
Generalizing the Utility of Graphics Processing Units in
Large-Scale Heterogeneous Computing Systems

Shucai Xiao

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Engineering

Wu-chun Feng, Chair

Peter Athanas

Pavan Balaji

Yong Cao

Cameron Patterson

Sandeep K. Shukla

March 12th 2012

Blacksburg, Virginia

Keywords: Graphics Processing Unit (GPU), CUDA, OpenCL, BLAST,

Smith-Waterman, Fine-Grained Parallelization, GPU Virtualization, GPU

Synchronization, Task Migration

c© Copyright 2012, Shucai Xiao

Generalizing the Utility of Graphics Processing Units in Large-Scale

Heterogeneous Computing Systems

Shucai Xiao

ABSTRACT

Today, heterogeneous computing systems are widely used to meet the increasing demand

for high-performance computing. These systems commonly use powerful and energy-

efficient accelerators to augment general-purpose processors (i.e., CPUs). The graphic

processing unit (GPU) is one such accelerator. Originally designed solely for graphics

processing, GPUs have evolved into programmable processors that can deliver massive

parallel processing power for general-purpose applications.

Using SIMD (Single Instruction Multiple Data) based components as building units,

the current GPU architecture is well suited for data-parallel applications where the execu-

tion of each task is independent. With the delivery of programming models such as Com-

pute Unified Device Architecture (CUDA) and Open Computing Language (OpenCL),

programming GPUs has become much easier than before. However, developing and opti-

mizing an application on a GPU is still a challenging task, even for well-trained computing

experts. Such programming tasks will be even more challenging in large-scale heteroge-

neous systems, particularly in the context of utility computing, where GPU resources are

used as a service. These challenges are largely due to the limitations in the current pro-

gramming models: (1) there are no intra- and inter-GPU cooperative mechanisms that are

natively supported; (2) current programming models only support the utilization of GPUs

installed locally; and (3) to use GPUs on another node, application programs need to ex-

plicitly call application programming interface (API) functions for data communication.

To reduce the mapping efforts and to better utilize the GPU resources, we investigate

generalizing the utility of GPUs in large-scale heterogeneous systems with GPUs as accel-

erators. We generalize the utility of GPUs through the transparent virtualization of GPUs,

which can enable applications to view all GPUs in the system as if they were installed

locally. As a result, all GPUs in the system can be used as local GPUs. Moreover, GPU

virtualization is a key capability to support the notion of “GPU as a service.” Specifically,

we propose the virtual OpenCL (or VOCL) framework for the transparent virtualization

of GPUs. To achieve good performance, we optimize and extend the framework in three

aspects: (1) optimize VOCL by reducing the data transfer overhead between the local node

and remote node; (2) propose GPU synchronization to reduce the overhead of switching

back and forth if multiple kernel launches are needed for data communication across differ-

ent compute units on a GPU; and (3) extend VOCL to support live virtual GPU migration

for quick system maintenance and load rebalancing across GPUs.

With the above optimizations and extensions, we thoroughly evaluate VOCL along

three dimensions: (1) show the performance improvement for each of our optimization

strategies; (2) evaluate the overhead of using remote GPUs via several microbenchmark

suites as well as a few real-world applications; and (3) demonstrate the overhead as well

as the benefit of live virtual GPU migration. Our experimental results indicate that VOCL

can generalize the utility of GPUs in large-scale systems at a reasonable virtualization and

migration cost.

iii

Acknowledgments

I would like to acknowledge many people who helped me during my Ph.D. study at Vir-

ginia Tech. First and foremost, I would like to thank my Ph.D. advisor, Dr. Wu-chun

Feng, for his generous support, excellent guidance, and rigorous scholarship. He not only

taught me the research and presentation skills, but more importantly, inspired me to de-

velop the independent thinking capability that will continuously benefit me in my career. I

will never forget the times and endeavors that he has invested to make my graduate study

productive. I would also like to thank Dr. Heshan Lin for his generous and patient guid-

ance and suggestions in my PhD study. During my internship at NVIDIA Corporation

and Argonne National Laboratory, Dr. Peng Wang and Dr. Pavan Balaji taught me a lot of

hands-on skills and gave me very useful suggestions for my research, respectively. I really

appreciate their effort and help.

I feel so fortunate that I have an excellent doctoral advisory committee, and I would

like to thank Dr. Peter Athanas, Dr. Pavan Balaji, Dr. Yong Cao, Dr. Cameron Patterson,

and Dr. Sandeep K. Shukla for their support, advice, and encouragement. During my grad-

uate study at Virginia Tech, I have worked closely with Ashwin M. Aji, Jeremy Archuleta,

Dr. James Dinan, Song Huang, Yang Jiao, Thomas Scogland, and Dr. Qian Zhu. Many

of my publications would have been impossible without their help. The members of the

Synergy Laboratory have contributed immensely to my research work and personal life at

iv

Virginia Tech. I am especially grateful for the group members: Jacqueline Addesa, Ash-

win M. Aji, Ryan Braithwaite, Mayank Daga, Michella Datoc, Marwa Elteir, Dr. Mark

K. Gardner, Chris Goddard, Yang Jiao, Umar Kalim, Konstantinos Krommydas, Ken-

neth Lee, Dr. Heshan Lin, Gabriel Martinez, Ganesh Narayanaswamy, Lee Nau, Rishi K.

Prasad, Paul Sathre, Thomas Scogland, Ajeet Singh, Balaji Subramaniam, Sahil Talwar.

Benjamin Wang, and Jing Zhang.

I must thank all my friends at Blacksburg, because my life here would be less won-

derful without them. Dr. Kaigui Bian, Dr. Ruiliang Chen, Dr. Chao Huang, Guanghong

Pei, Dr. Ende Pan, Dr. Jiang Wang, Dr. Jingwei Zhang, Dr. Yexin Zheng, and Dr. Jian Zuo,

have offered me a lot of help starting from the first year of my life at Blacksburg. Later,

I found more and more lovely friends here: Xuetao Chen, Zhimin Chen, Yipan Deng, Xu

Guo, Chuan Han, Canming Jiang, Dr. Dong Li, Min Li (CS), Min Li (ECE), Hua Lin,

Chun-yi Su, Xiaokui Su, Guanying Wang, Ting Wang, Liguang Xie, Huijun Xiong, Kui

Xu, Bin Xue, Dr. Yanzhu Ye, and Hao Zhang. It is too long a list to cover all of them.

Lastly, but most importantly, my family has always been a source of support and en-

couragement for me. I am deeply indebted to my parents for instilling me into being

honest, persevering, and hardworking. I would also like to express my deepest gratitude to

my wife Xiaoman. Her support and love smooth the way to my Ph.D. Finally, I am thank-

ful for the arrival of my daughter Meiheng. Her smile gives me additional encouragement

in the final stage of my study here.

v

Contents

List of Figures x

List of Tables xiv

1 Introduction 1
1.1 GPU Virtualization . 6
1.2 GPU Synchronization . 7
1.3 Task Migration . 8
1.4 Application Case Studies . 9
1.5 Organization of the Dissertation . 10

2 Background 12
2.1 NVIDIA Graphics Processing Unit Architecture 12
2.2 Programming Models on GPUs . 14

2.2.1 Compute Unified Device Architecture 14
2.2.2 Open Computing Language . 17

2.3 Message Passing Interface . 18
2.4 General Rules for Programming Optimization 19

2.4.1 Resource Utilization . 19
2.4.2 Memory Throughput . 20
2.4.3 Instruction Throughput . 21

3 GPU Virtualization 22
3.1 Overview . 22
3.2 Related Work . 24
3.3 Virtual OpenCL Framework . 29

3.3.1 VOCL Library . 30
3.3.1.1 VOCL Function Operations 31
3.3.1.2 VOCL Abstraction . 32

3.3.2 VOCL Proxy . 34

vi

3.3.2.1 Managing Communication Channels 35
3.3.2.2 Handling Native OpenCL Function Calls 35

3.4 VOCL Optimizations . 38
3.4.1 Kernel Argument Caching . 39
3.4.2 Data Transfer Pipelining . 41

3.4.2.1 Performance Model of the Overall Bandwidth of GPU
Memory Access . 47

3.4.2.2 Data Transfer Bandwidth Evaluation via a Microbench-
mark . 50

3.4.3 Error Return Handling . 53
3.5 Experimental Evaluation . 54

3.5.1 Microbenchmark Evaluation . 54
3.5.1.1 Initialization/Finalization Overheads 54
3.5.1.2 Performance of Kernel Execution on the GPU 55
3.5.1.3 Data Transfer between Local Host Memory and GPU

Memory . 56
3.5.2 Evaluation with Application Kernels 58
3.5.3 Multiple Virtual GPUs . 63

3.6 Summary . 65

4 GPU Synchronization 67
4.1 Overview . 67
4.2 Time Composition of Kernel Execution 69
4.3 Time Profile for Barrier Synchronization 72
4.4 Existing Work for Inter-Thread Data Communication 73
4.5 Proposed GPU Barrier Synchronization 75

4.5.1 GPU Lock-Based Synchronization 75
4.5.2 GPU Lock-Free Synchronization 77

4.6 Analysis of Inter-Block Data Communication Correctness 80
4.7 Performance Evaluation . 81

4.7.1 Overview . 81
4.7.2 Synchronization Time Verification via a Microbenchmark 82
4.7.3 Fine-Grained Analysis of GPU Barrier Synchronization 86
4.7.4 Evaluation in Real Algorithms 89

4.7.4.1 Kernel Execution Time 90
4.7.4.2 Percentages of the Computation Time and the Synchro-

nization Time . 93
4.7.5 Cost of Guaranteeing Inter-Block Communication Correctness . . 95

4.8 Extension to the OpenCL Programming Model 97
4.9 Summary . 101

vii

5 Task Migration 102
5.1 Overview . 102
5.2 Related Work . 103
5.3 Transparent Virtual GPU Migration . 105

5.3.1 The Virtual GPU Abstraction . 105
5.3.2 Migrating Virtual GPUs . 108
5.3.3 Queueing Virtual GPU Operations 110
5.3.4 Atomic Enqueueing Commands in the Presence of Migration . . . 112

5.4 Experimental Evaluation . 113
5.4.1 Overhead Caused by Migration Locker 114
5.4.2 Impact of Command Queue Depth 114
5.4.3 Analysis of Migration Overhead 117
5.4.4 Performance Impact of Load Balancing 118

5.5 Summary . 120

6 Application Verification 122
6.1 Overview . 122
6.2 Parallelization of Basic Local Alignment Search Tool for Protein Sequence

Search . 123
6.2.1 Algorithm Description . 123
6.2.2 Related Work . 125
6.2.3 Mapping BLAST on CUDA . 126

6.2.3.1 Profiling of Serial BLASTP 126
6.2.3.2 Hit Detection and Ungapped Extension Parallelization . 127
6.2.3.3 Gapped Alignment Parallelization 130

6.2.4 Performance Optimization . 131
6.2.4.1 Memory Access . 131
6.2.4.2 Load Balancing across Different Threads 134

6.2.5 Performance Evaluation and Characterization 135
6.2.5.1 Evaluation of Individual Optimization Techniques . . . 137

6.2.6 Multiple GPUs for Hit Detection and Ungapped Extension 143
6.2.7 Summary . 144

6.3 Parallelization of Smith-Waterman . 145
6.3.1 Algorithm Description . 145
6.3.2 Related Work . 147
6.3.3 Analysis of Smith-Waterman Execution on the GPU 148
6.3.4 Techniques for Efficient Memory Access and Data Copy 150

6.3.4.1 Efficient DP Matrix Access 151
6.3.4.2 Efficient Access to Scoring Matrix and Input Sequences 158
6.3.4.3 GPU Synchronization 158

viii

6.3.4.4 Trace Back: Via CPU or GPU? 159
6.3.5 Performance Evaluation . 160

6.3.5.1 Performance Improvement Corresponding to each Op-
timization Technique 161

6.3.5.2 Performance Improvement Brought by GPU Synchro-
nization in the Use of Remote GPUs 165

6.3.5.3 Time Spent in Inter-Block Data Communication 167
6.3.6 Summary . 169

7 Conclusions and Future Work 170
7.1 Conclusion . 170
7.2 Future Work . 172

Bibliography 174

ix

List of Figures

1.1 Intel CPU Introductions [77] . 3

2.1 An Overview of GPU Architecture. 14
2.2 Execution of Divergent Branches in a Warp 15
2.3 Dependency across OpenCL objects. 17

3.1 Transparent GPU Virtualization . 23
3.2 Virtual OpenCL Framework . 30
3.3 Pseudo Code for the Function clSetKernelArg() 32
3.4 Multiple-Level Handle Translation . 33
3.5 VOCL Device Memory Handle Processing in Kernel Argument Setting . 34
3.6 Pseudo Code of the Proxy Process . 37
3.7 GPU Configuration and the Scenario for the Bandwidth Test 40
3.8 Blocking Data Transfer Scenarios without Pipelining. For instance, GPU

memory write is performed in the following steps: (1) the host sends a data
send request to the proxy; (2) the proxy receives the data send request; (3)
data block is transferred from the host to the proxy; (4) after transfer of
the data block is completed, the proxy transfers the data block to the GPU.
Steps (5) - (8) repeat the above procedure for another data block. 43

3.9 Impact of the Lazy Memory Allocation on Data Transfer Bandwidth . . . 44
3.10 Buffer Pool in the Proxy Process . 45
3.11 Nonblocking Data Transfer Scenarios with Pipelining. For instance, GPU

memory write is performed in the following steps: (1) the host sends a data
send request to the proxy; (2) the proxy receives the data send request; (3)
a data block is transferred from the host to the proxy. At the same time, the
host sends a second data send request, and the proxy receives the second
data send request; (4) after the proxy receives the whole first data block, it
sends the data block to the GPU. At the same time, the second data block
is transferred from the host to the proxy; (5) the proxy sends the second
data block to the GPU after both the first data block is transferred to the
GPU and the whole second send data block is received. 46

x

3.12 Bandwidth of Remote GPU Memory Write 52
3.13 Bandwidth of Remote GPU Memory Read 52
3.14 Bandwidth between Host Memory and Device Memory 56
3.15 Percentage of Time Spent Executing a Kernel in the Single Precision Case

(Note: Program sizes (1) – (6) indicate the following for the four applica-
tion kernels. SGEMM and matrix transpose: matrix size from 1K X 1K
elements to 6K X 6K elements; Smith-Waterman: sequence size from 1K
letters to 6K letters; n-body: number of bodies from 15360 to 53760 with
the increase of 7680.) . 59

3.16 Overhead in Total Execution Time for Single-Precision Computations . . 60
3.17 Overhead in Total Execution Time for Double-Precision Computations . . 63
3.18 Performance Improvement with Multiple Virtual GPUs Utilized (single

precision) . 64
3.19 Performance Improvement with Multiple Virtual GPUs Utilized (double

precision) . 65

4.1 Barrier Synchronization Scenarios in Remote GPU Utilization 68
4.2 Total Kernel Execution Time Composition 70
4.3 CPU Explicit/Implicit Synchronization Function Call 70
4.4 GPU Synchronization Function Call . 71
4.5 Operations in GPU Lock-Based Synchronization 76
4.6 Pseudo Code of GPU Lock-Based Synchronization 76
4.7 Time Composition of GPU Lock-Based Synchronization 77
4.8 Operations in GPU Lock-Free Synchronization 78
4.9 Pseudo Code of GPU Lock-Free Synchronization 79
4.10 Time Composition of GPU Lock-Free Synchronization 80
4.11 Execution Time of the Microbenchmark. 83
4.12 Profile of GPU Lock-Based Synchronization via a Microbenchmark . . . 88
4.13 Kernel Execution Time versus Number of Blocks in the Kernel on the

GTX 280 . 92
4.14 Kernel Execution Time versus Number of Blocks in the Kernel on the

Tesla Fermi C2050 . 92
4.15 Percentages of Computation Time and Synchronization Time (Note: (1)

CPU implicit synchronization (2) GPU lock-based synchronization (3)
GPU lock-free synchronization) . 94

4.16 Kernel Execution Time versus Number of Blocks in the Kernel with threadfence()
Called on the GTX 280 GPU . 96

4.17 Kernel Execution Time versus Number of Blocks in the Kernel with threadfence()
Called on the Tesla Fermi C2050 GPU 96

xi

4.18 OpenCL Barrier Synchronization Time (Note: To make the figure easy
to read, kernel execution times with CPU synchronization are listed in
Table 4.2.) . 99

5.1 Virtual GPU Components and their Dependencies 106
5.2 Virtual GPUs . 107
5.3 Migration Scenario . 108
5.4 Internal Queue in Proxy . 111
5.5 Overhead Caused by Internal Queue in Proxy 116
5.6 Wait for Completion Time with Different N Values 116
5.7 Total Execution Time for each Kernel over a Range of Input Sizes with

and without Migration. 117
5.8 Breakdown of Migration Overheads for each Benchmark across all Input

Sizes. 119
5.9 Total Execution Time for each Benchmark over a Range of Input Sizes

without and with VOCL Load Balancing. 120

6.1 First Three Stages of BLAST Execution 124
6.2 Hit Detection and Ungapped Extension Parallelization 128
6.3 Ungapped Extension Storage in Global Memory 129
6.4 Texture Memory Usage for Subject Sequences 133
6.5 Performance Improvement Brought by each Optimization Technique and

the Corresponding Speedup for the First Two Stages 138
6.6 Performance Improvement Brought by each Optimization Technique and

the Corresponding Speedup for the Gapped Alignment Stage 140
6.7 Overall Execution Time . 142
6.8 Execution Time and Speedup with Multiple GPUs used. 143
6.9 Wavefront Pattern and Dependency in the Matrix Filling Process. 146
6.10 Naı̈ve (Direct) Mapping of the DP Matrix and Computational Load Im-

posed on Successive Kernels. 152
6.11 Matrix Re-Alignment and Computational Load Imposed on Successive

Kernels. 153
6.12 An Example that Threads in a Wrap Access Two Memory Segments. . . . 154
6.13 Incorporating Coalesced Data Representation of Successive Anti-Diagonals

in Memory. 156
6.14 Number of Data Transactions to Global Memory. 156
6.15 Tiled Wavefront. 157

xii

6.16 Performance Improvement for Matrix Filling Corresponding to each Op-
timization Technique. (Note: The above versions are described as: (1) Se-
rial implementation (2) Tiled implementation (3) Naı̈ve implementation
(4) Simple implementation (5) Coalesced implementation (6) Coalesced
implementation + constant memory (7) Coalesced implementation + con-
stant memory + trace back on the GPU.) 162

6.17 Execution Time and Speedup with regard to Different Sequence Sizes for
the Best Version. (On Tesla, it is the version with coalesced matrix access
+ constant memory with trace back on GPU. On Fermi, the version is
the coalesced matrix access without constant memory and trace back is
performed on GPU.) . 164

6.18 Performance Improvement Brought by GPU Synchronization 166
6.19 Overhead in the Utilization of Remote GPUs 167
6.20 Percentage of Time Spent in Inter-Block Data Communication 168

xiii

List of Tables

3.1 Data Transfer Bandwidth (GB/s) of the MOSIX-VCL Framework 27
3.2 Comparison of the Various GPU Virtualization Frameworks 28
3.3 Overhead (in ms) of Kernel Execution for Utilization of Remote GPUs . . 40
3.4 Overhead (in ms) of Kernel Execution with Kernel Argument Caching

Optimization . 41
3.5 Overhead of OpenCL API Functions for Resource Initialization/Release

(Unit: ms) . 55
3.6 Computation and Memory Access Complexities of the Four Applications.

(In matrix multiplication and matrix transpose, n is the number of rows
and columns of the matrix; in n-body, n is the number of bodies; in Smith-
Waterman, n is the number of letters in the input sequences.) 58

4.1 Percentage of Time Spent on Inter-Block Communication on the GTX 280 73
4.2 OpenCL CPU Synchronization Time . 98

5.1 Program Execution Time with and without MPI Mutex Locker. (Program
size used in this experiment is as follows: matrix size is 1024 x 1024 in
matrix multiplication and matrix transpose, sequence size is 1024 charac-
ters in Smith-Waterman, and the number of bodies is 15360 in n-body.) . 115

5.2 Breakdown of Migration Overheads (in msec) for each Benchmark on the
Smallest Input Problem. 118

6.1 Profiling of Serial BLASTP (Unit: Second. Note: Numbers in the bracket
are percentages of the total execution time.) 126

6.2 Versions of GPU BLASTP . 135
6.3 Default Parameter Values in BLASTP 136
6.4 Percentage of the Kernel Execution Time 141
6.5 Comparison of Total Time Needed by Trace Back (Unit: ms) 163

xiv

Chapter 1

Introduction

Today, the growth rate of computational power required for scientific computations has

been outstripping that of the computational capabilities of traditional processors in some

areas. One example is searching biological sequence databases. In early 2000, researchers

found that searching a popular public sequence database slowed by 64% each year [19].

With the appearance of the next-generation sequence technologies and emergent search

areas in the life sciences, such as meta-genomics, the generation of sequence data is in-

creasing at an unprecedented rate, thus further slowing down genomic database search.

Another example is found in cosmology. One of the common computations is to

compute the two-point angular correlation function (TPACF), which can be very time-

consuming as it requires computing auto- and cross-correlations between hundreds of

thousands to millions of galaxies [68]. With the information of more galaxies observed,

such computation will take even more time than ever before.

1

A third example is the hydrological sciences, which have taken advantage of high-

performance computing in the areas of atmospheric and ocean sciences due to their de-

pendence on fine spatial grids and small time steps for integration [43]. With the spatial

grids and the temporal resolutions becoming even finer, computers with far greater com-

putational horsepower are necessary.

On the other hand, gains in computational horsepower by increasing the clock speed

have reached a wall due to the fabrication process and power/leakage constraints, as shown

in Figure 1.1. As such, parallelisms have been widely utilized to achieve computational

power gains. For parallelism, in the low level, performance improvement is driven by

increasing the number of cores in both the traditional X86 multi-core processors and the

newly appeared many-core processors. In a high level, compute nodes are installed with

multiple processors and supercomputers are composed of hundreds or thousands of com-

pute nodes, in which accelerators such as graphics processing units (GPUs) are used. In

fact, GPUs are used as accelerators in three of the top five supercomputers in a recent

Top500 list [4].

Originally designed for accelerating the rendering of images in a frame buffer for out-

put to a display, which is essentially a data-parallel and compute-intensive task, GPUs

have evolved into programmable processors useful for general-purpose tasks (referred to

as general-purpose computation on the GPU (GPGPU)). Following the streaming architec-

ture of the J-Machine [10, 22] and Merrimac [23], which has an order of magnitude more

performance per unit cost than contemporary cluster-based scientific computers, GPUs

deliver much higher peak performance than traditional processors, and the performance

2

Figure 1.1: Intel CPU Introductions [77]

gap between them becomes even larger as time goes on [63]. With emerging parallel pro-

gramming models (e.g., NVIDIA’s Compute Unified Device Architecture (CUDA) [63],

AMD/ATI’s Brook+ [9], and OpenCL [42]), programming GPUs has become much easier

than before though it is still a low-level and laborious process. As such, many applica-

tions, including dense linear algebra [80, 82], fast Fourier transformation (FFT) [32, 83],

sequence alignment [54, 57, 75, 87], sort [31, 33, 38], and shortest-path search [41] have

been parallelized on GPUs, and performance improvement has been reported [64].

However, parallelizing applications to achieve good performance on GPUs is not straight-

forward and sometimes requires significant programming effort, even for well-trained

3

computing experts. This problem becomes even worse when using computational re-

sources in large-scale heterogeneous systems. For instance, on a single GPU card, pro-

grammers need to carefully design the access pattern to device memory to improve mem-

ory access throughput. Moreover, there is no explicit support for data communication

across different single-instruction, multiple-data (SIMD) compute units on the GPU. When

the execution of an application needs such data communication, we need to use an implicit

approach, which requires the program execution to switch back and forth between the host

processor (i.e., CPU) and the device (i.e., GPU) and can cause a large overhead to program

execution.

In large-scale systems with GPUs as accelerators, besides the challenges on a sin-

gle GPU card as mentioned above, the use of GPUs across the whole system is another

challenge. Specifically, current GPU programming models only support the utilization of

GPUs installed locally. When using GPUs in other compute nodes, application programs

need to call TCP sockets and/or Message Passing Interface (MPI) [56] API functions ex-

plicitly for data communication across different compute nodes. With the delivery of more

supercomputers using GPUs as accelerators, this problem will become a common scenario.

Thus generalizing the utilization of GPUs, i.e., using all GPUs in the same way as local

GPUs in large-scale systems, becomes more important than ever before.

To resolve this problem, the work in this dissertation investigates the transparent vir-

tualization of GPUs. Transparent virtualization of GPUs is very important in the utility of

GPUs in many aspects. First, it enables all GPUs in the system to be used in the same way

as if they were installed locally. As such, programmers can focus on the parallelization of

GPUs with no need to consider data communication across different machines. Second,

4

virtualization has the potential of increasing the usability and reliability of GPUs across

the system to maximize system flexibility. As such, any GPU in the system can be used

by any program. To this end, even if GPUs are installed in only part of the compute nodes,

programs running in the system can still take advantage of GPUs no matter whether GPUs

are configured on a node. With only a portion of the compute nodes installed with GPUs,

we can save the system hardware investment and power consumption. For example, the

supercomputer in the Blue Waters project [59] has only 10% of its compute nodes in-

stalled with GPUs. Third, virtualization is a key capability to support the notion of utility

computing [11]. With the ability to support GPU virtualization, end users can use GPU

resources in large-scale systems in the context of “GPU as a service.” In this way, end

users need to consider neither the initial hardware investment nor the system maintenance,

or even how their tasks are actually computed. They just submit their jobs, wait for the

final results, and pay for the resources that they have used. From the perspective of the

service provider, they can coordinate the jobs of many customers and use the computa-

tional resources more efficiently. In addition, virtualization eases the system maintenance

by allowing more nodes to be added to the system without stopping the system. As such,

system maintenance and upgrading can be performed smoothly.

The VOCL framework provides user-level virtualization of GPU devices in large-scale

heterogeneous computing systems. Though it does not handle security issues, it does

provide similar usage and management benefits such as transparent utilization of remote

GPUs and task migration. In addition, various optimization techniques are proposed to

reduce the overhead in the virtualization and task migration. Overall, this dissertation

addresses the following areas: (1) GPU virtualization, (2) GPU synchronization, (3) task

5

migration, and (4) application case studies.

1.1 GPU Virtualization

GPUs are widely used in today’s supercomputers as accelerators for general-purpose com-

putation. In the meantime, the development of virtualization technologies has been advo-

cating the virtualization of GPUs to view them in the same way no matter whether they

are installed locally or remotely. However, the current GPU programming models can

only support the utilization of GPUs installed locally. For GPUs on remote machines, a

program needs to explicitly call API functions for data communication between different

compute nodes. As a result, additional programming effort is needed for the application

parallelization. To resolve this problem, we propose the Virtual OpenCL (or VOCL) for

the virtualization of GPUs based on the OpenCL programming model. VOCL enables all

accelerators installed in the system to be used in the same way as if they were installed

locally. With the VOCL framework, an application can use all the GPUs in the system to

accelerate its execution if they are available. Conversely, a GPU can be used by any pro-

gram running in the system. Overall, VOCL manages computational resources in a more

efficient and flexible way.

Since current GPUs use a separate memory address space from the host processor,

inputs should be transferred to the GPU memory before GPU computations can be per-

formed. After the computation is completed, results should be copied back to the host

memory for program output. In GPU computing, overhead caused by the data transfer

between host memory and device memory can slow down the program execution by up to

50-fold in some applications [34]. When remote GPUs are used, it is expected that even

6

larger overhead will be caused by the data transfer. As such, reducing the data transfer

overhead is of great importance in the utilization of remote GPUs. To reduce the data

transfer overhead in VOCL when remote GPUs are used, we propose two optimization

strategies—kernel-argument caching and data-transfer pipelining. With kernel-argument

caching, our experimental results show that the overhead caused by setting kernel argu-

ments can be reduced by about 100 times. With data-transfer pipelining and using mul-

tiple threads to handle transfer in the remote node, we can achieve 80% - 90% of the

bandwidth in the native OpenCL environment. We also evaluate the virtualization over-

head via several real-world application kernels—matrix multiplication, matrix transpose,

n-body, and Smith-Waterman. Our experimental results indicate that VOCL can support

the transparent virtualization of GPUs at a reasonable virtualization cost, particularly for

compute-intensive applications.

1.2 GPU Synchronization

When parallelized on the GPU, some applications need data communication across dif-

ferent SIMD compute units of the GPU during their execution. On the GPU card, data

communication occurs via the global memory and then requires barrier synchronization

across compute units to ensure correct data communication. Currently, there is no explicit

support for the synchronization, and such synchronization is only implicitly available via

the CPU, which requires the program execution to switch back and forth between the host

(i.e., CPU) and the device (i.e., GPU), causing significant overhead for program execution.

The overhead can become even larger in the utilization of remote GPUs. When remote

GPUs are used, the switching back and forth between the host and the device becomes a

7

two-phase procedure. Specifically, each kernel launch needs to be sent from the local node

to the remote node, and then the kernel is launched on the remote node. To reduce the syn-

chronization overhead, we propose two GPU synchronization approaches [29, 88] for the

data communication across different compute units. These approaches can synchronize

the execution on different compute units without the CPU involved, thus eliminating the

overhead of switching back and forth between the host and the device, particularly in the

scenario of using remote GPUs. From our experimental results, the synchronization time

can be reduced to 1/4 of that of the implicit barrier synchronization approach when our

proposed GPU synchronization is used.

1.3 Task Migration

Task migration is the act of transferring tasks across different nodes. It is to provide for

an enhanced degree of dynamic load distribution, fault resilience, eased system adminis-

tration, and data access locality [81].

With the VOCL framework, an application program can view and use all the OpenCL-

enabled accelerators (e.g., GPUs) in a system. At the same time, each device can be used

by multiple programs concurrently. When multiple programs are running in a system,

load imbalance can exist across different devices, and application performance will be

affected. Since today’s supercomputers consist of large numbers of compute nodes, if task

migration is available across different nodes, we can balance loads by migrating some

tasks from GPUs with heavy load to those with light load.

Moreover, system maintenance or upgrading are frequent occurrences in today’s su-

percomputers. Without task migration, we should wait for the completion of the running

8

tasks before the actual maintenance or upgrading can happen. However, if live task migra-

tion is supported, we can just move all the tasks on the node to other nodes, and then we

can perform the maintenance immediately.

In this work, we extend the VOCL framework to support live task migration across

different GPUs. Our migration strategy is transparent to the application program. It is

based on the mapping of virtual GPUs, consisting of the OpenCL objects used by an

application, on physical GPUs. Migration is then accomplished by mapping a virtual

GPU from one physical GPU to another, and tasks corresponding to the virtual GPU will

automatically move from the (physical) source GPU to the (physical) destination GPU.

In addition, to reduce the migration overhead, we enhance the VOCL framework in two

aspects—atomic transaction of OpenCL function calls and internal queuing of OpenCL

function calls in the proxy.

1.4 Application Case Studies

As case studies, we parallelize two bioinformatics applications for sequence alignment on

the GPU. Sequence alignment finds similar segments or local alignments between different

protein or nucleotide sequences. As mentioned above, with the arrival of next generation

of sequencing technologies, genomic sequence data will be generated at an unprecedented

rate, which makes more and more computational power necessary to process them. Since

GPUs deliver much higher peak performance than traditional processors, using GPUs for

sequence alignment is a promising approach. For sequence alignment, there are two types

of approaches — Basic Local Alignment Search Tool (BLAST), which is heuristic-based,

9

and Smith-Waterman, which is an optimal local alignment algorithm that is based on dy-

namic programming. Execution of BLAST is fast, but it sometimes reports sub-optimal

alignments. In contrast, Smith-Waterman can compute locally optimal alignments, but it

is slow.

In this work, we use the coarse-grained approach to parallelize BLAST on a GPU. In

this approach, each thread is responsible for the alignment of one pair of sequences. By

parallelizing them on the GPU, we achieve performance improvement over executing on

traditional CPUs. As for Smith-Waterman, we parallelize it with a fine-grained approach,

which uses all resources on a GPU for the alignment of a single pair of sequences. As

such, our fine-grained parallel implementations can align sequences of up to 8K letters

in size on an NVIDIA GTX 280 GPU card, which effectively covers the alignment of all

protein sequences in the NCBI GenBank.

With the parallel implementations of BLAST and Smith-Waterman on the GPU, we

verify the feasibility of using remote GPUs and the performance improvement delivered by

GPU synchronization, respectively. Specifically, for BLAST, we use multiple GPUs (both

local and remote) to search a specific database and show the performance improvement.

As for Smith-Waterman, we show the performance improvement brought by the GPU

synchronization in both the local and remote GPU scenarios.

1.5 Organization of the Dissertation

The rest of this dissertation is organized as follows. Chapter 2 introduces background in-

formation, which includes the GPU architecture and its associated CUDA and OpenCL

10

programming models, Message Passing Interface (MPI), and general rules for program-

ming optimization on the GPU. In Chapter 3, we present the VOCL framework for the

transparent virtualization of GPUs as well as some optimizations. These optimizations

reduce the data transfer overhead involved in the use of remote GPUs and are integrated

into the VOCL framework. Chapter 4 proposes the GPU synchronization strategies for

efficient data communication across different compute units on the GPU card. GPU syn-

chronization is applied to application programs and is particularly useful in reducing the

overhead caused by multiple kernel launches when remote GPUs are used. Chapter 5 is

the extension of the VOCL framework by supporting live task migration, which can load

balance across different GPUs and enable uninterrupted system maintenance in large-scale

systems. Chapter 6 briefly describes the parallelization of two bioinformatics applications

— BLAST and Smith-Waterman on the GPU, and we use them as examples to verify our

generalization of GPU usage. Finally, Chapter 7 presents the conclusion and future work.

11

Chapter 2

Background

In this chapter, we provide background knowledge on the following topics: (1) NVIDIA

GPU architecture, (2) programming models on the GPU, (3) MPI (Message Passing Inter-

face), and (4) general rules for programming optimization.

2.1 NVIDIA Graphics Processing Unit Architecture

A GPU is a special processor designed specifically for accelerating certain parts of graph-

ics tasks. With the vertex and fragment shaders added to the graphics pipeline, it is possible

for programmers to replace some default operations provided by graphics cards to support

additional operations. In this way, general-purpose computations can be performed. In

general, an NVIDIA GPU consists of a set of SIMD streaming multiprocessors (SMs),

as shown in Figure 2.1. Each SM consists of a few scalar processing (SP) cores, one or

more instructional units, and one or more special functional units. There are four types of

on-chip memory on each SM: registers, shared memory, a read-only constant cache, and

12

a read-only texture cache. On-chip memory can only be accessed by threads on that SM.

