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Abstract—Nowadays Graphic Processing Units (GPU) are
gaining increasing popularity in high performance computing
(HPC). While modern GPUs can offer much more computa-
tional power than CPUs, they also consume much more power.
Energy efficiency is one of the most important factors that will
affect a broader adoption of GPUs in HPC. In this paper, we
systematically characterize the power and energy efficiency of
GPU computing. Specifically, using three different applications
with various degrees of compute and memory intensiveness,
we investigate the correlation between power consumption and
different computational patterns under various voltage and
frequency levels. Our study revealed that energy saving mecha-
nisms on GPUs behave considerably different than CPUs. The
characterization results also suggest possible ways to improve the
“greenness” of GPU computing.

I. INTRODUCTION

Recent years have seen the growth of accelerator-based
supercomputers at a surprising rate. Together with their perfor-
mance capabilities, GPU-based accelerators are also becoming
popular because of their extraordinary energy efficiency, as
illustrated by The Green500 List [7], where the first eight ma-
chines on the Nov. 2009 list are all built upon an accelerator-
based architecture. Despite their significantly better energy
efficiency, as compared to CPUs, GPUs are still considered
power-hungry based on the fact that the thermal design power
(TDP) of a high-end GPU, e.g., NVIDIA GeForce GTX 280,
could be as high as 236 watts (W). Given that the TDP of a
high-end quad-core x86-64 CPU is 125 watts, a GPU can still
account for a substantial portion of the overall power usage
of the system.

In light of he high power usage of GPUs, the natural
question that arises is whether such power usage can be
reduced, and if so, what its impact on application performance
would be. To address this question, we consider two architec-
tural characteristics of GPUs that allow it to achieve higher
performance compared to CPUs: (1) massive on-chip paral-
lelism and (2) higher memory bandwidth. For applications
that are compute-bound and can utilize the massive on-chip
parallelism, reducing the clock speed of the GPU cores or
reducing the number of cores used can impact performance

significantly, while the memory bandwidth might not impact
them much. On the other hand, for applications that benefit
solely from the high memory bandwidth, reducing the clock
frequency of the GPU cores might not impact performance
too much. Of course, for applications that rely on both, either
change (i.e., GPU core frequency or memory frequency) can
impact performance.

In this paper, we present a detailed performance and power
characterization of three computationally diverse applications
(i.e., compute-intensive, memory-intensive, and hybrid) run-
ning on the NVIDIA GeForce GTX 280 GPU with varying
processor and memory frequencies. In addition, we charac-
terize the impact of such variation on different application
kernels.

We classify the applications based on two metrics: the rate
of instruction issues and the ratio of global memory transaction
to computation instructions. The former metric characterizes
how intense the computation is in the application; the latter
indicates how memory-dependent the application can be.

Specifically, we study three commonly used scientific com-
puting application kernels – (a) dense matrix multiplication,
(b) dense matrix transpose, and (c) fast fourier transform – and
show their behavior while varying the frequencies of the GPU
cores and memory. In this paper, we do not vary the number
of GPU cores utilized because of the restrictions on current
GPUs in “suspending” unused GPU cores so as to utilize lesser
power, which can cause inconsistent results.

The rest of the paper is organized as follows. We present a
brief overview of the current software abstractions for the GPU
in Section II. In Section III, we demonstrate our experimental
methodology and experimental setup as well as our approach
for profiling the GPU applications studied in this paper. In
Section IV, we characterize the performance and power of
these different GPU applications under varying frequency
settings. We present other related work in Section V and
summarize the paper in Section VI, together with possible
future directions for this work.
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II. BACKGROUND

In this section, we provide a brief overview of the pro-
gramming framework for GPUs that we use in our evaluation.
Furthermore, we present some aspects related to dynamic
voltage and frequency scaling (DVFS) on GPUs that we
utilized in this paper.

We do not discuss details on the general GPU architecture
itself, but refer the readers to other existing literature for such
information [9], [13], [14], [19].

