
Privateer: Multi-versioned Memory-mapped Data
Stores for High-Performance Data Science

Karim Youssef∗†, Keita Iwabuchi†, Wu-chun Feng∗, and Roger Pearce†
∗Department of Computer Science, Virginia Tech

{karimy,wfeng}@vt.edu
†Center for Applied Scientific Computing, Lawrence Livermore National Laboratory

{iwabuchi1,rpearce}@llnl.gov

Abstract—The exponential growth in dataset sizes necessitates
the use of high-performance computing (HPC) for large-scale
data science. Furthermore, the sizes of these datasets shift the
performance bottleneck from the compute subsystem towards
the memory and I/O subsystems. To address this shift, modern
HPC clusters are equipped with low-latency and high-bandwidth
storage devices, such as non-volatile memory, and, in turn, re-
designed I/O subsystems to improve performance. However, an
overlooked bottleneck arises due to the size of these storage
devices being dwarfed by the storage footprint of large-scale data
science applications. For instance, applications that process and
store consistent snapshots of incrementally growing data streams
require a significant storage footprint that far outstrips the size
of the storage devices.

To address this bottleneck, we present Privateer, a general-
purpose data store that optimizes the tradeoff between storage
space utilization and I/O performance. Privateer uses memory-
mapped I/O with private mapping and an optimized writeback
mechanism to maximize write parallelism and eliminate redun-
dant writes; it also uses content-addressable storage to optimize
storage space via de-duplication. We evaluate the effectiveness
of Privateer by using it as the data-store management layer of
Metall, a persistent C++ data structure allocator. Using a micro-
benchmark that incrementally constructs and stores snapshots
of an incremental graph data structure, Privateer can reduce
the storage space used by approximately 30% while delivering
comparable performance to the baseline Metall implementation.

I. INTRODUCTION

The exponential growth in dataset sizes represents a chal-
lenge as well as an opportunity for data science to extract
knowledge and insight from this wealth of data. This growth,
along with the increasing computational complexity of data-
science algorithms, motivates the need for high-performance
computing (HPC) systems [1]. However, this growth has
caused the performance bottleneck to shift from the compute
subsystem to the memory and I/O subsystems. To address this
shift, modern HPC systems incorporate fast storage technol-
ogy, such as non-volatile memory [2], whose low latency and
high bandwidth offer multiple opportunities to enhance the I/O
performance of large-scale data science applications [3].

Past research has focused on maximizing the I/O perfor-
mance of data-science applications via an optimized I/O sub-
system. Such efforts include re-designing the memory-mapped
I/O path in Linux systems [3] and enabling application-specific
virtual memory management (VMM) in user space [2]. Other
efforts include providing productive data-store interfaces built

on top of optimized memory-mapped I/O [4] and persistent
data-structure allocation [5], [6]. While these efforts offer
promising solutions by leveraging the performance of fast
storage devices and by managing data stores using productive
interfaces, they overlook the bottleneck of limited capacity in
these storage devices, relative to the storage needs of data-
science applications [7], particularly those that need to store
multiple snapshots of evolving data stores [8].

As shown in [7], simultaneously optimizing storage space
utilization and I/O performance is a challenge. For instance,
optimizing storage space via compression incurs extra CPU
overhead to compress and decompress data. Existing solutions
that optimize both parameters are tailored for specific types of
data stores. For instance, LLAMA optimizes I/O performance
and storage space for snapshotting evolving graphs using
multi-versioned compressed sparse row (CSR) arrays [9]. On
the other hand, RocksDB [7] and Kreon [10] optimize both pa-
rameters for key-value stores by using different log-structured
merge (LSM) tree [11] compaction algorithms. While these
data-structure level optimizations guarantee a near-optimal
tradeoff between storage space and I/O performance, their
benefit is limited to their respective types of data stores.

To address these challenges, we present Privateer, a general-
purpose data store that optimizes I/O performance and storage
space at the abstraction level of virtual memory and backing
store management. Privateer uses private memory-mapping
with optimized writeback and content-addressable data stor-
age; it also supports data-store versioning via an efficient
virtual memory snapshot interface. We show the efficacy of
Privateer by using it as the storage management layer of Met-
all, a C++ persistent data structure allocator for non-volatile
memory devices [5], [12]. Privateer can deliver 30% storage
space improvement for storing snapshots of an incrementally
growing graph while delivering comparable performance to
the baseline Metall. We summarize our contributions below:

• The design and implementation of Privateer, an open-
source data store for fast storage devices that optimizes
I/O performance and storage space utilization.1

• A performance evaluation of Privateer through a case
study of persisting snapshots of an incrementally evolving
graph data structure.