In addition, off-chip memory is provided, which includes global memory and local mem-

ory. Global memory can be accessed by threads across the whole GPU card, and it can

be used for data communication across different SMs [63]. Local memory is thread-based

and used only when the register file is full. It is worth noting that local memory is not

local to threads. It is off-chip instead. Comparing on-chip memory and off-chip memory,

on-chip memory has a low access latency, but its size is small, tens of kilobytes (KB) in

general. In contrast, off-chip memory is large, but its access latency is much higher, ap-

proximately 100 times slower than on-chip memory. One way to mitigate the high latency

is to access global memory in a way that multiple data transactions can be combined in to a

single data transaction, which is referred to as coalesced memory access. In addition, later

generations of Fermi GPU architectures, e.g., Tesla C2050, provides L1 and L2 caches,

which can help to improve the efficacy of global memory access, particularly when mem-

ory accesses are irregular. Different generations of GPUs have different memory sizes and

different numbers of processing cores on each card. For example, the Tesla C1060 GPU

contains 4GB global memory, 16KB shared memory and 16K 32-bit registers on each SM,

and 240 processing cores; while on the Tesla C2050, there are 3GB global memory, 64KB

shared memory (configurable as either 16KB L1 cache/48KB shared memory or 48KB L1

cache/16KB shared memory) and 32K 32-bit registers on each SM, and 448 processing

cores.

In general, execution of a typical program on a GPU includes the following steps. The

program first allocates buffers in the GPU memory. Then it copies kernel inputs to the al-

located GPU memory and performs computation on the GPU. After GPU computation is

13

completed, the program copies the kernel output back to the host memory for program out-

put. Finally, the program releases the buffers in the GPU memory. Compared to program

execution on traditional CPUs, GPU programs need data transfers between host memory

on the CPU and device memory on the GPU. As for the data transfer time, it ranges from

being negligible in compute-intensive programs to significant in data movement-intensive

programs, since the data movement can occupy a large portion of the total program execu-

tion time [34].

Device

Off-chip memory: Global and local memory

SP

On-chip memory:

Registers, shared

memory, texture and

constant cache

SP

SP

SP

SP

SP

SP

SP

SP

On-chip memory:

Registers, shared

memory, texture and

constant cache

SP

SP

SP

SP

SP

SP

SP

SP

On-chip memory:

Registers, shared

memory, texture and

constant cache

SP

SP

SP

SP

SP

SP

SP

SM1 SMNSM2

Figure 2.1: An Overview of GPU Architecture.

2.2 Programming Models on GPUs

To support general-purpose computation on their GPUs, NVIDIA provides the CUDA

and OpenCL programming models to reduce programming effort. Below we give a brief

description for each of them.

2.2.1 Compute Unified Device Architecture

CUDA is the parallel programming model [63] provided by NVIDIA to run programs on

their GPU cards. It is an extension of the C programming language. When a program is

14

mapped, in general, the computation-intensive and/or data-parallel parts are parallelized

to take advantage of the GPU computational horsepower. These parts are implemented as

kernels, which are called on the host and executed on the device. In a kernel, threads are

grouped as a grid of thread blocks, and each thread block contains a number of threads.

Multiple blocks can be executed on the same SM, but any given block can be executed on

only one SM. In addition, threads within a block are organized as groups of 32 threads,

i.e. warps, in which the same instructions are executed across all threads if there is no

divergent branching. If divergence occurs, however, instructions are executed sequentially

across different execution paths within the warp, as shown in Figure 2.2.

All threads in a warp

execute the same

instruction.

Part of the threads

execute an instruction,

the remaining execute

another instruction.

Execution of different

instructions is serialized.

ti
m

e

All threads in a warp

execute the same

instruction.

Figure 2.2: Execution of Divergent Branches in a Warp

CUDA provides a data communication mechanism for threads within a block, which

can be implemented via the shared memory with the barrier function syncthreads().

In addition, atomic functions are provided for some kind of data communication across

15

different threads. However, there is no explicit software or hardware support for data

communication across different blocks, i.e. inter-block data communication. Currently,

inter-block data communication occurs via the global memory and the needed barriers

are implemented implicitly by “expensive” interaction with the CPU—terminating current

kernel’s execution, returning control to the CPU, and re-launching the kernel from the

CPU.

NVIDIA GPUs follow a relaxed memory consistency model. According to the CUDA

programming guide, memory consistency is guaranteed only in the following scenarios:

• Writes to the shared or global memory are visible to later reads in the same thread.

• The barrier function syncthreads() can guarantee that writes to the shared

and global memory are visible to threads within the same block.

• The memory fence function threadfence() blocks execution of the calling

thread until its writes to the shared memory and global memory are visible to all the

threads in a kernel.

• Terminating a kernel ensures that the writes to the global memory are visible to all

threads in the next kernel.

The current CUDA programming model only supports the utilization of NVIDIA GPUs

installed locally. If a CUDA program needs to use a remote GPU, data communication

mechanisms such as TCP sockets and MPI [56] are needed for the data communication

between different compute nodes.

16

2.2.2 Open Computing Language

The Open Computing Language (OpenCL) provides another approach of programming ac-

celerators such as CPUs and GPUs in heterogeneous computing environments. It includes

a C-based programming language to write kernels that are executed on the aforementioned

accelerators. Moreover, it provides APIs to define and control the programming context

for a specific platform. In OpenCL, kernel execution is performed within a host-defined

context and GPU computation is based on the following OpenCL objects — GPU de-

vices, program objects, memory objects, kernels, command queues, etc. The dependency

between the OpenCL objects is shown in Figure 2.3.

cl_platform_id cl_device_id

cl_command_queue cl_context

cl_program

cl_kernelcl_sampler

cl_mem

Figure 2.3: Dependency across OpenCL objects.

As with CUDA, compute-intensive and data-parallel components in applications are

parallelized as kernels running on accelerators, and each kernel in OpenCL contains a few

work-groups with each work-group containing a few work-items. Likewise, the OpenCL

programming model can only support the utilization of accelerators installed locally. How-

ever, OpenCL is more widely supported by processors such as NVIDIA GPUs, AMD

17

GPUs, Cell Broadband Engine (Cell/BE) [21], and traditional multi-core processors. More-

over, in contrast to CUDA, which is based on the CUDA compiler, OpenCL is based on the

OpenCL library. In this way, we can easily overload the OpenCL API functions without

the need to design a new compiler. Finally, initialization of OpenCL is a little more com-

plex compared to the CUDA, or more specifically, the CUDA runtime API. In OpenCL,

API functions need to be called explicitly for the initialization; while with the CUDA

runtime API, all initializations are performed implicitly by the CUDA library [55].

2.3 Message Passing Interface

The Message Passing Interface (MPI) [56] is a standard library API for writing message-

passing programs in FORTRAN, C, or C++. It is widely supported by all vendors, and

portable, open-source MPI implementations (MPICH2 [1] and Open MPI [2]) also ex-

ist. MPI provides rich functionality for communication, including basic point-to-point

sends and receives, collective communication, and asynchronous, one-sided communica-

tion. MPI also provides the ability to dynamically establish and destroy new communica-

tion channels between different MPI processes. For these reasons, we have selected MPI

as the communication runtime system on which to construct VOCL. While the VOCL run-

time utilizes MPI internally, the application only needs to interface with OpenCL to take

advantage of VOCL.

18

2.4 General Rules for Programming Optimization

According to the CUDA programming guide, programming optimizations on GPUs are

mainly performed in three aspects—resource utilization, memory throughput, and instruc-

tion throughput. In the following, each of them is described.

2.4.1 Resource Utilization

In a heterogeneous computing environment with GPUs as co-processors, there are compu-

tational resources on both CPUs and GPUs. In general, CPUs are better as low-latency pro-

cessors that support multiple-instruction, multiple-data (MIMD) operations; while GPUs

are better as high-throughput processors that support SIMD operations. Thus, when schedul-

ing tasks in such an environment, we should assign the sequential portions of a program

to CPUs and data- and/or task-parallel portions to GPUs.

In addition, kernel launch on the GPU is an asynchronous operation. When a kernel

is launched, program execution returns to the CPU before the computation on the GPU

is completed. At this time, if we assign some portions of the program to the CPU, then

computation can be performed on both the CPU and the GPU simultaneously, and compu-

tational resources are better utilized.

As for the resource usage on a GPU card, we should improve the utilization on both one

SM and the whole GPU card. For the former, the SM occupancy is used as a measurement,

which is the ratio of the number of active warps on an SM to the maximum number of

active warps on an SM (e.g., 32 for GPUs with compute capability 1.x and 48 for GPUs

with compute capability 2.x). SM occupancy depends on the kernel resource usage, which

19

includes the number of registers used per thread and the shared memory used per block,

etc. The kernel configuration, i.e., the number of threads per block and the number of

blocks in the kernel, can also affect the SM occupancy. SM occupancy can be calculated

by the CUDA occupancy calculator [62]. On the whole GPU card, enough blocks should

be configured to make computation performed on all the SMs.

2.4.2 Memory Throughput

Maximizing memory throughput can be achieved by minimizing data transfer between

host memory and device memory since memory throughput between device memories

is much larger than that between host memory and device memory. Moreover, on-chip

memory on the GPU has much higher throughput than off-chip memory. Thus, the on-

chip memory should be used as much as possible. Basically, the following procedure are

followed to perform computation to take advantage of the on-chip memory and achieve

high memory throughput:

• Load data from the off-chip memory to the on-chip memory.

• Perform computation on the on-chip memory.

• After computation is done, store the result back to the off-chip memory.

With the above procedure, accesses to the off-chip memory can be minimized and the

overall memory throughput can be improved.

There are texture and constant caches on all GPU cards. Moreover, L1 and L2 caches

are provided on GPUs with compute capability 2.x, which can improve the efficacy of the

off-chip memory access and is transparent to application programs.

20

2.4.3 Instruction Throughput

On the GPU card, costs of different instructions are different. To maximize the instruction

throughput, instructions of low cost should be used as many as possible. For instance, on

devices of compute capability 1.0, there are instructions provided only for 24-bit integer

multiplication, and 32-bit integer multiplication is implemented via multiple instructions

as it is not natively supported. Thus, if possible, the 24-bit integer multiplication should

be used. However, on devices of compute capability 2.0, there are native instructions for

32-bit integer multiplication, but 24-bit integer multiplication is not natively supported,

which needs multiple instructions. As a result, 32-bit integer instructions should be used

on devices of compute capability 2.0.

For the execution of threads within a warp, if there are divergent branches across differ-

ent threads, different execution paths will be executed sequentially, as shown in Figure 2.2,

and performance will be affected. So divergent branches should be minimized for threads

within a warp.

When barrier synchronization is needed across different threads and the number of

threads that need to be synchronized is larger, more potential time will be wasted since

more threads need to wait for others to reach the barrier point. In addition to the barrier

function syncthreads() to synchronize all threads within a block, CUDA provides

barrier functions that can synchronize only part of the threads within a block. Thus, when

possible, we should only synchronize threads that are involved in the data communication

to reduce the synchronization overhead.

21

Chapter 3

GPU Virtualization

3.1 Overview

GPUs are becoming increasingly popular as accelerators for core computational kernels in

scientific and enterprise computing applications. The advent of programming models has

further accelerated the adoption of GPUs by allowing many applications and high-level

libraries to be ported to them. While GPUs have proliferated into high-end computing

systems, current programming models require application execution to be tightly coupled

to the physical GPU hardware. On the other hand, recent developments in virtualization

techniques have advocated decoupling the application view of “local hardware resources”

(such as processors and storage) from the physical hardware itself. That is, each appli-

cation (or user) gets a “virtual independent view” of a potentially shared set of physical

resources. Such decoupling has many advantages, including ease of management, ability

to hot-swap the available physical resources on demand, improved resource utilization,

and fault tolerance.

22

However, with the current GPU programming model implementations, such virtual-

ization is not possible. To address this situation, we investigate the feasibility of virtu-

alizing GPUs in such environments, allowing for compute nodes to transparently view

remote GPUs as local virtual GPUs. To achieve this goal, we propose a new implemen-

tation of the OpenCL programming model, called Virtual OpenCL, or VOCL. The VOCL

framework supports the OpenCL-1.1 API but with the primary difference that it allows

an application to view all GPUs available in a system (including remote GPUs) as lo-

cal virtual GPUs. VOCL internally uses the Message Passing Interface (MPI) [56] for

data management associated with remote GPUs and utilizes several techniques, including

kernel-argument caching and data-transfer pipelining, to improve performance.

Computing

node

Computing

node
Computing

node

Computing

node

Computing

node

GPU

GPU

GPU GPU GPU GPU GPU

GPU GPU GPU GPU GPU

Network connection

Virtual GPUs

Physical GPUs

GPUGPU

Figure 3.1: Transparent GPU Virtualization

We note that this work does not deal with using GPUs on virtual machines, which

essentially provide operating system-level or even lower-level virtualization techniques

(that is, full or paravirtualization). Instead, it deals with user-level virtualization of the

GPU devices themselves. Unlike full or paravirtualization using virtual machines, VOCL

does not handle security and operating system-level access isolation. However, it does

provide similar usage and management benefits and the added benefit of being able to

23

transparently utilize remote GPUs. As illustrated in Figure 3.1, VOCL allows a user to

construct a virtual system that has, for example, 32 virtual GPUs, even though no physical

machine in the entire system might have 32 collocated physical GPUs.

We describe here the VOCL framework and the optimizations that we use to improve

its performance. The optimizations mainly focus on efficient data transfer between the

local node and the remote node, which include the kernel-argument caching, data-transfer

pipelining, and the GPU synchronization to reduce the overhead of data communication

across different nodes. We also present a detailed evaluation of the framework. The eval-

uation includes the performance improvement brought by our proposed optimizations on

data transfer to and from GPUs associated with such virtualization. Also provided is the

overheads for various OpenCL functions. Finally, we evaluate our framework with sev-

eral real application kernels, including SGEMM/DGEMM, N-body computations, matrix

transpose kernels, and the computational biology Smith-Waterman application.

We first, in this chapter, present the VOCL framework and the optimizations on data

transfer between local host memory and remote device memory. Then, in Chapter 4, we

present the GPU synchronization strategy that can be used to reduce the number of kernel

launches for inter-work-group data communication. Finally, in Chapter 5, we extend the

VOCL framework to support live virtual GPU migration across physical GPUs.

3.2 Related Work

Several researchers have studied GPU virtualization in large-scale heterogeneous comput-

ing systems. Till now, GPU virtualization frameworks such as rCUDA [27], vCUDA [72],

and MOSIX-VCL [15] have been proposed to generalize the utility of GPUs in a system.

24

With these frameworks, application programs can use more GPUs than that can be in-

stalled locally, and GPUs can be shared by multiple programs. In this section, we briefly

describe each of the existing frameworks and compare them to our VOCL framework in

four aspects: (1) support for the virtualization of local or remote GPUs; (2) transparent

utilization of GPUs in the system; (3) support for the asynchronous data transfer, which is

a key feature of GPU programming models to overlap program execution and data trans-

fers; and (4) achieved bandwidth between host memory and device memory. Among the

four frameworks, rCUDA, MOSIX-VCL, and our VOCL framework use the QDR Infini-

Band as the network connection, so the achieved bandwidth is an indication of how well a

framework is designed and optimized.

rCUDA [27] is to support programs to use remote GPUs. With rCUDA, programs

can take advantage of GPUs even though there are no GPUs installed in a compute node.

rCUDA is based on the CUDA programming model, which uses some C extensions to

support the kernel function call. The C extension is recognized by only the CUDA com-

piler nvcc, thus rCUDA needs to change the way of the kernel function call. In addition,

rCUDA requires that all CUDA kernels be stored in a different file to be shipped to the

remote node for execution. rCUDA changes the way of the kernel function call, and pro-

grammers need to change the source code to use rCUDA. Thus, it is nontransparent. Cur-

rently, rCUDA only addresses the use of GPUs in a single remote node, and no information

is provided to use GPUs in multiple compute nodes. As mentioned above, asynchronous

data transfer is a key capability in GPU programming models to overlap program execu-

tion and data transfer. In rCUDA, asynchronous data transfer is partially addressed. That

is, when device to host (D2H) data transfer is in progress, asynchronous data transfer from

25

host memory to device memory (H2D) cannot be issued. As for the data transfer band-

width, rCUDA achieves the overall data transfer bandwidth of 1.367 GB/s [28] when using

the QDR InfiniBand as the network connection, corresponding to 51.5% of the bandwidth

in a native CUDA environment.

Shi et al. [72] proposed the vCUDA framework that allows high-performance comput-

ing applications running in virtual machines (VMs) to benefit from GPU acceleration. This

work considers OS-level virtualization of GPUs, and the virtualization overhead comes

from the usage of VMs. Therefore, GPUs that can be used in vCUDA are restricted in a

single node. In vCUDA, GPU sharing is achieved by creating multiple VM instances in

a node. Using the API interception to capture CUDA function calls in a vCUDA wrapper

library, vCUDA redirects API function calls on the guest operating system (OS) to the

host OS, where native CUDA functions are called to perform GPU computing. Compared

to rCUDA, vCUDA does not consider the use of remote GPUs and focuses on the use of

local GPUs. In vCUDA, overhead is introduced by data transfer between different VM

instances, and such data communication can be performed in two modes—shared mode

and transmission mode. In the shared mode, vCUDA uses a memory buffer that is shared

by the guest OS and the host OS. When a data transfer happens between the guest OS and

the host OS, the sender writes data to the shared buffer, and the receiver then reads data

from the buffer. In the transmission mode, the VM instance calls the TCP sockets for data

transfer. Comparing the two data communication modes, the shared mode has much better

performance than the transmission mode. vCUDA does not address the asynchronous data

transfer, and there are no optimizations proposed for the data transfer in either data com-

munication mode. Since vCUDA resolves the GPU sharing on a local node, the achieved

26

data transfer bandwidth is incomparable to that of the other three frameworks. Overall,

vCUDA is complementary to the other three frameworks.

Barak et al. [14,15] proposed the MOSIX-VCL framework to transparently use cluster-

based GPUs. MOSIX-VCL is based on the OpenCL programming model. It is to support

transparent virtualization of both local and remote GPUs. With VCL, all GPUs in a system

can be used as if they were installed locally, and no source code modification is needed.

However, same as rCUDA and vCUDA, VCL does not address the asynchronous data

transfer, and no optimization is performed to improve the data transfer bandwidth. In

addition, VCL has an issue that it does not really address the data transfer between host

memory and device memory. Specifically, we wrote a microbenchmark to measure the

data transfer bandwidth between local host memory and remote device memory. The

measured bandwidth in VCL is much higher than that of the native OpenCL, as shown in

Table 3.1. 1 One possible reason for this behavior is that the data transfer is not completed

even after the OpenCL flush function clFinish() returns.

Table 3.1: Data Transfer Bandwidth (GB/s) of the MOSIX-VCL Framework

Native VCL, VCL,
OpenCL Local Remote

GPU memory write 3.735 7.267 7.230
GPU memory read 3.854 11.421 11.389

Our proposed VOCL framework implements the same functionality as MOSIX-VCL.

It is based on the OpenCL programming model and uses MPI for data communication

between different nodes. VOCL supports the transparent virtualization of both local and

1We asked a VCL framework developer to help us measure the bandwidth of the native OpenCL, VCL
using local GPUs, and VCL using remote GPUs with the QDR InfiniBand as the network connection.

27

remote GPUs in a system, and applications can utilize GPUs without any source code mod-

ification. In contrast to previous frameworks, VOCL fully addresses the asynchronous data

transfer between host memory and device memory, and there is no dependency between

H2D and D2H data transfers. We also proposed a performance model for optimizing the

data transfer between host memory and device memory. Based on the performance model,

we proposed several optimization techniques to improve the data transfer bandwidth. Ac-

cording to our experimental results, VOCL achieves 2.33 GB/s for the H2D data transfer

and 1.985 GB/s for the D2H data transfer when using the QDR InfiniBand to connect

different compute nodes, corresponding to 80% – 85% of the bandwidth in a native envi-

ronment.

In summary, properties of the four aforementioned frameworks are listed in Table 3.2.

Table 3.2: Comparison of the Various GPU Virtualization Frameworks

Frame-
works

Support
local or
remote
GPUs

Source
code mod-
ification

Overhead of the
framework, caused
by additional data
transfer

Support of
asynchronous data
transfer

Achieved data
transfer
bandwidth
over QDR
InfiniBand

vCUDA Local No Between different
VMs on a single
node

Not addressed Not
applicable

rCUDA Remote Yes Between different
compute nodes

Partially supported.
H2D transfer cannot
be issued when D2H
transfer is in progress

1.367 GB/s
over the QDR
InfiniBand

MOSIX-
VCL

Both No Remote GPUs,
between compute
nodes. Local GPUs,
need one additional
phase of data transfer

Not addressed Invalid results
as shown in
Table 3.1

VOCL Both No Remote GPUs,
between compute
nodes. Local GPUs,
almost no overhead

Full support of
asynchronous data
transfer for both H2D
and D2H, optimized

H2D
2.330GB/s,
D2H
1.985GB/s

28

3.3 Virtual OpenCL Framework

The VOCL framework consists of the VOCL library on the local node and a VOCL proxy

process on each remote node, as shown in Figure 3.2. The VOCL library exposes the

OpenCL API to applications and is responsible for sending information about the OpenCL

calls made by the application to the VOCL proxy and receiving kernel results from the

VOCL proxy using MPI. The VOCL proxy is essentially a service provider for applica-

tions, allowing them to utilize GPUs remotely. They are expected to be set up initially (for

example, by the system administrator) on all nodes that would be providing virtual GPUs

to potential applications. The proxy is responsible for handling messages from the VOCL

library, executing native OpenCL functions on physical GPUs, and sending results back to

the VOCL library.

We chose OpenCL as the programming model for two reasons. First, OpenCL provides

general support for multiple accelerators (including AMD GPUs, NVIDIA GPUs, Intel

accelerators, and the Cell/BE) as well as for general-purpose multicore processors (in-

cluding AMD CPUs, ARM CPUs, and Intel CPUs). By supporting OpenCL, our VOCL

framework can support transparent virtualization of various accelerators and multicore

processors. Second, OpenCL is primarily based on a library-based interface rather than

a compiler-supported user interface such as CUDA. Thus, a runtime library can easily

implement the OpenCL interface without the need to design a new compiler.

29

Local computing node Remote computing

node 2

GPU

Application

program
Proxy process

GPU

Native OpenCL

library

MPI

Remote computing

node1

GPU

Proxy process

Native OpenCL

library

MPI

GPU

VOCL library

OpenCL API
OpenCL API OpenCL API

Figure 3.2: Virtual OpenCL Framework

3.3.1 VOCL Library

VOCL is compatible with the native OpenCL implementation available on the system with

respect to its application programming interface (API) as well as its application binary

interface (ABI). Specifically, since the VOCL library presents the OpenCL API to users,

all OpenCL applications can use it without any source code modification. At the same

time, VOCL is built on top of the native OpenCL library and utilizes the same OpenCL

headers on the system. Thus, applications that have been compiled with the native OpenCL

infrastructure need only to be relinked with VOCL and do not have to be recompiled.

Furthermore, if the native OpenCL library is a shared library and the application has opted

to do dynamic linking of the library (which is the common usage mode for most libraries

and default linker mode for most compilers), such linking can be performed at runtime just

by preloading the VOCL library through the environment variable LD PRELOAD.

The VOCL library is responsible for managing all virtual GPUs exposed to the ap-

plication. Thus, if the system has multiple nodes, each equipped with GPUs, the VOCL

library is responsible for coordinating with the VOCL proxy processes on all these nodes.

Moreover, the library should be aware of the locally installed physical GPUs and call the

30

native OpenCL functions on them if they are available.

3.3.1.1 VOCL Function Operations

When an OpenCL function is called, VOCL performs the following operations.

• Check whether the physical GPU to which a virtual GPU is mapped is local or

remote.

• If the virtual GPU is mapped to a local physical GPU, call the native OpenCL func-

tion and return.

• If the virtual GPU is mapped to a remote physical GPU, check whether the commu-

nication channels between applications and proxy processes have been connected.

If not, call the MPI Comm connect() function to establish the communication

channel.

• Pack the input parameters of the OpenCL function into a structure and call MPI Isend()

to send the message (referred to as control message) to the VOCL proxy. Here, a

different MPI message tag is used for each OpenCL function to differentiate them.

• Call MPI Irecv() to receive output and error information from the proxy process,

if necessary.

• Call MPI Wait() when the application requires completion of pending OpenCL

operations (e.g., in blocking OpenCL calls or flush calls).

This function call scenario is illustrated in Figure 3.3.

31

1 clSetKernelArg(kernel, argIndex, argValue, argSize)
2 {
3 //check whether the proxy process is created
4 checkProxyProcess();
5
6 //message to be sent to the proxy process
7 struct strSetKernelArg setKernelArg;
8
9 //initialize the message according to inputs

10 setKernelArg = kernel,argIndex,argValue,argSize;
11
12 //send parameters to remote node
13 MPI_Isend(&setKernelArg, sizeof(setKernelArg),
14 MPI_BYTE, 0, SET_KERNEL_ARG, conMsgComm, ...);
15
16 //send argument value to the remote node
17 MPI_Isend((void *)arg_value, arg_size, MPI_BYTE,
18 0, SET_KERNEL_ARG1, dataComm, ...);
19
20 //wait for return code from the real OpenCL function
21 MPI_Irecv(&setKernelArg, sizeof(setKernelArg),
22 MPI_BYTE, 0, SET_KERNEL_ARG, conMsgComm, ...);
23 //guarantee return code is received
24 MPI_Waitall(requests, status);
25 return setKernelArg.res;
26 }

Figure 3.3: Pseudo Code for the Function clSetKernelArg()

3.3.1.2 VOCL Abstraction

In OpenCL, kernel execution is performed within a host-defined context, which includes

several types of objects such as devices, program objects, memory objects, command

queues, and kernels. A context can contain multiple devices; therefore, objects such

as command queues within the context need to be mapped onto a specific device be-

fore computation can be performed. Since OpenCL can support computation on mul-

tiple GPUs, OpenCL objects contain additional information to identify which physical

GPU the object belongs to. For example, when OpenCL returns a command queue (i.e.,

cl command queue), this object internally has enough information to distinguish which

physical GPU the command queue resides on.

With VOCL, since the physical GPUs might be located on multiple physical nodes,

32

the VOCL library might internally be coordinating with the native OpenCL library on

multiple nodes (through the VOCL proxy). Thus, VOCL needs to add an additional level of

abstraction for these objects to identify which native OpenCL library to pass each object to.

We show this in Figure 3.4. Specifically, within VOCL, we define an equivalent object for

each OpenCL object. For each OpenCL object, its handle is translated to a VOCL handle

with a unique value even when OpenCL handles share the same value. Together with the

native OpenCL handle, the VOCL object contains additional information to identify which

physical node (and thus, which native OpenCL library instance) the object corresponds to.

GPU 0 GPU 1

OpenCL lib

GPU 0 GPU 1

OpenCL lib

OpenCL handle OpenCL handle

VOCL lib

VOCL handle

node 2node 1

Local

node

Figure 3.4: Multiple-Level Handle Translation

When a VOCL handle is used, VOCL will first translate it to the OpenCL handle.

Then it sends the OpenCL handle to the corresponding compute node based on the MPI

communication information contained in the VOCL object. However, care must be taken

when a memory buffer object is used as a kernel input. As we know, a kernel argument

is set by calling the function clSetKernelArg(cl kernel kernel, cl uint

arg index, size t arg size, const void *arg value) and the argument

arg value is the pointer to the OpenCL device memory handle. But with the VOCL

abstraction, arg value is a pointer to a VOCL handle, as shown in Figure 3.5, and

33

is invalid for kernels. Moreover, from the arguments themselves in the function call of

clSetKernelArg(), we cannot figure out whether a kernel argument is a memory han-

dle or not. To address this problem, we write a parser to parse the kernel source code and

figure out the device memory arguments in the kernel. As such, when clSetKernelArg()

is called, VOCL can first translate a VOCL memory handle to an OpenCL memory handle

based on the parser output. Then VOCL uses the OpenCL memory handle as the input to

the native OpenCL function clSetKernelArg(). In this way, kernel arguments can

be set correctly.

*arg_value

OpenCL mem handle

VOCL mem handle

__kernel foo(int a, __global int *b) { ... }

Parser

device memory
OpenCL

or VOCL?

OpenCL

VOCL

Native clSetKernelArg()

OpenCL VOCL

Figure 3.5: VOCL Device Memory Handle Processing in Kernel Argument Setting

3.3.2 VOCL Proxy

The VOCL proxy is responsible for (1) receiving connection requests from the VOCL

library to establish communication channels with each application process, (2) receiving

inputs from the VOCL library and executing them on its local GPUs, (3) sending output

and error codes to the VOCL library, and (4) destroying the communication channels after

the program execution has completed.

34

3.3.2.1 Managing Communication Channels

Communication channels between the VOCL library and the VOCL proxy are established

and destroyed dynamically. Each proxy calls MPI Comm accept() to wait for con-

nection requests from the VOCL library. When such a request is received, a channel is

established between them, which is referred to as the control message channel. Once the

application has completed utilizing the virtual GPU, the VOCL library sends a termination

message to the proxy. Then MPI Comm disconnect() is called by both the VOCL li-

brary and the VOCL proxy to terminate the communication channel.

In the VOCL framework, each application can utilize GPUs on multiple remote nodes.

Similarly, GPUs on a remote node can be used by multiple applications simultaneously.

In addition, applications may start their execution at different times. Thus, the proxy

should be able to accept connection requests from application processes at any time. To

achieve this, we use an additional thread at the proxy that continuously waits for new

incoming connection requests. When a connection request is received, this thread updates

the communication channels such that messages sent by the VOCL library can be handled

by the main proxy process, and the thread waits for the next connection request.

3.3.2.2 Handling Native OpenCL Function Calls

Once a control message channel is established between the VOCL proxy and the VOCL

library, the proxy preposts buffers to receive control messages from the VOCL library (us-

ing nonblocking MPI receive operations). Each VOCL control message is only a few bytes

large, so the buffers are preposted with a fixed maximum buffer size that is large enough

for any control message. When a control message is received, it contains information on

35

which OpenCL function needs to be executed as well as information about any additional

input data that need to be sent to the physical GPU. At this point, if any data need to be

transferred to the GPU, the proxy posts additional receive buffers to receive this data from

the VOCL library. It is worth noting that the actual data communication happens on a

separate communicator to avoid conflicts with control messages; this communicator will

be referred to as the data channel.

Specifically, for each control message, the proxy process performs the followed steps.

• When a control message is received, the corresponding OpenCL function is deter-

mined based on the message tag. Then the proxy process decodes the received

message according to the OpenCL function. Depending on the specific OpenCL

function, other messages may be received as inputs for the function execution in the

data channel.

• Once all of the input data are available, the native OpenCL function is executed.

• Once the native OpenCL function completes, the proxy packs the output and sends

it back to the VOCL library.

• If dependencies exist across different functions or if the current function is a block-

ing operation, the proxy waits for the current operation to finish and the result sent

back to the VOCL library before the next OpenCL function is processed. On the

other hand, if the OpenCL function is nonblocking, the proxy will send out the re-

turn code and continue processing other functions.

• Another nonblocking receive will be issued to replace the processed control mes-

sage.

36

Since the number of messages received is not known beforehand, the proxy process

uses an infinite loop to wait for messages. The infinite loop is terminated by a message

with a specific tag. Once the termination message is received, the loop is ended and the

MPI communicator is released.

The scenario on the proxy is illustrated in Figure 3.6.

1 MPI initialize
2
3 //prepost buffers to receive control messages
4 for i = 1 to BUFFER_NUM
5 MPI_Irecv(buff+i, size, MPI_BYTE, MPI_ANY_SOURCE,
6 MPI_ANY_TAG, conMsgComm, funcRequest+i);
7 end for
8
9 while loop

10 MPI_Waitany(numOpenCLFunc, funcRequest, &index, &status);
11 if status.MPI_TAG is SET_KERNEL_ARG
12 //receive messages
13 MPI_Irecv(argValue, argSize, MPI_BYTE, rank,
14 SET_KERNEL_ARG1, dataComm, &setArgRequest)
15 MPI_Wait(&setArgRequest, &setArgStatus);
16
17 //call the real opencl function
18 errcode_ret = clSetKernelArg(kernel, argIndex, argSize, argValue);
19
20 MPI_Isend(&errcode_ret, 1, MPI_INT, tag, rank, conMsgComm, &setArgRequest);
21 MPI_Wait(&setArgRequest, &setArgStatus);
22 end if
23
24 if status.MPI_TAG is proxyTermination
25 break;
26
27 //issue another nonblocking receive to replace the processed control message
28 MPI_Irecv(buff+index, size, MPI_BYTE, MPI_ANY_SOURCE,
29 MPI_ANY_TAG, conMsgComm, funcRequest+index);
30 end while
31
32 MPI finalize

Figure 3.6: Pseudo Code of the Proxy Process

37

3.4 VOCL Optimizations

The VOCL framework provides applications the ability of using all GPUs in the same way

to accelerate their execution. However, we should reduce the virtualization overhead to

as little as possible. Otherwise, performance improvement brought by using virtual GPUs

would be negated by such overhead. Since VOCL internally calls native OpenCL functions

for local GPUs, overhead of using local GPUs is expected to be very little as shown later.

Thus in the following, our optimization focuses on reducing the overhead of using remote

GPUs.

Compared to local GPUs, function calls on remote GPUs need one more phase of

data transfer between the local node and the remote node. Specifically, if a function is

executed without reading or writing device memory for a remote GPU, data transfer is

performed only between local host memory and remote host memory. On the other hand,

if device memory reads or writes are performed in a function call, data are transferred

between local host memory and remote device memory, which includes two phases—

between local host memory and remote host memory and between remote host memory

and remote device memory. In general, overhead of data transfer depends on the amount

of data to be transferred, network bandwidth, number of data transfers, as well as how data

transfer is handled in the remote node.

In a typical OpenCL program, API functions for allocating and releasing OpenCL ob-

jects are called only a few times. Inputs and outputs of these functions are of tens of bytes.

As a result, overhead of these functions is negligible in practice. But for functions related

to kernel execution (GPU memory read/write, kernel argument setting, and kernel launch),

38

they can cause significant overhead for program execution in some scenarios. According

to the work of Gregg et al. [34], when local GPUs are used, data transfer between host

memory and device memory can slow down the program execution by 2 to 50 folds com-

pared to the GPU processing alone. With one more phase of data transfer in using remote

GPUs, it is expected that data transfer will cause even more overhead. Thus, optimizing

such data transfer is of great importance for the use of remote GPUs.

To reduce these overheads, we have implemented three optimizations: (1) kernel ar-

gument caching to reduce the number of data transfers, (2) data transfer pipelining to

improve the bandwidth between local host memory and remote device memory, and (3)

modifications to error handling.

3.4.1 Kernel Argument Caching

When remote GPUs are used, execution of functions without accessing GPU memory

needs the data transfer between local node and remote node and the data is of tens of bytes

in general. If these functions are called only a few times (e.g., functions for OpenCL object

allocation and release), the data transfer overhead involved in the use of remote GPUs can

be ignored. But if a function is called thousands of times, it can cause significant overhead.

One such example is the kernel argument set function clSetKernelArg(), which can

be called thousands of times in some applications.

