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Abstract—Persistent data structures represent a core compo-
nent of high-performance data analytics. Multiple data processing
systems persist data structures using memory-mapped files.
Memory-mapped file I/O provides a productive and unified
programming interface to different types of storage systems.
However, it suffers from multiple limitations, including perfor-
mance bottlenecks caused by system-wide configurations and
a lack of support for efficient incremental versioning. There-
fore, many such systems only support versioning via full-copy
snapshots, resulting in poor performance and storage capacity
bottlenecks. To address these limitations, we present Privateer
2.0, a virtual memory and storage interface that optimizes
performance and storage capacity for versioned persistent data
structures. Privateer 2.0 improves over the previous version by
supporting userspace virtual memory management and block
compression. We integrated Privateer 2.0 into Metall, a C++
persistent data structure allocator, and LMDB, a widely-used
key-value store database. Privateer 2.0 yielded up to 7.5× speedup
and up to 300× storage space reduction for Metall incremental
snapshots and 1.25× speedup with 11.7× storage space reduction
for LMDB incremental snapshots.

I. INTRODUCTION

The ubiquity of large-scale data analytics and the exponen-
tial growth in dataset sizes necessitate continuous design and
enhancement of scalable data processing tools. Data-analytic
workflows include ingesting raw data into different data struc-
tures that go through transformations and queries. Persisting
these data structures beyond the scope of a single analytic run
is a crucial design goal [1]. Data-structure persistence provides
two benefits: (1) avoidance of the cost of raw data ingestion
for subsequent analytics and (2) consistent data-structure views
for incrementally evolving data.

Designing multi-versioned persistent data structures requires
optimizing the trade-off between application performance,
storage footprint, and programming productivity. To balance
this trade-off, multiple data processing systems use memory-
mapped I/O (i.e., mmap) [1]–[5]. Memory-mapped I/O offers
many advantages to persistent data structures when lever-
aging high-throughput and low-latency storage devices, e.g.,
non-volatile memory (NVM) [1], [2]. Specifically, memory-
mapped I/O incurs no cost for data already in memory
and eliminates copies between the operating system’s kernel
and the application’s virtual memory space [6]. Moreover,
memory-mapped I/O provides a unified interface to different

storage types in complex and multi-tiered storage environ-
ments [7].

However, memory-mapped persistent data structures do suf-
fer from several performance limitations, including a (1) lack
of scalability with massively multi-threaded applications [6],
(2) lack of flexibility for application-specific tuning [7], and (3)
write amplification caused by frequent eviction of dirty pages
based on system-wide configurations [2]. Moreover, memory-
mapped persistent data structures lack efficient versioning
support. Existing solutions rely on either full-copy snapshots,
which are not storage-efficient [1], [4], or log and replay
techniques that suffer from high snapshot-reconstruction over-
head [5]. Efficient versioning must balance the trade-off be-
tween application performance and storage footprint.

To address these challenges, Privateer provides an mmap
alternative that uses private, copy-on-write memory mapping
and provides application-controlled writeback [8]. This design
enables applications to overcome the kernel’s aggressive evic-
tion and control writebacks according to application needs.
Privateer also incorporates incremental snapshots support via
immutable blocks and de-duplication. However, to optimize
the storage footprint of snapshots, applications need to use
smaller block sizes, which leads to performance degradation.

To address Privateer’s limitations, we present Privateer
2.0, an enhancement to Privateer that incorporates userspace
paging and block compression. Privateer 2.0 provides a more
tunable environment to optimize the trade-off between per-
formance and storage footprint. We also integrate Privateer
2.0 into Metall [1], a C++ persistent data structure allocator,
and LMDB [4], a widely-used key-value store database. For
LMDB, Privateer 2.0 enables efficient incremental backups, a
desirable feature that is currently unsupported. Our evaluation
shows that Privateer 2.0 achieves up to 7.5× speedup and up
to 300× storage reduction for Metall snapshots. Privateer 2.0
also improves throughput by 1.5× and reduces the storage
footprint for storing incremental snapshots of an LMDB
database by 11.7×. In summary, our contributions are as
follows:

• Privateer 2.0, an enhancement to Privateer that supports
userspace paging and block compression.