1The code will be made available at https://github.com/LLNL/Privateer

1
978-1-6654-2369-4/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 H
ig

h
Pe

rf
or

m
an

ce
 E

xt
re

m
e

C
om

pu
tin

g
C

on
fe

re
nc

e
(H

PE
C

) |
 9

78
-1

-6
65

4-
23

69
-4

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

H
PE

C
49

65
4.

20
21

.9
62

28
26

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on June 14,2023 at 20:18:15 UTC from IEEE Xplore. Restrictions apply.

HPEC 2021 Waltham, MA

• An analysis of the tradeoff between storage space opti-
mization and I/O performance.

The rest of the paper is organized as follows. First, §II de-
scribes the design of Privateer, and §III provides a description
of our experiment setup and evaluation of Privateer. Next, §IV
discusses related work; §V discusses future directions; and
finally, §VI concludes.

II. DESIGN AND IMPLEMENTATION OF PRIVATEER

The design goals of Privateer are two-fold: (1) provid-
ing a data-store management interface that enables efficient
versioning capabilities and supports different types of data
stores and (2) optimizing the tradeoff between storage space
utilization and I/O performance. Storing multiple snapshots
of a data store requires optimizing storage space as well
as I/O performance to cope with the exponential growth
in dataset sizes [13]. Optimizing these two parameters is
a challenging tradeoff [7]. For instance, optimizing storage
space via data compression incurs extra CPU overhead for
compressing and decompressing data. To address this chal-
lenge, Privateer adopts a content-addressable storage (CAS)
technique to optimize storage space via de-duplication [14],
[15]. CAS optimizes storage space utilization at the cost of
extra CPU overhead when writing a data block to compute the
block hash [15]. To offset this overhead, Privateer optimizes
writeback performance by parallelizing the hash computations
and block writes. Moreover, Privateer eliminates redundant
writes of unchanged data by querying Linux’s pagemap [16]
information to identify the dirtied virtual memory pages and
only writing these pages back, as described later in this section.

Privateer encompasses three main layers: the API layer,
the virtual memory management (VMM) layer, and the block
storage layer. Figure 1 provides a high-level description of
Privateer’s architecture.

create()
open()

msync()
snapshot()

- Allocate virtual memory blocks
using mmap()

- Writeback (msync) dirty pages only
using /proc/self/pagemap

- Store block
- Load block
- Compute block hash
- Create temporary unique file for

in-memory block

B

A

C

C

addc63

bccef4

cdde32

A

_metadata
addc63
bccef4
addc63
cdde32
cdde32

Privateer API

Privateer
Virtual Memory
Management

Privateer Block
Storage

Virtual Memory (VM)

Persistent Storage

Privateer
VM Region

Fig. 1: A high-level overview of Privateer’s architecture. Pri-
vateer consists of an API layer for end users, virtual memory
management (VMM), and a block storage layer that manages
the backing store using content-addressable storage (CAS).

A. Privateer’s API

Privateer provides APIs for creating a new memory-mapped
data store, opening an existing data store, flushing data back to

the backing store (i.e., msync), and snapshotting the current in-
memory data into the backing store. The create API allocates
a virtual memory region with a size of max capacity using the
mmap system call. This region is then transparently partitioned
into multiple sub-regions, where a backing file is dynamically
created for each sub-region on-demand. A detailed description
of the virtual memory management (VMM) technique is
described later in this section.

The open API opens an existing data store and maps it into
the application’s virtual memory space. Privateer stores data on
the backing store using a content-addressable storage (CAS)
method. Privateer’s data is stored under two directories. The
blocks directory stores the data blocks, while the metadata
directory stores the file recipe used to reconstruct the region
from the data blocks. Other metadata is also stored, such as
the current region size and the path to the blocks directory.

The msync API writes the data back to the backing store.
We note that msync must be called explicitly by the application
to guarantee proper backing-store synchronization.

