
Towards Optimizing Memory Mapping
of Persistent Memory in UMap

Karim Youssef∗†, Keita Iwabuchi†, Wu-chun Feng∗, Maya Gokhale†, Roger Pearce†
∗Virginia Tech

{karimy,feng}@cs.vt.edu
† Lawrence Livermore National Laboratory
{iwabuchi, gokhale2, pearce7}@llnl.gov

Abstract—The exponential growth in data set sizes across
multiple domains creates challenges in terms of storing data
efficiently as well as performing scalable computations on such
data. Memory mapping files on different storage types offers
a uniform interface as well as programming productivity for
applications that perform in-place or out-of-core computations.
However, multi-threaded applications incur an I/O contention on
mapped files, hampering their scalability. Also, many applica-
tions handle sparse data structures, rendering storage efficiency
a desirable feature. To address these challenges, we present
SparseStore, a tool for transparently partitioning a memory-
mapped persistent region into multiple files with dynamic and
sparse allocation. We provide SparseStore as a part of UMap, a
user-space page management tool for memory mapping [1]. Our
experiments demonstrated that using UMap with SparseStore
yielded up to 12x speedup compared to system-level mmap, and
up to 2x speedup compared to the default UMap that maps a
single file.

Index Terms—dataset sizes, persistent memory, memory map-
ping, user-space, parallel I/O, sparse data structures

I. INTRODUCTION

The exponential growth in data set sizes across many
scientific domains presents multiple challenges for high-
performance computing systems to store and retrieve data
efficiently as well as to perform scalable computations on
such datasets [2]. To cope with these needs, leadership super-
computers began incorporating new storage technologies such
as node-local persistent memory, NVMe SSDs, and network
interconnected flash memory. These storage technologies opti-
mize speed, cost, and data persistence, benefiting applications
that perform out-of-core computations.

Memory-mapping of files on different types of storage
devices provides a simplified and portable interface to applica-
tions. However, system-level memory mapping, e.g., mmap,
rely on the operating system for page management, which
lacks flexibility for application-specific optimizations. This
fact motivated the design of user-space solutions for page
management [3].

UMap is a tool for memory mapping using user-space
page management [1]. It enables the configuration of multiple
page management parameters such as page size, eviction
strategy, degree of concurrency, and prefetching. This design
enables application-specific performance optimizations, how-
ever, parallel I/O performance is a crucial factor that was not
addressed. Since most data analytics and scientific computing

applications are multi-threaded, the I/O contention on mapped
files represents a bottleneck to their scalability. Moreover,
many applications handle sparse data structures such as graphs,
rendering storage efficiency of memory-mapped files a desir-
able feature. Storage efficiency is particularly important for
applications that allocate and store data structures on persistent
memory for later reuse [4].

To address these challenges, we augment UMap with
SparseStore, a backing store handler that transparently par-
titions a memory-mapped persistent region into multiple files
and assigns each file to a virtual memory address range. The
SparseStore handler also uses a dynamic and sparse allocation
strategy that only creates backing files on-demand. The goal
of this design is to improve the I/O performance of multi-
threaded applications, as well as the storage efficiency of
sparse data structures on persistent memory devices. We pro-
vide a detailed performance analysis of UMap with our store
handler for two applications, a dynamic graph construction on
persistent memory, and a 512GB out-of-core sorting. Using
UMap with SparseStore yielded up to 12x speedup compared
to system-level mmap, and up to 2x speedup compared to
UMap with the default store handler that maps a single file.

II. DESIGN

UMap offers an extensible design that allows application de-
velopers to implement application-specific or storage-specific
backing store handlers by extending a Store object. A Store
object defines methods for interfacing a backing store, i.e.,
reading and writing. We leveraged this extensible design to
implement the sparse multi-file store handler, called SparseS-
tore. Since our design would benefit various applications and
storage types, we provided SparseStore implementation as a
part of the UMap library.

Figures 1 illustrates the design and usage of the SparseStore
handler. the SparseStore handler transparently partitions a
mapped persistent region into segments, and creates a separate
file for each segment. The segment granularity is a config-
urable parameter. When memory-mapping a virtual memory
region using UMap and SparseStore for the first time (i.e.,
mapping an empty file), no file descriptor is actually mapped.
Instead, the SparseStore handler is linked with a directory
on the backing store. The backing files are then created
dynamically and on-demand. When a page fault occurs, UMap

SC 2020 Atlanta, GA



invokes the read or write routines from the SparseStore object.
The SparseStore maps the starting address of the requested
page to a file index and a file offset. If the file with the mapped
index does not exist, it is created and opened; otherwise, it is
opened directly. The SparseStore object keeps a list of opened
file descriptors and closes all files when their mapping virtual
memory region is un-mapped. The SparseStore also keeps
metadata information such as the segment granularity to enable
future mapping of a sparse multi-file persistent region.

