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Abstract

By scheduling multiple applications with complemen-
tary resource requirements on a smaller number of com-
pute nodes, we aim to improve performance, resource uti-
lization, energy consumption, and energy efficiency simul-
taneously. In addition to our naı̈ve consolidation approach,
which already achieves the aforementioned goals, we pro-
pose a new energy efficiency-aware (EEA) scheduling pol-
icy and compare its performance with current state-of-the-
art policies, namely round-robin (RR), resource utilization-
aware (RUA), adaptive shortest-job first (ASJF) in order to
support the consolidation of applications in heterogeneous
computing systems, and in turn, simultaneously improve
performance, resource utilization, energy consumption, and
energy efficiency, as measured by the energy-delay prod-
uct. Of particular note, our experimental results on a real
heterogeneous computing system demonstrate the efficacy
of our scheduling policies by improving overall energy
efficiency by an order of magnitude.

Keywords-consolidation, CPU, GPU, energy efficiency,
scheduling, heterogeneous computing, resource utilization,
benchmarks, energy-delay product

I. Introduction

In high-performace computing (HPC), we have wit-
nessed a dramatic increase of data-parallel architectures,
such as graphics processing units (GPUs), due to their
superior performance and energy efficiency compared to
traditional CPUs. In the Top500 list [18] published in
June 2013, 8.6% of the systems, including two of the
top ten supercomputers, were equipped with GPUs. GPU-
accelerated systems also accounted for three of the top

five supercomputers in the latest Green500 list [2]. Despite
the great potential of these GPU-accelerated heterogeneous
computing systems, applications have difficulty in fully
utilizing both the CPU and GPU. As a consequence,
resource utilization is relatively low in these heterogeneous
systems, as reported in recent studies [14].

One way to improve resource utilization of HPC sys-
tems is to consolidate applications, i.e., by scheduling mul-
tiple applications with complementary resource require-
ments on the same set of compute nodes. Although such
consolidation has been extensively studied on CPU-based
systems, there are unique challenges and opportunities in
consolidating applications on heterogeneous systems. In
particular, with the introduction of portable programming
models such as OpenCL [8], an application can run on
either CPUs or GPUs with the same source code. The
challenge is to decide where to schedule an application
kernel, i.e., on the CPU or GPU. Existing studies in
consolidating applications via CPU-GPU co-scheduling
have focused on performance [12], [13].

With power and energy consumption becoming first-
order constraints in designing next-generation supercom-
puters [3], we investigate the feasibility of consolidating
applications to reduce power and energy consumption
while maintaining or improving performance in heteroge-
neous computing systems. In contrast to the performance-
oriented consolidation of applications, which has been
extensively studied [4], [12], [13], we seek to consolidate
applications to reduce energy consumption and reap its
associated benefits. Though the power consumption of
modern GPUs, e.g., AMD Radeon HD 7970 at 250 W,
may be quite high, energy consumption is the product of
execution time and power. If the improvement in execution
time on the GPU cannot offset its higher power consump-
tion, scheduling an application on the GPU may lead to
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better performance but worse energy efficiency.
In this paper, our application workloads have source-

code portability, i.e., they can run on either CPUs or GPUs
with the same source code. Our motivation is to consolidate
a set of such applications running on different nodes to one
node having GPU and to schedule each of them running
on CPU or GPU for better energy efficiency.

To evaluate our approach, we use the SNU NPB
suite [1], which is a well-tuned NPB benchmark suite
that uses OpenCL, as the driving applications. We first
implement a naı̈ve consolidation mechanism to schedule
original CPU workloads running on CPU and GPU work-
loads running on GPU of the same node at the same time.
The results have demonstrated the naı̈ve consolidation
approach can save 15% and 33% energy on two different
machines, each with a GPU, respectively, with a mere
2% and 1% performance degradation due to contention
on the CPU. The results also illustrate that the naı̈ve
consolidation mechanism cannot fully utilize the CPU and
GPU resources.

We then propose an energy efficiency-aware (EEA)
consolidation algorithm for a heterogeneous CPU+GPU
system. Our algorithm adopts the ratio of the energy-
delay product (EDP) on the CPU and GPU as the metric
and first schedules the most CPU energy-efficient jobs to
run on the CPU and most GPU energy-efficient jobs to
run on the GPU. We compare our design with several
scheduling algorithms in the recent literature, including
round-robin (RR), resource utilization-aware (RUA) and
adaptive shortest-job first (ASJF).