Finally, the snapshot API saves a named snapshot of the
current in-memory data store to the backing store. The differ-
ence between the snapshot and msync APIs is that snapshot
creates a new metadata directory with a specific name passed
to the API, while the msync API updates the current metadata
directory that was specified through the create API.

B. Virtual Memory Management (VMM)

The virtual memory management (VMM) layer allocates
virtual memory (VM) and backing store space using memory-
mapped I/O. Memory-mapped I/O has been shown to pro-
vide multiple advantages for applications that process large
datasets and leverage state-of-the-art fast storage technol-
ogy [2], [3]. When a new data store is created, a region with
size max capacity is allocated using non-writable anonymous
mapping (i.e., without a backing file). This technique allows
Privateer to allocate the maximum allowable VM space. After
that, the allocated region is transparently partitioned into mul-
tiple blocks of size block size, which is set using an environ-
ment variable. For each block up to current size / block size,
where current size is provided through the create and the
resize APIs, a new memory mapping is created that overwrites
the anonymous mapping for the sub-region constituting the
block. The new mapping is writable and uses a private,
copy-on-write memory mapping, i.e., MAP PRIVATE. Using
MAP PRIVATE means that the system’s msync is not called
in the background, as in the case of MAP SHARED. To write
data back to the backing store, Privateer’s msync uses Linux’s
pagemap [16] information to identify and write only the dirtied
pages. To identify a dirty page, Privateer checks two flags
in /proc/self/pagemap, the present flag and the file page flag.
Since MAP PRIVATE uses copy-on-write, a dirty page in a
private mapping is present but is no longer a file page. This
design overcomes multiple limitations of the system’s msync,
including random and bursty I/O at non-deterministic time
intervals, as well as other system overheads [3]. We adapted

2
978-1-6654-2369-4/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on June 14,2023 at 20:18:15 UTC from IEEE Xplore. Restrictions apply.

HPEC 2021 Waltham, MA

this design from [12] and modified it to work with content-
addressable storage of backing files.

A backing file is created for any modified block at the
first call to msync after the block was modified. This design
has multiple advantages. First, the VM region partitioning in-
creases the writeback parallelism as multiple threads can han-
dle multiple blocks simultaneously without synchronization.
Second, the on-demand creation of backing files optimizes
the physical storage space for sparse data. Finally, it enables
further storage optimization using de-duplication of blocks via
content-addressable storage, as described later in this section.

C. Block Storage Management

The block storage layer stores data blocks using content-
addressable storage (CAS). CAS is a method for optimizing
storage space via de-duplication [14]. It works by storing
blocks into files with names that uniquely represent the block’s
content, e.g., SHA-256 hash. This means that duplicate data
blocks are stored only once. A metadata file saves the order of
the data blocks in the data store. Loading a data store incurs
only minimal overhead by scanning the metadata file to read
the data blocks in the right order.

A principal design parameter that determines the efficiency
of CAS is the block size. Smaller block sizes typically yield
more savings in storage space since they result in a higher
probability of duplication. This improvement in storage space
also depends highly on the characteristics of the dataset.
That is, storage saving is inherently inversely proportional
to the block size. The disadvantage of using smaller block
sizes is that they require more hash computations. Moreover,
synchronization is required between Privateer’s parallel msync
threads to avoid data races when writing to a file with the same
hash. To prevent these synchronizations from reducing the
parallel I/O efficiency, Privateer’s block storage layer creates a
temporary file with a unique name for each block. This allows
the virtual memory management (VMM) layer to perform a
parallel msync without synchronization between the writing
threads. After a block is written into the temporary unique file,
the block hash is computed, and the block is either renamed
to its content-based hash or removed if another block already
holds the same name. This approach requires synchronization
only for renaming or removing temporary files. In our imple-
mentation, we used the C++ atomic rename function, which
fails if a file with the same name already exists. Catching
this failure with a file exists error code, the temporary file is
instead removed. While this approach can result in redundant
writes of blocks that have the same content, it increases
write parallelism by avoiding explicit synchronization. Our
preliminary results show that this approach is nearly five times
faster than using a named mutex or a global semaphore. On the
other hand, the maximum number of redundant blocks written
during a single msync operation amounted to only 0.15% of
the total number of written blocks. However, the increasing
number of file system operations required to rename or remove
temporary blocks still affects performance at smaller block

sizes (e.g., 128KB). A detailed analysis of the tradeoff between
writeback performance and storage savings is provided in §III

III. EVALUATION

Our evaluation of Privateer encompasses three goals: (1)
the efficacy of Privateer’s storage space optimization, (2) the
impact of Privateer optimizations on application performance,
and (3) the analysis of the tradeoff between storage space
optimization and application performance. For our evaluation,
we use a micro-benchmark that incrementally constructs a
persistent C++ graph data structure using Metall [5].

