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Abstract—Graphics processing units (GPUs) have been widely
used as accelerators in large-scale heterogeneous computing
systems. However, current programming models can only support
the utilization of local GPUs. When using non-local GPUs,
programmers need to explicitly call API functions for data
communication across computing nodes. As such, programming
GPUs in large-scale computing systems is more challenging than
local GPUs since local and remote GPUs have to be dealt with
separately. In this work, we propose a virtual OpenCL (VOCL)
framework to support the transparent virtualization of GPUs.
This framework, based on the OpenCL programming model,
exposes physical GPUs as decoupled virtual resources that can be
transparently managed independent of the application execution.
To reduce the virtualization overhead, we optimize the GPU
memory accesses and kernel launches. We also extend the VOCL
framework to support live task migration across physical GPUs
to achieve load balance and/or quick system maintenance. Our
experiment results indicate that VOCL can greatly simplify
the task of programming cluster-based GPUs at a reasonable
virtualization cost.
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I. INTRODUCTION

Today, the growth rate of computational power required for
some scientific computations has been outstripping that of the
computational capabilities of traditional processors. On the
other hand, gains in computational horsepower by increasing
the clock speed have hit a wall in the mid-2000s due to
the fabrication process and power/leakage constraints. As a
consequence, parallelism must be relied upon in order to
improve computational performance. At the hardware level,
performance improvements have been driven by increasing
the number of cores per processor, which is true for both
traditional x86 multicore processors and many-core GPU
processors. These multi- and many-core processors in turn
have been aggregated into compute nodes, which are then
aggregated into cluster supercomputers.

Originally designed solely for graphics processing, GPUs
have evolved into programmable processors for general-
purpose computation. With parallel programming models such
as CUDA [10] and OpenCL [7]), programming GPUs has
become easier than ever. Many applications have now been
parallelized on GPUs, and significant performance improve-
ments have been reported [11].

However, current GPU programming models only support
the utilization of GPUs installed locally. When a program
needs to use GPUs that are not locally installed, API functions
such as TCP sockets and Message Passing Interface (MPI) [8]
should be called explicitly to handle data communication

across machines. Because of this limitation, application paral-
lelization in large-scale heterogeneous systems is much more
challenging than that on a single node. Moreover, GPUs
continue to make in-roads as an accelerator in supercomputers.
In a recent Top500 list [1], three of the top five fastest
supercomputers in the world used GPUs as accelerators. In
light of this trend, we expect the need for transparent GPU
virtualization, i.e., using all GPUs in the same way as if they
were installed locally, to become increasingly important.

In this dissertation, we investigate generalizing the utility
of GPUs in large-scale heterogeneous systems. We propose
a virtual OpenCL (VOCL) environment for the transparent
virtualization of GPUs. VOCL provides the OpenCL-1.1 API
but with the primary difference that it allows an application
to view all GPUs available in the system (including remote
GPUs) as local virtual GPUs. VOCL internally uses the MPI
for data management associated with remote GPUs and utilizes
several techniques, including kernel argument coalescing and
data transfer pipelining, to improve performance. In addition,
we extend VOCL to support live virtual GPU migration for
quick system maintenance and load rebalance across GPUs.
Overall, VOCL provides the usability and reliability of GPUs
and maximizes system flexibility and utility to a wide range
of users.

II. RELATED WORK

There have been many studies available for the GPU vir-
tualization and task migration. Athalye et al. implemented a
preliminary version of GPU-Aware MPI (GAMPI) for GPU-
based clusters [2]. It is a C library with an interface similar to
MPI, allowing application developers to visualize an MPI-style
consistent view of all GPUs within a system. Duato et al. [5]
presented a GPU virtualization middleware that makes remote
GPUs available to all compute nodes in a cluster. However,
both solutions require using GPUs in a different way and thus
are nontransparent. Barak et al. [4] proposed a framework that
implements the same functionality as our VOCL framework.
However, it has limitations in two aspects: 1) an API proxy
is needed on each local node for resource management. 2)
They did not consider data transfer between host memory
and device memory. Both aspects can cause large overhead
to program executio. In contrast, VOCL has no such an API
proxy and optimizes the data transfer to achieve high data
transfer bandwidth.

For task migration, Takizawa et al. [6] showed the feasibility
of migrating a GPU program from one node to another. This
work is similar to ours. However, in their work, an API



proxy is first added to store the image file, which makes
OpenCL function calls become a two-phase procedure even
for local GPUs. Second, when migration is triggered, the
process needs to be terminated and restarted; thus, it is not
live migration. Third, the process image is stored on disk,
which can put a heavy burden on the storage subsystem. In
contrast, VOCL provides an approach for transparent, live
task migration. In summary, our proposed VOCL framework
provides a unique and interesting enhancement to the state-of-
art in GPU virtualization.

III. VIRTUAL OPENCL FRAMEWORK

VOCL is a re-implementation of the OpenCL programming
model. It enables programmers to utilize both local and remote
GPUs through GPU virtualization. For local GPUs, VOCL
internally calls native OpenCL functions. When the target
GPU is non-local, OpenCL function calls are forwarded to
the machine where the physical GPU is located.