A. OpenCL

While GPUs have become a prominent model for high-end
computing, till recently there was no common programming
abstraction that allowed applications to transparently utilize
different types of GPU architectures. The Open Computing
Language (OpenCL) was recently proposed, originally by
Apple Inc., to provide a general software abstraction for
different types of accelerators. As a programming framework,
OpenCL can be used to program any existing computing
device including CPU, GPU, and even FPGA. While OpenCL
itself is designed to have a standard set of APIs, its im-
plementation is left to vendors (e.g., AMD, NVIDIA, Intel)
and other industry and community users. Thus, irrespective of
the implementation, applications written with OpenCL can be
designed as write once, run anywhere. Due to its extensive
support from various vendors and promising cross-platform
compatibility, OpenCL was chosen for our study and our test
applications are all written with the OpenCL framework.

An OpenCL platform should contain at least one host that
connects to one or more OpenCL devices. Each OpenCL de-
vice can contain a certain number of compute units (CUs), and
each compute unit is further composed by several processing
elements (PEs). The function of the host is to start an OpenCL
kernel, and once the kernel is ready for execution on an
OpenCL device, the host is responsible for transferring the
task to the device accordingly.

Each OpenCL program can be generally divided into the
host part running on the host and the kernels running on
the OpenCL devices. Usually it is the host code which is
in charge of setting up the execution environment for the
kernels and managing their execution on the OpenCL devices.
Each instance of a kernel is called a work-item in OpenCL
terminology, and several work-items can be grouped together
as a work-group. The mapping between the execution model
and the platform model is that each work-item will run on one
PE, while one work-group will be assigned to a CU.

Each work-item has access to 4 different types of memory
spaces on the OpenCL device. They are listed as follows:

• Global memory, which is the memory space open to all
work-items.

• Constant memory, which is part of global memory but
for reading only.

• Local memory, which is dedicated to the work-items in
the same work-group.

• Private memory, which is allocated for each work-item
but not visible to other work-items.

For the purpose of a better visualization, Figure 1 illus-
trates the relationship between memory and work-items in the
OpenCL framework.

Fig. 1. Memory Hierarchy in OpenCL

Throughout the paper, when we refer to GPU memory, we
mean global memory (including constant memory), and the
bandwidth of global memory is determined by the memory-
clock setting of the GPU.

B. Dynamic Voltage and Frequency Scaling (DVFS) on GPU

The basic motivation for dynamic voltage and frequency
scaling (DVFS) is captured by the equation below:

Power ∝ Voltage2 × Frequency

When the frequency is lowered, the power consumption
will be lowered proportionally. If the voltage is lowered,
the power consumption will drops quadratically, and even
cubically, because lowering the voltage also generally lowers
the applicable frequency on which the chip can operate.
However, there also exists a correlation between the clock
frequency and achievable performance, which means that a
decrease in frequency can also reduce processor performance.
Therefore, as a first-order approximation, DVFS essentially
provides us a tool to trade-off performance for power and
energy reduction.

According to publicly available documentation [11] on
NVIDIA’s implementation of DVFS on the GPU, there are
two predefined performance levels for their GPUs: ‘Idle’ and
‘Maximum Performance.’ While there is a third performance
level called ‘HD Video’, it is typically designed for mobile
GPU devices and is therefore not available for our GPU, the
NVIDIA GeForce GTX 280.

As the name suggests, the ‘Maximum Performance’ setting
fixes the clock speeds to the highest setting to achieve the
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best possible performance. In the ‘Idle‘ setting, on the other
hand, when the driver detects that the GPU is idling, it
will automatically lower down the frequencies of the GPU
cores and memory to the pre-defined ‘Idle’ level, which is
just enough for the display to work. Once the driver sees a
computational kernel that is ready to be executed, the driver
will increase the clocks up to the highest level set by user.
Both AMD/ATI and NVIDIA provide frameworks [1], [11]
that allow the upper limit on the frequency and voltage to be
scaled by users. In particular, the core clock of the NVIDIA
GTX 280 can be set between 300 MHz and 700 MHz while
the memory clock can be set to any value between 300 MHz
and 1200 MHz.