• A tunable and productive datastore interface that opti-
mizes the trade-off between application performance and
storage footprint of versioned persistent data structures.
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• Integration and evaluation of Privateer 2.0 with state-of-
the-art and widely-used data processing systems.

Next, §II explains the design and implementation of Priva-
teer 2.0. §III evaluates Privateer 2.0 with different persistent
data-structure allocators. §IV presents related work. §V dis-
cusses future directions, and §VI concludes.

II. DESIGN AND IMPLEMENTATION OF PRIVATEER 2.0

Privateer 2.0 seeks to optimize the trade-off between ap-
plication performance, storage utilization, and programming
productivity for multi-versioned persistent data structures.
Existing solutions leverage memory-mapped I/O (i.e., mmap)
with the MAP SHARED flag [9] for programming produc-
tivity. This approach lets the operating system transparently
handle paging and writeback to persistent storage. However,
mmap is designed and optimized for generality. Specifically,
in Linux systems, mmap triggers eviction when as low as
ten percent of the pages become dirty, which causes write
amplification for a wide range of applications [2]. Moreover,
writing data to persistent storage at times not defined by the
application would affect transaction consistency, especially in
case of system failures. Furthermore, mmap-based datastores
do not allow storage optimization via data compression [9].

The earlier version of Privateer, i.e., Privateer 1.0, ad-
dressed these limitations by leveraging private, copy-on-write,
memory mappings (i.e.,MAP PRIVATE) and explicit buffer
flushing calls (i.e., msync ) that identifies and writes dirtied
pages using Linux’s /proc/self/pagemap information. More-
over, Privateer 1.0 optimized storage utilization by partition-
ing the mapped datastore into blocks with configurable size
and de-duplication. However, Privateer 1.0 suffered from three
limitations. First, de-duplication requires using smaller block
sizes to reduce the storage footprint, resulting in performance
degradation caused by excessive file-system operations. Sec-
ond, the msync approach incurs kernel page-fault overheads
and is only supported on Linux systems. Third, allocating
memory using MAP PRIVATE is bound by physical DRAM
size and does not support out-of-core processing.

To address these limitations, Privateer 2.0 supports user-
space paging by capturing the page fault signal using the Linux
sigaction system call [10]. Userspace paging enables
applications to control eviction of dirty pages only via explicit
msync calls. Userspace paging also enables in-memory block
compression, which, when combined with de-duplication, sig-
nificantly reduces the storage footprint at larger Privateer
block sizes, thus enabling the simultaneous optimization of
application performance and storage footprint. Compression
also optimizes I/O bandwidth, especially for network-based
file systems, since compressed blocks are loaded into mem-
ory and de-compressed in memory. Therefore, Privateer 2.0
exposes a multi-dimensional and multi-objective tuning space
that fits application-specific needs.

A. Privateer 2.0 Architecture

1) APIs: Privateer 2.0 provide APIs for creating, opening,
flushing (i.e., msync), and snapshotting a virtual memory

region. Privateer 2.0 supports snapshots by means of named
versions. A Privateer version consists of a metadata recipe
file that describes the Privateer blocks and their order. Since
blocks are immutable, the recipe file contains all the informa-
tion needed to re-construct a specific snapshot. The snapshot
technique is described in further detail later. Figure 1 shows
an example usage of Privateer 2.0.

2) Userspace Virtual Memory Management: Privateer 2.0
manages virtual memory in userspace to enable handling
compressed blocks and to support out-of-core processing
while overcoming the limitation of system-managed mmap.
Privateer’s virtual memory manager initially allocates virtual
memory space using an anonymous memory mapping with
neither read nor write permission (i.e., PROT NONE). This
initialization causes any read or write attempt to trigger a
SIGSEGV signal that is captured by Privateer’s fault handler.

The fault handler identifies the faulting address, the fault
type (i.e., read or write), and the Privateer block to which
the faulting address belongs. The block is then fetched from
persistent storage by the block storage manager and permis-
sion on that block is updated according to the fault type.
Privateer’s fault handler adopts a least-recently-used (LRU)
eviction policy by maintaining three core lists: the present
blocks, clean LRU, and dirty LRU. Eviction is determined
by a configurable parameter that determines the maximum in-
memory buffer size. If the buffer is full while handling a block
fault, the first block of the dirty LRU is evicted by writing its
content to a temporary stash directory on persistent storage.
When msync is called, stashed blocks are un-stashed and
moved to the final blocks directory. The block storage manager
handles renaming, moving, and writing stashed and present
blocks using de-duplication and optionally compression, as
elaborated below.