Fig. 1: A SparseStore object partitions the mapped persistent region
into multiple files. Initially, the virtual memory region does not map
any file, as multiple files are created dynamically. Previously created
persistent regions using SparseStore can also be mapped and grown
dynamically.

III. EVALUATION

We evaluated the performance of UMap with the SparseS-
tore handler using two applications, a dynamic graph con-
struction on persistent memory, and an out-of-core sorting
of 512GB. Experiments were conducted on an AMD testbed
consisting of 2 AMD EPYC 7401 processors with 24 cores and
48 hardware threads each, 256GB DDR4 DRAM, and 1.8T
local NVMe SSD. The platform runs Centos 7 with Linux
kernel 5.6.0-rc2-uffd-wp-v6-r1-amd-g42355f8.

We configured each benchmark to use either mmap, UMap
with the default store handler, or UMap with SparseStore.
For the SparseStore configuration, we changed the number
of backing files to be either 32 or 1024 files. We changed
the UMap page size between 16KB and 1MB. A separate
experiment was performed to obtain the optimal number of
threads to use for each benchmark. The graph construction
used 48 threads, while the sort used 96 threads. Results are
shown in figure 2.

For the graph construction benchmark, it was observed that
using UMap with the SparseStore handler, 1024 files, and
32KB page size, yielded nearly a 12x speedup over system-
level mmap. Also, using 16KB page size, the SparseStore
configuration yielded nearly 2x speedup compared to UMap
with the default store handler that maps a single file. This
observation could be explained by the fact that smaller page
sizes lead to more reads and writes to the backing store and
hence more I/O contention for the single file configuration.

(a)

(b)

Fig. 2: Performance evaluation of UMap with SparseStore for dy-
namic graph construction (a), and 512GB out-of-core sorting (b).
The dynamic graph construction performance is measured in inserted
elements per second, while sorting performance is measured in sorting
time in seconds.

For the sorting benchmark, a slight 6% improvement was
observed for the SparseStore configuration with 32 files at
64KB page sizes. Since the sorting benchmark does not start
benefiting from UMap before 128KB page size, and since in-
creasing the number of files was observed to benefit page sizes
of 64K and smaller, no significant difference was observed
between the single file and the SparseStore configurations
for this particular benchmark. For larger page sizes, it was
observed that the performance of all UMap configurations
converge.

Finally, it was noticed that increasing the UMap page size
improved the performance of the sorting benchmark for up to
1MB , while the graph construction benchmark performed best
at 128KB, then at 512KB, performance degraded significantly.
This may be due to the irregular memory access pattern of the
graph construction which leads it to stop benefiting from larger
page sizes.

IV. ACKNOWLEDGMENT

Prepared by LLNL under Contract DE-AC52-07NA27344
(LLNL-ABS-813826). Experiments were performed at the
Livermore Computing facility. This research was supported by
the Exascale Computing Project (17-SC-20-SC), a collabora-
tive effort of the U.S. Department of Energy Office of Science
and the National Nuclear Security Administration.

SC 2020 Atlanta, GA



REFERENCES

[1] I. Peng, M. McFadden, E. Green, K. Iwabuchi, K. Wu, D. Li, R. Pearce,
and M. Gokhale, “Umap: Enabling application-driven optimizations
for memory mapping persistent store,” Lawrence Livermore National
Lab.(LLNL), Livermore, CA (United States), Tech. Rep., 2019.

[2] Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai, M. J.
Efron, R. Iyer, M. C. Schatz, S. Sinha, and G. E. Robinson, “Big data:
astronomical or genomical?” PLoS biology, vol. 13, no. 7, p. e1002195,
2015.

[3] J. Corbet, “Page faults in user space: Madv userfault,
remap anon range(), and userfaultfd(),” http://lwn.net/Articles/615086,
vol. 2, 2014.

[4] K. Iwabuchi, L. Lebanoff, M. Gokhale, and R. Pearce, “Metall: A per-
sistent memory allocator enabling graph processing,” in 2019 IEEE/ACM
9th Workshop on Irregular Applications: Architectures and Algorithms
(IA3). IEEE, 2019, pp. 39–44.

SC 2020 Atlanta, GA