Table 3.3 presents the kernel execution overhead for VOCL (using a remote GPU) vs.

the native OpenCL library for aligning 6K base-pair sequences using the Smith-Waterman

application [73, 87]. We run the experiments on nodes connected with the QDR Infini-

Band. Each node is installed with two Magny-Cours AMD CPUs (Each has eight cores.)

39

Table 3.3: Overhead (in ms) of Kernel Execution for Utilization of Remote GPUs

Function Name
Native VOCL

Overhead
OpenCL Remote

clSetKernelArg 4.33 420.45 416.12
cllEnqueueNDRangeKernel 1210.85 1316.92 106.07
Total kernel time 1215.18 1737.37 522.19

with host memory of 64 GB and two NVIDIA Tesla M2070 GPU cards each with 6GB

global memory. The two GPUs are installed on two different PCI slots, one of which

shares the PCIe bandwidth with an InfiniBand adapter, as shown in Figure 3.7. The com-

pute nodes are installed with the CentOS 5.5 Linux operating system and the CUDA 3.2

toolkit. We use the MVAPICH2 [60] MPI implementation. Each of our experiments was

conducted three times and the average is reported.

GPU0 GPU1 InfiniBand

CPU0 CPU1

PCIe PCIe

proxy

Remote node

GPU2 GPU3 InfiniBand

CPU2 CPU3

PCIe PCIe

program

Local node

Figure 3.7: GPU Configuration and the Scenario for the Bandwidth Test

In this example, clSetKernelArg() has an overhead of 416.12 ms, which is four

times more than that of the kernel execution. The reason is that although the overhead

of each call is small, the function is called more than 86,000 times (the kernel is called

12,288 times, and 7 arguments have to be set for each call).

The basic idea of kernel argument caching is to combine the message transfers for

multiple clSetKernelArg() calls. Instead of sending one message for each call of

clSetKernelArg(), we send kernel arguments to the remote node only once for every

kernel launch, irrespective of how many arguments the kernel has. Since all arguments

40

should be set before the kernel is launched, we just cache all the arguments locally at the

VOCL library. When the kernel launch function is called, the arguments are sent to the

proxy. The proxy performs two steps on being notified of the kernel launch: (1) it receives

the argument message and sets the individual kernel arguments, and (2) it launches the

kernel.

Table 3.4 shows the execution time of Smith-Waterman for aligning 6K base-pair se-

quences using our kernel argument caching approach. As we can see in the table, the

execution time of clSetKernelArg() is reduced from 420.45 ms (Table 3.3) to 4.03

ms (Table 3.4). We notice a slight speedup compared with native OpenCL; the reason is

that, in VOCL, kernel arguments are cached in host memory and are not passed to the

GPU immediately. We also notice a slightly higher overhead for the kernel execution time

(increase from 1316.92 ms to 1344.01 ms), which is due to the additional kernel argument

data passed to the proxy within this call. Overall, the total kernel execution time decreases

from 1737.37 ms to 1348.04 ms, or by 22.41%.

Table 3.4: Overhead (in ms) of Kernel Execution with Kernel Argument Caching Opti-
mization

Function Name
Native VOCL

Overhead
OpenCL remote

clSetKernelArg 4.33 4.03 -0.30
clEnqueueNDRangeKernel 1210.85 1344.01 133.17
Total kernel time 1215.18 1348.04 132.71

3.4.2 Data Transfer Pipelining

As mentioned above, two types of data need to be transferred between the VOCL library

and the VOCL proxy in the use of remote GPUs. The first type is the input arguments to

41

OpenCL functions without GPU memory accesses involved; this type of data is transferred

from local host memory to remote host memory. The size of such input arguments is at

most a few hundred bytes, and the transfer cannot be started in one function until execution

of its previous functions is completed. Such data transfers cause negligible overhead and

pipelining them cannot bring useful benefits for program execution.

The second type is the GPU memory accesses, in which data are transferred from local

host memory to remote GPU memory. Such data transfers have two stages: (1) between the

VOCL library and the VOCL proxy and (2) between the VOCL proxy and the GPU. In a

naı̈ve implementation of VOCL, these two stages would be serialized, and buffers to store

the data are dynamically allocated and released in the proxy. Such an implementation,

though simple, has two primary problems. First, because of the lazy memory allocation

in today’s operating systems (e.g., Linux), the dynamic memory allocation can adversely

affect the data transfer bandwidth for both the network communication (between local

host memory and remote host memory) and GPU communication (between remote host

memory and remote device memory). Specifically, for GPU memory write, bandwidth

of the network communication is affected, and for the GPU memory read, bandwidth of

the GPU communication is affected. Second, there is no overlap between the network

communication and the GPU communication. That is, the second stage can be started

only after the first stage is finished since each data chunk is transferred as a single block in

the naı̈ve implementation. Furthermore, when data transfers are performed in the blocking

mode, different data chunks cannot be overlapped, either, as explained in Figure 3.8.

We wrote two microbenchmarks to verify the first problem. One is for the network

communication from local host memory to remote host memory using MPI, and the other

42

App_send_db1
App_send_db2

Proxy_recv_db1
Proxy_recv_db2

Proxy_wrt_GPU_mem

events

time

: Msg request : Data block : GPU memory operation

(1)

(2)

(3)

(3)

(4)

(5)

(6)

(7)

(7)
(8)

(a) Write to the GPU Memory

App_recv_db1
App_recv_db2

Proxy_send_db1
Proxy_send_db2

Proxy_read_GPU_mem

events

time

(1)

(2)

(3)

(4)

(4)
(5)

(6)
(7)

(8)

(8)

(b) Read from the GPU Memory

Figure 3.8: Blocking Data Transfer Scenarios without Pipelining. For instance, GPU
memory write is performed in the following steps: (1) the host sends a data send request
to the proxy; (2) the proxy receives the data send request; (3) data block is transferred
from the host to the proxy; (4) after transfer of the data block is completed, the proxy
transfers the data block to the GPU. Steps (5) - (8) repeat the above procedure for another
data block.

is for the GPU communication from remote device memory to remote host memory. In

each microbenchmark, we measured the bandwidth in two scenarios. One is that buffers

used to store data in the proxy are allocated without initialization. Because of the lazy

memory allocation, when the data communication happens, the VOCL proxy needs to

actually allocate the memory first, and then writes data to the memory. The other scenario

is that all elements of the buffers are initialized to 0 after memory allocation. As such,

buffers are actually allocated in the proxy, and when data communication happens, the

proxy can write data to the buffers immediately.

Figure 3.9 shows the bandwidth in the above two scenarios; where Figure 3.9(a) is

for the network communication, and Figure 3.9(b) is for the GPU communication. As we

43

can see, the lazy memory allocation can significantly impact the bandwidth of both the

network and GPU communication. When using a buffer size of 32 MB, the lazy memory

allocation can reduce the bandwidth by more than 50%.

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 1.8

 2.1

1K 2K 4K 8K 16K 32K 64K 128K 256K512K 1M 2M 4M 8M 16M 32M

B
a
n
d
w

id
th

 (
G

B
/s

)

Size of the data chunk to be transferred

With buffer initialization Without buffer initialization

(a) Network Communication from Local Host Memory to Remote Host Memory

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 1.8

 2.1

 2.4

1K 2K 4K 8K 16K 32K 64K 128K 256K512K 1M 2M 4M 8M 16M 32M

B
a
n
d
w

id
th

 (
G

B
/s

)

Size of the data chunk to be transferred

(b) GPU Communication from Remote Device memory to Remote Host Memory

Figure 3.9: Impact of the Lazy Memory Allocation on Data Transfer Bandwidth

To avoid the lazy memory allocation problem, we use a buffer pool for the data storage

in the proxy, as shown in Figure 3.10. The buffer pool is allocated when a control message

channel is established between the VOCL library and the proxy. In addition, all the buffers

are initialized to 0 to ensure that they are actually allocated to eliminate the impact of the

lazy memory allocation. Each buffer is of size S bytes. During the data transfer, when a

data chunk is less than S bytes, e.g. data chunks 1 and 2 in Figure 3.10, it is transferred

as a contiguous block. As for a data chunk that is larger than S bytes, e.g. data chunk 3,

44

it is segmented into smaller blocks to fit into the buffers. Since the number of buffers in

the pool is limited, we reuse the buffers in a circular fashion. Note that before we reuse a

buffer, we have to ensure that the previous data transfers (both the network communication

and the GPU communication) have completed. The number of buffers and the buffer size

dictate how often we need to wait for such completion, and thus have to be carefully

configured as explained later.

Data chunk 1

Data chunk 3

Data chunk 3

Data chunk 2

1

3

2

N

Figure 3.10: Buffer Pool in the Proxy Process

As for the problem that there is no overlap between the two stages of data transfers,

we design a data pipelining mechanism and use the buffer pool for data storage in the

proxy. Specifically, with pipelining, the first stage transfer of one data chunk can be done

concurrently with the second stage transfer of another data chunk, as shown in Figure 3.11.

In addition, for a large data chunk that needs to be segmented into multiple data blocks,

transfer of the different data blocks can be overlapped, too.

Using the buffer pool and the pipelining mechanism, the data transfer between lo-

cal host memory and remote device memory is affected by a few factors: (1) bandwidth,

including both the network communication bandwidth and the GPU communication band-

width, (2) buffer pool configuration, i.e., the number of buffers and the size of each buffer

45

App_send_db1
App_send_db2

Proxy_recv_db1
Proxy_recv_db2

Proxy_wrt_GPU_mem

events

time

: Msg request : Data block

overlapped

: GPU memory operation

(1)

(2)

(3)
(4)

(5)

(a) Nonblocking Write to the GPU Memory

App_recv_db1
App_recv_db2

Proxy_send_db1
Proxy_send_db2

Proxy_read_GPU_mem

events

time

overlapped

(1)

(2)
(3)

(4)
(5)

(b) Nonblocking Read from the GPU Memory

Figure 3.11: Nonblocking Data Transfer Scenarios with Pipelining. For instance, GPU
memory write is performed in the following steps: (1) the host sends a data send request
to the proxy; (2) the proxy receives the data send request; (3) a data block is transferred
from the host to the proxy. At the same time, the host sends a second data send request,
and the proxy receives the second data send request; (4) after the proxy receives the whole
first data block, it sends the data block to the GPU. At the same time, the second data block
is transferred from the host to the proxy; (5) the proxy sends the second data block to the
GPU after both the first data block is transferred to the GPU and the whole second send
data block is received.

in the proxy, (3) data transfer handling in the proxy, and (4) data transfer mode, i.e., block-

ing data transfer and nonblocking data transfer. In the following, we first calculate the

overall bandwidth between local host memory and remote device memory quantitatively.

Based on the calculation, we analyze how each factor affects the overall bandwidth and

how we optimize the data transfer between local host memory and remote device memory

to achieve the best performance.

46

3.4.2.1 Performance Model of the Overall Bandwidth of GPU Memory Access

Let Bn be the network communication bandwidth, Bg be the GPU communication band-

width, and S be the size of each buffer in the pool, then the time needed to transfer a data

chunk of size C can be calculated as follows.

1. If C ≤ S, the data chunk is transferred as a single data block. Then the data transfer

time is t = C
Bn

+ C
Bg

, and the overall bandwidth is B = BnBg

Bn+Bg
.

2. If C > S, the data chunk needs to be segmented into multiple data blocks, which are

of size S except the last one (equal or less than S). Let ń be the number of blocks

with size S, then ń =
⌈
C
S

⌉
− 1, and the size of the last block is Sl = C − ńS. If the

network communication bandwidth is lower than that of the GPU communication,

the data transfer time is

t =
ńS

Bn

+
Sl

Bg

+ max

Sl

Bn

S
Bg

(3.1)

Otherwise, with the network communication bandwidth higher than that of the GPU

communication, the data transfer time is

t =
s

Bn

+
C

Bg

(3.2)

To simplify our analysis, we assume that the data chunk can be segmented into n

data blocks with size S, i.e. n = C
S

, and the network bandwidth is lower than the GPU

communication bandwidth (This is true in most scenarios in practice.), then the total data

transfer time is

t = n
S

Bn

+
S

Bg

(3.3)

47

and the overall bandwidth is

B =
BnBg

Bg +Bn/n
(3.4)

From Equation (3.4), we have the following observations. The overall bandwidth is less

than both the network communication bandwidth and the GPU communication bandwidth.

When the Gigabit Ethernet is used for the network connection, i.e. Bg >> Bn, the overall

bandwidth B is very close to Bn. In this case, since the network bandwidth has been fully

utilized, there is little room left for additional bandwidth improvement. If we use the QDR

InfiniBand as the network connection, the network bandwidth becomes comparable to the

GPU communication bandwidth. In this case, there is some room for the overall bandwidth

improvement. As can be seen in Figure 3.9, with a larger buffer size, higher bandwidth

can be achieved for both the network communication and the GPU communication. For

instance, for data chunks of 128 KB, the network and GPU communication bandwidth

is 1.525 GB/s and 1.022 GB/s, respectively. For data chunks of 32 MB, the bandwidth

increases to 1.919 GB/s and 2.336 GB/s, respectively. Thus, if only the bandwidth is

considered, we should set the buffer size in the pool to be as large as possible.

On the other hand, buffers with a larger size have other adverse impact on the overall

bandwidth. Specifically, with a larger buffer size S, the number of buffers needed for a

particular data chunk becomes smaller, i.e., n becomes smaller. From Equation (3.4), a

smaller n corresponds to a lower overall bandwidth B. From the above analysis, either

too large or too small buffer size can adversely affect the overall bandwidth, as we will

demonstrate in the next section.

Another factor that can affect the bandwidth is the number of buffers in the pool.

Technically, we can use only two buffers to store data. But there are at lease two issues

48

if only two buffers are configured. First, the number of buffers can affect how well the

nonblocking transfer mode is supported. Using the GPU memory write as an example, we

send data from local host memory to remote host memory by calling the MPI asynchronous

data transfer function MPI Isend(). Each time we send out a data chunk, we need a

buffer in the proxy to receive it. Configuring more buffers in the pool can enable more

data chunks to be transferred in the nonblocking way. The reason is, when buffers are

used out, we need to wait for completion of a previous buffer before we can issue an MPI

data send, and the data chunk is not transferred in the full nonblocking mode. Second,

fewer buffers in the pool also means that the proxy process needs to switch across waiting

for completion, issuing MPI data receive, and performing GPU memory write. The task

switch can also impact the overall bandwidth in some degree, as we will present in the

next section. From the above analysis, we should configure as many buffers in the pool as

possible.

Data transfer in the proxy includes the network communication and the GPU commu-

nication, which are in different directions. In other words, when an application writes data

to the GPU, the proxy reads data from the network and writes it to the GPU. When an ap-

plication reads data from the GPU, the proxy reads data from the GPU memory and writes

it to the network. If we use only one thread to do both the data read and write, the thread

needs to handle both the network communication and the GPU communication, which can

affect the data transfer bandwidth. To mitigate the impact, we create a helper thread to

handle the data transfer in the proxy. With two threads, one thread handles the network

communication, and the other thread handles the GPU communication. In this way, when

49

a data chunk is transferred, neither thread needs to switch between the network communi-

cation and the GPU communication, which in turn can improve the overall bandwidth in

some degree.

Using separate threads for network communication and GPU communication can im-

prove the bandwidth. Moreover, we can bind each thread to a separate core considering

the fact that today’s CPUs consist of multiple cores in general. By binding each thread to a

different CPU core, that CPU core can devote all its resources for the particular data trans-

fer operation, which can further improve the bandwidth, particularly for the GPU memory

read, as shown in the next section.

3.4.2.2 Data Transfer Bandwidth Evaluation via a Microbenchmark

In this section, we show the achieved data transfer bandwidth of the GPU memory write

and GPU memory read in using a remote GPU. We wrote a microbenchmark to transfer

a data chunk of 1 GB between local host memory and remote device memory. We used

a buffer pool for the data storage in the proxy as mentioned in Section 3.4.2. With the

pipelining mechanism, different stages of data transfers are overlapped. We use the plat-

form in Figure 3.7 for our evaluation. We present the data transfer bandwidth with different

configurations of the buffer pool (including different buffer sizes and different number of

buffers), using multiple threads to handle data transfers in the proxy, and binding each

thread to a separate core.

Figures 3.12 and 3.13 show the bandwidth of the GPU memory write and read, respec-

tively. Figures 3.12(a) and 3.13(a) show the case of using a single thread; Figures 3.12(b)

and 3.13(b) are for the case of using multiple threads binded to the same core; and Fig-

ures 3.12(c) and 3.13(c) are for the case of binding each thread to a separate core.

50

From the results in Figures 3.12 and 3.13, we have the following observations. First,

for both the GPU memory write and read, using a separate thread (on the same CPU

core) to handle the network communication and the GPU communication in the proxy

can improve the bandwidth. Specifically, bandwidth of the GPU memory write increases

from 2.106 GB/s to 2.245 GB/s, corresponding to a relative increase of 6.6%. Similarly,

bandwidth of the GPU memory read increases from 1.442 GB/s to 1.446 GB/s. Second,

binding each thread of the proxy process to a different CPU core can further improve the

overall bandwidth, particularly for the GPU memory read. For the GPU memory write,

the overall bandwidth increases from 2.245 GB/s to 2.330 GB/s with a relative increase

of 3.8%. For the GPU memory read, the bandwidth increases from 1.446 GB/s to 1.985

GB/s with a relative increase of 37.3%. From the above results, using separate threads

and binding each thread to a different CPU core is an effective approach to improve the

bandwidth of both the GPU memory read and write. Third, the number of buffers and

the size of each buffer can affect the overall bandwidth, too. When using separate threads

and binding each thread to a different CPU core, increasing the buffer size increases the

overall bandwidth first and decreases the bandwidth later. This is true for both the GPU

memory read and write. As for the impact of the number of buffers in the buffer pool, GPU

memory write achieves better performance with 16 and 32 buffers than with 8 buffers. For

the GPU memory read, each number of buffers in the pool can achieve better performance

than the others, if different buffer sizes are considered. Overall, the highest GPU memory

write bandwidth that we can achieve is 2.330 GB/s by configuring 16 buffers, and each

buffer is of 32 MB. For the GPU memory read, the highest bandwidth is 1.985 GB/s with

32 buffers configured, and each buffer is of 8MB.

51

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

2MB 4MB 8MB 16MB 32MB 64MB

B
a
n
d
w

id
th

 (
G

B
/s

)

Size of the buffers in the pool

32 buffers in the pool
16 buffers in the pool
8 buffers in the pool

(a) Single Thread in a Single Core

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

2MB 4MB 8MB 16MB 32MB 64MB

B
a
n
d
w

id
th

 (
G

B
/s

)

Size of the buffers in the pool

(b) Both Threads in a Single Core

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

2MB 4MB 8MB 16MB 32MB 64MB

B
a
n
d
w

id
th

 (
G

B
/s

)

Size of the buffers in the pool

(c) Each Thread in Different Cores

Figure 3.12: Bandwidth of Remote GPU
Memory Write

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

2MB 4MB 8MB 16MB 32MB 64MB

B
a
n
d
w

id
th

 (
G

B
/s

)

Size of the buffers in the pool

32 buffers in the pool
16 buffers in the pool
8 buffers in the pool

(a) Single Thread in a Single Core

 1.1

 1.2

 1.3

 1.4

 1.5

2MB 4MB 8MB 16MB 32MB 64MB

B
a
n
d
w

id
th

 (
G

B
/s

)

Size of the buffers in the pool

(b) Both Threads in a Single Core

 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2
 2.1

2MB 4MB 8MB 16MB 32MB 64MB

B
a
n
d
w

id
th

 (
G

B
/s

)

Size of the buffers in the pool

(c) Each Thread in Different Cores

Figure 3.13: Bandwidth of Remote GPU
Memory Read

52

In the following, configurations of the buffer pools corresponding to the highest band-

width are used for our experiments in Section 3.5.

3.4.3 Error Return Handling

Most OpenCL functions provide a return code to the user: either CL SUCCESS or an

appropriate error code. Such return values, however, are tricky for VOCL to handle, es-

pecially for nonblocking operations. The OpenCL specification does not define how error

codes are handled for nonblocking operations. For instance, if the GPU is not functional,

is a nonblocking operation that tries to move data to the GPU expected to return an error?

While the OpenCL specification does not describe the return value in such cases,

current OpenCL implementations do return an error. For VOCL, however, since every

OpenCL operation is translated into a network operation, significant overhead can occur

for nonblocking operations if the VOCL library has to wait until the OpenCL request is

transferred over the network, a local GPU operation is initiated by the VOCL proxy, and

the return code is sent back.

We believe this is an oversight in the OpenCL specification, since all other specifica-

tions or user documents that we are aware of (including MPI, CUDA, and InfiniBand)

do not require nonblocking operations to return such errors—the corresponding wait-

for-completion operation can return these errors at a later time. In our implementation,

therefore, we assume this behavior and return such errors during the corresponding wait

operation.

53

3.5 Experimental Evaluation

In this section, we evaluate the efficiency of the proposed VOCL framework. First, we

analyze the overhead of individual OpenCL operations with VOCL via a few microbench-

marks. Then, we quantitatively evaluate the VOCL framework with several application

kernels: SGEMM/DGEMM, matrix transpose, n-body [65], and Smith-Waterman [73,87].

We ran the experiments using the platform shown in Figure 3.7. Each of our experiments

was conducted three times, and the average is reported.

3.5.1 Microbenchmark Evaluation

In this section, we study the overhead of various individual OpenCL operations using

the SHOC benchmark suite [24] and a benchmark suite developed within our group, the

Synergy Laboratory [78].

3.5.1.1 Initialization/Finalization Overheads

In this section, we study the performance of initializing and finalizing OpenCL objects

within the VOCL framework. Overhead of these functions are mainly caused by the

transfer of function parameters as described in Section 3.4.2. These functions and their

overhead are listed in Table 3.5. As shown in the table, for most functions, the overhead

caused by VOCL is minimal. The one exception to this is the clGetPlatformIDs()

function which has the overhead of 402.68 ms. The reason for this overhead is that

clGetPlatformIDs() is typically the first OpenCL function executed by the applica-

tion in order to query the platform. Therefore, the VOCL framework performs most of its

54

initialization during this function, including setting up the MPI communication channels

as described in Section 3.3.1.1.

Table 3.5: Overhead of OpenCL API Functions for Resource Initialization/Release (Unit:
ms)

Function Name
Native VOCL

Overhead
OpenCL (remote)

clGetPlatformIDs 50.84 453.52 402.68
clGetDeviceIDs 0.002 0.173 0.171
clCreateContext 253.28 254.11 0.83
clCreateCommandQueue 0.018 0.044 0.026
clCreateProgramWithSource 0.009 0.042 0.033
clBuildProgram 488.82 480.90 -7.92
clCreateBuffer 0.025 0.051 0.026
clCreateKernel 0.019 0.030 0.011
clReleaseKernel 0.003 0.012 0.009
clReleaseMemObj 0.004 0.011 0.007
clReleaseProgram 0.375 0.291 -0.084
clReleaseCmdQueue 0.051 0.059 0.008
clReleaseContext 177.47 178.43 0.96

The overall overhead caused by all the initialization and finalization functions together

is a few hundred milliseconds. However, this overhead is a one-time overhead unrelated

to the total program execution time. Thus, in practice, for any program that executes for a

reasonably long time (e.g., a few tens of seconds), these overheads do not adversely impact

the performance of VOCL on long-running applications.

3.5.1.2 Performance of Kernel Execution on the GPU

Kernel execution on the GPU would be the same no matter which host processor launches

the kernel. Thus, utilizing remote GPUs via VOCL should not affect the kernel execution

on the GPU card. By evaluating the SHOC microbenchmark [24] with VOCL, we verify

55

that the maximum flops (1004 GFLOPS for single precision and 501 GFLOPS for dou-

ble precision), on-chip memory bandwidth (369 GB/s), and off-chip memory bandwidth

(88 GB/s) are the same as that in using native OpenCL.

3.5.1.3 Data Transfer between Local Host Memory and GPU Memory

In this section, we measure the bandwidth achieved for GPU write and read operations

using VOCL. The experiment is performed with different data chunk sizes. For each size, a

window of 32 data chunks is issued in a nonblocking manner, followed by a flush operation

to wait for their completion. The bandwidth is calculated as the total data transferred per

second. A few initial “warm up” iterations are skipped from the timing loop.

 0
 0.4
 0.8
 1.2
 1.6

 2
 2.4
 2.8

0.5 1 2 4 8 16 32
0 %
4 %
8 %
12 %
16 %
20 %
24 %

D
a
ta

 t
ra

n
s
fe

r
ra

te
 (

G
B

/s
)

%
 o

f
B

W
 d

e
c
re

a
s
e

Data chunk size (MB)

Native OpenCL
VOCL (local)

VOCL (remote)
% of BW decrease

(a) Bandwidth from Host Memory to Device Memory
(Local transfer is from CPU1 to GPU1 and remote
transfer is from CPU3 to GPU1.)

 0

 0.5

 1

 1.5

 2

 2.5

 3

0.5 1 2 4 8 16 32
0 %

2 %

4 %

6 %

8 %

10 %

12 %

14 %

16 %

D
a
ta

 t
ra

n
s
fe

r
ra

te
 (

G
B

/s
)

%
 o

f
B

W
 d

e
c
re

a
s
e

Data chunk size (MB)

(b) Bandwidth from Device Memory to Host Memory
(Local transfer is from GPU1 to CPU1 and remote
transfer is from GPU1 to CPU3.)

 0

 0.3

 0.6

 0.9

 1.2

 1.5

0.5 1 2 4 8 16 32
0 %

3 %

6 %

9 %

12 %

15 %

18 %

21 %

D
a
ta

 t
ra

n
s
fe

r
ra

te
 (

G
B

/s
)

%
 o

f
B

W
 d

e
c
re

a
s
e

Data chunk size (MB)

(c) Bandwidth from Host Memory to Device Memory
(Local transfer from CPU1 to GPU0 and remote trans-
fer is from CPU3 to GPU0.)

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 1.8

 2.1

 2.4

0.5 1 2 4 8 16 32
0 %

2 %

4 %

6 %

8 %

10 %

D
a
ta

 t
ra

n
s
fe

r
ra

te
 (

G
B

/s
)

%
 o

f
B

W
 d

e
c
re

a
s
e

Data chunk size (MB)

(d) Bandwidth from Device Memory to Host Memory
(Local transfer is from GPU0 to CPU1 and remote
transfer is from GPU0 to CPU3.)

Figure 3.14: Bandwidth between Host Memory and Device Memory

56

Figure 3.14 shows the performance of native OpenCL, VOCL when using a local

GPU (“VOCL (local)”), and VOCL with a remote GPU (“VOCL (remote)”). Native

OpenCL only uses the local GPU. Two scenarios are evaluated in Figure 3.7—bandwidth

between CPU3 and GPU0 (Figures 3.14(c) and 3.14(d)) and between CPU3 and GPU1

(Figures 3.14(a) and 3.14(b)). In our experiments, the VOCL proxy is bound to CPU1.

For native OpenCL, the application process is bound to CPU1. (Then GPU1 is used as a

local GPU.)

As shown in the figures, VOCL-local has no degradation in performance as compared

to native OpenCL, as expected. VOCL-remote however, has some degradation in perfor-

mance because of the additional overhead of transmitting data over the network. As the

data chunk size increases, the bandwidth increases for native OpenCL as well as VOCL

(both local and remote), but VOCL-remote saturates at a bandwidth of 10-25% less than

that of native OpenCL. Comparing the bandwidth between GPU0 and GPU1, we notice

that the absolute bandwidth of native OpenCL as well as VOCL (local and remote) is

smaller when using GPU0 as compared to GPU1. The reason for this behavior is that

data transfer between CPU1 and GPU0 requires additional hops compared to the transfer

between CPU1 and GPU1, causing some drop in performance. This lower absolute per-

formance also results in a smaller difference between VOCL-remote (with data transfer

pipeline) and native OpenCL (10% performance difference, as compared to the 25% dif-

ference when transferring from CPU1 to GPU1). The results of GPU memory read are

similar.

For the remaining results, we use GPU1 because of the higher absolute performance it

can achieve.

57

3.5.2 Evaluation with Application Kernels

In this section, we evaluate the efficiency of the VOCL framework using four application

kernels: SGEMM/DGEMM for dense matrix multiplication, n-body for the motion of

a group of celestial objects that interact with each other, matrix transpose, and Smith-

Waterman for pairwise sequence alignment. Table 3.6 shows the computation to memory

access ratios for these four kernels. The first two kernels, SGEMM/DGEMM and n-body,

can be classified as compute-intensive based on their computational requirements, while

the other two require more data movement.

Table 3.6: Computation and Memory Access Complexities of the Four Applications. (In
matrix multiplication and matrix transpose, n is the number of rows and columns of the
matrix; in n-body, n is the number of bodies; in Smith-Waterman, n is the number of
letters in the input sequences.)

Application Kernels Computation Memory Access
SGEMM/DGEMM O (n3) O (n2)

N-body O (n2) O (n)
Matrix transpose O (n2) O (n2)
Smith-Waterman O (n2) O (n2)

The difference in computational intensity of these four kernels is further illustrated in

Figure 3.15, where the percentage of time spent on computation for each of these kernels

is shown. As we can see in the figure, the n-body kernel spends almost 100% of its time

computing. SGEMM/DGEMM spend a large fraction of time computing, and this fraction

increases with increasing problem size. Matrix transpose spends a very small fraction of

time computing. While Smith-Waterman spends a reasonable amount of time computing

(70-80%), most of the computational kernels it launches are very small kernels which, as

we will discuss later, are hard to optimize because of the large number of small message

58

transfers they trigger.

0 %

20 %

40 %

60 %

80 %

100 %

120 %

(1) (2) (3) (4) (5) (6)

%
 o

f
k
e

rn
e

l
e

x
e

c
u

ti
o

n
 t

im
e

re
la

ti
v
e

 t
o

 t
o

ta
l
e

x
e

c
u

ti
o

n
 t

im
e

Different problem size

n-body
SGEMM

Smith-Waterman
Matrix transpose

Figure 3.15: Percentage of Time Spent Executing a Kernel in the Single Precision Case
(Note: Program sizes (1) – (6) indicate the following for the four application kernels.
SGEMM and matrix transpose: matrix size from 1K X 1K elements to 6K X 6K elements;
Smith-Waterman: sequence size from 1K letters to 6K letters; n-body: number of bodies
from 15360 to 53760 with the increase of 7680.)

We evaluate the overhead of program execution time with different problem sizes. Re-

call that the program execution time in this experiment includes the data transfer time,

kernel argument setting, and kernel execution. We run both the single-precision and

double-precision implementations of all application kernels except Smith-Waterman since

sequence alignment scores are usually stored as integers or single-precision floats in prac-

tice. We run multiple problem instances in a nonblocking manner to pipeline data transfer

and kernel execution. After we issue all nonblocking function calls, the OpenCL function

clFinish() is called to ensure that all computation and data transfer has completed

before measuring the overall execution time.

Figure 3.16 shows the performance and the overhead of the application kernels for

single-precision computations. We notice that the performance of native OpenCL is al-

most identical to that of VOCL-local; this is expected as VOCL does very little additional

59

 0

 800

 1600

 2400

 3200

1Kx1K 2Kx2K 3Kx3K 4Kx4K 5Kx5K 6Kx6K
0 %
0.8 %
1.6 %
2.4 %
3.2 %
4 %

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

%
 o

f
s
lo

w
d
o
w

n

Matrix size

Native OpenCL
VOCL (local)

VOCL (remote)
Overhead

(a) SGEMM

 0

 2000

 4000

 6000

 8000

 10000

15360 23040 30720 38400 46080 53760
0 %

0.01 %

0.02 %

0.03 %

0.04 %

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

%
 o

f
s
lo

w
d
o
w

n

Number of bodies

(b) N-body

 0

 200

 400

 600

 800

 1000

1K 2K 3K 4K 5K 6K
0 %
30 %
60 %
90 %
120 %
150 %
180 %

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

%
 o

f
s
lo

w
d
o
w

n

Sequence size

(c) Smith-Waterman

 0
 50

 100
 150
 200
 250
 300

1Kx1K 2Kx2K 3Kx3K 4Kx4K 5Kx5K 6Kx6K
0 %
10 %
20 %
30 %
40 %
50 %
60 %

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

%
 o

f
s
lo

w
d
o
w

n

Matrix size

(d) Matrix Transpose

Figure 3.16: Overhead in Total Execution Time for Single-Precision Computations

60

processing (e.g., translation between OpenCL and VOCL handles) in this case. For VOCL-

remote, however, the performance depends on the application. For compute-intensive al-

gorithms, the overhead of VOCL is very small; 1-4% for SGEMM and nearly zero for

n-body. This is because for these applications the total execution time is dominated by

the kernel execution. For SGEMM, we further notice that the overhead decreases with

increasing problem size. This is because the computation time for SGEMM increases as

O(N3) while the amount of data that needs to be transferred only increases as O(N2);

thus, the computation time accounts for a larger percentage of the overall execution time

for larger problem sizes as shown in Figure 3.15.

For algorithms requiring more data movement between host memory and device mem-

ory, the overhead of VOCL is higher. For matrix transpose, for example, this is between

20-55%, which is expected because it spends a large fraction of its execution time in data

transfer (based on Figure 3.15, matrix transpose spends only 7% of its time in computing).

With VOCL-remote, such data transfer causes significant overhead. For Smith-Waterman,

the overhead is much higher and close to 150%. This is because of two reasons. First,

since the VOCL proxy is a multi-threaded process, the MPI implementation has to be

initialized to support multiple threads. It is well known in the MPI literature that multi-

threaded MPI implementations can add significant overhead in performance, especially

for small messages [12, 13, 26, 30]. Second, Smith-Waterman relies on a large number of

kernel launches for a given amount of data [87]. For a 1K sequence alignment, for ex-

ample, more than 2000 kernels are launched causing a large number of small messages to

be issued, which, as mentioned above, cause a lot of performance overhead. We verified

this by artificially initializing the MPI library in single-threaded mode and noticed that the

61

overhead with VOCL comes down to around 35% by doing so.2 Since each kernel launch

needs a few small messages to be transferred between the local node and remote node, we

have no way to reduce the number of messages to be transferred in the VOCL framework

if the number of kernel launches keeps the same. But for applications using multiple ker-

nel launches for data communication across different work-groups, we can use the GPU

synchronization strategy for such data communication as proposed in Chapter 4. With the

GPU synchronization, when inter-work-group data communication is needed, we can just

call the barrier function instead of terminating the kernel execution and re-launching the

kernel. In this way, the kernel is launched only once and the overhead caused by transfer-

ring large number of small messages can be avoided.

Figure 3.17 shows the performance and the overhead of the application kernels for

double precision computations. The observed trends for double precision are nearly iden-

tical to the single-precision cases. This is because the amount of data transferred for

double-precision computations is double that of single-precision computations; and on the

NVIDIA Tesla M2070 GPU, the double-precision computations are about twice as slow

as single-precision computations. Thus, both the computation time and the data transfer

time double and result in no relative difference. On other architectures such as the older

generations of NVIDIA GPU cards where the double-precision computations were much

slower than single-precision computations, we expect this balance to change and the rela-

tive overhead of VOCL to reduce since percentage of time spent executing the kernel will

be higher than that on the Tesla M2070.