Metall is a persistent C++ data structure allocator optimized
for fast storage devices, such as persistent memory. Metall
allows data analytics applications to persist the data structures
and re-attach to them for subsequent analysis, hence reducing
the cost of raw data ingestion, indexing, and partitioning
for each subsequent analysis. Metall also enables versioning
of data structures for applications that require storing and
processing consistent snapshots of dynamically changing data,
such as incremental graphs [8].

We modify Metall’s storage manager and memory allocator
to use Privateer, as described below. Our micro-benchmark
incrementally constructs an adjacency list from a raw graph
dataset. It also periodically stores temporal snapshots of the
dynamically constructed adjacency list. We use a dump of
the Wikipedia page reference graph from 2001 until 2017 to
incrementally construct the adjacency list and save monthly
and yearly snapshots. Next, we provide a detailed description
of the experimental setup, followed by our results.

A. Experimental Setup

1) Metall+Privateer: Metall uses a memory-mapped data
store to persist the allocated data structures. We integrate
Privateer into Metall by extending Metall’s data store manager
to use a Privateer object. Like Privateer, Metall’s default data
store manager allocates a large contiguous virtual memory
(VM) region and then dynamically partitions it into multiple
chunks. Our extended data store manager uses Privateer’s
create() API to overwrite this memory-mapped region with a
Privateer region. We also modify Metall’s data store’s open(),
flush(), and snapshot() to use Privateer APIs. For the exper-
iments in this paper, we use Metall without Privateer as our
baseline for comparison. To accurately measure the tradeoff
between I/O performance and storage space optimizations,
we use a version of Metall that incorporates the pagemap
writeback optimizations [12].

2) Incremental Graph Construction: We use a micro-
benchmark that uses Metall to incrementally construct a per-
sistent adjacency list data structure from a real-world graph
dataset. The input to the micro-benchmark consists of an edge
list where each item contains a pair of vertex IDs and a
timestamp. The micro-benchmark ingests the edge list into
an adjacency list data structure that is allocated using Metall.
It then saves periodic snapshots of the adjacency list at a
configurable time period. In our evaluation, we experiment
with monthly and yearly snapshots.

3
978-1-6654-2369-4/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on June 14,2023 at 20:18:15 UTC from IEEE Xplore. Restrictions apply.

HPEC 2021 Waltham, MA

The baseline Metall implementation provides a snapshot
API that copies the entire data store into a snapshot directory.
Metall+Privateer only writes new or modified data blocks
to Privateer’s blocks directory and generates a snapshot
consisting of a new metadata directory, as described in §II.

3) Dataset: We use a real-world graph dataset that con-
sists of a dump of the Wikipedia page reference graph. The
Wikipedia page reference graph consists of all the Wikipedia
pages hyperlinks from January 2001 until July 2017. The
graph contains a total of 1.8 billion edges (hyperlinks).

4) Computing Platform: We conduct our evaluation on
Corona, a cluster that consists of 270 compute nodes. Each
node consists of a 48-core AMD EPYC 7401 processor,
256GB DRAM, and 1.6TB NVMe SSD local storage. Corona
nodes are equipped with RedHat Enterprise release 7.9 and
Linux kernel version 3.10.

B. Results

We first evaluate the effectiveness of Privateer’s storage
space optimizations. Since Privateer optimizes storage space
using de-duplication, a smaller block size is expected to yield
more savings with respect to storage space. Hence, we vary
the Privateer block size from 256MB down to 128KB. We
also characterize the implications of decreasing Privateer’s
block size on performance by measuring the snapshotting
time as well as the total micro-benchmark running time for
both the baseline Metall and Metall+Privateer. We then use
this evaluation to analyze the tradeoffs between storage space
optimizations and I/O performance.