3) Block Storage: Privateer’s block storage manager han-
dles block I/O to and from the backing store. As shown
in Figure 2, a Privateer 2.0 datastore consists of a base
directory that contains sub-directories for blocks, stash, and
versions. The blocks directory contains committed blocks that
are named by means of the SHA-256 hash of their content for
de-duplication support. The stash directory contains temporary
evicted blocks that are named by means of a universally unique
identifier (UUID). The msync call then renames the evicted
and stashed blocks to the SHA-256 hash of their content and
moves them to the blocks directory. The block storage manager
provides functions used by the virtual memory manager to
stash or commit Privateer blocks.

The block storage manager also supports block compres-
sion. When enabled, Privateer 2.0 compresses blocks in-
memory before writing them to the backing store. It also
reads compressed blocks and de-compresses them in-memory.
Compression further optimizes storage utilization, especially
in the case of incremental snapshots. Without compression, de-
duplication requires smaller block sizes to optimize storage.
Smaller blocks caused performance degradation in Privateer
1.0 due to excessive block hash computations and file-system
operations to rename blocks. With compression, applications
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Fig. 1: Example code demonstrating the use of Privateer 2.0
to allocate, update, and snapshot virtual memory regions.

can use larger block sizes, which enables storage optimization
without a significant loss of performance.

The block storage manager also supports multi-tiered block
storage. The stash directory could reside on a different, and
ideally faster, storage tier and store committed blocks that
are likely to be re-used in the near future. For instance, an
application could be writing blocks to a node-local NVMe
device while committing blocks to a remote Lustre file system.
If an application re-uses blocks in close temporal proximity,
the storage manager will look for blocks under the faster tier
first. This scenario is useful for HPC setups where node-local
storage is not permanent and needs remote store persistence,
while multiple job stages are also re-using blocks in close
temporal proximity and could benefit from faster store tiers.

B. Optimization Space

The new Privateer 2.0 design exposes an optimization
space with multiple tunable parameters. These parameters
include the Privateer block size, the use of de-duplication,
and the use of compression. Tuning different combinations of
these parameters according to an application’s need optimizes
the trade-off between application performance and storage
utilization. Another principal dimension is the data structure
design and characteristics. Some persistent data structures
would benefit from de-duplication at larger block sizes, while
other data structures require compression to optimize storage
utilization at larger block sizes. This parameter space enables
design optimizations for scalable and efficiently-snapshottable
persistent data structures and, in turn, scalable data analytics
tools. Our experimental evaluation shows the effect of these
parameters for different application domains.

III. EVALUATION

As described in §II, Privateer 2.0 enables the exploration
of a multi-dimensional design space. The design objectives
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Fig. 2: An overview of Privateer 2.0 system architecture and
directory structure.

are to optimize performance and storage utilization of multi-
versioned persistent data structures. Simultaneously optimiz-
ing these two objectives is a challenging task [11]. The multi-
dimensional design space consists of the following tunable
parameters: (a) the Privateer block size, (b) the use of com-
pression, and (c) the data structure characteristics.

Our experiments aim to evaluate the efficiency of Privateer
2.0 in achieving the aforementioned objectives by tuning the
design parameters. Thus, we integrated Privateer into two
open-source persistent data-structure tools, Metall and LMDB.
We evaluated and compared the performance and storage
efficiency of these tools with and without Privateer using three
different applications: (1) incremental graph snapshots using
the Wikipedia page reference graph, (2) incremental snapshots
of different Metall C++ data structures using synthetic data,
and (3) incremental backups of an LMDB datastore using
Reddit comments data.

A. Privateer-Enabled Tools

1) Metall: Similar to [8], we integrated Privateer 2.0 into
the latest version of Metall by modifying its data management
layer. Specifically, we replaced the mmap(), msync(), and snap-
shot() APIs with Privateer APIs. Metall users could select
whether to use Privateer when compiling their applications.