Our research makes the following contributions;
1) An evaluation of the performance and energy con-

sumption of heterogeneous CPU+GPU computing
systems — with and without consolidating applica-
tions. (The empirical results show that better energy
consumption can be achieved even when using a
naı̈ve consolidation mechanism. Our analysis also
indicates the opportunities to improve consolidation.)

2) An energy efficiency-aware (EEA) algorithm for
consolidating application jobs to run on the CPU
and GPU of the same node. (We evaluate our EEA
algorithm against several well-known scheduling al-
gorithms to demonstrate that our design can provide
better performance and energy consumption.)

The rest of the paper is organized as follows. In
Section II, we provide the necessary background about the
topics discussed in this paper and distinguish our work
from existing research in this area. In Section III, we
first implement and evaluate a naı̈ve consolidation strategy
to demonstrate the benefit of consolidation and analyze
the drawbacks of this naı̈ve design. We then present our
approach for energy efficiency-aware (EEA) consolidation.
Section IV presents an evaluation of our energy efficiency-

aware (EEA) consolidation algorithm and compare its
efficacy with respect to the current state of the art. In
Section V, we conclude the paper and introduce our future
work.

II. Background and Related Work

We first provide a brief description about graphical
processing units (GPUs) and the driving applications as
background information, followed by a discussion of re-
lated work.

A. Programming on GPGPUs

Originally, a GPU was a special-purpose processor that
was designed solely for graphics rendering. With the vertex
and fragment shaders added to the graphics pipeline, GPUs
are increasingly being used for general-purpose computa-
tion, and in turn, supporting general-purpose computation
on GPUs (GPGPUs). With the delivery of programming
models such as NVIDIA’s Compute Unified Device Ar-
chitecture (CUDA) [11], and more broadly, OpenCL [17],
many applications have been parallelized on GPUs to take
advantage of their computational horsepower.

Generally, a GPU contains a set of single-instruction,
multiple-data (SIMD) streaming multiprocessors (SMs).
Each SM consists of a set of scalar cores, as illustrated
in Figure 1. On each SM, the on-chip memory, including
register, shared memory, constant cache, and texture cache,
can be accessed by threads executing on the SM. Shared
by all SMs, the off-chip memory or global memory can
be accessed by all threads on the GPU.
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Figure 1. An Overview of GPU Architecture

CUDA and OpenCL are arguably the most widely
used programming models for the GPU. Unlike CUDA,
OpenCL has the capability to execute on different hard-
ware architectures. With OpenCL, programmers can write
computational kernels once and execute them on various
platforms such as the GPU or CPU. As a result, we choose
OpenCL as the programming model in this paper to inves-
tigate the consolidation of applications on a heterogeneous
CPU+GPU system.
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B. The Driving Benchmarks

The NAS Parallel Benchmark (NPB) [10] suite is a
widely used benchmark suite to evaluate the performance
of parallel computing systems. The benchmarks in NPB
are derived from computational fluid dynamics (CFD)
applications. There are five kernels, including CG, EP, FT,
IS, and MG, to simulate typical numerical methods in CFD
applications and three pseudo-applications, including BT,
LU, and SP, to simulate both computation and data access
in CFD applications.

The SNU NPB suite is an OpenCL realization of
NPB for heterogeneous parallel computing. It has been
optimized for multicore CPUs and different generations
of GPUs. Previous research [15] has illustrated that the
performance of the OpenCL-based SNU NPB benchmark
suite is comparable to or better than the performance of
the original OpenMP implementations on multicore CPUs.

C. Related Work

Consolidation is a well-known technique for improving
resource utilization. Over the last few years, significant
research effort has been dedicated to the enhancement of
consolidation algorithms. Hermenier et al. [6] proposed a
consolidation manager called Entropy, which takes both
local and global optimization into account when mapping
tasks to nodes. Srikantaiah et al. [16] model consolidation
as a modified bin-packing problem and reveal the energy-
performance tradeoffs for consolidation. Chen et al. [4]
construct a tool that is based on queuing theory to predict
application scalability and to suggest consolidation deci-
sions. However, the above research targets homogenous
(CPU-only) computing systems.

For a heterogeneous computing system with a CPU and
GPU, consolidation algorithms must consider additional
challenges, such as heavy context-switching between dif-
ferent processes using the GPU, the data communication
overhead between CPU and GPU, and so on. rCUDA [5]
allows an application to use a CUDA-compatible device in
a remote node. GPU utilization is improved by scheduling
computational kernels from multiple applications on the
same GPU. Context funneling [19] is proposed to avoid
context-switching when multiple processes share a same
GPU. By maintaining a shared context between multiple
threads, the cost of heavy context-switches is avoided.
GPU workload consolidation [9], [12] seeks to consolidate
multiple workloads running on the same GPU. By auto-
matically intercepting CUDA driver calls and analyzing
thread-block utilization, the consolidation presented in [9]
can gather multiple GPU workloads and issue different
GPU kernels simultaneously to fully utilize GPU SMs.
The consolidation framework presented in [12] provides

the concept of an affinity score to allow more fine-grained
control of GPU kernel consolidation. Furthermore, it does
not require intercepting calls to the CUDA driver API.
However, all the above work only targets GPU workloads
while we seek to consolidate applications running on both
CPU and GPU.