1) Storage Space Optimization: Figure 2 shows the cumu-
lative snapshots size after each yearly (2a) and monthly (2b)
snapshot of the Wikipedia page reference graph. Decreasing
the Privateer block size yields a consistent improvement in
storage space utilization. The total size of all yearly snap-
shots is 163GB for baseline Metall, compared to 118GB for
Metall+Privateer with a 128KB block size, yielding a 27.6%
savings in storage space. For the monthly snapshots, baseline
Metall’s total size of monthly snapshots exceeds the com-
pute node’s capacity of SSD local storage (∼1.6 TB). Thus,
the benchmark can only store 188 out of the 199 monthly
snapshots when using baseline Metall. With Metall+Privateer,
the benchmark stores all 199 snapshots for a total size of
1.12TB. (After 188 monthly snapshots, the total snapshots size
was 1.46TB for baseline Metall, compared to 0.972TB for
Metall+Privateer, yielding a 33.2% savings in storage space.)

2) Runtime Performance: Figure 3 shows the total bench-
mark execution time for different Privateer block sizes. The
total runtime includes the time to ingest the raw edge list into
the adjacency list data structure, the time to save the snapshots,
and the time to close the Metall manager. Saving snapshots
includes writing data back into the backing store and creating
a copy of the data store into a separate directory. As described
in §II, Privateer optimizes the snapshotting time by copying
only the metadata, instead of copying the entire data store. For
the yearly snapshotting benchmark, this optimization yields a
3.47× speedup in snapshotting time and a 1.3× speedup in

total runtime for the 256MB block size, compared to baseline
Metall. For the monthly snapshots, the 256MB block size
yields a 2.6× speedup in snapshotting time and a 1.68×
speedup in total runtime. For smaller Privateer block sizes,
the speedup gain diminishes as it is offset by the overhead
of the file system operations and hash computations necessary
for Privateer blocks naming. For the 128KB Privateer block
size and the yearly snapshots, the snapshotting time and the
total runtime are comparable to baseline Metall. On the other
hand, the monthly snapshots incurred a slowdown of 1.1×
in snapshotting time and 1.29× in total time. These results
indicate a tradeoff between storage space optimization and
runtime performance.

3) Storage Optimization and Performance Tradeoff: Fig-
ure 4 presents an analysis of the tradeoff between storage
optimization and runtime performance. Larger block sizes
(8MB and larger in this case) yield an improvement in
runtime due to Privateer’s snapshot optimizations. On the
other hand, block sizes smaller than 8MB yield a significant
and consistent improvement in storage space. This storage
optimization comes at the cost of reduced performance gain.
As described earlier, a smaller block size implies more file
system operations and hash computations. For our use case,
the block size that optimizes this tradeoff is 1MB. In general,
the optimal point is a function of multiple factors, such as
the characteristics of the data as well as the properties of
the underlying file system. For instance, a dataset that has
more inherent duplicate patterns could benefit from storage
optimizations at a larger block size, which would also achieve
a performance improvement. On the other hand, a file system
with different characteristics, such as a network-based file
system, would suffer more performance degradation at smaller
block sizes due to remote file system operations. As part of our
future work, we seek to analyze all the parameters affecting
this tradeoff in order to identify the optimal configuration of
Privateer’s block size.

IV. RELATED WORK

A. Optimizing I/O Performance Using Memory Mapping

Multiple research efforts [2], [3], [10] have focused on
optimizing memory-mapped I/O [17] to leverage its advantage
over explicit read-write I/O for fast storage devices. While
FastMap [3] optimizes the scalability of Linux’s mmap for
multi-threaded applications, using their optimizations requires
a specific kernel module, which affects its portability. On the
other hand, UMap [2] allows for application-specific paging
optimizations in user space; however, it only works with Linux
kernel versions 5+ to support write-protected mappings in user
space. We also provide a user-space implementation of msync()
to optimize both writeback performance and storage space via
CAS. As part of future work, we plan to leverage UMap for
further I/O optimizations and apply FastMap’s optimizations
in user space for better portability.

4
978-1-6654-2369-4/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on June 14,2023 at 20:18:15 UTC from IEEE Xplore. Restrictions apply.