III. EXPERIMENTAL METHODOLOGY

In this section, we detail the experimental methodology and
setup that we employ in our study.

A. Experimental Setup

The goal of the paper is to investigate the performance and
power consumption of typical GPU application kernels under
different core and memory clock frequencies. With DVFS
support enabled, we have been able to adjust the working
frequency of both core and memory of GPU. Specifically, for
each configuration, we collect the data from multiple runs of
the application and report their average. Only the data related
to the kernel execution is recorded since our focus in this work
is on GPU alone.

All the results in this paper were taken using the same work-
station. The detailed configuration of this base workstation is
as follows: Intel Core 2 Quad Q6600, running at 2.33 GHz
with 1-GB DDR2 SDRAM*4 and 320-GB Seagate Barracuda
7200.11 hard disk. The GPU card is the NVIDIA GeForce
GTX 280, where the default frequency of the computational
core is 602 MHz and memory frequency is 1107 MHz. The
software environment comprises Ubuntu Linux 9.04 64-bit
Linux, CUDA toolkit 2.3a supporting OpenCL, and NVIDIA
driver version 190.29. All power measurements in this section
are collected with a “Watts Up? Pro ES” power meter and
logged to a separate profiling system. Figure 2 shows the
hardware setup.

B. Experimental Applications

In our experiments, we tested three applications which
represent compute-intensive, memory-intensive, and hybrid
kernels to showcase the performance and power consumption
of the NVIDIA GeForce GTX 280 GPU. The three applica-
tions that we consider are the compute-intensive dense matrix
multiplication, the memory-intensive dense matrix transpose,
and the hybrid fast Fourier transform (FFT).

Given that the GPU allows the frequencies of both the
computational cores and the memory to be adjusted, we
studied both. We did not consider communication-intensive
applications since the major factor affecting communication
performance on a GPU is neither computation speed nor
memory throughput. Thus, we consider such applications to

Experimental Computer

Power meter

Wall outlet

Profiling Computer

Fig. 2. Hardware setup for the experiment

be out of the scope of this study. A detailed discussion about
the performance characteristics of communication-intensive
applications on GPUs can be found in [20], [21].

Below is a more detailed description of the three test
applications:

1) Dense Matrix Multiply: The dense matrix multiply
(MatMul) kernel is optimized to fully utilize the potential
computational power of the GPU. The basic algorithm adopted
here is the blocked version of matrix multiplication, which
takes advantage of the GPU’s coalesced global memory access
and fast private/local memory. The bottleneck in this kernel is
just the speed of issuing instructions [18].

2) Dense Matrix Transpose: The dense matrix transpose
(MatTran) kernel is designed to be mostly memory manipu-
lations with only a small amount of necessary computation
for each thread’s ID and memory indices. To fully utilize the
parallel processing ability of GPU, multiple rows of the matrix
are read-in and manipulated simultaneously. All intermediate
results are stored in the local memory, waiting to written back
to global memory.

3) Fast Fourier Transform: The fast Fourier transform
(FFT) is an efficient algorithm for solving the discrete Fourier
transform and its inverse. A recursive GPU implementation of
this algorithm computes the result by launching the computing
kernel multiple times during the run. For each kernel launch,
the global memory chunk has to be read into local memory
and computed by the computing unit. So, the speed of the
FFT algorithm would be affected by both the GPU core and
memory speeds.