2) LMDB: LMDB is a key-value datastore that is widely
used for processing massive datasets in deep-learning training
tasks [12]. LMDB is based on a B+-tree persistent data
structure and uses mmap() for virtual memory and storage
management. We integrated Privateer into the latest version of
LMDB and evaluated it using PyLMDB, a Python interface to
the LMDB C library.
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B. Applications

1) Incremental Graph Snapshots: We used the incremental
graph construction and snapshot benchmark reported in [8].
The benchmark consists of ingesting a raw edge list that
represents a time-evolving graph into a Metall persistent
C++ adjacency list and storing temporal snapshots. In our
experiment, we ingested the Wikipedia page reference graph
and stored snapshots after inserting each year’s data (a total
of 17 snapshots). The dataset is described later in this section.

2) LMDB Database Incremental Construction and Backup:
To evaluate LMDB with Privateer 2.0, we implemented a
benchmark that incrementally constructs an LMDB key-value
datastore of Reddit comments. Each key consists of a comment
ID, and its value consists of the comment body. The bench-
mark stores a snapshot of the database after inserting each
month’s comments from the 2017 data. The current version
of LMDB only supports full-snapshot backups. We evaluated
Privateer’s improvement over LMDB’s backup functionality
in terms of throughput and total size of snapshots.

3) Incremental C++ STL Snapshots: We used a similar
setup to the incremental graph construction to evaluate several
C++ standard template library (STL) containers (e.g., vector,
list, deque, map, set, etc.) with Metall and Privateer 2.0. We
implemented a benchmark that stores incremental snapshots of
each data structure. In our evaluation, we used two workloads:
(i) sequential and (ii) random. For both of the workloads,
we inserted 100 million entries (64-bit signed integers) in
total and incrementally created a snapshot after one-million
insertions (100 snapshot in total). In the sequential workload,
we sequentially inserted numbers (from 0 to 100 million) in
the containers. In the random workload, we generated random
numbers within the 64-bit signed integer range using a uniform
distribution (std::uniform_int_distribution).

C. Experiment Setup

1) Computing Platform: We conducted our evaluations on
Mammoth, a high-performance computing cluster that consists
of 64 nodes. Each node is equipped with two AMD EPYC
7742 64-core processors, 2TB of memory, and 3TB of NVMe
SSDs.

2) Datasets: We evaluated Privateer 2.0 using two real-
world datasets previously used in [1]: (1) The Wikipedia page
reference graph, which consists of 1.8 Billion edges with a
raw size of 13GB, and (2) the Reddit comments dataset, which
consists of 4.4 Billion comments with a raw size of 1.9TB.

D. Results

1) Incremental Graph Snapshots: We evaluated the
throughput and total size of snapshots for incrementally
constructing and snapshotting a Metall adjacency list data
structure built from the Wikipedia page reference graph. Our
benchmark stores snapshots of the evolving graph after insert-
ing each year’s data (a total of 17 snapshots). We compared
the baseline (i.e., Metall without Privateer) to Privateer 1.0
and Privateer 2.0 with different Privateer block sizes. We
compared two different configurations of Privateer 2.0 —

with and without compression. Moreover, we compared two
adjacency list implementations, a hash-table-based unordered
map, and a self-balancing binary search tree (BST)-based
ordered map. Figure 3 shows the throughput results while
Figure 4 shows the total size of the snapshots.

For the hash-table based unordered map, Privateer 1.0 and
Privateer 2.0 yielded performance gains at larger Privateer
block sizes. For the 32MB-block size, Privateer 2.0 without
compression yielded a 1.58× speedup over the baseline Metall,
while Privateer 2.0 with compression yielded a 1.14× speedup
over the baseline Metall. Storage optimization occurred at
smaller block sizes without compression. This observation is
due to the unordered map’s rehash operation, which causes a
significant restructuring, leading to dirtying a larger number of
bytes unnecessarily. Hence, smaller block sizes were required
to benefit from de-duplication. Privateer 2.0 with compression
yielded significant storage optimization at both smaller and
larger block sizes, hence optimizing the trade-off between
performance and storage efficiency.

Conversely, for the BST-based ordered map, Privateer
yielded both performance gains and storage optimizations at
smaller block sizes. Compression further optimized storage at
the cost of performance loss.