2Note that, in this case, the VOCL proxy can accept only one connection request each time it is started.
After an application finishes its execution and disconnects the communication channel, we would need to
restart the proxy process for the next run; a process that is unusable in practice. We only tried this approach
to understand the overhead of using a multi-threaded vs. single-threaded MPI implementations.

62

10
0

10
1

10
2

10
3

10
4

1K X 1K 2K X 2K 3K X 3K 4K X 4K 5K X 5K 6K X 6K
0 %

1 %

2 %

3 %

4 %

5 %

6 %

7 %

E
x
e

c
u
ti
o

n
 t
im

e
 (

m
s
)

%
 o

f
s
lo

w
d

o
w

n

Matrix size

Native OpenCL
VOCL (local)

VOCL (remote)
Slowdown

(a) DGEMM

 0

 5

 10

 15

 20

 25

15360 23040 30720 38400 46080 53760
0 %

0.04 %

0.08 %

0.12 %

0.16 %

0.2 %

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d
)

%
 o

f
s
lo

w
d

o
w

n

Number of bodies

(b) N-body

 0

 100

 200

 300

 400

 500

 600

 700

1K X 1K 2K X 2K 3K X 3K 4K X 4K 5K X 5K 6K X 6K
0 %

10 %

20 %

30 %

40 %

50 %

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

%
 o

f
s
lo

w
d

o
w

n

Matrix size

(c) Matrix Transpose

Figure 3.17: Overhead in Total Execution Time for Double-Precision Computations

3.5.3 Multiple Virtual GPUs

OpenCL allows applications to query for the available GPUs and distribute their problem

instances on them. Thus, with native OpenCL, an application can query for all the local

GPUs and utilize them. With VOCL, on the other hand, the application would have access

to all the GPUs in the entire system; thus, when the application executes the resource query

function, it would look like it has a very large number of GPUs.

63

In this section, we perform experiments with a setup that has 16 compute nodes, each

with 2 local GPUs; thus, with VOCL, it would appear to the applications running in this

environment, that they have 32 local (virtual) GPUs and the application can distribute its

work on 32 GPUs instead of the 2 GPUs that it would use with native OpenCL on a per-

node basis. Figure 3.18 shows the total speedup achieved with 1, 2, 4, 8, 16, and 32 virtual

GPUs utilized. With one and two GPUs, only local GPUs are used. In the other cases, two

of the GPUs are local, and the remaining are remote.

 0.5

 1

 2

 4

 8

 16

 32

1 GPU 2 GPUs 4 GPUs 8 GPUs 16 GPUs 32 GPUs

O
v
e
ra

ll
s
p
e
e
d
u
p

N-body
SGEMM

Matrix transpose
Smith-Waterman

Figure 3.18: Performance Improvement with Multiple Virtual GPUs Utilized (single pre-
cision)

As shown in the figure, for compute-intensive applications such as SGEMM and n-

body, the speedup can be significant; for instance, with 32 GPUs, the overall speedup of

n-body is about 31-fold. For SGEMM, the overall speedup is 11.5-fold (some scalability

is lost because of the serialization of the data transfer through a single network link).

For applications such as matrix transpose and Smith-Waterman that require more data

movement, on the other hand, there is almost no performance improvement; in fact, the

performance degrades in some cases. For the matrix transpose, the reason for this behavior

is that most of the program execution time is for data transfer between host memory and

device memory. As data transfer is serialized to different GPUs, program execution still

64

takes approximately the same amount of time as with the single GPU case. As for Smith-

Waterman, as shown in the previous section, using remote GPUs can cause significant

overhead. When part of the instances are computed on remote GPUs, it is possible that the

overall performance is worse than the single GPU case.

 0.5

 1

 2

 4

 8

 16

 32

1 GPU 2 GPUs 4 GPUs 8 GPUs 16 GPUs 32 GPUs

O
v
e
ra

ll
s
p
e
e
d
u
p

N-body
DGEMM

Matrix transpose

Figure 3.19: Performance Improvement with Multiple Virtual GPUs Utilized (double pre-
cision)

Figure 3.19 illustrates a similar experiment but for double-precision computations.

Again, we notice almost identical trends as single-precision computations because there

is no relative difference in data transfer time and computation time, as explained in Sec-

tion 3.5.2.

3.6 Summary

GPUs have been widely adopted to accelerate general-purpose applications. However, the

current programming models, such as CUDA and OpenCL, only support the use of GPUs

in local compute nodes. In this work, we propose the VOCL framework to support the

transparent virtualization of GPUs, which in turn allows applications to use both local and

remote GPUs in a system as if they were installed locally. In GPU computing, data transfer

65

between host memory and device memory is a bottleneck, which can slow down the pro-

gram execution by 2 to 50 times. When remote GPUs are used, the data transfer overhead

can become even higher. As such, we carefully optimized the data transfer between local

host memory and remote device memory based on a performance model. For evaluation,

we studied the overhead of the VOCL framework using various microbenchmarks as well

as four application kernels with various properties of compute and data transfer between

host memory and device memory. Our experimental results indicate that the VOCL frame-

work can support the transparent virtualization of GPUs in a system at a reasonable cost,

particularly for compute-intensive applications.

66

Chapter 4

GPU Synchronization

4.1 Overview

In general, the GPU architecture only maps well to data- or task- parallel applications that

have minimal or no data communication across different blocks on a GPU card. One of

the reasons can be the lack of explicit hardware and software support for such data com-

munication. On a GPU card, data communication across different blocks occurs via the

global memory and barrier synchronization is needed. Currently, such barrier synchro-

nization is implicitly achieved by terminating current kernel’s execution and re-launching

the kernel, which is a costly operation. This implicit synchronization approach will be

even more expensive when a remote GPU is used since each kernel launch becomes a

two-step scenario. Specifically, when a kernel is launched, the local node sends a message

to the remote node, which then launches the kernel to the GPU as shown in Figure 4.1(a).

This two-step scenario can cause large overhead to applications whose execution requires

data communication across different blocks on remote GPUs, see Figure 3.16(c).

67

In this chapter, we propose the barrier synchronization required for inter-block data

communication on GPUs. The proposed barrier synchronization approaches can both ease

the task of programming GPUs and achieve better performance than the commonly used

approach of multiple kernel launches, particularly in using remote GPUs as presented in

the previous chapter. As shown in Figure 4.1(b), with the GPU synchronization strategy,

the kernel is launched only once and the needed barrier is achieved by calling our barrier

function gpu sync().

Local host Remote host Remote device

Computation

Implicit barrier

(a) CPU synchronization

__gpu_sync()

Local host Remote host Remote device

Computation

(b) GPU synchronization

Figure 4.1: Barrier Synchronization Scenarios in Remote GPU Utilization

We begin by showing the time components in kernel execution and the high percent-

age of time that inter-block data communication consumes in the total execution time for

some applications. Then we describe the related work for inter-thread data communica-

tion. With the above background information, we present our proposed GPU synchroniza-

tion approaches—GPU lock-based synchronization and GPU lock-free synchronization

and the time consumed in each of them. For performance evaluation, we integrate our GPU

synchronization approaches in a microbenchmark and three well-known algorithms—fast

Fourier transformation (FFT), Smith-Waterman, and bitonic sort. Based on the parallel

68

implementations, we show the performance improvement brought by the GPU synchro-

nization and characterize the time consumption of each operation in the GPU synchroniza-

tion in a fine-grained way. In addition, we explain the possible errors in using the GPU

synchronization and the corresponding solutions for that. Finally, to reduce the overhead

of the inter-block data communication in using remote GPUs based on VOCL, we extend

the GPU synchronization strategy to the OpenCL programming model and demonstrate

the performance improvement brought by the GPU synchronization.

4.2 Time Composition of Kernel Execution

In general, a kernel’s execution time on a GPU consists of three components—kernel

launch time, computation time, and synchronization time, which can be represented as

T =
M∑
i=1

(
t
(i)
O + t

(i)
C + t

(i)
S

)
(4.1)

where M is the number of kernel launches, t(i)O is the kernel launch time, t(i)C is the com-

putation time, and t(i)S is the synchronization time for the ith kernel execution, as shown in

Figure 4.2. Each of the three time components is impacted by a few factors. For instance,

the kernel launch time depends on the data transfer bandwidth from the host to the device

as well as the size of kernel code and kernel arguments. For the computation time, it is

affected by memory access methods, kernel configuration (number of threads per block

and number of blocks per grid), etc. Similarly, the synchronization time will be different

for different synchronization approaches.

Figure 4.3 shows the pseudo-code of implementing barrier synchronization via ker-

nel launches, where Figure 4.3(a) is the function call of CPU explicit synchronization

69

Kernel

offload

Compu-

tation

Synchro-

nization

First kernel launch

)1(

Ot
)1(

Ct
)1(

St
Kernel

offload

Compu-

tation

Synchro-

nization

Second kernel launch

)2(

Ot
)2(

Ct
)2(

St

Figure 4.2: Total Kernel Execution Time Composition

for() {

 __kernel_func<<<grid, block>>>();

 cudaThreadSynchronize();

}

(a) CPU explicit synchronization

for() {

 __kernel_func<<<grid, block>>>();

 //without cudaThreadSynchronize()

}

(b) CPU implicit synchronization

Figure 4.3: CPU Explicit/Implicit Synchronization Function Call

and Figure 4.3(b) is for CPU implicit synchronization. As we can see, in the CPU ex-

plicit synchronization, the kernel function kernel func() is followed by the function

cudaThreadSynchronize(), which will not return until all prior operations on the

device are completed. As a result, the three operations—kernel launch, computation, and

synchronization are executed sequentially with the CPU explicit synchronization. In con-

trast, the CPU implicit synchronization does not call cudaThreadSynchronize().

Since kernel launch is asynchronous, if there are multiple kernel launches, kernel launch

time can be overlapped by previous kernels’ computation time and synchronization time.

So, in the CPU implicit synchronization approach, except for the first kernel, kernel launch

time is overlapped by the previous kernel’s execution, and the execution time of multiple

kernels can be represented as

T = t
(1)
O +

M∑
i=1

(
t
(i)
C + t

(i)
CIS

)
(4.2)

where, M is the number of kernel launches, t(1)O is the launch time for the first kernel, t(i)C

and t(i)CIS are the computation time and synchronization time for the ith kernel, respectively.

70

With respect to the GPU synchronization, Figure 4.4 shows the pseudo-code of how

functions are called. In this approach, a kernel is launched only once. When barrier

synchronization is needed, we just call a barrier function gpu sync() instead of re-

launching the kernel. In Figure 4.4, the function device func() implements the

same functionality as the kernel function kernel func() in Figure 4.3, but it is a

device function instead of a global one, so it is called on the device rather than on the host.

With the GPU synchronization, kernel execution time can be expressed as

T = tO +
M∑
i=1

(
t
(i)
C + t

(i)
GS

)
(4.3)

where, M is the number of barriers needed for the kernel’s execution, tO is the kernel

launch time, t(i)C and t(i)GS are the computation time and synchronization time for the ith

loop, respectively.

__global__ void __kernel_func1()

{

 for () {

 __device_func();

 __gpu_sync();

 }

}

Figure 4.4: GPU Synchronization Function Call

From Equations (4.1), (4.2), and (4.3), we can accelerate an algorithm by decreasing

any of the three time components. With properties of the kernel launch time considered,1

we ignore the kernel launch time in the following discussion. If the synchronization time

is reduced, according to the Amdahl’s Law, the maximum kernel execution speedup is

1Three properties are considered: first, kernel launch time can be combined with the synchronization
time in the CPU explicit synchronization; second, it can be overlapped in CPU implicit synchronization; and
third, kernel is launched only once in the GPU synchronization.

71

constrained by

ST =
T

tC + (T − tC) /SS

=
1(

tC
T

)
+
(
1− tC

T

)
/SS

=
1

ρ+ (1− ρ) /SS

(4.4)

where ST is the kernel execution speedup gained by reducing the synchronization time,

ρ = tC
T

is the percentage of the computation time tC in the total kernel execution time T ,

tS = T − tC is the synchronization time of the CPU implicit synchronization, which is our

baseline for performance evaluation later. SS is the synchronization speedup. Similarly, if

only computation is accelerated, the maximum overall speedup is constrained by

ST =
1

ρ/SC + (1− ρ)
(4.5)

where SC is the computation speedup. In Equation (4.4), the smaller the ρ is, the more

speedup can be achieved with a fixed SS; while in Equation (4.5), the larger the ρ is,

the more speedup can be obtained with a fixed SC . In practice, different algorithms have

different ρ values.

4.3 Time Profile for Barrier Synchronization

Many applications need inter-block data communication when they are executed on a

GPU. In this section, we profile the execution of the aforementioned three algorithms—

FFT, Smith-Waterman, and bitonic sort on the GTX 280 GPU with the current state-of-

the-art barrier synchronization, i.e., multiple kernel launches. As we can see in Table 4.1,

inter-block data communication can occupy more than 50% of the kernel execution time

72

in some applications. According to the kernel execution time model in Section 4.2, if

we only optimize the computation for algorithms such as the bitonic sort, the maximum

speedup will be less than 2 times, thus it is of great importance to improve the efficacy of

inter-block data communication on GPUs.

Table 4.1: Percentage of Time Spent on Inter-Block Communication on the GTX 280

Algorithms FFT Smith-Waterman Bitonic sort
% of time spent on inter-

17.8% 49.2% 59.6%
block communication

4.4 Existing Work for Inter-Thread Data Communication

Many types of software barriers have been designed for shared-memory environments [6,

17, 35, 40, 52], but none of them can be directly applied to GPU environments. This is

because multiple CUDA thread blocks can be scheduled to be executed on a single SM

and the CUDA blocks do not yield to the execution. That is, blocks run to completion

once spawned by the CUDA thread scheduler. This may result in deadlocks, and thus,

cannot be resolved in the same way as that in traditional CPU processing environments,

where one can yield the waiting process to execute other processes. One way of addressing

this issue is ensuring a one-to-one mapping between the streaming multiprocessors (SMs)

and the thread blocks.

Cederman et al. [20] implemented a dynamic load-balancing method on the GPU that

is based on the lock-free synchronization method used on traditional multi-core proces-

sors. However, this scheme controls task assignment instead of addressing inter-block

communication. In addition, we note that lock-free synchronization generally performs

73

worse than lock-based methods on traditional multi-core processors, but its performance

is better than that of the lock-based method on the GTX 280 GPU in our work.

The work of Stuart et al. [76] focuses on data communication between multiple GPUs,

i.e., inter-GPU communication. Though their approach can be used for inter-block com-

munication across different SMs on the same GPU, the performance is projected to be

quite poor because data needs to be moved to the CPU host memory first and then trans-

ferred back to the device memory, which is unnecessary for data communication on a

single GPU card.

The most closely related work to ours is that of Volkov et al. [82]. Volkov et al. pro-

posed a global software synchronization method that does not use atomic operations to

accelerate dense linear-algebra constructs. However, as they noted, their synchroniza-

tion method has not been implemented into any real application to test the performance

improvement. Furthermore, their proposed synchronization cannot guarantee that previ-

ous accesses to all levels of the memory hierarchy have completed. Finally, Volkov et

al. used only one thread to check all arrival variables, hence serializing this portion of

inter-block synchronization and adversely affecting its performance. In contrast, our pro-

posed GPU synchronization approaches guarantee the completion of memory accesses

with the existing memory-access model in CUDA. This is due to the memory fence func-

tion threadfence() introduced in CUDA 2.2, which can guarantee that all writes

to global memory are visible to other threads, so the correctness of reads after the barrier

function can be guaranteed. In addition, we integrate our GPU synchronization approaches

in a microbenchmark and three well-known algorithms for performance evaluation. Fi-

nally, we use multiple threads in a block to check all the arrival variables, which can be

74

executed in parallel, thus achieving a good performance.

4.5 Proposed GPU Barrier Synchronization

In the following discussion, we will present two alternative GPU synchronization designs:

GPU lock-based synchronization and GPU lock-free synchronization. The lock-based de-

sign makes use of mutually exclusive (mutex) variables and CUDA atomic operations;

while the lock-free design uses a decentralized approach that avoids the use of the CUDA

atomic operations.

4.5.1 GPU Lock-Based Synchronization

The basic idea of GPU lock-based synchronization [87] is to use a global mutex variable

to count the number of thread blocks that reach the synchronization point. As shown in

Figure 4.6, in the barrier function gpu sync(), after a block completes its compu-

tation, one of its threads (i.e., the leading thread) will atomically add one to g mutex.

The leading thread will then repeatedly compare g mutex to a target value goalVal. If

g mutex is equal to goalVal, the synchronization is completed and each thread block

can proceed with its next stage of computation, as shown in Figure 4.5. In our design,

goalVal is set to the number of blocks N in the kernel when the barrier function is

first called. The value of goalVal is then incremented by N each time when the bar-

rier function is successively called. This design is more efficient than keeping goalVal

constant and resetting g mutex after each barrier because the former saves the number of

instructions and avoids conditional branches.

In the GPU lock-based synchronization, the execution time of the barrier function

75

Block #1

atomicAdd(1)

Block #2

atomicAdd(1)

Block #3

atomicAdd(1)

Block #N

atomicAdd(1)

g_mutex

Block #1

g_mutex==N
?

Block #2

g_mutex==N
?

Block #3

g_mutex==N
?

Block #N

g_mutex==N
?

intra-block

sync

intra-block

sync

intra-block

sync

intra-block

sync

Figure 4.5: Operations in GPU Lock-Based Synchronization

1 //the mutex variable
2 __device__ volatile int g_mutex;
3
4 //GPU lock-based synchronization function
5 __device__ void __gpu_sync(int goalVal)
6 {
7 //thread ID in a block
8 int tid_in_block = threadIdx.x * blockDim.y + threadIdx.y;
9

10 // only thread 0 is used for synchronization
11 if (tid_in_block == 0) {
12 atomicAdd((int *)&g_mutex, 1);
13
14 //only when all blocks add 1 to g_mutex will g_mutex equal to goalVal
15 while(g_mutex != goalVal) {
16 //Do nothing here
17 }
18 }
19 __syncthreads();
20 }

Figure 4.6: Pseudo Code of GPU Lock-Based Synchronization

gpu sync() consists of three parts—atomic addition, checking of a mutex variable

g mutex, and synchronization of threads within a block via syncthreads(). The

atomic addition can only be executed sequentially by different blocks, while the g mutex

checking and intra-block synchronization can be executed in parallel. Assume there are N

blocks in the kernel, the intra-block synchronization time is ts, time of each atomic addi-

tion and g mutex checking is ta and tc, respectively, if all blocks finish their computation

76

at

at B#1

Atomic add for g_mutex

B#1

g_mutex check

B#N

B#2

B#NB#2

at

ct

Intra-block synchronization

B#1 B#2 B#Nst

Figure 4.7: Time Composition of GPU Lock-Based Synchronization

at the same time as shown in Figure 4.7, then the time to execute gpu sync() is

tGBS = N · ta + tc + ts (4.6)

where N is the number of blocks in the kernel. From Equation (4.6), the cost of GPU

lock-based synchronization increases linearly with N .

4.5.2 GPU Lock-Free Synchronization

In the GPU lock-based synchronization, the mutex variable g mutex is added with the

atomic function atomicAdd(). This means the addition of g mutex can only be ex-

ecuted sequentially even though these operations are performed in different blocks. In

this section, we propose a lock-free synchronization approach that does not use atomic

operations. The basic idea of this approach is to assign a synchronization variable to each

thread block so that each block can record its synchronization status independently without

competing for a single global mutex variable, as shown in Figure 4.8.

As shown in Figure 4.9, our lock-free synchronization approach uses two arrays Arrayin

and Arrayout to coordinate the synchronization requests from various blocks. In these

77

Block #1

arrayIn[0]=1

Block #2

arrayIn[1]=1

Block #3

arrayIn[2]=1

Block #N

arrayIn[N]=1

Thread 1,…,N

in Block 1

Block #1 Block #2 Block #3 Block #N

intra-block

sync

intra-block

sync

intra-block

sync

intra-block

sync

Thread 1,…,N

in Block 1

while(arrayIn[0,1,2,…,N]==1)

arrayOut[0,1,2,…,N]=1

arrayOut[0]==1 arrayOut[1]==1 arrayOut[2]==1 arrayOut[N]==1
? ? ? ?

Figure 4.8: Operations in GPU Lock-Free Synchronization

two arrays, each element is mapped to a thread block in the kernel, i.e., element i is mapped

to thread block i. The algorithm is outlined into three steps as follows:

1. When block i is ready for communication, its leading thread (thread 0) sets element

i in Arrayin to the goal value goalVal. The leading thread in block i then

busy-waits on element i of Arrayout to be set to goalVal.

2. The firstN threads in block 1 repeatedly check if all elements in Arrayin are equal

to goalVal, with thread i checking the ith element in Arrayin. After all elements

in Arrayin are set to goalVal, each checking thread then sets the corresponding

element in Arrayout to goalVal. Note that the intra-block barrier function

syncthreads() is called by each checking thread before updating elements

of Arrayout.

3. A block will continue its execution once its leading thread sees the corresponding

element in Arrayout is set to goalVal.

It is worth noting that in the step 2) above, rather than having one thread check all

elements of Arrayin in serial as in [82], we use N threads to check the elements of

78

Arrayin in parallel. This design choice reduces synchronization overhead considerably,

as shown in Section 4.7. Note also that goalVal is incremented each time when the

function gpu sync() is called, similar to the implementation of the GPU lock-based

synchronization.

1 //GPU lock-free synchronization function
2 __device__ void __gpu_sync(int goalVal, volatile int *Arrayin, volatile int *Arrayout)
3 {
4 // thread ID in a block
5 int tid_in_blk = threadIdx.x * blockDim.y + threadIdx.y;
6 int nBlockNum = gridDim.x * gridDim.y;
7 int bid = blockIdx.x * gridDim.y + blockIdx.y;
8
9 // only thread 0 is used for synchronization

10 if (tid_in_blk == 0) {
11 Arrayin[bid] = goalVal;
12 }
13
14 if (bid == 1) {
15 if (tid_in_blk < nBlockNum) {
16 while (Arrayin[tid_in_blk] != goalVal){
17 //Do nothing here
18 }
19 }
20 __syncthreads();
21
22 if (tid_in_blk < nBlockNum) {
23 Arrayout[tid_in_blk] = goalVal;
24 }
25 }
26
27 if (tid_in_blk == 0) {
28 while (Arrayout[bid] != goalVal) {
29 //Do nothing here
30 }
31 }
32 __syncthreads();
33 }

Figure 4.9: Pseudo Code of GPU Lock-Free Synchronization

From Figure 4.9, there is no atomic operation in the GPU lock-free synchronization.

All the operations can be executed in parallel. Synchronization of different thread blocks

is controlled by threads in a single block, which can be synchronized efficiently by call-

ing the barrier function syncthreads(). From Figure 4.10, the execution time of

79

gpu sync() is composed of six parts and calculated as

tGFS = tSI + tCI + 2ts + tSO + tCO (4.7)

where, tSI is the time for setting an element in Arrayin, tCI is the time to check an

element in Arrayin, ts is the intra-block synchronization time, tSO and tCO are the time

for setting and checking an element in Arrayout, respectively. From Equation (4.7),

execution time of gpu sync() is unrelated to the number of blocks in a kernel.2

Arrayin[1,…,N] set

Arrayout[1,…,N] check

B #1

B #1 B #NB #2

B #1

B #1

B #1 B #NB #2

Arrayin[1,…,N] check

Arrayout[1,…,N] set

Threads synchronization

COt

SOt

Synct

CIt

SIt

Intra-block synchronization

B #1 B #NB #2St

Figure 4.10: Time Composition of GPU Lock-Free Synchronization

4.6 Analysis of Inter-Block Data Communication Correct-

ness

According to the relaxed memory consistency model on the GPU, there is no guarantee

that previous writes to the global memory are visible to all SMs after the global bar-

rier function. As such, even though the execution of different blocks are synchronized,
2Since there are at most 30 blocks that can be set on a GTX 280, threads that check Arrayin are in

the same warp, which are executed in parallel. When there are more than 32 blocks in the kernel, threads in
more than one warp are needed for checking Arrayin, and different warps are executed serially on an SM.

80

the correctness of inter-block data communication cannot be guaranteed. To remedy this

problem, CUDA introduced the memory fence function threadfence(), which will

block the calling thread until its previous writes to the global memory are visible to all

threads on the GPU card. By inserting the memory fence function to the global barrier

function gpu sync(), we can guarantee the correctness of inter-block data commu-

nication. For example, consider a thread that needs to read some data written by other

threads after the barrier, since the thread has passed the barrier, all threads in the kernel

have passed memory fence function threadfence(), too (otherwise, the considered

thread cannot pass the barrier.). As such, writes to the global memory of all threads have

been visible to all others in the kernel. Then what the thread reads from the global mem-

ory are those written by other threads, and inter-block data communication correctness is

guaranteed.

It is expected that overhead will be introduced by integrating the memory fence func-

tion threadfence() into the global barrier function as demonstrated later in Sec-

tion 4.7.5.

4.7 Performance Evaluation

4.7.1 Overview

To evaluate the performance of our proposed GPU synchronization approaches, we im-

plement them in a microbenchmark as well as three algorithms—FFT, Smith-Waterman,

and bitonic sort. In the microbenchmark, results of all synchronization approaches are

shown. Since the performance of the CPU explicit synchronization is far worse than that

81

of the CPU implicit synchronization, we show performance of only the CPU implicit syn-

chronization and the GPU synchronization in the three real algorithms. Specifically, their

performance is evaluated in three aspects: 1) the impact on kernel execution time and

its variation against the number of blocks in the kernel; 2) the percentage of time spent

in computation versus synchronization; and 3) the cost of guaranteeing inter-block data

communication correctness via the memory fence function.

Our experiments are performed on the NVIDIA GeForce GTX 280 and the NVIDIA

Tesla Fermi C2050 GPU cards. The GTX 280 has 30 SMs and 240 processing cores with

the clock speed 1296MHz. Each SM contains 16K registers and 16KB shared memory.

For the entire GPU card, there is 1GB GDDR3 global memory with 141.7GB/second

of memory bandwidth. As for the Tesla Fermi C2050, it has 14 SMs and 448 scalar-

processors (SPs) with the clock speed 1.15GHz. There are 32K registers and 64KB shared

memory on each SM and the total global memory size is 3GB. On the host machine,

there are two AMD Magny-Cours processors (Each has eight cores.) with the clock speed

800MHz and 32GB host memory is equipped on the machine. The operating system on

the host machine is the 64-bit CentOS 5.5. The NVIDIA CUDA 4.0 is used for all the

program execution. In our experiments, each result is the average of three runs.

4.7.2 Synchronization Time Verification via a Microbenchmark

In this experiment, we write a microbenchmark to verify the synchronization time for

each synchronization method. The microbenchmark is to compute the mean of two floats

for 10,000 times. If the CPU synchronization is used, each kernel calculates the mean

once and the kernel is launched 10,000 times. With the GPU synchronization, the kernel

82

calculates the mean for 10,000 times using a 10,000-iteration for loop with the GPU

barrier function called in each loop. In the microbenchmark, each thread computes one

mean value. That is, the more blocks and threads are set, the more elements are computed,

i.e., weak scaling. As such, the computation time should be approximately constant with

different number of blocks and threads configured in the kernel.

Figure 4.11 shows the kernel execution time for different synchronization methods:

Figure 4.11(a) is on the GTX 280 and Figure 4.11(b) is on the Tesla Fermi C2050. From

this figure, we have the following observations:

 0
 20
 40
 60
 80

 100
 120
 140
 160

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

K
e

rn
e

l
e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Number of blocks in the kernel

computation + CPU explicit sync
computation + GPU lock-based sync

computation + CPU implicit sync
computation + GPU lock-free sync

computation

(a) GTX 280

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

K
e

rn
e

l
e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Number of blocks in the kernel

computation + CPU implicit sync
computation + GPU lock-free sync

computation + GPU lock-based sync
computation

(b) Tesla C2050 (Fermi) (Note: kernel execution time with the CPU explicit
synchronization is 247.35ms.)

Figure 4.11: Execution Time of the Microbenchmark.

On the GTX 280, 1) the CPU explicit synchronization takes 170 ms, which is 2.46

83

times that of the CPU implicit synchronization, about 69 ms. In the CPU explicit syn-

chronization, kernel launch, computation, and synchronization are executed sequentially;

while in the CPU implicit synchronization, kernel launch is overlapped by computation of

its previous kernels. 2) Even for the CPU implicit synchronization, the synchronization

overhead is still quite high. As shown in the figure, the computation time is only about

5ms, while the time for the CPU implicit synchronization is about 60ms, which is 12

times the computation time. 3) For the GPU lock-based synchronization, the synchroniza-

tion time is linear to the number of blocks in the kernel. The more blocks are configured

in the kernel, the more synchronization time is needed, which matches very well to Equa-

tion (4.6) in Section 4.5.1. Compared to the CPU implicit synchronization, if the number

of blocks is less than 24, the GPU lock-based synchronization takes less time; otherwise, it

needs more time. The reason is that, as analyzed in Section 4.5.1, more blocks means more

atomic add operations are executed for each barrier synchronization and atomic add can

only be executed sequentially. 4) As for the GPU lock-free synchronization, since there

are no atomic operations used, all operations can be executed in parallel, which makes its

synchronization time unrelated to the number of blocks in a kernel. As such, the synchro-

nization time is relatively constant. Furthermore, the synchronization time is much less

(for more than 3 blocks configured in the kernel) than that of all other synchronization

methods.

On the Tesla Fermi C2050, 1) similar to the GTX 280, the CPU explicit synchroniza-

tion takes 247.35 ms, which is 212 ms more than that of the CPU implicit synchronization.

The reason is the same with the GTX 280, the CPU explicit synchronization serializes the

different stages of a kernel’s execution. 2) For the CPU implicit synchronization, it is more

84

expensive than both GPU synchronization approaches. Specifically, with 14 blocks con-

figured in the kernel, synchronization time of the CPU implicit synchronization is 27.7ms,

and that of the GPU lock-based and lock-free synchronization approaches are 10.9ms and

14.73ms, respectively. 3) For the lock-free synchronization approach, in contrast to the

performance on the GTX 280, its synchronization time slightly increases with more blocks

configured in the kernel. One reason can be that more data accesses are needed with more

blocks in the kernel, which increases the kernel execution time. For the GPU lock-based

synchronization, its synchronization increases with more blocks configured in the kernel,

too. Compared to the lock-free synchronization approach, the rate of increase for the lock-

based approach is even higher. Why? In addition to more memory accesses with more

blocks in the kernel, the GPU lock-based synchronization needs the atomic add opera-

tions, which can only be executed sequentially, even in different blocks.

Comparing the performance on the GTX 280 and the Tesla Fermi C2050, we observe

the following. First, the CPU explicit synchronization on the Tesla Fermi C2050 is more

expensive than that on the GTX 280, but the performance of the CPU implicit synchro-

nization is opposite. Second, as for the GPU synchronization on the GTX 280, the GPU

lock-based synchronization is slower than the GPU lock-free synchronization; while on

the Tesla Fermi C2050, the GPU lock-free synchronization is slower than the GPU lock-

based approach. The reason for the performance difference is that the atomic add is much

faster on the Tesla Fermi C2050 than on the GTX 280 as shown later in Section 4.7.3.

From the microbenchmark results, the CPU explicit synchronization needs 2.4-fold

and 7.1-fold more time on the GTX 280 and the Tesla Fermi C2050, respectively, than the

CPU implicit synchronization. So, in the following sections, we will not use it any more,

85

and only the CPU implicit synchronization and the two GPU synchronization approaches

are compared and analyzed.

4.7.3 Fine-Grained Analysis of GPU Barrier Synchronization

In this section, we analyze the synchronization overhead by partitioning it into the time

consumed by each operation within the synchronization [29]. As an example, we analyze

the GPU lock-based synchronization, which contains a superset of all the operations that

are used in the GPU lock-free synchronization. For the barrier implementation in Sec-

tion 4.5.1 with the memory fence function used, there are four types of operations in the

GPU lock-based synchronization, and its synchronization time can be expressed as

TS = ta + tc + ts + tf (4.8)

where ta is the overhead of atomic add, tc is the mutex variable checking time, ts is the time

consumed by syncthreads(), and tf is the execution time of the threadfence().

Since the execution times of these component operations cannot be measured directly on

the GPU, we use an indirect approach to infer the times. Specifically, we measure the ker-

nel execution time in different scenarios and then calculate the execution time of each of

the above operations. Based on the kernel execution time model in Section 4.2, a kernel’s

execution time can be expressed as

T = tO + tCom + tS (4.9)

where tO is the kernel launch time, tCom is the computation time, and tS is the synchro-

nization time. By combining Equations (4.8) and (4.9), the kernel execution time can be

86

represented as

T = tO + tCom + ta + tc + ts + tf (4.10)

From Equation (4.10), we can calculate the overhead of a particular operation, e.g.,

threadfence() by measuring the kernel execution time both with and without

threadfence() and taking the time difference as its overhead.

With the above indirect approach, we use the same microbenchmark in the previous

section and measure the kernel execution times in the following scenarios:

1. Sum of the kernel launch and computation time, i.e., t1 = tO + tCom, which is

the kernel execution time of a GPU synchronization implementation but without the

barrier function gpu sync() called.

2. Kernel execution time with one atomicAdd called in each block, i.e., t2 = ta.

3. Sum of the time for kernel launch, computation, and syncthreads(), i.e., t3 =

tO + tCom + ts.

4. Kernel execution time with the GPU lock-based synchronization, so t4 = tO +

tCom + ts + ta + tc.

5. Kernel execution time of the GPU lock-based synchronization with threadfence(),

thus t5 = tO + tCom + ts + ta + tc + tf .