C. Experimental Profiling

In order to understand the kernel execution, we collected
profiling data for each kernel via the NVIDIA OpenCL Visual
Profiler. To verify whether a kernel is compute-intensive or
memory-intensive, the rule of thumb proposed in [18] is to
use the “global memory to computation cycle” ratio to indicate
the memory-transaction intensity of a GPU kernel. This ratio
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Application instruction gputime(us) cputime(us) gld request gst request gld tran gst tran
MatMul 203135064 991327 991360 5041152 4376 33566720 52448
MatTran 1118754 91527 91562 17480 17480 104864 1677824

FFT 2568388 17452 17611 52432 52432 314650 314650

TABLE I
PROFILING OF APPLICATIONS TESTED

Rmem can be estimated using the following formula:

Rmem =
Number(Global Memory Transactions)

Number(Computation Instructions)

Because the global memory on the GPU is two orders of
magnitude slower than local memory [12], we only count the
number of global memory accesses for the above ratio.

Another important ratio for measuring the performance of
the GPU is the rate of issuing instruction (Rins ), which can
be obtained by:

Rins =
Number(Computation Instructions)

gputime

where the gputime is the actual execution time of the kernel
on the GPU.

We also want to make sure that the kernel execution has
minimal kernel launch overhead; this can be verified through
the overhead ratio Rover which is defined as:

Rover =
cputime− gputime

cputime

where the cputime is the corresponding time elapsed on the
CPU.

The profiling information for Rmem , Rins , and Rover for
each of the three applications is shown in Table I. Note that
both the number of global memory requests and transactions
(’ tran’ in the table) are reported because a single global
memory request might need multiple global memory trans-
actions. Thus, it is the actual number of memory transactions
that actually determines the latency on memory access. The
memory request would be counted as one instruction that is
deducted when computing the actual number of computation
instructions.

Besides profiling the applications using the default factory
clock setting, we also attempted to profile the application
under different GPU clock settings. However, due to the
overhead introduced by the profiler, the profiling data under
different GPU clock settings look relatively similar. Therefore,
we chose not to report this data in this study.

To obtain the accurate number of computation instructions,
we deduct the number of memory requests from the total
instruction count. The calculation is further complicated by the
fact that the number of instructions is reported for one compute
unit while the number of memory requests and transactions is
reported for three compute units sharing the same memory
control unit [12], which is accounted for in the profiling
information provided in Table II.

Application Rmem Rins Rover

MatMul 5.6% 203215711 0.03%
MatTran 53.7% 12095895 0.04%

FFT 8.3% 145165788 0.9%

TABLE II
APPLICATION CHARACTERIZATION

D. Evaluation Metrics

We use the following evalutation metrics to compare the
different DVFS system configurations for each application:

Time: The execution time is measured for the kernel
execution of each application. To minimize noise, the same
application is run multiple times under each setting, and the
average time (T) is used.

Performance: A common metric for the high-performance
computing (HPC) community is FLOPS, which stands for
floating-point operations per second. However, this metric
may not apply to certain applications that do not focus on
computation, such as the matrix transpose kernel. In this case,
we adopted another metric for performance of matrix trans-
pose, using MBPS, which stands for megabytes per second,
to indicate the throughput it has at run time.

Energy: Energy (E) is measured for the whole system when
executing the kernel on the GPU.

Power: Power (P) is reported using the average power,
calculated by the energy used per execution time unit:

Power = Energy/Time

Power Efficiency: We use the ratio of performance per
power as the indicator of power efficiency:

Power Efficiency =
Performance

Power

IV. EXPERIMENTAL RESULTS

In this section, we present our experimental results from
measuring the performance and power consumption of the
three application kernels described in Section III. For any
given problem with a fixed size, it is always true that the
power efficiency metric, defined by the performance-to-power
ratio, is equivalent to the energy efficiency, defined by the
computation-to-energy ratio, as illustrated by the following
equation:

Performance

Power
=

Computation

Time × Power
=

Computation

Energy
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Thus, with respect to the energy consumed by each application
under the different settings in our experiment, it is the config-
uration with the best power efficiency that consumes the least
energy.