HPEC 2021 Waltham, MA

Snapshot (Yearly)

C
um

ul
at

iv
e

S
na

ps
ho

ts
 S

iz
e

(G
B

)

0

50

100

150

200

2002 2004 2006 2008 2010 2012 2014 2016

Metall_w/o_Privateer Metall+Privateer_262144KB Metall+Privateer_32768KB Metall+Privateer_8192KB
Metall+Privateer_2048KB Metall+Privateer_512KB Metall+Privateer_128KB

(a)

Snapshots (Monthly)

C
um

ul
at

iv
e

S
na

ps
ho

ts
 S

iz
e

(G
B

)

0

500

1000

1500

2002-01 2004-01 2006-01 2008-01 2010-01 2012-01 2014-01 2016-01

Metall_w/o_Privateer Metall+Privateer_262144KB Metall+Privateer_32768KB Metall+Privateer_8192KB
Metall+Privateer_2048KB Metall+Privateer_512KB Metall+Privateer_128KB

(b)

Fig. 2: Cumulative snapshots size for incremental graph construction and storage of (a) yearly snapshots and (b) monthly
snapshots using Metall and the Wikipedia page reference graph. Each line plot represents a different Privateer block size.

Privateer Block Size (KB)

E
xe

cu
tio

n
Ti

m
e

(s
)

0

200

400

600

12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6

13
10

71

26
21

55

w/o
Priv

ate
er

Closing Metall Manager Snapshotting Application

(a)

Privateer Block Size (KB)

E
xe

cu
tio

n
Ti

m
e

(s
)

0

1000

2000

3000

12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6

13
10

71

26
21

55

w/o
Priv

ate
er

Closing Metall Manager Snapshotting Application

(b)

Fig. 3: Effect of varying Privateer’s block size on the total running time of the incremental graph construction and storage of
(a) yearly snapshots and (b) monthly snapshots. The total time for baseline Metall is shown in the last column for reference.

Privateer Block Size (KB)

S
to

ra
ge

 S
pa

ce
 Im

pr
ov

em
en

t

E
xe

cu
tio

n
Ti

m
e

S
pe

ed
up

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6

13
10

71

26
21

55

Storage Improvment Execution Time Speedup

(a)

Privateer Block Size (KB)

S
to

ra
ge

 S
pa

ce
 Im

pr
ov

em
en

t

E
xe

cu
tio

n
Ti

m
e

S
pe

ed
up

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6

13
10

71

26
21

55

Storage Improvment Execution Time Speedup

(b)

Fig. 4: Tradeoff between storage improvement and running time speedup for the incremental graph construction and storage
of (a) yearly snapshots and (b) monthly snapshots.

5
978-1-6654-2369-4/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on June 14,2023 at 20:18:15 UTC from IEEE Xplore. Restrictions apply.

HPEC 2021 Waltham, MA

B. Memory-Mapped Data Stores

UMap provides extensible data store objects that define how
data are stored on, read from, and written into the backing
store [4]. This allows UMap users to implement storage-
specific data store interfaces to further optimize I/O perfor-
mance and storage efficiency. For instance, SparseStore [18]
is a memory-mapped data store interface that partitions the
memory-mapped data into multiple blocks to optimize the
storage of sparse data and to maximize parallel I/O. A part
of Privateer’s design was inspired from SparseStore; how-
ever, Privateer augments this design concept with content-
addressable storage for de-duplication. Privateer also uses
regular mmap() to be compatible with current production
Linux kernels. As mentioned earlier, Privateer could benefit
from UMap in the future to enable application-specific opti-
mizations.

C. Optimizing I/O Performance and Storage Space

Optimizing both I/O performance and storage space is a
challenging tradeoff as more space optimizations typically
imply more CPU time [7], [15]. Existing solutions optimize
both parameters for specific types of data stores using data-
structure level optimizations.

1) Evolving Snapshots of Graphs: LLAMA optimizes the
storage of multiple snapshots of an evolving graph using
multi-versioned compressed sparse row (CSR) arrays [9]. The
benefits of these optimizations are limited to graph data stores.
On the other hand, Privateer optimizes storage utilization and
I/O performance at the virtual memory and backing store
management level, rendering it applicable to various types of
data stores. Moreover, LLAMA could use Privateer as a data
store management layer for further I/O and storage optimiza-
tions.Other graph data stores include GraphOne [19], a data
store that optimizes concurrent ingestion and access of graph
data. GraphOne stores snapshots of evolving graphs using an
edge list format. Similar to LLAMA, these optimizations are
specific to graph data stores.