Figure 4.12 shows the measured execution times of t1 to t5 noted above, where Fig-

ure 4.12(a) shows the results on the GTX 280 and Figure 4.12(b) is for the Tesla Fermi

C2050. With these times, execution time of the four types of operations in the GPU lock-

based synchronization can be calculated as:

87

1. Time for executing the atomic add is t2, i.e., ta = t2;

2. Time of the mutex variable checking is tc = t4 − t3 − t2;

3. Time consumption of syncthreads() is ts = t3 − t1;

4. Overhead of the function threadfence() is tf = t5 − t4.

Thus, for 10,000 iterations of execution on the GTX 280, ts = 0.718, ta = 2.307 × n,

tc = 4.937, and tf = 0.280 × n + 8.563, where n is the number of blocks in the kernel,

and the units are in milliseconds. On the Tesla Fermi C2050, ts = 0.589, ta = 0.106× n,

tc = 7.613, and tf = 0.396× n+ 2.294.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

K
e
rn

e
l
e
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Number of blocks in the kernel

computation + CPU implicit sync
computation + GPU lock-based sync + threadfence

computation + GPU lock-based sync
atomicAdd

computation + syncthreads
computation

(a) GTX 280

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

K
e
rn

e
l
e
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Number of blocks in the kernel

computation + CPU implicit sync
computation + GPU lock-based sync + threadfence

computation + GPU lock-based sync
computation + syncthreads

computation
atomicAdd

(b) Tesla C2050 (Fermi)

Figure 4.12: Profile of GPU Lock-Based Synchronization via a Microbenchmark

These results show the following. First, the intra-block synchronization function syncthreads()

88

consumes very little time. With 10,000 iterations of execution, the execution time on the

GTX 280 is only 0.718 ms, which is about 93 clock cycles per call and is a constant

value unrelated to the number of threads that call it. Similarly, the execution time of

syncthreads() on the Tesla Fermi C2050 is 0.589 ms, corresponding to 68 clock

cycles per call. Second, similar to syncthreads(), the execution time of the mutex

variable checking is a constant value, which is unrelated to the number of blocks in the ker-

nel. This operation takes 4.937 ms and 7.631 ms on the GTX 280 and Tesla Fermi C2050,

respectively, for 10,000 iterations. Third, if we analyze the atomicAdd() function, its

execution time is linear to the number of blocks that call it, as shown in Figure 4.12. On

the GTX 280, atomic add takes 2.307ms per 10,000 execution. On the Tesla Fermi C2050,

this time is 0.106 ms for the same number of operations, which is much more efficient

than that on the GTX 280. Because of this reason, the GPU lock-based synchronization

has worse performance than the lock-free one on the GTX 280, but the former has better

performance than the latter on the Tesla Fermi C2050. Fourth, for execution time of the

memory fence function threadfence(), it is related to the number of threads in the

kernel. With the max number of blocks that can be configured in the kernel using the GPU

synchronization (30 blocks on the GTX 280 and 14 blocks on the Tesla Fermi C2050),

threadfence() needs more time on the GTX 280 than on the Tesla Fermi C2050.

4.7.4 Evaluation in Real Algorithms

In this section, we evaluate our proposed algorithms for GPU synchronization in three

algorithms—FFT, Smith-Waterman, and bitonic sort. In this experiment, we exclude the

data copy time and consider only the kernel execution time. Also, we record the total

89

execution time by repeating the kernel execution 1000 times and report the average.

4.7.4.1 Kernel Execution Time

Figures 4.13 and 4.14 show the kernel execution time with different synchronization ap-

proaches on the GTX 280 and the Tesla Fermi C2050, respectively. Also shown are the

time change with regard to the number of blocks in the kernel. In these figures, we demon-

strate the kernel execution time with the number of blocks varying from 9 to 30 on the GTX

280 and 4 to 14 on the Tesla Fermi C2050. The reason is that performance of the appli-

cations with the number of blocks outside this range is worse than that with the number

of blocks within this range. Another reason is, with the GPU synchronization approach

used, the maximum number of blocks in a kernel is 30 and 14 on the GTX 280 and the

Tesla Fermi C2050, respectively. In each block, on the GTX 280, the number of threads

per block is 448, 256, and 512 for FFT, Smith-Waterman, and bitonic sort, respectively.

On the Tesla Fermi C2050, the number of threads in each block is 640, 256, and 1024

for the three applications. Figures 4.13(a) and 4.14(a) show the performance of FFT, Fig-

ures 4.13(b) and 4.14(b) are for Smith-Waterman, and Figures 4.13(c) and 4.14(c) display

the kernel execution time of bitonic sort.

From Figure 4.13, we can see the following trends on the GTX 280. First, kernel exe-

cution time decreases with more blocks configured in the kernel. The reason is, with more

blocks (from 9 to 30) in the kernel, more GPU resources are used for the computation. As a

result, less time is needed for the program execution. Second, with our GPU synchroniza-

tion used, performance improvement is observed in all the three algorithms. For example,

kernel execution time of FFT decreases from 1.179ms with the CPU implicit synchroniza-

tion to 1.072ms with the GPU lock-free synchronization (30 blocks are configured in the

90

kernel), corresponding to a 9.08% decrease. For Smith-Waterman and bitonic sort, these

values are 25.47% and 40.39%, respectively. Third, the kernel execution time difference

between the CPU implicit synchronization and the proposed GPU synchronization of FFT

is much less than that of Smith-Waterman and bitonic sort. The reason is, in FFT, the

computation load between two barriers is much more than that of Smith-Waterman and

bitonic sort. According to Equation (4.4), the kernel execution time change caused by

the synchronization time decrease in FFT is not as much as that in Smith-Waterman and

bitonic sort.

For the kernel execution time on the Tesla Fermi C2050, overall, similar trends are

observed as that on the GTX 280. As can be seen in Figure 4.14, first, kernel execution

time decreases with more blocks configured in the kernel. The reason is the same as that

on the GTX 280, i.e., more blocks means more resources are used for the GPU computing.

Second, performance of all three applications is improved with the GPU synchronization

applied. Specifically, the execution time of FFT is 0.708ms with the CPU implicit syn-

chronization. This time decreases to 0.661ms with the GPU lock-based synchronization,

corresponding to a decrease of 6.64%. With the GPU lock-free synchronization, the time

of FFT is 0.638ms, a relative decrease of 9.75%. Similarly, the execution time of Smith-

Waterman decreases from 136.461ms with the CPU synchronization to 102.620ms and

109.236ms with the GPU lock-based and lock-free synchronization, respectively, corre-

sponding to a performance improvement of 24.80% with the GPU lock-based synchro-

nization and 29.95% with the GPU lock-free synchronization. As for bitonic sort, perfor-

mance improvement is 13.13% with the GPU lock-based synchronization and 9.19% with

the GPU lock-free synchronization compared to the CPU implicit synchronization.

91

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 10 12 14 16 18 20 22 24 26 28 30K
e
rn

e
l
e
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Number of blocks in the kernel

computation + CPU implicit sync
computation + GPU lock-based sync

computation + GPU lock-free sync

(a) FFT

 160

 180

 200

 220

 240

 260

 280

 10 12 14 16 18 20 22 24 26 28 30K
e
rn

e
l
e
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Number of blocks in the kernel

(b) Smith-Waterman

 1

 1.5

 2

 2.5

 3

 3.5

 10 12 14 16 18 20 22 24 26 28 30K
e
rn

e
l
e
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Number of blocks in the kernel

(c) Bitonic sort

Figure 4.13: Kernel Execution Time versus
Number of Blocks in the Kernel on the GTX
280

 0.6

 0.9

 1.2

 1.5

 1.8

 4 5 6 7 8 9 10 11 12 13 14K
e
rn

e
l
e
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Number of blocks in the kernel

computation + CPU implicit sync
computation + GPU lock-free sync

computation + GPU lock-based sync

(a) FFT

 90

 120

 150

 180

 210

 240

 270

 300

 4 5 6 7 8 9 10 11 12 13 14K
e
rn

e
l
e
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Number of blocks in the kernel

(b) Smith-Waterman

 1.2

 1.5

 1.8

 2.1

 2.4

 2.7

 3

 4 5 6 7 8 9 10 11 12 13 14K
e
rn

e
l
e
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Number of blocks in the kernel

(c) Bitonic sort

Figure 4.14: Kernel Execution Time versus
Number of Blocks in the Kernel on the Tesla
Fermi C2050

92

Comparing the performance on the GTX 280 and the Tesla Fermi C2050, first, each

application needs more time on the GTX 280 than on the Tesla Fermi C2050. The rea-

son is that Tesla Fermi C2050 is a newer generation of GPU and it is more powerful than

the GTX 280 (The Tesla Fermi C2050 has the peak performance of 1030.4 GFLOPS for

single-precision and the global memory bandwidth of 153.6 GB/s, and that of the GTX

280 are 622.1 GFLOPS and 141.7 GB/s, respectively.). Second, for the two GPU synchro-

nization approaches, GPU lock-free synchronization achieves much better performance

than the GPU lock-based one on the GTX 280. But on the Tesla Fermi C2050, their per-

formance difference is very little. Either approach can achieve better performance than the

other. As we can see, FFT achieves better performance with the GPU lock-free synchro-

nization; while Smith-Waterman and bitonic sort have better performance with the GPU

lock-based synchronization. The reason is that the atomic add used in the GPU lock-based

synchronization is much more efficient on the Tesla Fermi C2050 than on the GTX 280,

which significantly improves the performance of the GPU lock-based synchronization on

the Tesla Fermi C2050.

4.7.4.2 Percentages of the Computation Time and the Synchronization Time

Figure 4.15 shows the performance breakdown in percentage of the three algorithms when

different synchronization approaches are used. As we can see, on both the GTX 280 and

the Tesla Fermi C2050, the percentage of synchronization time in the FFT is much less

than that in Smith-Waterman and bitonic sort. As a result, changes in synchronization have

less impact on the total kernel execution time. As shown in Figures 4.13 and 4.14, the ker-

nel execution times of FFT are very close with the different synchronization approaches;

while the program execution time changes a lot in Smith-Waterman and bitonic sort. In

93

addition, on the GTX 280, the synchronization time consumes 50% and 60% in Smith-

Waterman and bitonic sort, respectively, when the CPU implicit synchronization approach

is used. Though percentages of the synchronization time are less on the Tesla Fermi C2050

than that on the GTX 280, they are still up to 43% and 37% for the Smith-Waterman and

the bitonic sort, respectively. This indicates that inter-block communication occupies a

large part of the total execution time in some algorithms and decreasing the synchroniza-

tion time is important to achieve good performance.

0%

20%

40%

60%

80%

100%

%
 o

f
sy

n
ch

ro
n

iz
at

io
n

 a
n

d

co
m

p
u

ta
ti

o
n

 t
im

e

Computation time Synchronization time

(1) (2) (3) (1) (2) (3) (1) (2) (3)

FFT Smith-Waterman Bitonic-Sort

(a) GTX 280

0%

20%

40%

60%

80%

100%

%
 o

f
sy

n
ch

ro
n

iz
at

io
n

 a
n

d

co
m

p
u

ta
ti

o
n

 t
im

e

(1) (2) (3) (1) (2) (3) (1) (2) (3)

FFT Smith-Waterman Bitonic-Sort

(b) Tesla Fermi C2050

Figure 4.15: Percentages of Computation Time and Synchronization Time (Note: (1) CPU
implicit synchronization (2) GPU lock-based synchronization (3) GPU lock-free synchro-
nization)

94

4.7.5 Cost of Guaranteeing Inter-Block Communication Correctness

In this section, we show the cost of the memory fence function to guarantee the data

communication correctness. Figures 4.16 and 4.17 show the kernel execution time versus

the number of blocks in kernels, where Figures 4.16(a) and 4.17(a) show the results of

FFT, Figures 4.16(b) and 4.17(b) are the results of Smith-Waterman, and Figures 4.16(c)

and 4.17(c) are for bitonic sort.

As can be seen, on the GTX 280, the more blocks are configured in kernels, the more

overhead is caused, which can even exceed the kernel execution time using the CPU im-

plicit synchronization. With the GPU lock-free synchronization, when the number of

blocks in the kernel is larger than 14, the execution of FFT needs more time than that using

the CPU implicit synchronization. The threshold values are 18 and 12 for Smith-Waterman

and bitonic sort, respectively. In contrast, overhead of the memory fence function on the

Tesla Fermi C2050 is much less than that on the GTX 280. As we can see, even with

the memory fence function called, both GPU synchronization approaches achieve better

performance than the CPU implicit synchronization approach for all three applications.

From these results, our proposed barrier synchronization can synchronize the execution of

different blocks in a more efficient way than the commonly used CPU implicit synchro-

nization. As for the cost of the memory fence function threadfence(), it is very

high on the GTX 280, which means using threadfence() to guarantee inter-block

data communication correctness is an inefficient approach. But on the Tesla Fermi C2050,

this approach is effective. It is worth noting that even without threadfence() called

in our barrier functions, all program results are correct with thousands of runs.

95

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 10 12 14 16 18 20 22 24 26 28 30K
e
rn

e
l
e
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Number of blocks in the kernel

computation + CPU implicit sync
computation + GPU lock-based sync

computation + GPU lock-free sync

(a) FFT

 200

 220

 240

 260

 280

 300

 10 12 14 16 18 20 22 24 26 28 30K
e
rn

e
l
e
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Number of blocks in the kernel

(b) Smith-Waterman

 2

 2.5

 3

 3.5

 4

 4.5

 10 12 14 16 18 20 22 24 26 28 30K
e
rn

e
l
e
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Number of blocks in the kernel

(c) Bitonic sort

Figure 4.16: Kernel Execution Time ver-
sus Number of Blocks in the Kernel with
threadfence() Called on the GTX 280

GPU

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 4 5 6 7 8 9 10 11 12 13 14K
e
rn

e
l
e
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Number of blocks in the kernel

computation + CPU implicit sync
computation + GPU lock-free sync

computation + GPU lock-based sync

(a) FFT

 90

 120

 150

 180

 210

 240

 270

 300

 4 5 6 7 8 9 10 11 12 13 14K
e
rn

e
l
e
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Number of blocks in the kernel

(b) Smith-Waterman

 1.2

 1.5

 1.8

 2.1

 2.4

 2.7

 3

 4 5 6 7 8 9 10 11 12 13 14K
e
rn

e
l
e
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Number of blocks in the kernel

(c) Bitonic sort

Figure 4.17: Kernel Execution Time ver-
sus Number of Blocks in the Kernel with
threadfence() Called on the Tesla

Fermi C2050 GPU

96

4.8 Extension to the OpenCL Programming Model

In previous sections, we presented the inter-block barrier synchronization in CUDA. In

practice, there are other GPU cards (e.g., AMD GPUs) as well as other programming

models such as the OpenCL. As we know, AMD GPUs have higher peak performance

than their NVIDIA counterparts and the OpenCL programming model can support GPUs,

CPUs, and even the Cell Broadband Engine (Cell/BE) [21]. Thus, GPU synchronization

in the OpenCL programming model is of great importance in practice. In this section, we

analyze the feasibility of extending the GPU synchronization strategy to the OpenCL pro-

gramming model and demonstrate the performance of the OpenCL GPU synchronization

using the OpenCL version of the microbenchmark in Section 4.7.2.

As noted in Section 4.5, the implementation of the GPU synchronization needs support

from the programming model. Specifically, in the OpenCL programming model, we need

the following: 1) built-in index for identifying different work-items within a work-group.

2) barrier synchronization across work-items within a work-group; 3) atomic operations

(e.g., atomic add) for global mutex variables; and 4) a memory fence function to guar-

antee memory consistency across different work-groups. In the OpenCL programming

model, the first three features, i.e., built-in work-item index, barrier synchronization within

a work-group, and atomic add for global variables are supported. As to the memory fence

function for guaranteeing global memory consistency, according to [3], OpenCL provides

a memory fence function memfence() for intra-block memory consistency, i.e., it is

the counterpart of threadfence block() in CUDA. However, there is no mem-

ory fence function for memory consistency across the whole GPU card corresponding to

97

Table 4.2: OpenCL CPU Synchronization Time

Synchronization Approach GTX 280 (ms) Tesla Fermi C2050 (ms)
CPU explicit synchronization 468.43 356.30
CPU implicit synchronization 118.84 87.94

threadfence(). As such, we can synchronize the execution of different work-items

in different work-groups; but if inter-work-group data communication is needed, inter-

work-group data communication correctness cannot be guaranteed.

Though memory consistency across different work-groups cannot be guaranteed, we

demonstrate the possible performance improvement brought by the OpenCL GPU syn-

chronization, which can help in evaluating the usefulness of the OpenCL GPU synchro-

nization in practice and possibly motivate the introduction of a memory fence function

across the whole GPU card.

To evaluate the performance of the OpenCL GPU synchronization, we translate the mi-

crobenchmark from Section 4.7.2 into the OpenCL programming model. The translation

is straightforward, i.e., the intra-block function syncthreads() is translated into the

barrier(), with both the local and global memory indicated to be synchronized. Simi-

larly, the atomic function atomicAdd() is changed to atom add(), etc.

Figure 4.18 shows the kernel execution time with the various synchronization ap-

proaches in OpenCL on the GTX 280 and the Tesla Fermi C2050. Note that the kernel

execution times with the CPU synchronization are almost constant, and we list them in

Figure 4.2 to make the figures easy to read.

From Figure 4.18, we have the following observations. On the GTX 280, CPU syn-

chronization takes much more time in OpenCL 1.0 than in CUDA. Specifically, kernel

execution time with the CPU implicit synchronization in CUDA is 81ms, while that in

98

 0

 20

 40

 60

 80

 100

 120

 140

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

K
e

rn
e

l
e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Number of work groups in the kernel

computation + GPU lock-free sync
computation + GPU lock-based sync

computation + sync within work group
computation

(a) GTX 280

 0

 4

 8

 12

 16

 20

 24

 28

 32

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

K
e

rn
e

l
e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Number of work groups in the kernel

computation + GPU lock-free sync
computation + GPU lock-based sync

computation + sync within work group
computation

(b) Tesla Fermi C2050

Figure 4.18: OpenCL Barrier Synchronization Time (Note: To make the figure easy to
read, kernel execution times with CPU synchronization are listed in Table 4.2.)

OpenCL is 119 ms. With the CPU explicit synchronization, kernel execution times are

169 ms and 468 ms for CUDA and OpenCL, respectively. One of the reasons can be that

OpenCL is based on CUDA for NVIDIA GPU usage. As such, execution of OpenCL

programs needs an additional level of function call. Second, the barrier function within a

work-group in OpenCL takes more time than in CUDA, too. In OpenCL, the barrier func-

tion takes 13.98 ms for 10,000 times of execution; while in CUDA, this time is only 0.72

ms. Third, for the GPU synchronization, if the number of work-groups is less than 20, the

GPU lock-based synchronization has better performance; otherwise, the GPU lock-free

synchronization has better performance. Fourth, the kernel execution time will increase

with more work-groups configured in the kernel for both GPU synchronization strategies.

99

For the GPU lock-based synchronization, there are two reasons for that. One is the atomic

add, which can only be executed sequentially even in different work-groups. Another rea-

son is the barrier function within the work-group. As can be seen, kernel execution time

with only the intra-work-group barrier function increases with more blocks in the kernel.

Since the barrier function is called in the our inter-work-group barrier function, it causes

more overhead to kernels with more work-groups. As to the GPU lock-free synchroniza-

tion, there are three intra-work-group barrier functions called, thus kernel execution needs

more time with more work-groups configured in the kernel.

On the Tesla Fermi C2050, similar trends are observed. First, CPU synchronization

takes much more time in OpenCL than in CUDA. When using the CPU implicit synchro-

nization, kernel execution takes 34 ms and 88 ms in CUDA and OpenCL, respectively.

With the CPU explicit synchronization, the kernel time in CUDA and OpenCL is 247 ms

and 356 ms, respectively. Second, the barrier function within a work-group takes much

more time in OpenCL than in CUDA. The reason is the same as above, OpenCL func-

tions are on top of the CUDA for NVIDIA GPUs, which makes OpenCL function calls

need another level of function calls. Third, for the GPU synchronization, if the number

of work-groups in the kernel is less than 10, GPU lock-based synchronization has better

performance. Otherwise, the GPU lock-free synchronization has better performance. The

reason is the same as that on the GTX 280, GPU lock-based synchronization needs atomic

functions called in the kernel, while the GPU lock-free synchronization does not need that.

Comparing the performance on the GTX 280 to the Tesla Fermi C2050, the same

synchronization approach takes less time on the latter than on the former, which is true

for both the CPU synchronization and the GPU synchronization. The reason is that the

100

Tesla Fermi C2050 is more efficient than the GTX 280 in the operations—global memory

bandwidth, intra-work-group barrier function, and atomic operations that are used in the

barrier function.

4.9 Summary

In this chapter, we proposed two GPU synchronization strategies to synchronize the ex-

ecution of different blocks on the GPU card. With the proposed GPU synchronization

approaches, data communication between GPU blocks can be performed without launch-

ing the kernels multiple times, thus the overhead of switching back and forth between the

host and the device can be avoided. For evaluation, we integrated our proposed synchro-

nization strategies into a microbenchmark and three well-known algorithms. We compared

the program execution time using CPU and GPU synchronization approaches. From our

experimental results, application performance can be improved with fast synchronization.

On the Tesla Fermi C2050, performance improvement was observed with our proposed

GPU synchronization approaches. However, on the GTX 280, the low efficiency of the

memory fence function made the cost of guaranteeing correctness extremely high. As a

consequence, there was no performance improvement when compared to the commonly

used CPU synchronization approach.

101

Chapter 5

Task Migration

5.1 Overview

In Chapter 3, we proposed the VOCL framework, an implementation of the OpenCL pro-

gramming model that provides the ability to use and share non-local computational accel-

erators through device virtualization. VOCL establishes device proxies which manage the

mapping of virtual to physical OpenCL contexts and forward OpenCL commands from the

application to the physical device. VOCL can be used immediately by any OpenCL appli-

cation and provides a runtime system that automatically manages the mapping of virtual

to physical GPUs.

The ability to migrate virtual devices is a key capability in any virtualized environ-

ment. In the context of VOCL, migration can enable the ability to migrate virtual GPUs

when a failure is detected; on-demand maintenance of compute resources; and dynamic

adjustment of the mapping of virtual to physical devices to manage resource allocation

and balance the workload.

102

In this chapter, we extend VOCL to support transparent, live migration of virtual

OpenCL GPUs. Migration is achieved by transparently moving the virtual GPU state

between VOCL proxies and physical devices and remapping the virtual-to-physical trans-

lation. Asynchronous, one-sided communication is used to decouple and coordinate mi-

gration. In addition, a command queueing strategy is introduced that allows the proxy

greater control over the migratability of the virtual GPU and increases its responsiveness

to migration events. We evaluate our migration framework on four application bench-

marks from three application domains: dense linear algebra, n-body calculations, and data

intensive bioinformatics. Results indicate that with our queueing technique, VOCL incurs

low migration overhead while maintaining fast response time to migration events. In ad-

dition, through migration-enabled load balancing, applications achieve speedups from 1.7

to 1.9-fold.

The remainder of this chapter is organized as follows. Section 5.2 discusses the related

work of task migration. In Sections 5.3 and 5.4, we present the virtual GPU migration

framework and evaluate the overhead of migration and benefits from migration, respec-

tively. Finally, we conclude this chapter with Section 5.5.

5.2 Related Work

Our work is related to task migration across different GPUs and different nodes. There

have been many studies available for migration in large-scale computing systems.

Process migration can be achieved by the checkpointing approach. One study is the

Berkeley Lab Checkpoint/Restart (BLCR) [37]. It writes the process image to a file and

103

then restarts the process from the process image file. This approach can be used for migrat-

ing a process from one node to another, but it only considers the images of CPU processes.

Based on BLCR, Ouyang [67] used a proactive job migration scheme to enhance the

fault tolerance of the MVAPICH2 [60]. This work implemented the checkpoint/restart

procedure by transferring the process image to a healthy spare node for the purpose of

resuming the process. Wang et al. [85] proposed a process-level live migration mechanism

to support continued execution of MPI processes. This work is integrated into an MPI exe-

cution environment to transparently sustain health-inflated node failures, which eradicates

the need to restart and requeue MPI jobs. These studies are related to the task migration

in our VOCL framework in that VOCL supports live migration of virtual GPUs (VGPUs)

from one physical GPU to another and migration is transparent to the program execution.

Takizawa et al. [36,79] demonstrated the feasibility of migrating a GPU program from

one node to another. This work is similar to ours but differs in the following ways. First, in

their work, an API proxy is added to store the image file, which makes OpenCL function

calls become a two-phase procedure. As such, when large amounts of data are transferred

between host memory and device memory, significant overhead can be incurred during

program execution even for local GPU usage. In contrast, in our VOCL framework, there

is no such API proxy on the local node, and no additional overhead is caused to the usage

of local GPUs. Second, when migration is triggered, in Takizawa’s work, execution of the

process must be terminated and restarted on the target machine. In contrast, migration in

the VOCL framework does not require process termination and restart. It is transparent

to the application program and happens during its execution. Third, the process image is

stored on the hard disk in Takizawa’s migration approach, which unduly burden the storage

104

subsystem and can cause significant overhead for restarting the process. In contrast, VOCL

does not use the hard disk and all data is transferred over the network.

Another strategy for task migration is based on virtual machines, such as Xen [16],

which enable migration of virtual OS instances across different compute nodes. One such

example is vCUDA [72]. In this approach, all API function calls on the target OS need

to be redirected to the host OS when migration happens. As a result, it causes significant

migration overhead on both the host and the target nodes.

5.3 Transparent Virtual GPU Migration

In this section, we discuss the extension of the VOCL framework with the ability to migrate

virtual GPU images across different physical GPUs. Overall, task migration is performed

based on virtual GPU, which represents the GPU resources utilized by an application pro-

cess on each physical GPU and is the unit to be migrated across physical GPUs. We first

describe the virtual GPU abstraction, followed by the virtual GPU migration algorithm,

and finally we introduce a queueing mechanism, which can be used to improve the perfor-

mance of migration.

5.3.1 The Virtual GPU Abstraction

A virtual GPU (or VGPU) represents the resources used by an application process on a

physical GPU, which includes OpenCL contexts, command queues, memory buffers, pro-

grams, and kernels. It also stores the dependencies across the resources, as shown in Fig-

ure 5.1. An application process could use multiple physical GPUs, with each represented

by a virtual GPU. Similarly, one physical GPU could be shared by multiple applications.

105

In such a case, an individual virtual GPU will be created for each application. We illustrate

the two cases in Figure 5.2.

contextdevice

Command

queue

program

memory

kernel

sampler
VGPU

Figure 5.1: Virtual GPU Components and their Dependencies

In the VOCL framework, virtual GPU objects exist in both the VOCL library and the

proxy with a one-to-one mapping relationship, as shown in Figure 5.2. That is, for each

virtual GPU in a proxy, there is a corresponding virtual GPU in the VOCL library. A

virtual GPU in the VOCL library contains VOCL resources, which is referred to as VOCL

VGPU; while a virtual GPU in the proxy contains OpenCL resources and is referred to as

OpenCL VGPU. In this chapter, we use the source GPU to indicate a GPU where migration

is originated from and destination GPU for the migration destination. A source proxy is

the proxy that contains the source GPU. Similarly, the destination GPU belongs to the

destination proxy.

An OpenCL VGPU in the proxy is identified by the OpenCL device ID and the index

of the application that is using the device. Once an application selects a physical GPU,

a VGPU is created and all OpenCL resources created by the application on the physical

GPU will be saved in its VGPU. Besides OpenCL handles, information used to create

the handles are also stored. For instance, when an OpenCL program is created, besides

the program handle, we need to store its source code and build options. The reason is that

OpenCL handles created on one physical GPU may be invalid on another. Therefore, when

106

OpenCL VGPU1

OpenCL VGPU2

VOCL VGPU1

VOCL VGPU2

VOCL VGPU3 VOCL VGPU1

VOCL VGPU2

VOCL VGPU3

Physical GPU1

VOCL library1

OpenCL VGPU1

OpenCL VGPU2

OpenCL VGPU1

OpenCL VGPU2

VOCL library2

Proxy1 Proxy2 Proxy3

Physical GPU2 Physical GPU3

(Source) (Destination)

application1 application2

Figure 5.2: Virtual GPUs

a VGPU is migrated, we need to re-create all the OpenCL resources on the destination

GPU, which requires all the information.

VOCL VGPUs reside in the VOCL library and have a one-to-one correspondence with

OpenCL VGPUs. Each VOCL VGPU is identified by the VOCL device ID and the index

of the proxy where the device is located. VOCL VGPUs store information such as VOCL

contexts, VOCL command queues, and VOCL programs. In contrast to OpenCL VGPUs,

which are created in the destination proxy and released in the source proxy in a migration,

the update of a VOCL VGPU propagates from the source OpenCL VGPU to the destina-

tion OpenCL VGPU, as shown in Figure 5.3. Specifically, for each VOCL handle in the

VOCL VGPU, its corresponding OpenCL handle and MPI data communication informa-

tion will be replaced by its counterpart in the destination OpenCL VGPU. As a result, all

OpenCL function calls will be directed to the destination proxy and GPU computation will

be performed on the destination GPU. Since we keep the same VOCL handle in the VOCL

VGPU, migration is transparent to the application.

107

VOCL library

VOCL VGPU

OpenCL VGPU

Source proxy

OpenCL VGPU

Destination proxy

Before

migration

After

migration
migration

Figure 5.3: Migration Scenario

5.3.2 Migrating Virtual GPUs

Migrating a VGPU across physical GPUs requires manipulation of the OpenCL and VOCL

VGPU objects as well as management of the GPU device and transfer of the VGPU image.

When a migration is initiated, the OpenCL VGPU is migrated from the source proxy

to the destination proxy. In the VOCL library, the corresponding VOCL VGPU must

also be mapped from the source OpenCL VGPU to the destination OpenCL VGPU. As a

result, GPU computation on the source physical GPU will be performed on the destination

physical GPU after migration, as shown in Figure 5.3. However, careful synchronization

must be employed to preserve data consistency and provide migration that is transparent

to the user.

We argue that migration should start as quickly as possible with a minimum overhead.

To achieve this, we extend the VOCL framework in the following two aspects: 1) an

internal command queue in the proxy to reduce the time for waiting the issued kernels to

be completed, which in turn supports a quick start of migration and 2) atomic enqueueing

of OpenCL function calls to reduce the migration overhead. In the following, we first

describe the conditions in which migration should be triggered, then we explain the steps

involved in the migration. Finally, the above extension to the VOCL framework to improve

the migration performance is presented.

108

Currently, we consider two scenarios in which migration can be triggered: to free the

GPU resources on a node (e.g., to perform maintenance) and to rebalance the virtual-to-

physical mapping of GPUs. To free the GPU resources on a given node, we provide a

tool, voclForcedMigration, to send messages to the proxy. When a proxy receives the

forced migration message, it will move all its tasks to other nodes. The second scenario

is for load balance. To enable this, we provide a function called voclRebalance()

to check the loads on the physical GPUs. If the load difference across physical GPUs is

larger than a threshold value, migration will happen to rebalance the loads on different

GPUs. Currently, we use a threshold of half of the internal queue depth N described in

Section 5.3.3, which means if the difference of the number of function calls that are issued

to the native OpenCL library but not completed on two physical GPUs is larger than N/2,

migration will be triggered. Many other strategies are possible and VOCL provides an

interface that allows users to define new load balancing modules.

Migration of a virtual GPU image across physical GPUs is performed using the fol-

lowing algorithm:

1. Lock the VGPU: The VGPU is locked to prevent commands from being issued

during migration.

2. Drain command queue: Before starting the migration procedure, the source proxy

must wait for completion of all issued OpenCL function calls by invoking the OpenCL

function clFinish().

3. Select physical GPU: Select the physical GPU to which the virtual GPU will be

mapped. Many criteria are possible; we select the physical GPU with the least

109

computation load. In this step, the source proxy queries the load on each available

physical GPU.

4. Transfer OpenCL VGPU: The source proxy marshalls the source OpenCL VGPU

and transmits it to the destination proxy. In the destination proxy, an OpenCL VGPU

is created using this information.

5. Create VOCL VGPU: The new VOCL VGPU is created, connected to the selected

physical GPU, and mapped to its corresponding OpenCL VGPU.

6. Transfer contents of device memory: Data in device memory of the source VGPU

is sent to the new destination VGPU. Here, the data transfer is pipelined to reduce

the data transfer overhead.

7. Release source GPU: After data transfer is completed, the source VGPU is released.

8. Unlock the VGPU: Release the migration lock on the VGPU and allow the client

to resume issuing OpenCL commands to the destination VGPU.

5.3.3 Queueing Virtual GPU Operations

One of the first steps in migration is to wait for completion of all issued OpenCL com-

mands. In this step, if a large number of function calls are issued and migration is neces-

sary, we may need to wait a long time before migration can start, which impacts the delay

until a fault can be migrated around, maintenance can be performed, or the load can be

rebalanced.

To reduce the waiting time, instead of issuing all received OpenCL function calls to the

GPU, the proxy creates an internal command queue to queue up the received functions as

110

Tail

HeadProxy process

Helper thread

MPI receive of commands

Native OpenCL library

Figure 5.4: Internal Queue in Proxy

shown in Figure 5.4. When an OpenCL function call is received, the proxy enqueues it into

the command queue. The proxy also creates a helper thread to issue function calls to the

GPU. Each time, the helper thread issues a fixed number, N , of OpenCL function calls to

the GPU and calls clFinish() to wait for their completion. After that, the helper thread

issues another N functions and calls the clFinish(), so on and so forth. In this way,

when migration is necessary, the proxy process only needs to wait for the completion of at

most N function calls. As such, the wait for completion time can be significantly reduced

compared to issuing all OpenCL function calls to the GPU. However, this approach will

cause overhead to program execution since kernel execution becomes more synchronous

by the calling of clFinish(). Use N = 1 as an example, it means that clFinish()

is called after every kernel launch. As a consequence, a kernel cannot be launched until

its previous kernel finishes the computation, which can cause significant overhead since

kernel launch is overlapped with previous kernel’s execution in general. Note that by

tuning the queue depth, or N value, we can control the overhead of this approach at a low

level, as we will show in our experimental results.

After the OpenCL VGPU is migrated to the destination proxy, the source proxy will

send the unissued function calls to the destination proxy. After receiving the function

calls, the destination proxy will first update the OpenCL handles to those in the destination

111

OpenCL VGPU, then enqueue them to its internal queue.

5.3.4 Atomic Enqueueing Commands in the Presence of Migration

When migration starts, the source proxy stops issuing OpenCL function calls to its GPU.

Instead, it waits for completion of the issued function calls. At this time, any OpenCL

function calls received from the VOCL library are stored in its internal command queue.

Unissued function calls will be sent to the destination proxy and additional overhead is

caused. On the other hand, if the VOCL library stops issuing function calls to the source

proxy, the number of function calls to be sent from the source proxy to the destination

proxy can be reduced and migration overhead is reduced as a result. To achieve this, we

use a migration lock to prevent the VOCL library from issuing function calls to the source

proxy when migration is in progress.

We utilize the MPI one-sided mutex algorithm of Ross et al. [69] to establish a migra-

tion lock between the application and the VOCL proxy. When migration starts, the source

proxy acquires the mutex and holds it until migration is complete. In the VOCL library,

the application must acquire the mutex before it can issue OpenCL function calls to the

device. As such, if there is no migration, the application can always acquire the mutex

immediately. On the other hand, if migration is in progress in the proxy, the application

must wait for the completion of the migration, when the mutex will be released before

it can issue a function call to the proxy. In this way, function calls are restricted in the

application when migration is in-progress.

Since the application is expected to issue OpenCL function calls much more frequently

112

than migration will occur, the mutex structure is located in the VOCL library on the appli-

cation’s node to reduce the overhead of locking.

5.4 Experimental Evaluation

We use the four application kernels in Chapter 3 to evaluate the task migration within

the VOCL framework. As mentioned before, matrix multiplication and n-body are com-

pute intensive, while matrix transpose and Smith-Waterman need more data movement

between host memory and device memory. Using these kernels, we measure the cost of

migration; demonstrate the performance impact of rebalancing the mapping of VGPUs to

physical GPUs; and explore the tradeoff between a shallow queue depth, which decreases

the time-to-migration, and a deeper queue depth which can improve the efficiency of ker-

nel execution.