For each application running on the GPU, we present its
performance, power consumption, and power efficiency as a
set of graphs, where the x-axis plots the GPU core frequency
and the legend denotes the GPU memory frequency. As a
reference point, we record the static power consumed by our
experimental GPU system. The power usage of the system
while idling is 111.3 watts without the GPU and 142.7 watts
when the GPU is installed in the system.

A. Matrix Multiply

Figure 3 shows the performance, power consumption, and
power efficiency when running the dense matrix multiplication
kernel under different frequencies for the GPU cores and mem-
ory. As shown in the figure, the performance is determined
solely by the GPU core frequency, which is not surprising
because of the relatively low Rmem and the highest Rins

among the three application kernels that we ran, showing about
two million computation instructions per compute unit. That
is, the relatively low Rmem and high Rins point to a compute-
intensive application whose performance, relative to execution
speed, is directly proportional to the frequency of the GPU
computing cores and largely independent of GPU memory
frequency. As a consequence, we can run the GPU at the
highest GPU core frequency and the lowest GPU memory fre-
quency to achieve nearly optimal performance while reducing
the (absolute) power consumption by approximately 15 watts
and improving the (absolute) power efficiency by nearly 20
MFLOPS/watt.

However, the relative reduction in power consumption is
only 5%, and the relative improvement in power efficiency is
only 4%. These results point to several potential inter-related
reasons for the minor impact of GPU memory frequency on
power consumption and power efficiency: (1) the memory
intensity of matrix multiply is very low, i.e., Rmem is only
5.6%; (2) the dynamic power range of GPU memory is
relatively small, e.g., ∼20 watts; and (3) GPU memory is less
power hungry than GPU cores.

B. Matrix Transpose

Figure 4 shows the behavior of the matrix transpose kernel
under various clock settings. The set of horizonal lines in the
performance figure of matrix transpose clearly shows that its
performance is determined solely by the GPU memory clock
and is independent of GPU core frequency. The memory-
bounded performance can be attributed to the high Rmem of
matrix transpose, which is approximately 10 times higher than
the Rmem for the matrix multiplication kernel.

As a consequence, we can run the GPU at the highest
GPU memory frequency and the lowest GPU core frequency
to achieve nearly optimal performance while reducing the
absolute power consumption by more than 20 watts (or approx-
imately 3 watts for every 50-MHz decrement in frequency) and
improving the absolute power efficiency by approximately 100
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Fig. 3. Matrix Multiply on NVIDIA GeForce GTX 280

MFLOPS/watt. In contrast to the matrix multiply scenario, the
GPU core frequency has a larger relative impact on power
consumption and power efficiency, improving each by 8-9%.

Further, compared to the compute-intensive matrix multipli-
cation kernel, the memory-intensive matrix transpose kernel
has a much lower power requirement and a narrower dynamic
power range, as shown in Table III. With the GPU memory
frequency fixed at 1200 MHz, the lowest power for executing
the matrix transpose is 216.4 watts, the highest one is just
237.3 watts, i.e., only a difference of 20.9 watts. The generally
low-power consumption of matrix transpose can be explained
by the fact the Rins of matrix transpose is only a tenth of the
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Fig. 4. Matrix Transpose on NVIDIA GeForce GTX 280

Rins of matrix multiply, which indicates that the compute units
are almost idle when executing matrix transpose compared to
matrix multiply. This result also shows the overall impact of
the compute units on the total power consumption of the GPU.

C. Fast Fourier Transform

Figure 5 shows the results of running a two-dimensional
(2-D) FFT kernel. We see that the performance is bound
not only by the speed of the compute units but also by the
memory throughput. The multi-dimensional FFT algorithm
requires a matrix transpose as a post-processing step after the
computation. Because the size of fast local memory is very

Core Performance Power
(MHz) (MBPS) (Watts)

400 262.9 216.4
450 262.6 219.6
500 259.3 226.9
550 264.3 226.4
600 264.4 229.7
650 264.5 233.4
700 264.6 237.3

TABLE III
PERFORMANCE AND POWER WITH GPU MEMORY AT 1200 MHZ

limited on GPU, a multi-dimensional FFT algorithm often
requires significant data exchange between local memory and
global memory on GPU. Since the global memory is usually
two orders of magnitude slower than the local memory, it is
oftentimes the bottleneck for exchanging data such that its
throughput would largely determine the computation latency
in the matrix transpose step. Thus, the performance of multi-
dimensional FFT algorithm on GPU is bound by both the
speed of compute unit and the throughput of global memory.