2) Key-Value Store Databases: RocksDB is a key-value
store database that is optimized for flash storage [7]. RockDB
optimizes I/O performance and storage efficiency by intro-
ducing algorithmic optimizations and compression techniques
for persisting a log-structured merge (LSM) tree. Kreon intro-
duces further algorithmic optimizations along with optimizes
memory-mapped I/O [10]. These optimizations are specific to
key-value stores implemented using variants of an LSM tree.
We believe that Privateer could provide additional optimiza-
tions to such tools by further optimizing the storage of the
memory-mapped data blocks.

V. FUTURE DIRECTIONS

There are multiple future directions for Privateer to support
different applications, architectures, and application-specific
optimizations.

A. Privateer for Key-Value Data Stores

Key-value data stores such as RocksDB [7] and Kreon [10]
are widely used in the big data industry. Optimizing key-
value storage and performance for flash storage devices have
attracted significant research attention. As a future direction,
we plan to explore using Privateer as a storage optimization
layer for key-value data stores with no or minimal changes
to the data structure design. Privateer could provide an extra
storage optimization layer below the existing data structure op-
timizations. However, a study of the storage and performance
tradeoff needs to be conducted to analyze the benefits and
tradeoffs of such design.

B. Privateer and User-Space Paging

A key design parameter for scalable data stores on fast
storage devices is I/O performance. As described earlier,
memory-mapped I/O provides a considerable opportunity for
performance optimization. A current limitation of Privateer
is that smaller block sizes result in a significant number of
memory mappings that approach the system’s limit. More-
over, kernel-space memory-mapped I/O lacks flexibility for
application-specific optimizations [2]. As a future direction,
we plan to leverage user-space paging, such as UMap, to
address these limitations.

C. Distributed Block Storage Service

Privateer’s block storage layer leverages content-addressable
storage (CAS) to optimize storage space. Other benefits of
CAS include network bandwidth optimization for sharing
blocks between distributed processes [15]. As a future step, we
plan to design and evaluate a distributed block storage service.
There are multiple design considerations, such as concurrency
control on a distributed file system and optimizing blocks
transfer via a local per-node blocks cache.

VI. CONCLUSION

Privateer is a data-store management interface that op-
timizes I/O performance and storage space utilization for
fast storage devices such as NVRAM. Privateer optimizes
writeback performance using private, copy-on-write memory
mapping and a user-space msync implementation. To optimize
storage space, Privateer uses a content-addressable storage
model that partitions the virtual memory regions into blocks,
creates a backing file for each block, and names blocks using
the SHA-256 hash of the block’s content. This approach
optimizes storage space utilization by storing duplicate blocks
only once. Privateer achieves 33% storage improvement for
storing multiple snapshots of an evolving graph using Metall, a
C++ persistent data structure allocator. Privateer optimizes the
tradeoff between I/O performance and storage space using a
configurable block size that could be set to satisfy application-
specific I/O and storage requirements.

6
978-1-6654-2369-4/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on June 14,2023 at 20:18:15 UTC from IEEE Xplore. Restrictions apply.

HPEC 2021 Waltham, MA

ACKNOWLEDGMENT

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344 (LLNL-CONF-
824675). Funding from LLNL LDRD project 21-ERD-020
was used in this work. This document was prepared as an
account of work sponsored by an agency of the United
States government. Neither the United States government nor
Lawrence Livermore National Security, LLC, nor any of their
employees makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not neces-
sarily constitute or imply its endorsement, recommendation,
or favoring by the United States government or Lawrence
Livermore National Security, LLC. The views and opinions
of authors expressed herein do not necessarily state or reflect
those of the United States government or Lawrence Livermore
National Security, LLC, and shall not be used for advertising
or product endorsement purposes.

Additionally, we would like to thank Ben Woodard (RedHat)
for his informative discussion on Linux VM management.

REFERENCES

[1] D. A. Reed and J. Dongarra, “Exascale computing and big data,”
Communications of the ACM, vol. 58, no. 7, pp. 56–68, 2015.