Concurrent application scheduling for CPU+GPU sys-
tems has investigated the performance of multiple schedul-
ing algorithms on both single and multiple CPU+GPU
nodes [13]. The scheduling algorithms in this paper only
consider execution time as the optimization objective. In
contrast, we also study energy efficiency, as measured by
the energy-delay product (EDP). The energy-delay product
explicitly refers to the energy consumption and execution
time (i.e., delay), respectively, of an application. In turn,
our proposed energy efficiency-aware (EEA) scheduling
algorithm seeks to optimize for both.

III. Design of the Consolidation Algorithms

In this section, we first evaluate a naı̈ve consolidation al-
gorithm for consolidating applications on a heterogeneous
CPU+GPU system in order to demonstrate the efficacy of
consolidation in such systems. We then analyze and expose
the shortcomings of the naı̈ve consolidation algorithm. and
in turn, propose a new algorithm for energy efficiency-
aware (EEA) consolidation.

A. Näıve Consolidation Algorithm

To naı̈vely consolidate applications, we simply schedule
applications running on two different nodes to run on a
single node by scheduling a CPU-based application on the
CPU and a GPU-based application on the GPU. We present
this case as a demonstration of the efficacy of consolidating
applications on heterogeneous CPU+GPU systems.

Using the machines described in Table I as our evalu-
ation platforms, Figure 2 shows the energy consumption
and the execution time of applications with and without
the naı̈ve consolidation. “CPU” represents running all
eight benchmarks of SNU NPB one by one on the CPU
of a particular machine. “GPU” represents running the
same benchmarks, one after another, on the GPU of a
particular machine. “Consolidation” represents running the
same benchmarks on the CPU and on the GPU of the same
machine at the same time.

Figure 2(a) shows that the overall energy consumption
when using naı̈ve consolidation (i.e., running the SNU
NPB becnhmarks on the CPU and GPU of the same node
simultaneously) results in noticeably lower energy con-
sumption than when running the SNU NPB benchmarks on
the CPU and GPU of different nodes simultaneously. For
machine one and machine two, the overall energy savings
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Machine One Machine Two
CPU Intel Xeon E5405 (dual

quad-core), 6MB LLC
Intel Xeon E5-2665 (dual
oct-core), 2*16 threads,
20MB LLC

GPU AMD Radeon HD 7970
(ATI Tahiti)

NVIDIA Geforce GTX
Titan (Nvidia Kepler)

Runtime
Library

AMD APP SDK v2.8 NVIDIA CUDA 5.0

Test Set SNU-NPB Class B SNU-NPB Class B

Table I. Experimental Setup

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

E
n

e
rg

y
 c

o
n

m
p

u
ti
o

n
s
 (

jo
u

le
)

CPU
GPU

Consolidation

Machine TwoMachine One

(a) Energy Consumption

 0

 100

 200

 300

 400

 500

 600

 700

 800

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
s
)

CPU
GPU

Consolidation

Machine TwoMachine One

(b) Execution Time

Figure 2. Energy Consumption and Perfor-
mance Comparison between CPU node, GPU
node and Consolidation

is 15% and 33%, respectively. The reason for the energy
savings is that with consolidation, we can eliminate the
standby energy consumption of the second node by simply
consolidating all the workload onto a single node.

Relative to performance, Figure 2(b) shows that with
consolidation, there is marginal performance loss: 2% on
machine one and 1% on machine two. The performance
loss comes from contention on the CPU. Even though the
CPU offloads the GPU workload to the GPU, the CPU still
needs to orchestrate data movement into or out of the GPU
as well as launch the execution of different computational
kernels during the execution of the GPU workload.