Experiments were conducted on four QDR InfiniBand-connected compute nodes. Each

node contains with two AMD Magny-Cours CPUs (Each has eight cores.), 64 GB of mem-

ory, and two NVIDIA Tesla M2070 GPUs, each with 6GB of global memory. The two

GPUs are connected to different PCI express links and one GPU shares its PCI express

link with the InfiniBand network interface card (NIC). In our experiments, we use two

of the nodes as the remote GPU nodes and the other two as the local nodes, on which

only the CPU is used. Each node runs the CentOS 5.5 Linux operating system and the

CUDA 3.2 toolkit is installed to provide OpenCL support. In addition, we use the MVA-

PICH2 [60] MPI implementation, which supports the QDR InfiniBand interconnect. Each

of our experiments is conducted three times and the average value is reported.

113

5.4.1 Overhead Caused by Migration Locker

In this section, we measure the overhead of the mutex lock to restrict the number of func-

tion calls when migration starts. We ran the four applications in the VOCL framework

without migration. Then the program execution time was measured with and without the

mutex lock used in the OpenCL function call. Table 5.1 shows the program execution time

with and without the mutex lock. As we can expect, the performance difference observed

by acquiring and releasing the mutex lock is effectively negligible. In some cases, the

program execution time using the lock is actually less than the case without the mutex

lock, meaning there are factors other than the mutex lock that impact the application per-

formance more. To characterize the overhead of acquiring and releasing the mutex lock,

we write a microbenchmark that acquires and releases the mutex lock 10,000 times. We

measure the overhead in two scenarios. In one case, the lock is local to a process while

in the other case, the lock is remote. From the experimental results, the execution times

of acquiring/releasing the local lock and the remote lock 10,000 times are 15.01 ms and

157.72 ms, respectively. In other words, the time consumption of each mutex lock ac-

quire/release is 1.5 us for the local lock and 15.7 us for the remote lock. Compared to the

kernel execution time, which are in the order of milliseconds, this overhead is modest and

thus can be ignored in practice.

5.4.2 Impact of Command Queue Depth

As described in Section 5.3.3, the proxy issues batches ofN kernels to the OpenCL library

and then blocks on their completion by calling clFinish(). The value ofN determines

114

Table 5.1: Program Execution Time with and without MPI Mutex Locker. (Program size
used in this experiment is as follows: matrix size is 1024 x 1024 in matrix multiplica-
tion and matrix transpose, sequence size is 1024 characters in Smith-Waterman, and the
number of bodies is 15360 in n-body.)

Application Without MPI mutex With MPI mutex
kernels lock (seconds) lock (seconds)

Matrix multiplication 7.499 7.498
N-body 36.788 36.786

Matrix transpose 9.069 8.768
Smith-Waterman 16.848 17.531

the depth of the OpenCL command queue and high values ofN can improve kernel execu-

tion efficiency while low values of N reduce the delay between issuing a migration event

and when migration can be performed.

Figure 5.5 shows the total execution time with no migration over a range of queue

depths. Infini indicates that the queue has an infinite depth and that the proxy does

not periodically invoke clFinish(). As can be seen, for matrix multiplication, matrix

transpose, and n-body, program execution time with different queue depths shows little

variation. Specifically, with N = 2, which means clFinish() is called after every two

kernel launches, program execution time increases by 4.6%, 2.7%, and 0.8% respectively.

The reason is that these three applications have long-running kernels that mitigate per-

formance degradation from synchronous kernel execution. Smith-Waterman, on the other

hand, launches a large number of short kernels, resulting in a slowdown of 256% when

N = 2. Increasing the value of N reduces overhead for all four applications.

While increasing queue depth improves device utilization, it also increases the waiting

time before migration can be initiated. Figure 5.6 shows the wait for completion time with

N from 2 to 20. As can be seen, with the increase of the N value, the wait for completion

115

 0

 10

 20

 30

 40

 50

 60

 70

2 4 8 12 16 20 Infini

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

N value

N-body
Smith-Waterman
Matrix transpose

Matrix multiplication

Figure 5.5: Overhead Caused by Internal Queue in Proxy

 0

 30

 60

 90

 120

 150

 180

2 4 8 12 16 20W
a

it
 f

o
r

c
o

m
p

le
ti
o

n
 t

im
e

 (
m

s
)

N value

Matrix multiplication
Matrix transpose

N-body
Smith-Waterman

Figure 5.6: Wait for Completion Time with Different N Values

time will increase for all four applications. Note that the wait for completion time only

affects the time interval between a migration event and when migration can be performed;

it does not correspond to overhead.

Using the data from these two experiments, we choose a value ofN = 20 as the default

queue depth in VOCL (N is an user-adjustable parameter). When N = 20, the overhead

caused by queueing is less than 2% and the wait for completion time is also relatively low,

only a few hundred milliseconds for our applications.

116

5.4.3 Analysis of Migration Overhead

In Figure 5.7, we show the total execution time for each kernel with no migration and

when a single migration is performed. From Figure 5.7, we see that, overall, as the prob-

lem size increases, the relative overhead decreases. The reason is that the execution time

increases faster than the migration overhead with regard to the problem size. Thus, less

relative overhead is caused in programs running a larger problem size. In addition, migra-

tion overhead is a few hundred milliseconds. For programs that run long enough, other

factors such as network congestion and system noise affect the total execution time more

than migration does. From these results, we conclude performance degradation caused by

migration can be negligible for programs running a reasonably long time (e.g., a few tens

of seconds).

 0

 20

 40

 60

 80

 100

 120

1Kx1K 2Kx2K 3Kx3K 4Kx4K 5Kx5K 6Kx6K
0 %

1 %

2 %

3 %

4 %

5 %

6 %

7 %

P
ro

g
ra

m
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

M
ig

ra
ti
o

n
 o

v
e

rh
e

a
d

Matrix size

without migration
with migration

migration overhead

(a) Matrix Multiplication

 0

 40

 80

 120

 160

 200

15360 23040 30720 38400 46080 53670
0 %
0.2 %
0.4 %
0.6 %
0.8 %
1 %
1.2 %
1.4 %
1.6 %
1.8 %
2 %

P
ro

g
ra

m
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

M
ig

ra
ti
o

n
 o

v
e

rh
e

a
d

Number of bodies

(b) N-body

 0

 20

 40

1K 2K 3K 4K 5K 6K

0 %

10 %

20 %

30 %

40 %

50 %

60 %

P
ro

g
ra

m
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

M
ig

ra
ti
o

n
 o

v
e

rh
e

a
d

Input sequence size

(c) Smith-Waterman

 0

 20

 40

 60

 80

 100

 120

 140

1Kx1K 2Kx2K 3Kx3K 4Kx4K 5Kx5K 6Kx6K
0 %

1 %

2 %

3 %

4 %

5 %

6 %

P
ro

g
ra

m
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

M
ig

ra
ti
o

n
 o

v
e

rh
e

a
d

Matrix size

(d) Matrix Transpose

Figure 5.7: Total Execution Time for each Kernel over a Range of Input Sizes with and
without Migration.

Figure 5.8 and Table 5.2 show a detailed breakdown of the migration overhead for the

117

Table 5.2: Breakdown of Migration Overheads (in msec) for each Benchmark on the
Smallest Input Problem.

Find desti- Copy Data Send Un-issued
nation GPU VGPU transfer function calls

Matrix multiply 0.265 364.799 8.636 1.317
N-body 0.106 662.485 0.953 0.408

Matrix transpose 0.217 368.485 8.527 1.400
Smith-Waterman 0.142 371.162 51.505 12.465

four benchmarks across different input sizes. The time for virtual GPU creation includes

the latency of draining the device’s command queue as well as the program build time

for the destination VGPU, which dominate the overhead in all the four applications. For

Smith-Waterman, we see that the large number of queued function calls generated by the

application also increases the cost of migrating the queue of unissued functions. As for

n-body, it contains two kernel programs, each of which needs to be built separately. As

such, the copy VGPU time is about twice of the other three applications.

5.4.4 Performance Impact of Load Balancing

Migration also adds the capability to balance the VGPU workload across physical GPUs.

In Figure 5.9 we show the performance improvement from VOCL’s load balancing. For

this experiment, we run two instances of the same benchmark and map both VGPUs to the

same physical device. This represents a scenario where one device is initially occupied

when the new VGPUs are created. In the baseline case, both instances share the physical

GPU for their full execution. In the migration case, one of the applications triggers the

VOCL load balancer which performs migration. This corresponds to a scenario in which

resources become available while the application is running. After migration, each VGPU

118

 0

 100

 200

 300

 400

 500

1Kx1K 2Kx2K 3Kx3K 4Kx4K 5Kx5K 6Kx6K

M
ig

ra
ti
o

n
 o

v
e

rh
e

a
d

 (
m

s
)

Matrix size

Find destination GPU
Copy virtual GPU

Transfer GPU data
Send unissued function calls

(a) Matrix multiplication

 0

 100

 200

 300

 400

 500

 600

 700

15360 23040 30720 38400 46080 53760

M
ig

ra
ti
o

n
 o

v
e

rh
e

a
d

 (
m

s
)

number of bodies

(b) N-body

 0

 100

 200

 300

 400

 500

1K 2K 3K 4K 5K 6K

M
ig

ra
ti
o

n
 o

v
e

rh
e

a
d

 (
m

s
)

Sequence size

(c) Smith-Waterman

 0

 100

 200

 300

 400

 500

 600

1Kx1K 2Kx2K 3Kx3K 4Kx4K 5Kx5K 6Kx6K

M
ig

ra
ti
o

n
 o

v
e

rh
e

a
d

 (
m

s
)

Matrix size

(d) Matrix Transpose

Figure 5.8: Breakdown of Migration Overheads for each Benchmark across all Input Sizes.

is mapped to a separate physical GPU.

From this data, we see that, with task migration enabled in the framework, application

performance is improved for all four applications. Specifically, the total time to complete

both matrix multiplication instances reduces by a factor of 1.7; n-body is 1.9 times faster;

matrix transpose is 1.7 times faster; and Smith-Waterman is 1.4 times faster. Among the

four applications, speedup of n-body is the highest and Smith-Waterman is the lowest.

This is consistent with the varying degree of overhead incurred by migration in all four

applications, as shown in Figure 5.7; the least amount of data is transferred in the migration

of n-body and Smith-Waterman requires the largest amount of data transfer. In addition,

total execution time of n-body is much larger than that of the Smith-Waterman. As such,

migration overhead has far less impact on its performance than Smith-Waterman.

119

 0

 50

 100

 150

 200

 250

1Kx1K 2Kx2K 3Kx3K 4Kx4K 5Kx5K 6Kx6K
 0

 0.3

 0.6

 0.9

 1.2

 1.5

 1.8

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

S
p

e
e

d
u

p
 b

ro
u

g
h

t
b

y
 m

ig

Matrix size

without migration
with migration

speedup

(a) Matrix multiplication

 0

 50

 100

 150

 200

 250

 300

 350

 400

15360 23040 30720 38400 46080 53760
 0

 0.3

 0.6

 0.9

 1.2

 1.5

 1.8

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

S
p

e
e

d
u

p
 b

ro
u

g
h

t
b

y
 m

ig

Number of bodies

(b) N-body

 0

 10

 20

 30

 40

 50

 60

 70

 80

1K 2K 3K 4K 5K 6K
 0

 0.3

 0.6

 0.9

 1.2

 1.5

 1.8

 2.1

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

S
p

e
e

d
u

p
 b

ro
u

g
h

t
b

y
 m

ig

Input sequence size

(c) Smith-Waterman

 0

 50

 100

 150

 200

 250

 300

 350

 400

1Kx1K 2Kx2K 3Kx3K 4Kx4K 5Kx5K 6Kx6K
 0

 0.3

 0.6

 0.9

 1.2

 1.5

 1.8

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

S
p

e
e

d
u

p
 b

ro
u

g
h

t
b

y
 m

ig

Matrix size

(d) Matrix Transpose

Figure 5.9: Total Execution Time for each Benchmark over a Range of Input Sizes without
and with VOCL Load Balancing.

5.5 Summary

In this chapter, we extend our VOCL framework by supporting live task migration to

achieve load balance and quick system maintenance. Migration in the VOCL framework

is based on the virtual GPU, which consists of all the OpenCL resources used by an ap-

plication program on a physical GPU. When migration happens, the source proxy collects

the OpenCL objects and the information needed to create the objects in the source vir-

tual GPU and sends them to the destination proxy. Then the destination proxy creates a

new virtual GPU based on the received information. Also, data in the GPU memory and

OpenCL function calls that are not issued to the source physical GPU will be sent to the

destination proxy.

120

To reduce the migration overhead, we modify the VOCL framework in two aspects.

First, we queue up received OpenCL functions and issued a few kernels each time in-

stead of issuing all received OpenCL function calls. In this way, the time to wait for the

completion of issued OpenCL function calls can be decreased. Second, we propose the

atomic transaction approach to restrict issuing function calls in the VOCL library during

the migration period. For performance evaluation, we measure the overhead of the migra-

tion lock and that of changing the VOCL framework to reduce the time for completion.

Moreover, we profile the migration overhead and show the benefits of migration when load

imbalance exists in a system.

121

Chapter 6

Application Verification

6.1 Overview

In previous chapters, we present the VOCL framework as well as its optimizations and

extensions. VOCL enables applications to use GPUs in a more flexible way in large-scale

heterogeneous systems. As a result, each application can transparently use all GPUs in

the system and each GPU can be used by multiple applications simultaneously. In this

chapter, we demonstrate the benefits of VOCL and the optimizations using two bioin-

formatics applications—Basic Local Alignment Search Tool (BLAST) [7, 89] and Smith-

Waterman [73, 87]. Specifically, we parallelize the two applications in CUDA and show

the performance improvement of the parallel implementations compared to their corre-

sponding baseline sequential ones. To show the benefits of VOCL, we translate the CUDA

parallel implementations to OpenCL and run them on VOCL. For BLAST, we show its

performance improvement by transparently using multiple (both local and remote) GPUs

in the system. For Smith-Waterman, as shown in Section 3.5.2, using remote GPUs causes

122

significant overhead, which is due to the large number of kernel launches used for inter-

block data communication during its execution. As such, we show the performance im-

provement by using GPU synchronization in the use of remote GPUs.

In the following, we first give a brief description of the algorithm used in each applica-

tion, followed by the parallelization on the GPU and the optimization techniques proposed

to improve its performance. With the various parallel implementations in CUDA, we

show the performance improvement compared to a baseline sequential implementation.

After translating the CUDA parallel implementations into the OpenCL ones, we show the

benefits of using the VOCL framework. For BLAST, we show the speedup achieved by

using multiple GPUs (both remote and local). For Smith-Waterman, we demonstrate the

overhead decrease by using the GPU synchronization strategy for inter-block data com-

munication.

6.2 Parallelization of Basic Local Alignment Search Tool

for Protein Sequence Search

6.2.1 Algorithm Description

BLAST is actually a family of algorithms, with variants used for searching alignments

of different types (i.e., protein and nucleotide) of sequences. Among them, BLASTP is

used to compare protein sequences against a database of protein sequences. There are four

stages in the BLASTP algorithm:

1. Hit detection. Hit detection identifies high-scoring matches (i.e., hits) of a fixed

123

Sbjct: ...CL-PIXYAALGDLPLIYPFLVNDPABC...

Query: ...CFAJ-PDALLGPLPNIYPFIVNDPGEG...

Ungapped Extension

Gapped Alignment Hit Detection

Figure 6.1: First Three Stages of BLAST Execution

length between a query sequence and a subject sequence (i.e., a database sequence).

2. Ungapped extension. Ungapped extension determines whether one or more hits

obtained from the first stage can form the basis of a local alignment that does not

include insertions or deletions of residues. The alignments with scores higher than

a certain threshold will be passed to the next stage.

3. Gapped alignment. This stage performs further extension on the previously obtained

alignments with gaps allowed. The result alignments will be filtered with another

threshold.

4. Gapped alignment with traceback. In this stage, the final alignments to be displayed

to users are re-scored, and the alignments are generated using a traceback algorithm.

Figure 6.1 gives an example of the first three stages of alignment computation. The

fourth stage repeats the third one with traceback information recorded. BLAST reports

alignment scores calculated based on a scoring matrix and gap penalty factors. In addition,

statistical information such as the “expect” value that measures the significance of each

alignment is reported.

124

6.2.2 Related Work

Since the BLAST tool is both compute- and data-intensive, many approaches have been

investigated to parallelize BLAST in the past. On multi-core platforms, the BLAST im-

plementation from National Center for Biotechnology Information (NCBI) has been par-

allelized with pthreads. On cluster platforms, there are parallel implementations such

as TurboBLAST [18], ScalaBLAST [66], and mpiBLAST [25, 46, 47] available. Among

them, mpiBLAST is a widely used parallelization of NCBI BLAST. Combining efficient

task scheduling and scalable I/O design, mpiBLAST can effectively leverage tens of thou-

sands of processors to speedup the BLAST search [45].

Parallel BLAST has also been implemented on accelerators such as FPGAs [39, 44,

53, 58, 74, 86]. In a recent study, Mahram et al. [53] introduced a co-processing approach

that leverages both the CPU and FPGA to accelerate BLAST. Specifically, their imple-

mentation parallelizes the first two stages of BLAST on the FPGA to pre-filter dissimilar

subject sequences. Then, the original NCBI BLAST is called on the CPU to search the

filtered database. Their implementation can generate the same results as NCBI BLAST

and achieve as much as 25-fold performance improvement.

Our work is mostly related to BLAST parallelization on GPUs. Liu et al. [48,49] devel-

oped CUDA-BLASTP and reported a 10-fold speedup over NCBI BLASTP on a desktop

machine with two Tesla C1060 GPUs. CUDA-BLASTP uses a pre-filtering design similar

to the FPGA study by Mahram et al. [53], and it does not parallelize all the compute stages

of the BLASTP algorithm on the GPU. The filtering approach may suffer high overhead

when searching BLAST jobs with a large number of subject sequences similar to the query.

125

Vouzis et al. [84] introduced another implementation of BLASTP on the GPU. In their im-

plementation, databases are partitioned and processed on both the GPU and CPU, so that

the system resources can be better utilized. Their approach also parallelizes only the first

two stages on GPUs. With one CPU-helper thread, Vouzis’s GPU BLAST implementation

achieves between a three- and four-fold speedup for various query sequences.

6.2.3 Mapping BLAST on CUDA

In this section, we describe how we map the BLASTP algorithm onto the GPU.

6.2.3.1 Profiling of Serial BLASTP

We first profile the execution of BLASTP by searching two sequences (query1 and

query2) against the NCBI NR database, which contains 9,874,397 sequences with a total

size over 5 GB. The sizes of query1 and query2 are 1K and 2K, respectively. Table 6.1

shows the time consumed by the four stages for searching the two query sequences. Note

that the execution time of the first two stages cannot be separated because these two stages

are executed together (details will be described in Section 6.2.3.2). Clearly, the first three

stages, i.e., hit detection, ungapped extension, and gapped alignment consume more than

99% of the total execution time, regardless the query sequence length. Thus, our imple-

mentations focus on parallelizing the first three stages.

Table 6.1: Profiling of Serial BLASTP (Unit: Second. Note: Numbers in the bracket are
percentages of the total execution time.)

Query Hit detection + Gapped Gapped alignment
Total time

sequence ungapped extension alignment w/ traceback
Query 1 144.28 (76.09%) 44.87 (23.67%) 0.46 (0.24%) 189.61 (100.00%)
Query 2 260.05 (76.56%) 78.92 (23.23%) 0.70 (0.21%) 339.67 (100.00%)

126

6.2.3.2 Hit Detection and Ungapped Extension Parallelization

As mentioned earlier, the first two stages of BLASTP, i.e., hit detection and ungapped

extension are actually combined together. The algorithm first picks up a word from the

beginning of the subject sequence and scans it against the query sequence to find hits.

Once a hit is found, the extension is performed immediately on the hit, in both directions.

After the extension is done, the algorithm moves on to scan for the next hit in the query

sequence that matches the current word of the subject sequence so far and so on. After

the current word of the subject sequence is compared against the entire query sequence,

the algorithm moves on to the next word in the subject sequence. Since the scanning of a

subject word depends on the hit detection and extension results of previous subject words

(for more details see [8]), only limited parallelism can be exploited in aligning a pair

of sequences in the current BLASTP implementation. Consequently, we parallelize the

BLASTP algorithm by having each thread align a pair of sequences (i.e., a query sequence

and a subject sequence). In this way, multiple pairs of sequences are aligned concurrently,

as shown in Figure 6.2.

Before the kernel is launched to the GPU, query sequences, subject sequences, and

a few other data structures are transferred from the host memory to the device memory.

Each time, there is one query sequence on the device, which is shared by all threads in the

kernel. Also, the database is divided into different chunks, which are searched one after

another on the GPU card (one kernel launch per chunk). The chunk size is limited by the

global memory size as well as the size of on-chip memory (as described in Section 6.2.4.1)

on a GPU card. By searching one chunk at a time, our GPU implementation can process a

database of arbitrary size.

127

Word lookup table

Query sequence, shared by all threads

Query sequence

Subject

sequences

CPU

GPU

BlockMBlock1 Block2 Block3

Threads Threads Threads Threads

Successful ungapped extension results.

Level-1 buffer, each thread has its own section.

Gapped alignment &

Gapped alignment w/ traceback

Subject sequences

Level-2 buffer, shared by all threads.

Data to be

transferred

to the GPU

GPU

processing of

hit detection

and ungapped

extension

Storage of

ungapped

extensions

on the GPU

Gapped alignment

and gapped

alignment with

traceback

Figure 6.2: Hit Detection and Ungapped Extension Parallelization

Within a kernel launch, different threads align different subject sequences against the

query sequence. When a thread finds successful ungapped extensions, it stores them in the

global memory. Since all threads can find ungapped extensions in parallel, care must be

taken to avoid write conflicts between different threads. One design option is to have all

threads share a global memory buffer, and each thread calls an atomic operation to find a

write location for each ungapped extension. Such a design can incur high synchronization

overhead because atomic operations are expensive on some GPUs (e.g., the GTX 280).

Another design option is to maintain a fixed-size buffer for each thread to store ungapped

128

extensions.1 This design can avoid the synchronization overhead of atomic operations.

However, such a design is space-inefficient because the number of ungapped extensions

generated by each thread can differ significantly, and that number cannot be known be-

forehand.

We propose a two-level hierarchical buffer for storing the ungapped extension, as

shown in Figure 6.3. In the level-1 buffer, each thread is allocated a fixed-size seg-

ment which can store N ungapped extensions. The level-2 buffer, which can store M

(M >> N) ungapped extensions, is shared by all threads and guarded with atomic oper-

ations. The writing procedure of ungapped extensions is given by Algorithm 1. As can

be seen, a thread first writes an ungapped extension to its allocation in the level-1 buffer.

When a thread uses up its allocation in the level-1 buffer, it writes the rest of the ungapped

extensions to the level-2 buffer. Such a hierarchical buffering design can efficiently utilize

the global memory space as well as avoid unnecessary synchronization overhead.

BlockMBlock1 Block2

Threads Threads Threads

N

2

1

N

2

1

N

2

1

N

2

1

N

2

1

N

2

1

N

2

1

N

2

1

N

2

1

N

2

1

N

2

1

N

2

1

N

2

1

N

2

1

N

2

1

21 43

Level-1buffer,

each thread has

its own section.

Level-2 buffer,

shared by all

threads. MM-1

Figure 6.3: Ungapped Extension Storage in Global Memory

In the first two stages, the BLASTP algorithm also needs to maintain several global

1Note that dynamic memory allocation was not supported on NVIDIA GPUs when we were working on
this project.

129

counters, such as the number of hits detected. One way to implement a global counter is

to have each thread update a shared variable with atomic add operations. Again, to avoid

the overhead of atomic operations, we implement per-thread counters on GPU, and all the

per-thread counters will be added up together on the host side to produce the correct value

for a global counter.

Algorithm 1 Ungapped Extension Storage in Global Memory
1: shrdIndex← 0
2: privtIndex← 0
3: B ← privtBufSize
4: ..., an ungapped extension is found ...
5: if privtIndex < B then I level-1 private buffer
6: bufPtr ← privtBuf + privtIndex
7: privtIndex← privtIndex+ 1
8: else I level-2 shared buffer
9: bufPtr ← shrdBuf + atomicAdd(shrdIndex, 1)

10: end if
11: bufPtr ← unExtPtr
12: ...

6.2.3.3 Gapped Alignment Parallelization

Gapped alignment uses seeds created by the ungapped extension stage as its inputs and

creates alignments with even higher alignment scores. Typically only a small percentage

of database sequences will need to be processed with gapped alignment. As such, we

launch a separate kernel for this stage to re-map tasks to individual threads. To minimize

data transferring overhead, the gapped alignment kernel reuses the subject sequence data

stored on the GPU during the first two stages.

During the gapped alignment, the best alignment score corresponding to each subject

sequence is recorded, which will be copied to the host memory to filter out dissimilar

130

subject sequences. In addition, the status of each extension will be recorded and copied

back to the host memory for further processing in the final stage – gapped alignment with

traceback.

6.2.4 Performance Optimization

Because of its heuristic nature, the BLASTP algorithm is highly irregular with respect to

the memory access and execution path. As such, the basic algorithmic mapping described

in Section 6.2.3 does not map well onto the GPU architecture. In this section, we present

several optimization techniques to address some of the performance hurdles of accelerating

BLASTP on GPUs.

6.2.4.1 Memory Access

The BLAST search needs to access a number of different data structures. To improve

memory access efficacy, we explore different data placement strategies in the GPU mem-

ory hierarchy.

1. Constant Memory to Store the Query Sequence and Scoring Matrix: When calculat-

ing alignment scores, the BLASTP algorithm needs to frequently compute a match-

ing score between two individual letters from the query and the subject sequences,

which can be done by looking up the corresponding element in a scoring matrix.

FSA-BLAST optimizes the lookup performance by pre-computing a query profile

for each query sequence. Specifically, a query profile is a two-dimensional matrix,

where each column corresponds to one letter in the query sequence and consists of

matching scores between the query letter to all other letters. With the query profile,

131

the matching score between two letters can be obtained by first finding the column

corresponding to the letter in the query sequence and then reading the score from

the column according to the letter in the subject sequence. Using query profiles is

more efficient because it saves one memory access used to read the current letter of

a query sequence.

One common optimization technique in GPU programming is to leverage the cached

constant memory to speedup the access of frequently used data. Compared to global

memory, constant cache has about two orders of magnitude lower access latency

for cache hits, but its size is small (64KB). In the FSA-BLAST implementation,

each column (corresponding to a letter in the query sequence) in the query profile

consumes 64 bytes (32 elements with 2 bytes each). As such, the constant memory

is not sufficient to store the query profile for a query sequence larger than 1K letters.

To take advantage of the constant memory, our implementation instead puts the

scoring matrix there because it has a fixed size and is accessed by all threads. In fact,

the scoring matrix used in BLASTP consists of 32 × 32 = 1024 elements and has

a total size of only 2KB (2 bytes per element). However, the query sequence needs

to be available when using the scoring matrix. In our implementation, a 60K-byte

buffer is allocated in the constant memory for its storage. Since one byte is needed

for each letter, the maximum query sequence that can be supported is 60K letters.

By counting the sequence size in the most recent NCBI NR database, we found

that more than 99.95% of the sequences are smaller than 4K letters and the largest

sequence contains 36,805 letters, suggesting that the 60K-byte buffer is sufficient

for storing individual protein sequences in the most recent NCBI NR database.

132

2. Texture Memory to Store Subject Sequences and the Word Lookup Table: Texture

memory is another type of cached memory on the GPU but with a much larger size

than constant memory. For example, with the one-dimensional texture memory, the

number of elements that the texture memory can bind to is 227 or 128M elements. In

order to take advantage of the texture cache, which has low access latency for cache

hits, we partition the database into different chunks of 128MB each. By loading the

database chunks on the GPU one after another, our design can search database of an

arbitrary size, which is important for solving real-world BLAST search problems in

practice.

Storing database sequences in texture memory may also help exploit data locality in

alignment computation. For instance, as shown in Figure 6.4, when a hit is found,

ungapped extension will be performed in both directions. With subject sequences

stored in texture memory, some portions of the subject sequence may have been

cached, thus improving the memory access efficiency.

Sbjct(in texture memory) : XYAALGDLPLIYPFLVNDPABC...

Query(in constant memory): PDALLGPLPNIYPFIVNDPGEG...
Hit

cached cached

Figure 6.4: Texture Memory Usage for Subject Sequences

Besides subject sequences, we also store the word lookup table in the texture mem-

ory. A word lookup table stores precomputed words that can result in hits to each

word in the query profile. Again, the size of the word lookup table varies depending

on the query size, and it cannot fit into the constant memory for reasonably long

query sequences.

133

6.2.4.2 Load Balancing across Different Threads

When scheduling alignment tasks to different threads in a kernel, a straightforward im-

plementation can be statically assigning a set of sequences to each thread according to

the thread ID number. This approach is easy to implement. However, the overall kernel

execution time may suffer when there is load imbalance between different threads.

Algorithm 2 Dynamic Subject Sequence Assignment Algorithm
1: n← totalThreadNum
2: mutexIndex← n
3: seqIndex← threadID
4: while seqIndex < numSequences do
5: AlignSeq(SubSeq[seqIndex], querySeq)
6: ...
7: seqIndex← atomicAdd(mutexIndex, 1)
8: end while

To alleviate the load-imbalance issue, our implementation adopts a greedy algorithm

(as shown in Algorithm 2) that dynamically assigns sequences to different threads. Specif-

ically, the first sequence is assigned to each thread according to the thread ID. Whenever

a thread finishes its current assignment, it retrieves the next subject sequence using an

atomic operation. In addition, the database sequences will be presorted in the descend-

ing order of the sequence lengths. Assuming the BLAST search time is proportional to

the length of a subject sequence, the database sorting can alleviate the impact of load im-

balance occurred toward the end of the kernel execution. Note that this approach is only

applicable to threads in different warps, because threads within a warp always execute the

same instructions.

134

6.2.5 Performance Evaluation and Characterization

In this section, we evaluate the performance of our parallel BLASTP implementations on

the GPU. Our experiments focus on five versions of BLASTP with different optimization

techniques applied. Version 1 is the basic parallel version as described in Section 6.2.3.

Each of the other four versions is corresponding to an optimization technique discussed in

Section 6.2.4. The five versions are listed in Table 6.2.

Table 6.2: Versions of GPU BLASTP

Versions Description

Version 1 It is a straightforward mapping as described
in Section 6.2.3.

Version 2 Constant memory is used as described in
Section 6.2.4.1.

Version 3 Based on Version 2; atomicAdd is called for
load balancing as described in Section 6.2.4.2.

Version 4 Based on Version 2; texture memory is used as
described in Section 6.2.4.1.

Version 5 Based on Version 4; atomicAdd is called for
load balancing as described in Section 6.2.4.2.

Our experiments are executed on both the NVIDIA Tesla C1060 and C2050 GPU

cards. The Tesla C1060 GPU consists of 30 SMs, each containing 8 scalar processors.

On each SM, there are 16K registers and 16KB shared memory. There is 4GB of global

memory on the Tesla C1060 with an aggregate bandwidth of 102.4GB/s. The Tesla C2050

is a newer-generation GPU from NVIDIA. Compared to the Tesla C1060, the Tesla C2050

has more scalar processors (i.e., 32) per SM and larger register files (i.e., 32K registers).

The Tesla C2050 has a L1 cache for each SM and a L2 cache shared by all SMs. Both L1

cache and shared memory use the same on-chip memory, which can be configured as 16

135

KB L1 cache and 48KB shared memory or as 48KB shared memory and 16 KB L1 cache.

The L2 cache has a larger size of 768KB. There is 3GB global memory with an aggregate

memory bandwidth of 153.6GB/s on the Tesla C2050. We will refer the Tesla C1060 and

C2050 as Tesla and Fermi, respectively, hereafter.

On the host side, the system has an Intel Core 2 Duo CPU with 2.2GHz clock speed

and 4GB DDR2 SDRAM memory. The operating system is the Ubuntu 8.04 GNU/Linux

distribution. Our code is developed with the CUDA 3.1 toolkit.

According to experimental results using databases with different sizes, the speedup

achieved is quite stable regardless of the database size. Thus, we use a subset of the NCBI

NR database with one sequence selected out of every 5 sequences. In this way, we can save

a lot of time to run our experiments without hurting the correctness of our experimental

results. Also, a sequence with 1K letters is used as the query sequence.

For the BLASTP program, all default values are used for the program execution as

shown in Table 6.3. In addition, the score matrix BLOSUM62 is used. The serial CPU

version is compiled with gcc with the -O3 optimization option. We report the average of

three runs for each experiment.

Table 6.3: Default Parameter Values in BLASTP

Parameter description Value
Word size 3
Dropoff value for ungapped extension 7
Dropoff value for gapped extension 15
Dropoff value for triggering gaps 22
Dropoff value for final gapped alignment 25
Open gap penalty -7
Extension gap penalty -1

136

6.2.5.1 Evaluation of Individual Optimization Techniques

In this section, we evaluate the performance impact of the individual optimization tech-

niques described in Section 6.2.4 with respect to the execution time spent on various com-

pute stages.

1. Hit Detection + Ungapped Extension: Figure 6.5 shows the execution time of the

first two stages for the five versions as described in Table 6.2 as well as the baseline

serial CPU version. We measure the kernel execution time and total execution time

of the first two stages, where the total execution time includes data transfer time

between host memory and device memory, pre/post-processing time, and kernel ex-

ecution time.2 We also calculate the speedups of various GPU versions against the

CPU version.

Figure 6.5(a) shows the results on the Tesla card. Clearly, performance improvement

is achieved when each optimization technique is applied. Specifically, the kernel ex-

ecution time is 8.148s in Version 1, while that of Version 2 is 7.098s, which means

a performance improvement of 12.89% is achieved when the query sequence and

scoring matrix are stored in the constant memory. With the load-balancing optimiza-

tion added, i.e., Version 3, the kernel execution time is further reduced to 6.422s, a

9.51% improvement compared to Version 2. Version 4 extends Version 2 by placing

the subject sequences and the word lookup table in the texture memory, resulting

a 25.55% performance improvement. Finally, the best performance is achieved in

Version 5, where load balancing is added as compared to Version 4. For the total

2Since there is no data transfer, pre-processing, and post-processing in the serial CPU version, the kernel
execution time and the total execution time is the same for the serial CPU version.

137

 0

 5

 10

 15

 20

Serial version Version 1 Version 2 Version 3 Version 4
 0

 1

 2

 3

 4

 5
E

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

S
p

e
e

d
u

p

Time of stages 1 and 2 w/o data transfer
Time of stages 1 and 2 w/ data transfer

Speedup of stages 1 and 2 w/o data transfer
Speedup of stages 1 and 2 w/ data transfer

(a) Tesla Results

 0

 5

 10

 15

 20

Serial version Version 1 Version 2 Version 3 Version 4
 0

 1

 2

 3

 4

 5

 6

 7

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

S
p

e
e

d
u

p

(b) Fermi Results

Figure 6.5: Performance Improvement Brought by each Optimization Technique and the
Corresponding Speedup for the First Two Stages

execution time, the absolute differences between different versions are the same as

those for the kernel execution time. With each optimization technique applied, the

relative performance improvement is 12.18% (Versions 1 to 2), 24.04% (Versions 2

to 3), 9.29% (Versions 2 to 4), and 7.56% (Versions 4 to 5), respectively.