2) LMDB Incremental Snapshots: Figure 5 shows the eval-
uation of LMDB’s incremental backup using monthly backups
of the 2017 Reddit comments dataset. While LMDB provides
an efficient and relatively fast copy interface, LMDB+Privateer
yielded nearly 1.5× higher throughput because it overcomes
slowdowns caused by mmap. This improvement amortized Pri-
vateer’s compression overhead, yielding both throughput and
storage footprint improvement. Using a Privateer block size
of 32MB and block compression, LMDB+Privateer reduced
the storage footprint by 11.7× when compared to baseline
LMDB. It was also observed that using Privateer without com-
pression yielded comparable throughput to using compression.
Because LMDB uses a single writer and because old blocks
do not get updated very often in this application, Privateer’s
multi-threaded msync optimizes compression overhead with
minimal sigaction thread serialization overhead.

3) Incremental STL Snapshots: We evaluated the runtime
and the storage footprint of incrementally constructing and
snapshotting seven C++ STL data structures on two workloads,
as mentioned earlier. We compared the baseline (i.e., Metall
without Privateer) to Privateer 2.0 with and without com-
pression across different Privateer block sizes. Table I lists the
runtime and the storage footprint of STL data structures in our
baseline model (i.e., Metall without Privateer), while Figure 6
shows the comparative storage and runtime improvement in
the different setup of Privateer 2.0 compared to the baseline
model. We used the local NVMe SSDs to save all the data
and snapshots.

With the random workload, Privateer 2.0 with compression
achieved up to 53.57× better storage space utilization, while
Privateer 2.0 without compression achieved 29.04× better
storage space utilization, relative to baseline Metall, as shown
in Figure 6(a). Furthermore, no data structure acquired more
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Fig. 3: Throughput (higher is better) of incrementally ingesting
the Wikipedia page reference graph into a Metall adjacency
list and storing yearly snapshots. The adjacency list is imple-
mented using (a) an unordered hash-based map of vectors, and
(b) an ordered BST-based map of vectors.
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Fig. 4: Total size (lower is better) of incrementally ingesting
the Wikipedia page reference graph into a Metall adjacency
list and storing yearly snapshots. The adjacency list is imple-
mented using (a) an unordered hash-based map of vectors, and
(b) an ordered BST-based map of vectors.
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Fig. 5: Evaluation of (a) throughput (higher is better) and (b)
total datastore size (lower is better) for incremental construc-
tion and storage of monthly snapshots of an LMDB database
from Reddit comments of the year 2017.

space while increasing the Privateer block size (up to 128
MB). These results demonstrate the strength of Privateer

TABLE I: Performance and snapshot sizes of STL containers using
Metall without Privateer 2.0 (baseline).

Random Workload Sequential Workload

STL Con-
tainers

Snapshot
Size (GB)

Runtime
(Sec.)

Snapshot
Size (GB)

Runtime
(Sec.)

Vector 43 43.56 43 24.99
List 122 72.25 122 51.25
Deque 45 37.09 45 22.45
Map 198 670.78 198 158.00
Unordered Map 217 505.40 217 198.31
Set 160 568.25 160 168.12
Unordered Set 181 512.89 181 193.26

2.0’s block management. So, Privateer 2.0 outperforms the
baseline Metall with respect to both storage footprint and
runtime. For runtime, Privateer 2.0 with compression achieves
up to 13.71× speedup over baseline Metall, and Privateer
2.0 without compression achieves up to 14.45× speedup
over baseline Metall, as shown in Figure 6(c). In addition,
Privateer’s de-duplication helps reuse the blocks and mutually
benefits space and runtime. Also, compression leads to better
storage utilization with only a minor increase in runtime
overhead.

Similarly, in sequential workload, Privateer 2.0 achieved
better performance in both storage space (up to 300× with
compression and 37.5× w/o compression; showing in fig-
ure 6(b)) and runtime (up to 7.54× with compression and
10.13× w/o compression; as shown in figure 6(d)). One in-
teresting observation is that Privateer 2.0 shows huge storage
space improvement in sequential workload compared to the
random (e.g., 300× in sequential Vs. 53.57× in random
workload). This improvement is because we inserted data
sequentially from 0 to 100 million in sequential workload, but
data is saved as a 64-bit integer. The compression in Privateer
2.0 handles such repeated patterns in the data very efficiently.
Another important observation is that, for all the cases in
figure 6, Privateer 2.0’s performance gradually decreases
while increasing the Privateer block size. The reason is that a
larger block size leads to dirtying a larger number of bytes
unnecessarily between snapshot creation; hence, a smaller
block size performs better.