Figure 3 plots the power consumption of machine one
and machine two while running the SNU NPB benchmarks
using the CPU only, GPU only, or both (“Consolidation”),
as was similarly done for Figure 2. Looking at the results
for machine one in Figure 3(a), we observe that after 280
seconds, the power consumption of the “Consolidation”
approach drops significantly because the workloads run-
ning on GPU have finished. When the workloads running
on the CPU finish after 710 seconds, the overall power
consumption drops again to that of system standby. So,
from 280 seconds to 710 seconds, only the CPU is exe-
cuting any workload while the GPU is idle. Thus, while

the naı̈ve consolidation of applications does save energy,
as shown in Figure 2, the results in Figure 3 illustrate that
energy savings is not maximized as one resource is left
idle (i.e., GPU) and consumes extra standby energy for
430 seconds.

In Figure 3(b) for machine two, we observe that the
power consumption of “GPU” is not always higher than
that of “CPU.” This indicates that in heterogeneous com-
puting systems that the GPU has the potential to not only
provide better performance but also power consumption.
As a consequence, the collective results from Figure 3
encourage us to design an energy efficiency-aware con-
solidation algorithm to optimize for reduced energy con-
sumption.

B. Algorithm for Energy Efficiency-Aware
(EEA) Consolidation

As energy efficiency depends on both execution time
and energy consumption, the metric “Gflops/watt” is often
used to compare the energy efficiency of different individ-
ual applications (or computational kernels) [7]. However,
one could argue that “Gflops/watt” is not appropriate when
scheduling a set of disparate applications, some of which
may have operations other than floating-point operations
(flop). An alternative metric to use is the energy-delay
product, a commonly-used metric from circuit design.
which is defined simply as the product of energy consumed
and execution time. The larger the energy-delay product
(EDP), the less energy efficient it is.

Algorithm 1 provides the details of our approach to en-
ergy efficiency-aware job scheduling, one that consolidates
applications onto fewer nodes. We first calculate the ratio
of the energy-delay product on the CPU to that on the
GPU for each job. At Line 6, based on the ratio, we sort
the job list to put the most energy-efficient CPU job at the
head of the list and put the most energy-efficient GPU job
at the tail of the list. From Line 10 to Line 17, if the CPU
is idle, we schedule the most energy-efficient CPU job to
CPU and the most energy-efficient GPU job to the GPU.

The benefits of our algorithm are two-fold. First, our
algorithm keeps both the CPU and GPU busy with work-
loads running, thus improving resource utilization. Second,
our algorithm greedily schedules the most energy-efficient
CPU job to CPU and most energy-efficient GPU job to
GPU so that the most energy savings can be obtained.

IV. Performance Evaluation

In this section, we first evaluate the execution time
and the energy consumption of each benchmark on a
CPU and and then on a GPU. We then evaluate state-
of-the-art consolidation algorithms and compare them to
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Figure 3. Power Consumption of CPU, GPU, and CPU+GPU Consolidation on Two Machines

Algorithm 1 Energy Efficiency-Aware Consolidation
1: Input: edp cpu: the energy-delay product of applica-

tion on CPU; edp gpu: the energy-delay product of
application on GPU; jobs : job list to be scheduled

2: procedure ENERGY EFFICIENCY-AWARE CONSOLI-
DATION(edp cpu, edp gpu, jobs)

3: for all jobs do
4: edp ri = edp cpui ÷ edp gpui

5: end for
6: sort(jobs, edp ri, ascending)
7: i← 0
8: j ← n− 1
9: while i ! = j do

10: if CPU is idle then
11: schedule jobi on CPU
12: i← i+ 1
13: end if
14: if GPU is idle then
15: schedule jobj on GPU
16: j ← j − 1
17: end if
18: end while
19: end procedure

our proposed algorithm for energy efficiency-aware (EEA)
consolidation.

As introduced in Table I of Section III, we use two
different machines, each populated with a GPU, for our
heterogeneous computing systems. The first machine con-
sists of two Intel Xeon E5405 quad-core CPUs and 4GB
of RAM; the GPU is an AMD Radeon HD 7970. The
second machine consists of two Intel Xeon E5-2665 oct-
core CPUs and 16GB RAM; the GPU is a NVIDIA GTX
Titan. As noted in Section II, we adopt SNU NPB suite as
the benchmark suite. Because the problem size of Class C
cannot fit into global memory of the GPU for the MG, FT,
and BT benchmarks, we unify the problem size to Class
B for all benchmarks.

A. Evaluation of the NPB Suite

Figures 4 and 5 show the energy consumption, execu-
tion time, and energy-delay product (EDP) of running on
a CPU relative to running on a GPU for machine one and
machine two, respectively. For machine one, Figure 4(a)
shows that the CPU consumes more energy than the GPU
in all cases except BT and IS, where the CPU consumes
less energy than the GPU. On the other hand, Figure 4(b)
shows that all the application benchmarks take longer to
run on the CPU than on the GPU, even BT and IS, which
both consume less energy on the CPU. By looking at the
energy-delay product (EDP) in Figure 4(c), we see that
the product of the energy consumption and execution time
shows that the GPU is more energy efficient for all the
application benchmarks except BT, where the CPU is only
very slightly more energy efficient.