On Fermi, similar trends are observed for Versions 1, 2 and 3 as compared to the

Tesla results. However, storing the subject sequences and the word lookup table

in the texture memory has an adverse performance impact on Fermi. Specifically,

Version 4 is 20.04% slower than Version 2. This can be caused by the L1/L2 cache

138

introduced in the Fermi architecture. Nonetheless, with load balancing added, Ver-

sion 5 outperforms Version 4 by 6.80%, similar to what can be observed on Tesla.

Relative to the CPU serial version, the best GPU versions achieve speedups of 4.25

and 7.28 on Tesla and Fermi, respectively, in kernel execution time. For the total

execution time, the speedups are 3.92 and 5.69 on Tesla and Fermi, respectively.

As expected, the program performance on Fermi is better than that on Tesla. One

reason is that the first two stages of BLAST are memory-bound, and Fermi has more

global memory bandwidth than Tesla. Moreover, there are L1 and L2 caches on the

Fermi card, which can improve memory performance further.

2. Gapped Alignment: This section shows the performance improvement of the gapped

alignment stage. There are three different GPU implementations for the paralleliza-

tion of the gapped alignment, which are Versions 1, 2, and 4 as described in Ta-

ble 6.2.

As shown in Figure 6.6(a), for Tesla, performance improvement is observed with

each optimization technique applied, similar to what is observed for the first two

stages. When constant memory is used for the query sequence and the scoring ma-

trix, the performance of the gapped alignment improves by 6.87% and 6.60% for the

kernel and total execution time, respectively. Storing the subject sequences in the

texture memory helps to reduce the kernel and total execution time by 18.68% and

17.87%, respectively. Unfortunately, there is no performance improvement for the

gapped alignment on the Tesla GPU, when compared to the CPU serial implemen-

tation. One reason can be that the irregular memory access is poorly supported on

Tesla. Another reason can be the large number of divergent branches in the gapped

139

 0

 2

 4

 6

 8

 10

 12

Serial version Version 1 Version 2 Version 4
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
E

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

S
p

e
e

d
u

p

Time of gapped alignment w/o data transfer
Time of gapped alignment w/ data transfer

Speedup of gapped alignment w/o data transfer
Speedup of gapped alignment w/ data transfer

(a) Tesla Results

 0

 1

 2

 3

 4

 5

 6

 7

Serial version Version 1 Version 2 Version 4
 0

 0.6

 1.2

 1.8

 2.4

 3

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

S
p

e
e

d
u

p

(b) Fermi Results

Figure 6.6: Performance Improvement Brought by each Optimization Technique and the
Corresponding Speedup for the Gapped Alignment Stage

alignment code.

Figure 6.6(b) shows the performance results on Fermi. With constant memory used

to store the query sequence and the scoring matrix, the kernel execution time de-

creases from 2.291s (Version 1) to 1.979s (Version 2), corresponding to a 13.61%

improvement. However, if the subject sequences are stored in the texture memory,

the kernel execution time increases by 7.63% to 2.130s (Version 4). Same as the

first two stages, the reason is that global memory access is more efficient on Fermi

because of the L1/L2 cache provided. The best GPU version achieves 3.34-fold and

2.77-fold speedup for kernel and total execution time, respectively, as compared to

140

the serial version on the CPU.

On both Tesla and Fermi, the kernel execution time occupies a majority (more than

80%) of the total execution time in each stage, as shown in Table 6.4.

Table 6.4: Percentage of the Kernel Execution Time

Stage(s) Tesla Fermi
Hit detection +

92.08% 80.36%
ungapped extension
Gapped alignment 94.53% 84.15%

3. Overall Execution Time: In this experiment, we compare the overall execution time

for the following five different implementations.

• CPU serial implementation.

• Version G1: All three stages are executed on the GPU.

• Version G2: The first two stages are executed on the GPU, and the third stage is

serially executed on the CPU. There is no overlap between the CPU and GPU

processing.

• Version G3: The first two stages are executed on the GPU, and the third stage

is executed on the CPU in parallel with two threads. No overlap exists between

the CPU and GPU processing.

• Version G4: The first two stages are executed on the GPU, and the third stage

is executed on the CPU in parallel with two threads. The CPU and GPU pro-

cessing is overlapped.

Figure 6.7 shows the overall execution time of the above five implementations.

There are several observations we can make from Figure 6.7. First, if all three stages

141

are executed on the GPU, the overall performance on Fermi is much better than that

on Tesla (by 1.93 times). Second, with GPUs used for only the first two stages, on

Fermi, if no overlap is used (Versions G2 and G3), the overall performance (9.92s

and 7.00s for Versions G2 and G3, respectively) will be worse than that of Version

G1 (6.10s). On the other hand, if we overlap the computation on the CPU and the

GPU, the overall performance (4.98s) will become better than Version G1 (6.10s)

by 18.29%. Third, on Tesla, since there is almost no performance improvement by

parallelizing the gapped alignment on the GPU, the overall performance can be im-

proved by either using multiple threads to accelerate the gapped alignment on the

CPU (Version G3) or overlapping its execution on the CPU with the execution of

other stages on the GPU (Version G4). For instance, if the pthread is used for

the parallelization, we can reduce the execution time by 27.79% (from Version G2

to Version G3). Furthermore, if the CPU and GPU execution is overlapped, this

performance improvement can almost be doubled, i.e., the execution time decreases

from the 11.89s of Version G1 to 5.95s of Version G4.

 0

 5

 10

 15

 20

 25

 30

 35

Serial version Version G1 Version G2 Version G3 Version G4
 0

 1

 2

 3

 4

 5

 6

 7

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

S
p

e
e

d
u

p

Overall execution time on Tesla
Overall execution time on Fermi

Overall speedup on Tesla
Overall speedup on Fermi

Figure 6.7: Overall Execution Time

142

6.2.6 Multiple GPUs for Hit Detection and Ungapped Extension

In this section, we show the speedup brought by using multiple GPUs based on the VOCL

framework. Since VOCL is based on the OpenCL programming model, we first translate

the CUDA implementations to OpenCL, then we run the OpenCL implementations by

using up to 4 GPUs. Figure 6.8 shows the speedup of 1, 2, and 4 GPUs, where time and

speedup of the first two stages as well as that of the total execution time are shown.

 0

 50

 100

 150

 200

 250

 300

sequential version 1 GPU 2 GPUs 4 GPUs
 0

 2

 4

 6

 8

 10

 12

 14

 16

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

S
p

e
e

d
u

p

Total execution time
Hit + ungapped extension time

Total speedup
Hit + ungapped extension speedup

Figure 6.8: Execution Time and Speedup with Multiple GPUs used.

As shown in Figure 6.8, with more GPUs used, less execution time is needed to search

the same sequence database. Specifically, speedup of the first two stages is 5.13 times if

one local GPU is used. When 2 and 4 GPUs are used, speedups of the first two stages are

9.48-fold and 12.78-fold, respectively. From these results, the performance does not scale

linearly when more GPUs are used concurrently. The reason is the serialization of data

copy across different GPUs, which takes the same amount of time no matter how many

GPUs are used to search the database. The more GPUs that are used, the less percentage

of time that will be used by the kernel execution, because the data transfer will consume a

larger percentage of time.

143

As for the overall speedup, it is 3.29-fold, 4.09-fold, and 4.38-fold with 1, 2, and 4

GPUs used, respectively, which is much less than that of the first two stages. The reason is

that the third stage is executed on the CPU (parallelized with pthread using 2 threads),

which takes the same amount time no matter how many GPUs are used. With more GPUs

used to accelerate the first two stages, total execution time is dominated by the third stage

and the overall speedup does not increase very much.

6.2.7 Summary

In this work, as a complement of the existing parallel BLAST implementations in multi-

core and distributed systems, we parallelize BLAST on GPUs to accelerate its execution.

We found that there are many irregularities in both the computation and memory accesses

for the execution of BLAST on GPUs, which should be overcome as much as possible to

achieve good performance. To address the irregularities and improve performance, we pro-

pose techniques including storing query sequences and the scoring matrix in the constant

memory, using texture memory to cache subject sequences and the word lookup table, and

dynamically assigning sequences to threads to achieve good load balance. Moreover, we

overlap the first two stages on the GPU and the third stage on the CPU, which is par-

allelized with pthread, and better performance is achieved than by executing all three

stages on the GPU. Compared to the serial CPU implementation, our parallel implemen-

tation achieves more than a 5-fold speedup for overall performance if one GPU is used.

Finally, we translate the CUDA implementation to OpenCL and show the performance

improvement brought by concurrently using GPUs based on the VOCL framework. We

achieved more than a 12-fold speedup for the first two stages when using 4 GPUs to search

144

a sequence database concurrently.

6.3 Parallelization of Smith-Waterman

6.3.1 Algorithm Description

The Smith-Waterman application [73] is an optimal local sequence alignment methodol-

ogy that follows the dynamic programming (DP) paradigm, where intermediate alignment

scores are stored in a matrix. After alignment scores are calculated in the DP matrix, the

matrix entries are inspected, and the highest-scoring local alignment is generated. Thus,

the Smith-Waterman algorithm can be broadly classified into two phases: (1) matrix filling

and (2) backtracing.

To fill out the DP matrix, Smith-Waterman utilizes a scoring system that includes a

scoring matrix and a gap-penalty scheme. The scoring matrix, M , is a two-dimensional

matrix containing scores for aligning individual amino acids or nucleotide residues. The

gap-penalty scheme, on the other hand, provides the option of gaps being introduced

within the alignments to generate a better alignment score. With the scoring scheme and

the affine-gap penalty, the DP matrix is filled in a wavefront pattern, which starts from the

upper left corner of the DP matrix and moves toward the bottom right corner, as shown in

Figure 6.9. As can be seen, each element in the DP matrix depends on its north, west and

northwest neighbors, and can be expressed as Equations (6.1), (6.2), and (6.3):

145

N

W

NW

),(ji

),1(ji

)1,(ji

Figure 6.9: Wavefront Pattern and Dependency in the Matrix Filling Process.

Ni,j = max

0

Ni−1,j − e

NWi−1,j − o

(6.1)

Wi,j = max

0

Wi,j−1 − e

NWi,j−1 − o

(6.2)

NWi,j = max

0

Wi,j

Ni,j

NWi−1,j−1 + d(i, j)

(6.3)

where d(i, j) is the alignment score of individual characters i and j, Ni,j stores a score

depending only on its north neighbor,Wi,j stores a score depending only on its west neigh-

bor, and NWi,j stores the maximum score of element (i, j). In the affine-gap penalty, the

open-gap penalty o is usually larger than the extension-gap penalty e, which is to introduce

as fewer gaps as possible for the alignment.

146

From Figure 6.9, elements on the same anti-diagonal can be calculated in parallel; but

their calculation depends on elements of its previous anti-diagonals and barrier synchro-

nization is needed across the computation of different anti-diagonals.

The backtracing phase of the algorithm is essentially a sequential operation that gen-

erates the highest scoring local alignment. In this work, we mainly focus on accelerating

the matrix filling because it consumes more than 99% of the execution time and it is the

object to be parallelized.

6.3.2 Related Work

The Smith-Waterman algorithm has previously been implemented on the GPU by using

graphics primitives [50,51], and more recently, using CUDA [54,57,75]. Though the most

recent CUDA implementations of Smith-Waterman [54,57,70] report speedups as high as

30-fold, they all suffer from a myriad of limitations. First, each of their approaches only

follows a coarse-grained, embarrassingly parallel approach that assigns a single problem

instance to each thread on the device, thereby sharing the available GPU resources among

multiple concurrent problem instances. This approach severely restricts the maximum

problem size that can be solved by the GPU to sequences of length 2048 letters or less.

In contrast, we propose and implement a fine-grained parallelization of Smith-Waterman

by distributing the task of processing a single problem instance across all the threads on

the GPU, thereby supporting realistic problem size, as large as 8K letters in lengths on the

GTX 280. The above limitation is due to the physical size of global memory on the GPU.

147

Though the global memory can support the alignment of large sequences, the coarse-

grained parallel approach forces the global memory to be shared amongst multiple in-

stances of Smith-Waterman whereas our fine-grained parallel approach leaves the entire

global memory resource available to a single instance of Smith-Waterman, allowing larger

sequences to be processed. Striemer et al. [75] primarily use shared memory and constant

cache for the coarse-grained Smith-Waterman parallelism on the GPU. Thus, their imple-

mentation is limited to query sequences of length 1024 or less because of the limited shared

memory and cache size. Furthermore, all previous implementations only compute the op-

timal alignment score, as it is the data-parallel portion of Smith-Waterman, and ignore the

actual generation of the sequence alignment. In contrast, we provide a complete solution,

i.e., compute the optimal alignment score and output the actual sequence alignment.

6.3.3 Analysis of Smith-Waterman Execution on the GPU

In this work, we parallelize Smith-Waterman with a fine-grained parallel approach to sup-

port the alignment of large sequences, which can cover nearly all sequences within the

NIH’s GenBank. This approach utilizes the parallelism that exists across elements on the

same anti-diagonal. As shown in Figure 6.9, each element depends on its north, west, and

northwest neighbors, which are in its immediate previous two anti-diagonals. Thus, there

is no data dependency across elements on the same anti-diagonal and these elements can be

calculated in parallel. However, data dependency exists between different anti-diagonals,

so computation of each anti-diagonal should be performed after its previous anti-diagonals

are completed.

The GPU has a multi-level memory hierarchy, in which global memory has a large size,

148

but its access latency is high. In our fine-grained parallel approach, the DP matrix is stored

in global memory due to the O (n2) (n is the size of the sequences to be aligned.) space

requirement and the support of large sequence alignment. When the DP matrix is filled,

according to Equations (6.1)–(6.3), three alignment scores (N (i, j) , NW (i, j) ,W (i, j))

are calculated for each element (i, j). To calculate these three scores, four scores, Ni−1,j ,

NWi−1,j , Wi,j−1, and NWi,j−1 are loaded from its immediate previous anti-diagonal and

one score Vi−1,j−1 is loaded from the next previous anti-diagonal, which are 20 bytes in

total. Also, three scores are stored with 12 bytes. Finally, to get the individual letter

score d (i, j), two letters (one byte for each) are loaded from the input sequences and the

corresponding score is read from the individual score matrix (4 bytes). Thus, there are

38 bytes of memory access for the computation of each element. As for the arithmetic

operations, according to Equations (6.1)–(6.3), there are 12 operations in total. On a Tesla

C2050 GPU card, the instruction issue rate is 515.2 Giga instructions per second (Ginst/s),

and the global memory bandwidth is 153.6 GB/s. Thus, as a rule of thumb, a kernel will

likely be memory-bound if the ratio of instructions-to-bytes loaded from global memory

is smaller than 515.2/153.6 = 3.4. Otherwise, it is computation-bound. As mentioned

above, 38 bytes are accessed and 12 arithmetic operations are executed for the calculation

of each element. Thus, the ratio of arithmetic instructions-to-bytes is 12/38 = 0.315,

which is much less than the threshold. By disassembling the kernel with an internal tool

from NVIDIA, there are 106 instructions for the calculation of each element. So, with all

instructions considered, the ratio of instructions-to-bytes is 2.78. It is still less than the

threshold 3.4 and the matrix filling is memory-bound as a result.

In the following, we will mainly focus on improving the efficacy of memory access

149

to accelerate the matrix filling. On the other hand, since different anti-diagonals should

be filled sequentially and data communication is required across different threads, barrier

synchronization is needed after the computation of each anti-diagonal. Currently, barrier

synchronization is implemented via multiple kernel launches, which are expensive oper-

ations and synchronization using multiple kernel launches can occupy up to 50% of the

total matrix filling time as shown in Table 4.1. This problem becomes even more serious

when remote GPUs are used as shown in Figure 3.16(c). To reduce the synchronization

overhead, we integrate the GPU synchronization approaches into the parallel implemen-

tation on the GPU to reduce the time of switching back and forth between the host and

the device. Finally, we move the trace back to the GPU to reduce the data transfer time

from device memory to host memory. In the following, each of the above optimizations is

described in detail.

6.3.4 Techniques for Efficient Memory Access and Data Copy

In this section, techniques to improve memory access and to reduce data copy time be-

tween host memory and device memory are described. Efficient memory access includes

access to the DP matrices, input sequences, and the scoring matrix. Specifically, we im-

prove the efficacy of the DP matrix access via coalesced memory access. As for the input

sequences and the scoring matrix, we store them in the constant memory to take the ad-

vantage of constant cache. When the matrix filling is parallelized on the GPU, data copy

from host memory to device memory is needed. For the trace back, the amount of data

that is transferred from device memory to host memory depends on where the trace back

is executed (host or device). In the following, each optimization is described in detail.

150

6.3.4.1 Efficient DP Matrix Access

DP matrices are stored in the global memory in our fine-grained parallel implementations.

From the CUDA programming guide [63], coalesced memory access is an important ap-

proach to improve the efficiency of global memory access. For example, on a Tesla C2050,

if threads within a warp access a memory segment that is aligned to its size (e.g., we use

the float data type in the DP matrix, then each memory segment is of 128 bytes, and the

first address should be a multiple of 128.) [63], data transfer for threads within the warp

can be combined into one data transaction, which can significantly improve the data access

performance considering the large bandwidth and high access latency of global memory.

For the DP matrices, we first store them in the same way as that in the host memory, i.e.,

row-major data format. Then, we re-align the matrix layout to make elements of the same

anti-diagonal stored in adjacent locations. In other words, the DP matrices are stored in a

diagonal-major data format. Next, based on the diagonal-major data format, some buffers

are padded at the end of each anti-diagonal (if necessary) to make all global memory stores

coalesced. Finally, we use the shared memory to cache the DP matrices based on a tiling

approach.

1. Direct Parallelization of Smith-Waterman on a GPU: One direct way to parallelize

the matrix filling is to move the DP matrices from host memory to device memory,

and then launch one kernel for each anti-diagonal from the top left to bottom right.

In this way, elements on the same anti-diagonal are calculated in parallel, and dif-

ferent kernels are computed sequentially. In this implementation, the DP matrices

are stored in the same way as that in the host memory, i.e., a row-major data format

as shown in Figure 6.10(a). To load balance on each SM, computation of elements

151

(a) Mapping of Threads

(Ti) to Matrix Elements

(b) Computational load

for each kernel

K1 K3K2

T2

T1

T1 T3

T2

T1

T4

T3

T2

T1

T5

T4

T3

T2

T1

T6

T5

T4

T3

T2

T1

K6K5K4 K7

K8 K1

K4
K3
K2

K6
K5

K7
K8

Figure 6.10: Naı̈ve (Direct) Mapping of the DP Matrix and Computational Load Imposed
on Successive Kernels.

on each anti-diagonal is distributed uniformly across all the threads in a kernel. To

simplify our work, every kernel contains a one-dimensional grid of blocks, in which

threads are organized in one dimension, too, as in Figure 6.10(b). Note that this

implementation is referred to as the naı̈ve implementation, hereafter.

This approach is straightforward and easy to implement. However, as shown in

Figure 6.10(a), since each element on an anti-diagonal is in a different memory

segment if the sequence size is larger than 32 bytes,3 all global memory accesses are

uncoalesced. Thus, the performance of the naı̈ve implementation is expected to be

poor since matrix filling on the GPU is memory-bound. To improve the DP matrix

access efficacy, we propose the techniques of matrix layout re-alignment, coalesced

matrix access, and tiling matrix access via shared memory, which are described in

the following three subsections, respectively.

2. Matrix Layout Re-Alignment: In the naı̈ve implementation, access to the DP matri-

ces is totally uncoalesced. One approach to improve the access efficiency is making
3For sequences containing more 32 letters, each row in Figure 6.10(a) has more than 33 floats (i.e., 132

bytes), then elements on the same anti-diagonal are in different memory segments.

152

elements on the same anti-diagonal into the fewest memory segments as possible.

This can be achieved by storing the DP matrices in a diagonal-major data format, as

shown in Figure 6.11. As can be seen, the row-major data format in Figure 6.11(a) is

transformed to the diagonal-major data layout, as in Figure 6.11(b), where elements

on the same anti-diagonal are stored in the same “row” in adjacent locations. With

the diagonal-major data format, elements that are calculated by threads in a warp

are in at most two memory segments. Thus, fewer data transactions are needed for

filling the same DP matrix, which is verified later via the CUDA profiler [61]. This

implementation is called the simple implementation.

T1 T2 T3 T4

T1 T2

T1

T1

T2

T3

T1

T4

T3

T2

T1

T2

T3

T1

T1

T3T2T1

T1

T4T3T2T1

T3T2T1

T2

T2 T3 T4

K1

K4

K3

K2

K6

K5

K7

K8

T5

T4

T5

T4

(a) (c)(b)

Figure 6.11: Matrix Re-Alignment and Computational Load Imposed on Successive Ker-
nels.

With the diagonal-major data format, the DP matrix is filled in the same way as

the naı̈ve implementation. In other words, each kernel launch is responsible for

elements on one anti-diagonal (i.e., one “row” in Figure 6.11(b)). Barriers across

different anti-diagonals are implemented via different kernel launches. Similarly,

every kernel contains a one-dimensional grid of blocks, and threads in a block are

organized in one dimension as shown in Figure 6.11(c).

153

3. Coalesced Matrix Access: Compared to the row-major format, matrix access is

much more efficient with the diagonal-major format because elements accessed by

threads in a warp are in adjacent locations. However, it is possible that elements

accessed by threads in a warp are still in different memory segments. The eighth

anti-diagonal in a DP matrix (assume the matrix has more than eight anti-diagonals)

is such an example, as shown in Figure 6.12. In our implementations, we use the

float type to store alignment scores, and the memory segment size is 128 bytes,

i.e., 32 elements. For the eighth anti-diagonal, index of the first element is 28, and

there are 8 elements on this anti-diagonal, so elements with index less than 32 are in

a different memory segment from the others.

Segment 1

Segment 2

1

2

3

4

5

6

7

8 28 32

0

1 2

31

Figure 6.12: An Example that Threads in a Wrap Access Two Memory Segments.

To remove such cases mentioned above, we propose the coalesced matrix access

approach (referred to as coalesced implementation later), which is implemented by

adding buffers at the end of each anti-diagonal (if necessary). Specifically, we store

the DP matrices with the diagonal-major format and make the starting address of

each anti-diagonal 128-byte aligned by adding padding, as shown in Figure 6.13.

154

(This figure shows a 16-byte aligned case because of the figure size limit. A 128-byte

aligned case can be done in the same way, except more padding is needed.) In this

way, all data stores are coalesced. Unfortunately, because of the skewed dependence

between the elements across adjacent anti-diagonals, as shown in Figure 6.13, loads

from the global memory cannot be totally coalesced.

As can be seen in Figure 6.13, a larger memory space is needed to store the same

DP matrix in the coalesced implementation. Consider a DP matrix with the same

number of rows and columns n, since the number of elements on each anti-diagonal

should be the multiple of 32, the number of padding elements is 16 per anti-diagonal

on average. So the relative increase of the DP matrix size is

16 (2n− 1)

n2
(6.4)

From Equation (6.4), the larger the input sequences are, the less the relative increase

will be. For example, for input sequences of 1K letters, the DP matrix size is in-

creased by only 3.2%. Thus, the coalesced implementation does not cause very

much overhead in global memory usage.

To demonstrate the benefits of each of the proposed techniques, we run the CUDA

profiler and show the number of data transactions for filling the DP matrices of the

three implementations in Figure 6.14, where 7K-letter sequences are used as the

inputs. From Figure 6.14, the number of data transactions of the simple implemen-

tation is greatly decreased compared to the naı̈ve implementation; while the decrease

from the simple implementation to the coalesced implementation is negligible. This

is because most of the global memory accesses in the simple implementation are

already coalesced, leaving little room for additional improvement.

155

T1

T1

T3T2T1

T1

T4T3T2T1

T3T2T1

T2

T2 T3 T4

K1

K4

K3

K2

K6

K5

K7

K8

T5

T4

Mapping of Threads (Ti)

to Matrix Elements

Computational load for

each kernel

Padded data for coalesced

memory access
Padded data

Figure 6.13: Incorporating Coalesced Data Representation of Successive Anti-Diagonals
in Memory.

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

N
u

m
b

er
 o

f
d

at
a

tr
an

sa
ct

io
n

s

Naïve Implementation

Simple Implementation

Coalesced Implementation

Memory load Memory store

Figure 6.14: Number of Data Transactions to Global Memory.

4. Tiling Matrix Access via Shared Memory: In the previous subsections, we propose

techniques for efficient global memory access. Here we apply the tiled-wavefront

design pattern, which was used to efficiently map Smith-Waterman to the IBM

Cell/BE [5], to the GPU architecture. This approach amortizes the cost of kernel

launches by grouping the matrix elements into computationally independent tiles.

In addition, shared memory is used as a bridge to improve the performance of global

memory access by avoiding uncoalesced memory access.

Our tile-scheduling scheme assigns a thread block to compute a tile, and a grid of

156

blocks (kernel) is mapped to process a single tile-diagonal, thus decreasing the num-

ber of inter-block barriers needed to fill the DP matrix. CPU implicit synchroniza-

tion via new kernel launches or our proposed GPU synchronization serve as barriers

to threads from the previous tile-diagonal. Consecutive tile-diagonals are computed

one after another from the top left corner to the bottom right corner of the matrix in

the design pattern of a tiled wavefront, as shown in Figure 6.15.

Mapping of Thread Blocks (Bi) to the
Tiles within the Matrix

Figure 6.15: Tiled Wavefront.

The elements within a tile are computed by a thread block by following the simple

wavefront pattern, starting from the top left element of the tile. The threads within

each block are synchronized after computing every anti-diagonal by explicitly call-

ing CUDA’s local synchronization function syncthreads().

Each thread block computes its allocated tiles within shared memory. The processed

157

tile is then transferred back to the designated location in global memory. This mem-

ory transfer will be coalesced because we handcraft the allocation of each tile to

follow the rules for coalesced memory accesses.

6.3.4.2 Efficient Access to Scoring Matrix and Input Sequences

Constant memory is used to improve the efficacy of scoring matrix and input sequence

accesses. There are three reasons for doing this. First, compared to the DP matrices,

the scoring matrix and input sequences are much smaller in size. In our implementation,

the maximum sequence size that can be supported on a Tesla C2050 is 13K letters and

the largest space for input sequences is 26K bytes (one byte per letter). On the other

hand, the scoring matrix has a fixed size. It contains 23 × 23 = 529 elements for the

total size 2116 bytes. Thus less than 30KB are needed for the scoring matrix and input

sequences in total, which is far less than the size of constant memory. Second, both the

input sequences and the scoring matrix are read-only and accessed by all the threads in the

kernel, which matches well with what the constant memory is designed for. Third, with

some data accessed from the constant memory, requirements of global memory bandwidth

can be reduced.

6.3.4.3 GPU Synchronization

Efficient global memory accesses can accelerate the computation, but it cannot accelerate

the synchronization on the GPU. While the tiled-wavefront technique reduces the number

of kernel launches, it explicitly and implicitly serializes the computation both within and

across tiles, respectively. One solution to this problem is the GPU synchronization strategy

proposed in Chapter 4. GPU synchronization can efficiently synchronize the execution

158

across thread blocks. In this way, we avoid both the large number of kernel launches and

the serialization in the tiled wavefront.

6.3.4.4 Trace Back: Via CPU or GPU?

In Sections 6.3.4.1 and 6.3.4.2, techniques for efficient access to DP matrices, the scoring

matrix, and input sequences are presented. These techniques can accelerate the matrix

filling phase. However, as described in Section 6.3.1, Smith-Waterman includes another

phase—trace back. Trace back itself is serial and cannot be parallelized in a fine-grained

parallel approach as the matrix filling. Thus, the execution time for trace back on the

GPU is longer than on the CPU. For trace back, its execution needs two flag matrices (for

affine-gap penalty) generated in the matrix filling phase. If the trace back is executed on

the CPU, the two flag matrices should be copied back, then the total time for the trace back

is the sum of time for transferring the matrices and executing the trace back on the CPU,

which can be expressed as

Tbc = tm + tc (6.5)

where Tbc is the total time to do trace back on the CPU, tm is the data transfer time for the

two flag matrices, and tc is the time needed to execute the trace back on the CPU side. On

the other hand, if we execute trace back on the GPU and then copy the alignments back to

the host memory, the total time needed for the trace back is

Tbg = tg + to (6.6)

where Tbg is the total time to perform trace back on the GPU, tg is the time to run the trace

back on the GPU, and to is the time to copy the alignments from device memory to host

memory.

159

Comparing the above two approaches, if the trace back is executed on the CPU, the

execution time is less than that on the GPU, but the two flag matrices need to be copied

from device memory to host memory. On the other hand, if trace back is executed on the

GPU, the trace back itself may need more time to execute, but the data to be copied from

device memory to host memory is much less, thus reducing data transfer time. Hence, it is

possible to save some time in total if we run the trace back on the GPU, and this is verified

in our experiments later.

6.3.5 Performance Evaluation

In this section, we evaluate the performance of our fine-grained parallel implementations.

Specifically, the following three aspects are evaluated: (1) the performance improvement

corresponding to each optimization technique in Section 6.3.4 for the fine-grained parallel

implementations, where execution time and speedup with regard to the CPU sequential

implementation are measured; (2) the kernel and total speedup achieved for different se-

quence sizes; (3) demonstrating the benefits brought by the GPU synchronization, in both

the local and remote GPU scenarios.

In this chapter, the CUDA version 3.2 is used as the programming interface to various

GPU cards (Tesla C2050 and Tesla C1060). Our host machine is configured with two

Magny-Cours AMD CPUs (Each has eight cores.). In addition, there is 32GB host memory

equipped on the node. The host machine is installed with the 64-bit CentOS 5.5 Linux

distribution. The CUDA toolkit-3.2 is used for executing all the programs. For the results

presented here, we choose sequence pairs of size 7K and report their alignment results. In

this work, each result is the average of three runs. For the CPU sequential implementation,

160

it is compiled with the -O3 optimization option.

6.3.5.1 Performance Improvement Corresponding to each Optimization Technique

In this section, we present the performance improvement corresponding to each optimiza-

tion technique. The optimization techniques include three aspects as explained in Sec-

tion 6.3.4: 1) efficient DP matrix access, which includes four implementations—naı̈ve

implementation, tiled implementation, simple implementation, and coalesced implemen-

tation; 2) efficient accesses to input sequences and scoring matrix; and 3) trace back on

the GPU to save data transfer time from device memory to host memory. In addition,

performance of the CPU sequential implementation is presented in the figure as the base-

line. Thus, we have seven versions in total, as shown in Figure 6.16, where Figure 6.16(a)

shows the results on the Tesla C1060 (referred to as Tesla later) and Figure 6.16(b) is for

the Tesla C2050, i.e. Fermi.

From Figure 6.16, we can observe four trends. First, the naı̈ve implementation has

comparable performance to the CPU sequential implementation. Specifically, for the se-

quential implementation, the matrix filling time is 1403.1 ms. On Tesla, the naı̈ve imple-

mentation needs 2998.2ms, which is about 2 times slower. On Fermi, this time is 876.6

ms, about 2 times faster than the sequential implementation.

Second, with each optimization applied, some performance improvement is obtained.

For instance, on Tesla, with the matrix re-alignment technique, the matrix filling time

decreases to 242.7 ms, which is 6 times faster than the CPU sequential implementation.

With the coalesced matrix access technique, the matrix filling time further decreases to

235.8 ms. Finally, with the input sequences and scoring matrix stored in the constant

memory, the matrix filling time is reduced to 193.0 ms, more than 7 times faster than

161

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1) 2) 3) 4) 5) 6) 7)
 0
 1
 2
 3
 4
 5
 6
 7
 8

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

S
p
e
e
d
u
p

Versions

Kernel execution time
Total execution time

Kernel speedup
Total speedup

(a) Tesla C1060 (Tesla)

 0

 400

 800

 1200

 1600

 2000

1) 2) 3) 4) 5) 6) 7)
 0
 2
 4
 6
 8
 10
 12
 14
 16

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

S
p
e
e
d
u
p

Versions

(b) Tesla C2050 (Fermi)

Figure 6.16: Performance Improvement for Matrix Filling Corresponding to each Opti-
mization Technique. (Note: The above versions are described as: (1) Serial implemen-
tation (2) Tiled implementation (3) Naı̈ve implementation (4) Simple implementation (5)
Coalesced implementation (6) Coalesced implementation + constant memory (7) Coa-
lesced implementation + constant memory + trace back on the GPU.)

the CPU sequential implementation. On Fermi, the similar performance improvement is

observed except the usage of the constant memory. With the constant memory used on

Fermi, matrix filling time increases slightly from 96.9 ms to 102.3 ms. This is due to the

L1/L2 caches on Fermi, which can accelerate the access to the input sequences and make

the sequence access even faster than that in the constant memory.

Third, the tiled implementation is the second slowest across all GPU implementations.

This is true on both the Tesla and the Fermi. With the tiled approach, the matrix filling

time is 438.5 ms and 193.6 ms on Tesla and Fermi, respectively, which is about 2-fold

162

slower than the simple implementation, respectively.

Fourth, as for the trace back, we show the data transfer time and the execution time of

trace back in Table 6.5. From Table 6.5, the trace back itself is much faster on the host

than on the device. It takes about 0.58 ms on the CPU, while this time is 13.90 ms and

10.65 ms on Tesla and Fermi, respectively. However, the overall time is different if data

copy time is considered. With trace back executed on the CPU, two DP matrices need

to be transferred from device memory to host memory. If the trace back is executed on

the GPU, only two output sequences are copied back to the host memory. As such, with

trace back executed on the CPU, data copy time is 121.23 ms and 126.16 ms on Tesla and

Fermi, respectively. On the other hand, the data copy time is only 0.09 ms and 0.13 ms on

Tesla and Fermi, respectively, with trace back executed on the device. Overall, executing

trace back on the GPU takes less time than on the CPU and better overall performance can

be achieved.

Table 6.5: Comparison of Total Time Needed by Trace Back (Unit: ms)

GPU type Tesla C1060 (Tesla) Tesla C2050 (Fermi)
Trace back on CPU GPU CPU GPU
Data copy time 121.23 0.09 126.16 0.13
Trace back time 0.58 13.90 0.59 10.65

Total time 121.81 13.99 126.75 10.78

Using the implementations with the best performance, Figure 6.17 shows the ker-

nel speedup and total speedup with regard to different sequence sizes. As above, Fig-

ure 6.17(a) is the result on Tesla and Figure 6.17(b) is for Fermi.