IV. RELATED WORK

The benefits and drawbacks of memory-mapped I/O for
persistent data structures have been studied extensively. We
discuss related work in terms of state-of-the-art memory-
mapped persistent data structures, existing solutions to opti-
mize memory-mapped I/O, and the incremental backup prob-
lem for different types of persistent data stores.

Data-structure persistence is a core component of high-
performance data analytics. Memory-mapped I/O has been
widely used for different types of persistent data structures,
such as key-value datastores, graph processing engines, and
generic C++ data strucutres. Memory-mapped key-value data-
stores include LMDB [4], RocksDB [11], Kreon [2], Ce-
drusDB [5] and MongoDB [3]. Key-value datastores are built
on top of different types of persistent data structures, including
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Fig. 6: Improvement of STL container snapshots (higher is better) by Privateer 2.0 (w/ and w/o compression) compared to the
baseline Metall. Fig. (a) and (b) show relative storage space improvement in random and sequential workloads respectively.
Fig. (c) and (d) show relative runtime improvement in random and sequential workloads respectively.

B+trees [13], LSM-trees [14], and lazy tries [5]. Graph engines
that leverage memory-mapped I/O include LLAMA [15] and
HavoqGT [16]. Recently, Metall emerged as a generic C++
persistent data structure allocator [1]. Metall enables persisting
standard C++ data structures beyond the scope of a single
execution. Metall has been used in multiple domains, including
graph processing [16] and scalable distributed data process-
ing [17]. Metall uses mmap to manage virtual memory and
backing store for persisting data structures.

These tools have either used the system’s mmap without
changes or optimized versions of it using different tech-
niques. These techniques include optimized kernel-level mmap
path [2], [6], userspace memory-mapped I/O [7], [18], [19],
or a gradual step-away from using mmap into implementing
userspace buffers to avoid mmap’s bottlenecks [11], [20].
Kernel-space mmap optimizations require changing or up-
dating operating system modules. Moreover, they limit ap-
plications to global system-wide configurations. These lim-
itations motivated the design of userspace memory-mapped
I/O. Privateer 2.0 improves over existing userspace solutions
by supporting incremental versioning, compression, and future
support for multi-tiered block storage.

Storage optimization using de-duplication and/or compres-
sion has been explored in file systems [21], cloud backup [22],
and incremental backups [23]. Privateer 2.0 combines these
techniques with userspace virtual memory management to pro-
vide a snapshot-friendly data management system that enables
a novel optimization space for data-structure persistence in
high-performance data analytics.

V. FUTURE DIRECTIONS

Future directions include deeper explorations of the Priva-
teer optimization space for different application domains. For
instance, integrating and evaluating Privateer with different
key-value datastore designs and performing application or
domain-specific optimization of the trade-off between through-
put and storage efficiency. Other future directions include more
efficient support of multi-tiered block storage via multi-tiered
paging and intelligent multi-tiered block movement. Also,
improving Privateer’s multi-threading support by leveraging
Linux’s Userfaultfd [24] to overcome sigaction’s serial-
ization of threads, and hence improve scalability for massively
multi-threaded applications. Finally, another future direction is
to support distributed and disaggregated block storage.

VI. CONCLUSION

Privateer is virtual memory and storage management tool
that optimizes the trade-off between application performance,
storage footprint, and programming productivity for persistent
data structures. In this paper, we presented Privateer 2.0, an
upgrade to Privateer that exposes a more tunable environment
by incorporating userspace page fault handling and block
compression. Privateer 2.0 enables optimizing the storage
footprint of incremental snapshots without significant perfor-
mance loss. We integrated Privateer 2.0 into Metall, a C++
persistent data structure allocator, and LMDB, a widely-used
persistent key-value datastore. Privateer 2.0 achieved 7.5×
and 1.5× performance improvement for Metall+Privateer, and
LMDB+Privateer, while achieving up to 300×, and 11.7×
storage footprint reduction for Metall and LMDB, respec-
tively.
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