For machine two, which consists of Intel Sandy Bridge
quad-core CPUs (E5-2665) and a NVIDIA Geforce GTX
Titan GPU, the CPU performs better than the GPU with
respect to both execution time and energy efficiency for
the BT, CG, FT, and IS benchmarks. One potential reason
for this is that the GPU kernels in OpenCL NPB have
been optimized for multiple GPU generations, especially
for NVIDIA Fermi but not for the latest NVIDIA Titan
GPU. Because the NVIDIA Titan GPU is based on the
latest Kepler architecture, additional optimizations using
new features of Kepler arechitecutre should be added
in OpenCL NPB to more fully optimize and utilize the
Kepler-based NVIDIA Titan GPU.

B. Evaluation of the EEA Consolidation
Algorithm

Here we evaluate and compare our energy efficiency-
aware (EEA) consolidation algorithm to several well-
known scheduling algorithms for consolidation, as noted
below.

• Round Robin (RR) is one of the simplest scheduling
algorithms. It schedules same number of jobs to CPU
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Relative to the GPU

and GPU without any priority consideration. Since it
does not guarantee that applications running on CPU
have similar execution time to those running on GPU,
the RR-based consolidation would likely result in low
utilization of computing resources.

• Resource Utilization-Aware (RUA) is designed to im-
prove resource utilization through scheduling a job to
run on the current idle device. Compared to RR, RUA
can improve resource utilization, but it cannot provide
good performance since it treats the CPU and GPU
as equivalent devices in this scenario.

• Adaptive Shortest-Job First (ASJF) is based on the
shortest-job-first algorithm. By selecting a shortest job
to be running on a currently available device (CPU
or GPU), this algorithm tries to guarantee improved
resource utilization and improved performance at the
same time.

In our experiments, we randomly generate forty jobs,
consisting of benchmarks from SNU NPB suite. We then
use the collected execution time and energy consumption
of each benchmark on the CPU and on the GPU as
parameters for ASJF-based consolidation and our energy
efficiency-aware (EEA) consolidation.

Figures 6 and 7 chart the energy consumption, execution
time, and energy-delay product of different consolidation
algorithms on our two heterogeneous test platforms, ma-
chine one and machine two, respectively. The figures show
that our EEA consolidation algorithm performs the best
across all three evaluation metrics: (1) lowest energy con-
sumption, (2) fastest execution time, and (3) lowest energy-
delay product → best energy efficiency. On machine one,
EEA improves energy consumption by 87%, 42%, and
5%; execution time by 158%, 54%, and 9%; and energy
efficiency by 384%, 119%, and 16% when compared to
RR, RUA, and ASJF, respectively. On machine two, EEA
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Figure 7. Machine Two: Energy Consumption, Execution Time, and Energy-Delay Product for Round-
Robin (RR) Consolidation, Resource Utilization-Aware (RUA) Consolidation (RUA), Adaptive SJF
(ASJF) Consolidation, and Energy Efficiency-Aware (EEA) Consolidation

improves energy consumption by 72%, 68%, and 14%;
execution time by 95%, 74%, and 15%; and energy effi-
ciency by 237%, 192%, 32% when compared to RR, RUA,
and ASJF, respectively. Thus, these figures illustrate that
our energy efficiency-aware (EEA) consolidation algorithm
can improve both energy consumption and execution time,
and in turn, the energy-delay product.

V. Conclusion and Future Work

In this paper, we target the problem of consolidat-
ing applications on heterogeneous systems with GPUs.
We demonstrate that even naı̈ve consolidation, which
schedules original CPU workloads to the CPU and GPU
workloads to the GPU onto a single node, can improve
energy consumption, but that it is far from an optimal

approach. Thus, we propose an energy efficiency-aware
(EEA) consolidation algorithm to improve the performance
and energy consumption of a heterogeneous CPU+GPU
system. Our experiments show that the EEA algorithm
can significantly improve energy consumption, execution
time, and energy-delay product when compared to other
consolidation approaches that are based on well-known
scheduling algorithms, including round-robin (RR), re-
source utilization-aware (RUA), and adaptive shortest-job
first (ASJF), on two generations of compute nodes. As part
of our future work, we will extend our energy efficiency-
aware (EEA) consolidation algorithm to multiple nodes
with multiple GPUs and integrate it into open-source job
schedulers.
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