolving overflows in the compressed
index. (a) Resolving the overflow in the number of positions.
(b) Resolving in the incremental subject offsets
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Fig. 3 An example of two-level binning without filtering.
First-level binning groups hits into bins according to their
diagonal ids. Second-level binning scans hits in the first-level
bins bin by bin, and regroups hits into second-level bins by
their sequence ids

Fig. 4 An example of two-level binning with filtering. While
scanning hits in first-level bins, we check the distance of each
hit to the last hit in the last-hit array. Only if the distance fits
into the threshold, the hit can be put into the second-level bins

Fig. 5 An example of first-level binning hits with unsorted
index and sorted index. In the example, the hits are generated
for the word in query offset 1. (a) First-level binning with
unsorted index. (b) First-level binning with sorted index

Fig. 6 Sequence length distribution of uniprot sprot, env nr
and nr database

Fig. 7 Speedup for alignment stages of single-threaded
muBLASTP over single-threaded NCBI BLAST on Haswell
platform with different query lengths on uniprot sprot
database (a), env nr database (b) and nr database (c)

Fig. 8 Speedup for alignment stages of single-threaded
muBLASTP over single-threaded NCBI BLAST on Nehalem
platform with different query lengths on uniprot sprot
database (a), env nr database (b) and nr database (c)

Fig. 9 End-to-end speedup of single-threaded muBLASTP
over single-threaded NCBI BLAST on Haswell platform with
different query lengths on uniprot sprot database (a), env nr
database (b) and nr database (c)

Fig. 10 End-to-end speedup of single-threaded muBLASTP
over single-threaded NCBI BLAST on Nehalem platform with
different query lengths on uniprot sprot database (a), env nr
database (b) and nr database (c)
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Tables

Table 1 Statistics of query lengths (amino acids) in mixed-length
query batches

Target
database

Average
length

Median
length

Maximum
length

uniprot sprot 333 289 1187
env nr 191 175 504
nr 312 263 1127

Table 2 Size of database and index files in gigabytes (GB)

uniprot sprot env nr nr

Database 0.25 1.89 52.4
Index w/ neighbors 18.1 116.6 N/A
Index w/o neighbors 0.76 5.82 122.3
Compressed index 0.51 3.97 83.1
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Table 3 Speedup for alignment stages of multithreaded muBLASTP over multithreaded NCBI BLAST on Haswell platform (with 24
threads) and Nehalem platform (with 12 threads) with query batches of different query length. Aver is the average value of three runs,
and SD is the standard deviation of three runs

Query length

Haswell platform Nehalem platform

uniprot sprot env nr nr uniprot sprot env nr nr

Aver SD Aver SD Aver SD Aver SD Aver SD Aver SD

100 5.7 0.013 2.67 0.013 1.94 0.021 8.2 0.013 4.52 0.017 8.59 0.015
500 3.22 0.012 1.44 0.012 1.39 0.014 2.25 0.018 1.69 0.018 2.69 0.016

1000 2.85 0.016 1.35 0.013 1.20 0.015 1.76 0.018 1.41 0.016 1.72 0.015
mixed 4.16 0.013 1.41 0.012 1.49 0.012 2.82 0.018 2.34 0.013 4.1 0.015

Table 4 Speedup for alignment stages of multithreaded muBLASTP over single-threaded muBLASTP on Haswell platform (with 24
threads) and Nehalem platform (with 12 threads) with query batches of different query length. Aver is the average value of three runs,
and SD is the standard deviation of three runs

Query length

Haswell platform Nehalem platform

uniprot sprot env nr nr uniprot sprot env nr nr

Aver SD Aver SD Aver SD Aver SD Aver SD Aver SD

100 19.8 0.013 20.2 0.016 20.0 0.013 10.7 0.014 11.2 0.012 11.6 0.012
500 20.9 0.022 20.6 0.011 21.4 0.017 10.9 0.012 11.5 0.013 11.5 0.012

1000 21.4 0.013 21.2 0.013 21.5 0.012 10.8 0.012 11.3 0.013 11.6 0.018
mixed 21.4 0.012 21.5 0.017 21.6 0.013 10.9 0.018 11.3 0.018 11.5 0.015

Table 5 End-to-end speedup of multithreaded muBLASTP over multithreaded NCBI BLAST on Haswell platform (with 24 threads)
and Nehalem platform (with 12 threads) with query batches of different query length. Aver is the average value of three runs, and SD is
the standard deviation of three runs

Query length

Haswell platform Nehalem platform

uniprot sprot env nr nr uniprot sprot env nr nr

Aver SD Aver SD Aver SD Aver SD Aver SD Aver SD

100 4.56 0.002 2.62 0.008 1.81 0.010 3.85 0.001 2.2 0.002 1.56 0.001
500 2.45 0.005 1.41 0.002 1.35 0.002 1.82 0.002 1.34 0.001 1.17 0.002

1000 2.74 0.003 1.32 0.003 1.19 0.001 1.71 0.002 1.13 0.001 1.05 0.002
mixed 3.28 0.005 1.38 0.002 1.47 0.002 2.61 0.001 1.61 0.002 1.24 0.002

Table 6 End-to-end speedup of multithreaded muBLASTP over single-threaded muBLASTP on Haswell platform (with 24 threads) and
Nehalem platform (with 12 threads) with query batches of different query length. Aver is the average value of three runs, and SD is the
standard deviation of three runs

Query length

Haswell platform Nehalem platform

uniprot sprot env nr nr uniprot sprot env nr nr

Aver SD Aver SD Aver SD Aver SD Aver SD Aver SD

100 16.2 0.001 16.8 0.002 17.3 0.003 9.2 0.001 9.9 0.001 6.3 0.003
500 20.4 0.002 20.3 0.002 20.5 0.002 11.1 0.004 10.6 0.003 11.1 0.002

1000 19.4 0.002 19.3 0.001 19.6 0.004 10.7 0.002 10.2 0.002 10.9 0.001
mixed 19.2 0.001 19.1 0.002 19.3 0.003 10.3 0.002 11.1 0.002 10.4 0.002
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