First, as can be seen, higher speedup can be achieved for larger sequences. For 1K-

letter sequences, the speedup for the matrix filling is 1.18-fold on Tesla and 1.97-fold on

Fermi; while this number is 7.27-fold and 14.49-fold on Tesla and Fermi, respectively,

163

 0

 300

 600

 900

 1200

 1500

1K 2K 3K 4K 5K 6K 7K
 0
 1
 2
 3
 4
 5
 6
 7
 8

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

S
p
e
e
d
u
p

Sequence size

GPU kernel execution time
GPU total execution time

Sequential matrix filling time
sequential total time

Kernel speedup
Total speedup

(a) Tesla C1060 (Tesla)

 0

 300

 600

 900

 1200

 1500

1K 2K 3K 4K 5K 6K 7K
 0
 2
 4
 6
 8
 10
 12
 14
 16

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

S
p
e
e
d
u
p

Sequence size

(b) Tesla C2050 (Fermi)

Figure 6.17: Execution Time and Speedup with regard to Different Sequence Sizes for the
Best Version. (On Tesla, it is the version with coalesced matrix access + constant memory
with trace back on GPU. On Fermi, the version is the coalesced matrix access without
constant memory and trace back is performed on GPU.)

for 7K-letter sequences. One of the reasons is that GPU resources are underutilized for

small sequences. Second, overall speedup is less than the matrix filling speedup. The

reason is that data need to be copied between host memory and device memory in the GPU

implementations, but there is no such data copy in the CPU sequential implementation.

Third, higher speedup is achieved on Fermi than on Tesla. This is due to the higher device

memory bandwidth on Fermi. As described in Chapter 2, global memory bandwidth is

102.4GB/s on Tesla and it is 153.6GB/s on Fermi. Since matrix filling is memory bound,

the higher the bandwidth is, the faster the DP matrix can be filled.

164

6.3.5.2 Performance Improvement Brought by GPU Synchronization in the Use of

Remote GPUs

Data communication is needed across different blocks in our fine-grained parallel imple-

mentations. On the GPU, inter-block data communication occurs via the global memory

and barrier synchronization is needed. Currently, barrier synchronization is achieved by

multiple kernel launches, which can cause significant overhead that becomes even larger

with the use of remote GPUs, as shown in Figure 3.16(c).

Using our OpenCL version of GPU synchronization strategies proposed in Section 4.8,

we evaluate the benefits of the GPU synchronization. Our evaluation includes two aspects:

1) performance improvement brought by the GPU synchronization and 2) overhead caused

by the use of remote GPUs based on the VOCL framework with the GPU synchronization.

Experiments are performed on the Tesla C2050, i.e., Fermi GPU card.

Figure 6.18 shows the decrease in matrix filling time with our GPU synchronization

applied. Figure 6.18(a) shows the local GPU case while Figure 6.18(b) shows the remote

GPU case. As we can see, GPU synchronization significantly reduces the matrix filling

time in both the local and the remote GPU cases. In the local GPU scenario, matrix

filling time decreases by 66.4% when GPU lock-based synchronization is used. A similar

decrease of the matrix filling time is observed with the GPU lock-free synchronization.

For the remote GPU case, even more performance improvement is observed with the GPU

synchronization. Specifically, the matrix filling time decreases by more than 85%, as

shown in Figure 6.18(b).

Figure 6.19 shows the overhead involved in using remote GPUs with the GPU syn-

chronization strategies. Figure 6.19(a) shows the overhead when using GPU lock-based

165

 0

 50

 100

 150

 200

 250

 300

 350

1K 2K 3K 4K 5K 6K 7K
0 %

20 %

40 %

60 %

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

P
e
rf

o
rm

a
n
c
e
 i
m

p
ro

v
e
m

e
n
t

Sequence size

Execution time (CPU sync)
Execution time (GPU lock-based sync)

Execution time (GPU lock-free sync)
Performance improvements (GPU lock-based sync)
Performance improvements (GPU lock-based sync)

(a) Local GPU

 0

 200

 400

 600

 800

 1000

1K 2K 3K 4K 5K 6K 7K
0 %

20 %

40 %

60 %

80 %

100 %

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

P
e

rf
o

rm
a

n
c
e

 i
m

p
ro

v
e

m
e

n
t

Sequence size

(b) Remote GPU

Figure 6.18: Performance Improvement Brought by GPU Synchronization

synchronization, and Figure 6.19(b) shows it when using GPU lock-free synchronization.

Compared to the large overhead with the CPU synchronization when using the remote

GPU, as shown in Figure 3.16(c), significantly less overhead is introduced when using

GPU synchronization. Specifically, for the 1K-letter sequences, the relative overhead

is 17.6% and 27.3% for the lock-based and lock-free synchronization, respectively. As

for the 7K-letter sequences, the overhead is less than 2% for both GPU synchronization

approaches. When using GPU synchronization, the overhead decreases with larger se-

quences because the larger number of messages transferred for multiple kernel launches

with CPU synchronization is eliminated. In addition, because the kernel execution time of

166

 0

 20

 40

 60

 80

 100

 120

 140

1K 2K 3K 4K 5K 6K 7K
0 %

5 %

10 %

15 %
P

ro
g
ra

m
 e

x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

O
v
e
rh

e
a
d
 o

f
u
s
in

g
 r

e
m

o
te

 G
P

U
s

Input sequence size

Native OpenCL, local GPU
VOCL, remote GPU

Overhead of using remote GPUs

(a) GPU Lock-Based Synchronization

 0

 20

 40

 60

 80

 100

 120

1K 2K 3K 4K 5K 6K 7K
0 %

5 %

10 %

15 %

20 %

25 %

30 %

P
ro

g
ra

m
 e

x
e

c
u

ti
o

n
 t
im

e
 (

m
s
)

O
v
e

rh
e

a
d

 o
f

u
s
in

g
 r

e
m

o
te

 G
P

U
s

Input sequence size

(b) GPU Lock-Free Synchronization

Figure 6.19: Overhead in the Utilization of Remote GPUs

Smith-Waterman occupies more than 80% of the total matrix filling time, the overhead in

utilizing remote GPUs is quite small when using GPU synchronization.

6.3.5.3 Time Spent in Inter-Block Data Communication

Figure 6.20 shows the kernel execution times and the percentage of time spent in inter-

block data communication with different synchronization approaches for different se-

quence sizes. Note that the synchronization time is obtained using an indirect approach.

Specifically, we measured the computation time by running an implementation using the

GPU synchronization but without the barrier function called, and then we calculate the

167

synchronization time as the difference between the kernel execution time and the compu-

tation time. Figure 6.20(a) is for the Tesla,4 and Figure 6.20(b) shows the results on the

Fermi.

 0

 30

 60

 90

 120

 150

 180

 210

1K 2K 3K 4K 5K 6K 7K
0 %

15 %

30 %

45 %

60 %

75 %

K
e
rn

e
l
e
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

P
e
rc

e
n
t
o
f
s
y
n
c
 t
im

e

Sequence size

Kernel execution time w/ CPU sync
Percent of CPU sync time

(a) Tesla C1060 (Tesla)

 0

 20

 40

 60

 80

 100

 120

 140

 160

1K 2K 3K 4K 5K 6K 7K
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

K
e

rn
e
l
e
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

P
e

rc
e

n
t

o
f

s
y
n
c
 t

im
e

Sequence size

Kernel execution time w/ CPU sync
Kernel execution time w/ GPU lock-free sync

Kernel execution time w/ GPU lock-based sync
Percentage of CPU sync time

Percentage of GPU lock-free sync time
Percentage of GPU lock-based sync time

(b) Tesla C2050 (Fermi)

Figure 6.20: Percentage of Time Spent in Inter-Block Data Communication

From Figure 6.20, we have the following observations. First, when the CPU synchro-

nization is used, time spent in inter-block data communication occupies a large percentage

of the kernel execution time. Specifically, on Tesla, time for inter-block data communi-

cation is more than 50% for all the sequence sizes. This percentage is a little smaller on

4We did not show the results of the GPU synchronization on Tesla since guaranteeing the correctness
of inter-block data communication using the memory fence function makes performance with the GPU
synchronization worse than that with the CPU synchronization.

168

Fermi, but it is still about 30%. Second, the GPU synchronization significantly reduces the

time for inter-block data communication. As we can see, the percentage of time spent in

inter-block data communication reduces to about 15% and 5% with the GPU lock-based

and lock-free synchronization, respectively, on Fermi. From the above results, we can see

that the GPU synchronization can effectively improve the performance of inter-block data

communication on Fermi.

6.3.6 Summary

In this chapter, we explained the parallelization of Smith-Waterman onto GPUs. We pro-

posed a fine-grained parallel approach, which effectively covers the alignment of all the

protein sequences in the NCBI GenBank. To improve its performance, we proposed sev-

eral optimization techniques to improve the performance of memory access. With the

parallel implementations, we showed the performance improvement brought by each op-

timization technique and compared its performance to that of the CPU sequential imple-

mentation. Finally, we used the Smith-Waterman algorithm as a case study to demonstrate

the benefits of our proposed GPU synchronization strategies in the use of local GPUs and

of remote GPUs via the VOCL framework. From our experimental results, using a tradi-

tional CPU synchronization approach in Smith-Waterman introduces significant overhead

because a large number of small MPI messages need to be transferred to support multiple

kernel launches.

Using our GPU synchronization eliminates the multiple kernel launches and, in turn,

eliminates the large number of small MPI messages. As a result, the overhead that is

introduced is quite small and decreases further for the alignment of larger sequences.

169

Chapter 7

Conclusions and Future Work

7.1 Conclusion

This dissertation proposes the VOCL (Virtual OpenCL) framework to generalize the util-

ity of GPUs in large-scale heterogeneous computing systems. This framework, based on

the OpenCL programming model, exposes physical GPUs as decoupled virtual resources

that can be transparently managed, independent of the application execution. The pro-

posed framework requires no source code modification for applications to take advan-

tage of remote GPUs. In other words, all GPUs installed in a system can be used in the

same way no matter whether they are local or remote. For local GPUs, VOCL internally

calls the native OpenCL functions for GPU computing. As for remote GPUs, VOCL

translates OpenCL function calls to MPI data communication between the local node and

the remote node, thus introducing additional overhead as compared to local GPU usage.

To reduce the overhead, we propose optimization techniques, including kernel argument

caching and data transfer pipelining. With the optimizations, we achieve about 85% of

170

the data write bandwidth and 90% of the data read bandwidth when compared to writ-

ing and reading in a native nonvirtualized environment, respectively. We evaluate the

performance of VOCL using four real-world applications (matrix multiplication, matrix

transpose, Smith-Waterman, and n-body) with various computation and memory access

intensities and demonstrate that compute-intensive applications can execute with negligi-

ble overhead in the VOCL environment even when remote GPUs are used.

The VOCL framework enables applications to transparently utilize remote GPUs. How-

ever, if an application program needs data communication across different work-groups

during its execution and launches multiple kernels for the data communication, large syn-

chronization overhead is introduced, particularly in the scenario of remote GPU utiliza-

tion. This is due to the large number of small messages transferred for the multiple kernel

launches. To reduce the overhead caused by multiple kernel launches, we propose two

GPU synchronization strategies, which can synchronize the program execution by using

our proposed barrier function gpu sync() on the GPU instead of terminating the ker-

nel’s execution and re-launching the kernel from the CPU. As a result, the large number of

small messages are removed, and overhead can be reduced. With GPU synchronization,

the overhead involved in the use of a remote GPU decreases from about 150% to about

15% for the Smith-Waterman algorithm. Note that the GPU synchronization strategy can

reduce the overhead in using a remote GPU, but it is an application-level optimization and

application programs need to be optimized accordingly.

Finally, we extend the VOCL framework to support the live migration of virtual GPUs

across physical GPUs. With the migration capabilities supported, the load across physical

GPUs can be balanced, and system maintenance can be performed without waiting for

171

completion of all computation on a node.

7.2 Future Work

The current VOCL framework generalizes the GPU usage. However, VOCL just provides

the basic functionalities for virtualization—viewing all GPUs in a system in the same way

and supporting live migration of virtual GPUs across remote GPUs. Obviously, it can be

extended and enhanced in the following aspects:

1. Load metrics on physical GPUs. Currently, we use the number of function calls that

are issued but not finished as the metric. This does not consider the properties of

different kernels and the problem size. Future work would entail alternative metrics

to measure the load on each physical GPU.

2. Further generalization of the migration of virtual GPUs. The current VOCL frame-

work only supports migration of virtual GPUs across remote physical GPUs. Next

step would be to extend the VOCL framework to support migration across all the

GPUs (both the local and remote) in a system.

3. Redundant computation. Previous generations of GPUs provide no protection against

software errors that may be caused by cosmic radiation [71]. Thus, it is possible that

computing results are incorrect in practice. Though the latest Fermi architecture

provides error-correcting code (ECC) memory, it is sometimes not used in order to

achieve better performance. As such, one extension to the VOCL framework is to

perform redundant computation. With redundant computation, each VOCL VGPU

can be mapped to multiple OpenCL VGPUs. When an OpenCL function is called,

172

VOCL sends the function to multiple physical GPUs simultaneously and waits for

results from the multiple GPUs. Then it chooses the result with values from the

majority of the physical GPUs.

4. Performance modeling and task scheduling. With the VOCL framework, multiple

programs can be executed in a flexible way. One problem is the efficient utilization

of computational resources. To this end, it is necessary that a performance model is

used to model the overall efficiency of the computational resources. Based on the

performance model, we can design various task scheduling strategies to achieve the

overall best performance.

5. Super-GPU in a system. Our VOCL framework can support the utility of all GPUs

in a system, but programmers still need to specify which GPU a program is assigned

to. For programmers without a good knowledge of the overall system configuration

and resource usage, it is hard for them to choose appropriate GPUs for their program

execution. As such, one way to extend the VOCL framework is to combine all GPUs

together to form one super-GPU in the whole system, and then programmers do not

need to choose the GPU for their program execution, which can further reduce the

programming effort to use GPUs to accelerate their programs.

173

Bibliography

[1] MPICH2: High-performance and Widely Portable MPI. http://www.mcs.
anl.gov/research/projects/mpich2/index.php.

[2] Open MPI: Open Source High Performance Computing. http://www.
open-mpi.org/.

[3] OpenCL and the ATI Stream SDK v2.0. http://
developer.amd.com/documentation/articles/pages/
opencl-and-the-ati-stream-v2.0-beta.aspx.

[4] Top500 Supercomputing Sites. http://www.top500.org/.

[5] A. M. Aji, W. Feng, F. Blagojevic, and D. S. Nikolopoulos. Cell-SWat: Modeling
and Scheduling Wavefront Computations on the Cell Broadband Engine. In Proc. of
the ACM International Conference on Computing Frontiers, May 2008.

[6] J. Alemany and E. W. Felten. Performance Issues in Non-Blocking Synchronization
on Shared-Memory Multiprocessors. In Proc. of the 11th ACM Symp. on Principles
of Distributed Computing, August 1992.

[7] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic Local
Alignment Search Tool. J Mol Biol, 215(3):403–410, October 1990.

[8] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J.
Lipman. Gapped BLAST and PSI–BLAST: A New Generation of Protein Database
Search Programs. Nucleic Acids Res., 25:3389–3402, 1997.

[9] AMD/ATI. Stream Computing User Guide. April 2009. http://developer.
amd.com/gpu_assets/Stream_Computing_User_Guide.pdf.

[10] W. D. Andrew, A. Chang, A. Chien, S. Fiske, W. Horwat, J. Keen, R. Lethin,
M. Noakes, P. Nuth, E. Spertus, D. Wallach, and D. S. Wills. Retrospective: the
J-Machine. In Proc. of the 25th International Symposium on Computer Architecture,
1998.

174

[11] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. id Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A View of Cloud Computing.
In Communications of the ACM, April 2010.

[12] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and R. Thakur. Toward Efficient
Support for Multithreaded MPI Communication. In Proc. of the 15th EuroPVM/MPI,
September 2008.

[13] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and R. Thakur. Fine-Grained Multi-
threading Support for Hybrid Threaded MPI Programming. International Journal of
High Performance Computing Applications (IJHPCA), 24(1):49–57, 2009.

[14] A. Barak and A. Shiloh. The MOSIX Cluster Operating System for High-
Performance Computing on Linux Clusters, Multi-Clusters, GPU Clusters and
Clouds, 2011. A white paper.

[15] A. Barak and A. Shiloh. The MOSIX Virtual OpenCL (VCL) Cluster Platform. In
Proc. of the Intel European Research and Innovation Conference, October 2011.

[16] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauery,
I. Pratt, and A. Wareld. Xen and the Art of Virtualization. In Proc. of Proceedings of
the ACM Symposium on Operating Systems Principles, December 2003.

[17] G. Barnes. A Method for Implementing Lock-Free Shared-Data Structures. In Proc.
of the 5th ACM Symp. on Parallel Algorithms and Architectures, June 1993.

[18] R. Bjornson, A. Sherman, S. Weston, N. Willard, and J. Wing. TurboBLAST : A
Parallel Implementation of Blast Built on the Turbohub. In Proc. of the Parallel and
Distributed Processing Symposium, April 2002.

[19] M. Cameron, H. E. Williams, and A. Cannane. Improved Gapped Alignment in
BLAST. In IEEE/ACM Transactions on Computational Biology and Bioinformatics,
volume 1, pages 116–129, July 2004.

[20] D. Cederman and P. Tsigas. On Dynamic Load Balancing on Graphics Processors. In
Proc. of the 23rd ACM SIGGRAPHEUROGRAPHICS Symp. on Graphics Hardware,
pages 57–64, June 2008.

[21] T. Chen, R. Raghavan, J. Dale, and E. Iwata. Cell Broadband Engine Architecture
and its First Implementation. IBM developerWorks, Nov 2005.

[22] W. J. Dally, L. Chao, A. Chien, S. Hassoun, W. Horwat, J. Kaplan, P. Song, B. Totty,
and S. Wills. Architecture of a Message-Driven Processor. In Proc. of the 14th
Annual International Symposium on Computer Architecture, 1987.

175

[23] W. J. Dally, F. Labonte, A. Das, P. Hanrahan, J. Ahn, J. Gummaraju, M. Erez,
N. Jayasena, I. Buck, T. J. Knight, and U. J. Kapasi. Merrimac: Supercomputing
with Streams. In Proc. of the ACM/IEEE conference on Supercomputing, November
2003.

[24] A. Danaliszy, G. Mariny, C. McCurdyy, J. S. Meredithy, P. C. Rothy, K. Spaffordy,
V. Tipparajuy, and J. S. Vetter. The Scalable HeterOgeneous Computing (SHOC)
Benchmark Suite, March 2010. http://ft.ornl.gov/doku/shoc/start.

[25] A. E. Darling, L. Carey, and W. Feng. The Design, Implementation, and Evaluation
of mpiBLAST. In Proc. the 4th International Conference on Linux Clusters, June
2003.

[26] G. Dozsa, S. Kumar, P. Balaji, D. Buntinas, D. Goodell, W. Gropp, J. Ratterman, and
R. Thakur. Enabling Concurrent Multithreaded MPI Communication on Multicore
Petascale Systems. In Proc. of the 15th EuroMPI, September 2010.

[27] J. Duato, F. D. Igual, R. Mayo, A. J. Pena, E. S. Quintana-Orti, and F. Silla. An
Efficient Implementation of GPU Virtualization in High Performance Clusters. In
Lecture Notes in Computer Science, volume 6043, pages 385–394, 2010.

[28] J. Duato, A. J. Pena, F. Silla, R. Mayo, and E. S. Quintana-Orti. Performance of
CUDA Virtualized Remote GPUs in High Performance Clusters. In Proceedings of
the International Conference on Parallel Processing (ICPP), September 2011.

[29] W. Feng and S. Xiao. To GPU Synchronize or Not GPU Synchronize? In Proc. of
the IEEE International Symposium on Circuits and Systems, May 2010.

[30] D. Goodell, P. Balaji, D. Buntinas, G. Dozsa, W. Gropp, S. Kumar, B. R. de Supinski,
and R. Thakur. Minimizing MPI Resource Contention in Multithreaded Multicore
Environments. In Proc. of the IEEE International Conference on Cluster Computing,
September 2010.

[31] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha. GPUTeraSort: High Perfor-
mance Graphics Co-processor Sorting for Large Database Management. In Proc. of
the 2006 ACM SIGMOD International Conference on Management of Data, 2006.

[32] N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli. High Per-
formance Discrete Fourier Transforms on Graphics Processors. In Proc. of Super-
computing’2008, pages 1–12, October 2008.

[33] A. Greβ and G. Zachmann. GPU-ABiSort: Optimal Parallel Sorting on Stream Ar-
chitectures. In IPDPS, April 2006.

176

[34] C. Gregg and K. Hazelwood. Where is the Data? Why You Cannot Debate CPU vs.
GPU Performance Without the Answer. In Proc. of the IEEE International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS), April 2011.

[35] R. Gupta and C. R. Hill. A Scalable Implementation of Barrier Synchronization
Using an Adaptive Combining Tree. International Journal of Parallel Programming,
18(3):161–180, 1989.

[36] H. Takizawa, K. Sato, K. Komatsu, and H. Kobayashi. CheCL: Transparent Check-
pointing and Process Migration of OpenCL Applications. In Proc. of IPDPS, May
2011.

[37] P. H. Hargrove and J. C. Duell1. Berkeley Lab Checkpoint/Restart (BLCR) for Linux
Clusters. In Proc. of SciDAC, June 2006.

[38] E. Herruzo, G. Ruiz, J. I. Benavides, and O. Plata. A New Parallel Sorting Algo-
rithm based on Odd-Even Mergesort. In Proc. of the 15th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing, pages 18–22,
2007.

[39] A. Jacob, J. Lancaster, J. Buhler, B. Harris, and R. D. Chamberlain. Mercury
BLASTP: Accelerating Protein Sequence Alignment. In ACM Transactions on Re-
configurable Technology and Systems, volume 1, June 2008.

[40] I. Jung, J. Hyun, J. Lee, and J. Ma. Two-Phase Barrier: A Synchronization Primitive
for Improving the Processor Utilization. International Journal of Parallel Program-
ming, 29(6):607–627, 2001.

[41] G. J. Katz and J. T. Kider. All-Pairs Shortest-Paths for Large Graphs on the GPU. In
Proc. of the 23rd ACM SIGGRAPHEUROGRAPHICS Symp. on Graphics Hardware,
pages 47–55, June 2008.

[42] Khronos OpenCL Working Group. The OpenCL Specification (Version 1.1), June
2010. http://www.khronos.org/registry/cl/specs/opencl-1.
1.pdf.

[43] V. Lakshmi. High Performance Computing for Hydrological Sciences. http://
www.cuahsi.org/his/docs/hpc-writeup.pdf.

[44] D. Lavenier. G.: Seed-based Genomic Sequence Comparison Using a FPGA/FLASH
Accelerator. In Proc. of the IEEE Conference on Field Programmable Technology,
2006.

177

[45] H. Lin, P. Balaji, R. Poole, C. Sosa, X. Ma, and W. Feng. Massively Parallel Genomic
Sequence Search on the Blue Gene/P Architecture. In International Conference for
High Performance Computing, Networking, Storage and Analysis, 2008.

[46] H. Lin, X. Ma, P. Chandramohan, A. Geist, and N. Samatova. Efficient data access
for parallel BLAST. In Proceedings of the 19th IEEE International Parallel and
Distributed Processing Symposium, 2005.

[47] H. Lin, X. Ma, W. Feng, and N. F. Samatova. Coordinating computation and i/o in
massively parallel sequence search. IEEE Transactions on Parallel and Distributed
Systems, 99, 2010.

[48] W. Liu. CUDA-BLASTP on Tesla GPUs. January 2010. http://www.nvidia.
com/object/blastp_on_tesla.html.

[49] W. Liu, B. Schmidt, and W. Mueller-Wittig. CUDA-BLASTP: Accelerating
BLASTP on CUDA-Enabled Graphics Hardware. IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics, 2011.

[50] W. Liu, B. Schmidt, G. Voss, A. Schroder, and W. Muller-Wittig. Bio-Sequence
Database Scanning on a GPU. IPDPS, April 2006.

[51] Y. Liu, W. Huang, J. Johnson, and S. Vaidya. GPU Accelerated Smith-Waterman.
In Proc. of the 2006 International Conference on Computational Science, Lectures
Notes in Computer Science Vol. 3994, pages 188–195, June 2006.

[52] B. D. Lubachevsky. Synchronization Barrier and Related Tools for Shared Memory
Parallel Programming. International Journal of Parallel Programming, 19(3):225–
250, 1990. 10.1007/BF01407956.

[53] A. Mahram and M. C. Herbordt. Fast and Accurate NCBI BLASTP: Acceleration
with Multiphase FPGA-Based Prefiltering. In Proc. of the 24th ACM International
Conference on Supercomputing, June 2010.

[54] S. A. Manavski and G. Valle. CUDA Compatible GPU Cards as Efficient Hardware
Accelerators for Smith-Waterman Sequence Alignment. BMC Bioinformatics, 2008.

[55] G. Martinez, M. Gardner, and W. Feng. CU2CL: A CUDA-to-OpenCL Translator for
Multi- and Many-core Architectures. In Proc. of 17th IEEE International Conference
on Parallel and Distributed Systems (ICPADS), November 2011.

[56] Message Passing Interface Forum. The Message Passing Interface (MPI) Standard.
http://www.mcs.anl.gov/research/projects/mpi/.

178

[57] Y. Munekawa, F. Ino, and K. Hagihara. Design and Implementation of the Smith-
Waterman Algorithm on the CUDA-Compatible GPU. In Proc. of the 8th IEEE In-
ternational Conference on BioInformatics and BioEngineering, pages 1–6, October
2008.

[58] K. Muriki, K. D. Underwood, and R. Sass. RC-BLAST: Towards a Portable, Cost-
effective Open Source Hardware Implementation. In Proc. of the 19th IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), April 2005.

[59] NCSA. Blue Waters — Sustained Petascale Computing, 2012. http://www.
ncsa.illinois.edu/BlueWaters/.

[60] Network-Based Computing Laboratory. MVAPICH2 (MPI-2 over OpenFabrics-
IB, OpenFabrics-iWARP, PSM, uDAPL and TCP/IP). http://mvapich.cse.
ohio-state.edu/overview/mvapich2.

[61] NVIDIA. CUDA Compute Visual Profiler, June 2010. http://developer.
download.nvidia.com/compute/cuda/3_1/toolkit/docs/
VisualProfiler/computeprof.html.

[62] NVIDIA. CUDA Occupancy Calculator, June 2010. http://developer.
download.nvidia.com/compute/cuda/3_1/sdk/docs/CUDA_
Occupancy_calculator.xls.

[63] NVIDIA. NVIDIA CUDA Programming Guide-3.1, June 2010. http:
//developer.download.nvidia.com/compute/cuda/3_1/
toolkit/docs/NVIDIA_CUDA_C_ProgrammingGuide_3.1.pdf.

[64] NVIDIA. High Performance Computing - Supercomputing with Tesla
GPUs. 2011. http://www.nvidia.com/object/tesla_computing_
solutions.html.

[65] L. Nyland, M. Harris, and J. Prins. Fast N-Body Simulation with CUDA. GPU
Gems, 3:677–695, 2007.

[66] C. Oehmen and J. Nieplocha. ScalaBLAST: A Scalable Implementation of BLAST
for High-Performance Data-Intensive Bioinformatics Analysis. IEEE Trans. Parallel
Distrib. Syst., 17(8), 2006.

[67] X. Ouyang, S. Marcarelli, R. Rajachandrasekar, and D. K. Panda. RDMA-Based
Job Migration Framework for MPI over InfiniBand. In Proc. of IEEE International
Conference on Cluster Computing, September 2010.

179

[68] D. W. Roeh, V. V. Kindratenko, and R. J. Brunner. Accelerating Cosmological Data
Analysis with Graphics Processors. In Proceedings of the Workshop on General
Purpose Processing on Graphics Processing Units, 2009.

[69] R. Ross, R. Latham, W. Gropp, R. Thakur, and B. Toonen. Implementing MPI-IO
Atomic Mode Without File System Support. In IEEE International Symposium on
Cluster Computing and the Grid, May 2005.

[70] E. F. O. Sandes and A. C. M. de Melo. CUDAlign: Using GPU to Accelerate the
Comparison of Megabase Genomic Sequences. In Proc. of PPoPP, January 2010.

[71] G. Shi, J. Enos, M. Showerman, and V. Kindratenko. On Testing GPU Memory
for Hard and Soft Errors. In Proc. of The first annual Symposium on Application
Accelerators in High-Performance Computing (SAAHPC’09), 2009.

[72] L. Shi, H. Chen, and J. Sun. vCUDA: GPU Accelerated High Performance Comput-
ing in Virtual Machines. IEEE Transactions on Computers, 99, 2011.

[73] T. Smith and M. Waterman. Identification of Common Molecular Subsequences. In
Journal of Molecular Biology, April 1981.

[74] E. Sotiriades and A. Dollas. A General Reconfigurable Architecture for the BLAST
Algorithm. In Journal of VLSI Signal Processing, 2007.

[75] G. M. Striemer and A. Akoglu. Sequence Alignment with GPU: Performance and
Design Challenges. In IPDPS, May 2009.

[76] J. A. Stuart and J. D. Owens. Message Passing on Data-Parallel Architectures. In
IPDPS, May 2009.

[77] H. Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in
Software. In Dr. Dobb’s Journal, February 2005.

[78] Synergy Lab @ Virginia Tech. http://synergy.cs.vt.edu.

[79] H. Takizawa, K. Sato, K. Komatsu, and H. Kobayashi. CheCUDA: A Check-
point/Restart Tool for CUDA Applications. In Proc. of International Conference
on Parallel and Distributed Computing, Applications and Technologies, December
2009.

[80] G. Tan, L. Li, S. Triechle, E. Phillips, Y. Bao, and N. Sun. Fast Implementation of
DGEMM on Fermi GPU. In Proc. of Supercomputing, November 2011.

180

[81] N. Vasudevan and P. Venkatesh. Design and Implementation of a Process Migration
System for the Linux Environment. In Atlas conference abstracts, March 2006.

[82] V. Volkov and J. Demmel. Benchmarking GPUs to Tune Dense Linear Algebra. In
Proc. of Supercomputing, November 2008.

[83] V. Volkov and B. Kazian. Fitting FFT onto the G80 Architecture. pages 25–
29, April 2006. http://www.cs.berkeley.edu/˜kubitron/courses/
cs258-S08/projects/reports/project6-report.pdf.

[84] P. D. Vouzis and N. V. Sahinidis. GPU-BLAST: Using Graphics Processors to Ac-
celerate Protein Sequence Alignment. In Bioinformatics, pages 182–188, 2011.

[85] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott. Proactive Process-Level Live
Migration in HPC Environments. In Proc. of ACM/IEEE conference on Supercom-
puting, June 2006.

[86] F. Xia, Y. Dou, and J. Xu. Families of FPGA-Based Accelerators for BLAST Al-
gorithm with Multi-seeds Detection and Parallel Extension. In Communications in
Computer and Information Science, volume 13, 2008.

[87] S. Xiao, A. Aji, and W. Feng. On the Robust Mapping of Dynamic Programming
onto a Graphics Processing Unit. In Proc. of the 15th ICPADS, December 2009.

[88] S. Xiao and W. Feng. Inter-Block GPU Communication via Fast Barrier Synchro-
nization. In Proc. of the 24th IPDPS, April 2010.

[89] S. Xiao, H. Lin, and W. Feng. Accelerating Protein Sequence Search in a Heteroge-
neous Computing System. In Proc. of the 25th IPDPS, May 2011.

181

Vita

Shucai Xiao received his B.S. degree in Electronics and Information Technologies in 2001

from Beijing University of Posts and Telecommunications, and he received his M.S. de-

gree in Electronics Engineering in 2004 from Tsinghua University, Beijing, China. He

is currently a Ph.D. student in the Bradley Department of Electrical and Computer Engi-

neering at Virginia Tech, under the supervision of Prof. Wu-chun Feng. Shucai’s research

interests include generalizing the utility of GPUs as accelerators for general purpose com-

putation in large-scale heterogeneous computing systems, which includes facilitating GPU

utilization as well as achieving good performance on them. Shucai’s publication list can

be found here.

Conference Proceedings

1. Palden Lama, Yan Li, Ashwin M. Aji, Pavan Balaji, James Dinan, Shucai Xiao,

Yunquan Zhang, Wu-chun Feng, Rajeev Thakur, and Xiaobo Zhou, pVOCL: Power-

Aware Dynamic Placement and Migration in Virtualized GPU Environments, In

Proceedings of the 33rd IEEE International Conference on Distributed Computing

Systems (ICDCS), July, 2013

2. Shucai Xiao and Wu-chun Feng, Generalizing the Utility of GPUs in Large-Scale

182

Heterogeneous Computing Systems, In the Ph.D. Forum at the 26th IEEE Interna-

tional Parallel and Distributed Processing Symposium (IPDPS Ph.D. Forum), May,

2012

3. Shucai Xiao, Pavan Balaji, James Dinan, Qian Zhu, Rajeev Thakur, Susan Coghlan,

Heshan Lin, Gaojin Wen, Jue Hong, and Wu-chun Feng, Transparent Accelerator

Migration in a Virtualized GPU Environment, In Proceedings of the 12th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (CCGrid), May,

2012

4. Shucai Xiao, Pavan Balaji, Qian Zhu, Rajeev Thakur, Susan Coghlan, Heshan Lin,

Gaojin Wen, Jue Hong, and Wu-chun Feng, VOCL: An Optimized Environment for

Transparent Virtualization of Graphics Processing Units, In Proceedings of the 1st

Innovative Parallel Computing (InPar), May, 2012

5. Shucai Xiao, Heshan Lin, and Wu-chun Feng, Acceleration of Protein Sequence

Search in a Heterogeneous Computing System, In Proceedings of the 25th IEEE

International Parallel and Distributed Processing Symposium (IPDPS), May, 2011

6. Wu-chun Feng and Shucai Xiao, To GPU Synchronize or Not GPU Synchronize?, In

Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS),

May, 2010

7. Shucai Xiao and Wu-chun Feng, Inter-Block GPU Communication via Fast Bar-

rier Synchronization, In Proceedings of the 24th IEEE International Parallel and

Distributed Processing Symposium (IPDPS), April, 2010

183

8. Shucai Xiao, Ashwin M. Aji, and Wu-chun Feng, On the Robust Mapping of Dy-

namic Programming onto a Graphics Processing Unit, In Proceedings of the 15th

International Conference of Parallel and Distributed Systems (ICPADS), December,

2009

9. Shucai Xiao, Jung-Min Park, and Yanzhu Ye, Tamper Resistance for Software De-

fined Radio Software, In proceedings of the 33rd Annual IEEE International Com-

puter Software and Applications Conference (COMPSAC), July, 2009

10. Song Huang, Shucai Xiao, and Wu-chun Feng, On the Energy Efficiency of Graph-

ics Processing Units for Scientific Computing, In Proceedings of the 5th IEEE Work-

shop on High-Performance, Power-Aware Computing (HPPAC), May, 2009

Journals

1. Shucai Xiao, Zhijian Ou, and Zuoying Wang, A Speaker Clustering Algorithm in

Speech Recognition, Journal of Chinese Information Processing (In Chinese), P84–

P87, July, 2005

2. Shucai Xiao and Zuoying Wang, A New log Energy Feature in Endpoint Detection,

Audio Engineering (In Chinese), P37–P40, June, 2004

184