The VOCL framework consists of the VOCL library and
a proxy created on each remote node as shown in Figure 1.
The VOCL library exposes the OpenCL API to applications
and is responsible for sending information about OpenCL
calls to the VOCL proxy using MPI, and returning the proxy
responses to the application. The proxy is responsible for
handling messages from the VOCL library, executing the
actual functionality on physical GPUs, and sending results
back to the VOCL library.

To differentiate OpenCL handles on different machines,
VOCL provides another level of abstraction. Specifically,
VOCL translates each OpenCL handle created on a proxy
to a VOCL handle with a unique value, even the OpenCL
handles share the same value. Also, VOCL stores the data
communication information within the VOCL object. In this
way, VOCL is able to differentiate OpenCL handles with the
same value and send them to the correct proxy. More details
about the VOCL framework are described in our previous
work [14].
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Fig. 1. VOCL enables an application to utilize multiple, distributed GPUs.

IV. VOCL OPTIMIZATION

Since VOCL internally calls native OpenCL functions for
local GPUs, overhead caused by VOCL is mainly related to
the utilization of remote GPUs. In this section, we explain
our optimizations on reducing the overhead of using remote
GPUs.

In a typical OpenCL program, functions for OpenCL object
creation and release occupy a very small percentage of the
total execution time. Overhead of these functions in the usage

of remote GPUs is very small, too. As a result, VOCL
optimizations are mainly for kernel execution related func-
tions (e.g., GPU memory read/write, kernel argument setting),
which can cause large overhead to program execution in some
applications.

We propose the approach kernel argument coalescing to
reduce the overhead of setting kernel arguments. The ba-
sic idea is to combine the message transfers for multiple
clSetKernelArg() calls. Instead of sending one message
for each call of clSetKernelArg(), we send kernel ar-
guments to the remote node only once per kernel launch,
irrespective of how many arguments the kernel has. Specif-
ically, when clSetKernelArg() is called, VOCL library
just caches the arguments locally at the VOCL library. Then
in the kernel launch, the VOCL library sends the arguments
to the proxy, which performs two steps on being notified of a
kernel launch: (1) it receives the argument message and sets
the individual kernel arguments, and (2) it launches the kernel.

When remote GPUs are used, data transfer between host
memory and device memory includes two stages — between
local host memory and remote host memory and between
remote host memory and remote GPU memory. In a naı̈ve
implementation, these two stages are serialized, which can
seriously restrict the data transfer bandwidth. In order to im-
prove the bandwidth, we design a data pipelining mechanism.
Specifically, we overlap the first stage transfer of one data
chunk with the second stage of another. Also, we segment
large data chunks into multiple data blocks, whose transfer
can also be pipelined across each other. Figure 2 shows such
a scenario for the GPU memory write. As we can see, data
transfer of the two stages can be overlapped if multiple data
blocks are transferred consecutively.

GPU memory read can be optimized in the same way.
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Fig. 2. Nonblocking write to the GPU memory

V. VOCL EXTENSION

In this section, we present the extension of VOCL to support
transparent, live task migration across physical GPUs [13].
Migration in VOCL is based on the virtual GPU, which rep-
resents the GPU resources utilized by an application on each
physical GPU. Virtual GPUs exist in both the proxy and the
VOCL library with a one-to-one mapping relationship. That
is, for each virtual GPU in a proxy, there is a corresponding
virtual GPU in the VOCL library. A virtual GPU in the proxy
contains OpenCL resources and is referred to as OpenCL
VGPU. Similarly, a virtual GPU in the VOCL library contains
VOCL resources, which is referred to as VOCL VGPU;

Migration is achieved by transparently moving the OpenCL
VGPU state between physical GPUs and remapping the
VOCL-to-OpenCL VGPUs. When a migration is initiated, as



shown in Figure 3, the OpenCL VGPU is migrated from the
source proxy to the destination proxy. In the VOCL library, the
corresponding VOCL VGPU must also be mapped from the
source OpenCL VGPU to the destination OpenCL VGPU. As
a result, GPU computation on the source physical GPU will
be performed on the destination physical GPU after migration.

Local node

VOCL VGPU

OpenCL VGPU

Source proxy

OpenCL VGPU

Destination proxy

Before 

migration

After 

migration
migration

Fig. 3. Migration scenario

VI. PRELIMINARY RESULTS

In this section, we evaluate the efficiency of the proposed
VOCL framework via a few micro-benchmarks and appli-
cation kernels. The evaluation includes four aspects: First,
performance improvements corresponding to the optimization
strategies; Second, overhead of program execution in the
utilization of remote GPUs; Third, speedup achieved by using
multiple virtual GPUs; Fourth, performance improvements
brought by the task migration when load imbalance exists in
the system.