[2] I. Peng, M. McFadden, E. Green, K. Iwabuchi, K. Wu, D. Li, R. Pearce,
and M. Gokhale, “Umap: Enabling application-driven optimizations for
page management,” in 2019 IEEE/ACM Workshop on Memory Centric
High Performance Computing (MCHPC). IEEE, 2019, pp. 71–78.

[3] A. Papagiannis, G. Xanthakis, G. Saloustros, M. Marazakis, and A. Bi-
las, “Optimizing memory-mapped i/o for fast storage devices,” in 2020
USENIX Annual Technical Conference (USENIX ATC 20), 2020, pp.
813–827.

[4] I. B. Peng, M. Gokhale, K. Youssef, K. Iwabuchi, and R. Pearce, “En-
abling scalable and extensible memory-mapped datastores in userspace,”
IEEE Transactions on Parallel and Distributed Systems, 2021.

[5] K. Iwabuchi, L. Lebanoff, M. Gokhale, and R. Pearce, “Metall: a persis-
tent memory allocator enabling graph processing,” in 2019 IEEE/ACM
9th Workshop on Irregular Applications: Architectures and Algorithms
(IA3). IEEE, 2019, pp. 39–44.

[6] W. Cai, H. Wen, H. A. Beadle, C. Kjellqvist, M. Hedayati, and M. L.
Scott, “Understanding and optimizing persistent memory allocation,” in
Proceedings of the 2020 ACM SIGPLAN International Symposium on
Memory Management, 2020, pp. 60–73.

[7] S. Dong, M. Callaghan, L. Galanis, D. Borthakur, T. Savor, and
M. Strum, “Optimizing space amplification in rocksdb.” in CIDR, vol. 3,
2017, p. 3.

[8] J. Gao, C. Zhou, and J. X. Yu, “Toward continuous pattern detection
over evolving large graph with snapshot isolation,” The VLDB Journal,
vol. 25, no. 2, pp. 269–290, 2016.

[9] P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer, “Llama:
Efficient graph analytics using large multiversioned arrays,” in 2015
IEEE 31st International Conference on Data Engineering. IEEE, 2015,
pp. 363–374.

[10] A. Papagiannis, G. Saloustros, G. Xanthakis, G. Kalaentzis, P. Gonzalez-
Ferez, and A. Bilas, “Kreon: An efficient memory-mapped key-value
store for flash storage,” ACM Transactions on Storage (TOS), vol. 17,
no. 1, pp. 1–32, 2021.

[11] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured
merge-tree (lsm-tree),” Acta Informatica, vol. 33, no. 4, pp. 351–385,
1996.

[12] K. Iwabuchi, K. Youssef, K. Velusamy, M. Gokhale, and R. Pearce,
“Metall: A persistent memory allocator for data-centric analytics,” arXiv
preprint arXiv:2108.07223, 2021.

[13] Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai, M. J.
Efron, R. Iyer, M. C. Schatz, S. Sinha, and G. E. Robinson, “Big data:
astronomical or genomical?” PLoS Biology, vol. 13, no. 7, p. e1002195,
2015.

[14] S. Quinlan and S. Dorward, “Venti: A new approach to archival storage.”
in USENIX FAST, vol. 2, 2002, pp. 89–101.

[15] P. Nath, B. Urgaonkar, and A. Sivasubramaniam, “Evaluating the useful-
ness of content addressable storage for high-performance data intensive
applications,” in Proceedings of the 17th International Symposium on
High Performance Distributed Computing, 2008, pp. 35–44.

[16] “Pagemap, from the userspace perspective,” https://www.kernel.org/doc/
Documentation/vm/pagemap.txt, (Accessed on 03/29/2021).

[17] “Memory-mapped i/o,” https://www.gnu.org/software/libc/manual/html
node/Memory 002dmapped-I 002fO.html, (Accessed on 07/06/2021).

[18] K. Youssef, K. Iwabuchi, W. Feng, M. Gokhale, and R. Pearce, “Towards
optimizing memory mapping of persistent memory in umap.(abstract).”
in SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 2020.

[19] P. Kumar and H. H. Huang, “Graphone: A data store for real-time
analytics on evolving graphs,” ACM Transactions on Storage (TOS),
vol. 15, no. 4, pp. 1–40, 2020.

7
978-1-6654-2369-4/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on June 14,2023 at 20:18:15 UTC from IEEE Xplore. Restrictions apply.

HPEC 2021 Waltham, MA