An interesting finding with respect to the performance is
that the higher the GPU core clock, the more the extent
that memory frequency affects performance. This implies that
when compute units get faster they spend more time waiting
for the memory modules to feed them. Compared to the
completely memory-bounded or completely compute-bounded
kernels, the multi-dimensional FFT is bound by both compute
speed and memory throughput. Because DVFS scheduling
on the GPU can be done along two dimensions, i.e., GPU
core frequency and GPU memory frequency, it is possible to
achieve similar performance with different core and memory
settings. For example, in Table IV, all three frequency settings
produce similar performance numbers, but the power usage is
obviously higher when the GPU core speed is higher at 650
MHz.

Core Memory Performance Power
(MHz) (MHz) (GFLOPS) (Watts)

550 1100 69.60 289.64
600 1000 71.01 290.57
650 900 69.70 298.36

TABLE IV
SIMILAR PERFORMANCE WITH DIFFERENT POWER

V. RELATED WORK

Prior to the emergence of OpenCL, the most fundamen-
tal work related to general-purpose GPU computing was
with Stanford’s Brook [3], [5] for the AMD Stream Proces-
sor [3] and NVIDIA’s Compute Unified Device Architecture
(CUDA) [10].

There has been a lot of previous work that evaluates
the performance of different application kernels using the
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Fig. 5. 2-D FFT on NVIDIA GeForce GTX 280

Compute Unified Device Architecture (CUDA) [17], which is
a precursor to OpenCL. FFT has also been studied in-depth in
the paper [8], resulting in a five-fold speedup over NVIDIA’s
implementation of FFT algorithm. In [4], the authors proposed
a “divide-conquer” approach for solving multi-dimensional
FFTs using a matrix transpose to cope with limited memory
space on computers—we adopted this implementation of FFT
for our work.

With respect to the power usage of GPUs, there has
been a surprising dearth of work in this area, with only a
handful of papers published on the subject. However, given
the importance of the power usage, all the major GPU ven-

dors have attempted to address this issue by adding built-in
power management to their GPUs. For example, NVIDIA’s
PowerMizer [11] and ATI’s PowerPlay [2] throttle the GPU
clock speeds when idle and attempt to minimize the run-
time power usage without affecting performance. Others have
attempted to model the power efficiency of GPUs [15] as well
as investigating energy-aware high-performance computing on
GPUs [16]. Rodina [6] is a benchmark suite focusing on
characterizing heterogeneous computing, which also touches
the power efficiency of different applications on different
platforms. However, none have investigated these properties
with the DVFS approach we adopted in our study.

VI. CONCLUSION AND FUTURE WORK

As a promising architecture for supercomputers, GPU-based
computing is receiving significant attention for its performance
and power efficiency. In order to help the HPC community
better understand the power characteristics of different appli-
cation kernels on the GPU, we have conducted this study to
characterize the performance and power of various applica-
tion kernels under varying frequency settings. Based on our
findings, the GPU application kernels’ performance and power
consumption are largely determined by two characteristics: the
rate of issuing instructions and the ratio of global memory
transactions to computation instructions.

For future work, we intend to conduct our study on other
GPUs, including from AMD and Intel. Given the software
abstraction used in this work is OpenCL which is supported
by most accelerator platforms, a fair comparison running the
same code across platforms is possible. In addition, we believe
a complete and comprehensive modeling of GPU performance
and power consumption would be very useful.
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