We use computing nodes connected with QDR InfiniBand
for our experiments. On each node, there are two Magny-cours
AMD CPUs and two NVIDIA Tesla M2070 GPU cards. The
nodes are installed with the Centos Linux operating system
and the CUDA 3.2 toolkit. We use the MVAPICH2 [9] MPI
implementation that can support the InfiniBand. Each of our
experiments was conducted three times and the average is
reported.

A. Performance Improvements from VOCL Optimizations
In this section, we show the performance improvements

brought by our optimization strategies in the VOCL.
Table I presents the kernel execution times of Smith-

Waterman [12] for aligning a pair of 6K-letter sequences in
three scenarios — native OpenCL on a local GPU and VOCL
on a remote GPU with and without the kernel argument coa-
lescing optimization. As we can see, without the optimization,
clSetKernelArg() has very large overhead of 416.12 ms.
The reason is that the function is called more than 86,000
times in the program execution (the kernel is called 12,228
times and 7 arguments are set per call.). With the optimization,
time of clSetKernelArg() is reduced to 4.03 ms. Though
a slightly higher overhead for the kernel execution (increase
from 1344.01 ms to 1316.92 ms) is observed, which is due to
the additional kernel argument message passed to the proxy
within this call, the total kernel execution time decreases from
1737.37 ms to 1348.04 ms, or by 22.41%.

As to the data transfer pipelining, Figure 4 shows the data
transfer bandwidth in different scenarios. As we can see, 1)
the pipelining mechanism almost doubles the data transfer
bandwidth compared to that without pipelining. 2) As the
message size increases, the bandwidth increases for the native
OpenCL as well as VOCL. With the pipelining optimization,
VOCL-remote saturates at a bandwidth of around 20-25%

lesser than that of native OpenCL. Overall, VOCL achieves
about 80% of the bandwidth for GPU memory write in a native
nonvirtualized environment. Similar results are observed for
the GPU memory read.
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Fig. 4. Data transfer bandwidth of GPU memory write

B. Evaluation with Application Kernels

In this section, we evaluate the efficiency of the VOCL
framework using four application kernels — matrix multipli-
cation (MM), n-body (NB), matrix transpose (MT) and Smith-
Waterman (SW). Figure 5 shows the performance and the
overhead of the application kernels. As we can see, overhead
is caused in the utilization of remote GPUs and depends
on the computation and data movement properties of each
application. For compute-intensive algorithms, the overhead
of VOCL is very small; 2.65% for matrix multiplication and
less than 1% for n-body. This is because their execution
time is dominated by the kernel execution. For algorithms
requiring more data movement between host memory and
device memory, the overhead of VOCL is higher. For matrix
transpose, it is about 21.48%, which is expected because it
spends a large fraction of its execution time in data movement.
For Smith-Waterman, the overhead is much higher and close
to 160%. There are two reasons for that. First, the MPI used
in the VOCL proxy has to be initialized to support multiple
threads. It is well known in the MPI literature that multi-
threaded MPI implementations can cause significant overhead
for the transfer of small messages [3]. Second, as explained
in Section VI-A, Smith-Waterman relies on a large number of
kernel launches, in which large amounts of small messages are
transferred. As a result, its performance is seriously impacted.

C. Speedup by Using Multiple Virtual GPUs

In this section, we show performance improvements by
using multiple virtual GPUs based on VOCL. Figure 6 shows
the total speedup achieved with 1, 2, 4, 8, 16, and 32 virtual
GPUs utilized. With one and two GPUs, only local GPUs
are used. In other cases, two of the GPUs are local, and the
remaining are remote.

As shown in the figure, for compute-intensive algorithms,
the speedup can be significant; for instance, with 32 GPUs,
the overall speedup of n-body is about 31-fold compared to
the single GPU case. For matrix multiplication, the speedup is
11.5-fold (some scalability is lost because of the serialization
of the data transfer through a single network link). As to
algorithms requiring more data movement, there is almost no
performance improvement. In fact, the performance degrades
in some cases. For the matrix transpose, the reason is that most
of the program execution time is for data transfer between



TABLE I
PERFORMANCE IMPROVEMENTS BROUGHT BY KERNEL ARGUMENT COALESCING

Local/Native Remote, w/o optimization Remote,w/ optimization
Function name Runtime Runtime Overhead Runtime Overhead
clSetKernelArg 4.33 420.45 416.12 4.03 -0.30

clEnqueueNDRangeKernel 1210.85 1316.92 106.07 1344.01 133.17
Total kernel time 1215.18 1737.37 522.19 1348.04 132.71
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ancing

the host memory and the device memory. As data transfer
is serialized to different GPUs, program execution still takes
approximately the same amount of time as the single GPU
case. For Smith-Waterman, as shown in the previous section,
utilization of remote GPUs causes very large overhead. When
part of the instances are computed on remote GPUs, it is
possible that the overall performance is worse than that using
a single local GPU.

D. Performance Impact of Load Balancing

In this experiment, we run two processes for each of the
same four algorithms and map both VGPUs to the same
physical GPU. In one scenario, no migration is performed and
all the computation is on a single GPU. In the other scenario,
one of the VGPUs is migrated to an idle GPU. As such two
GPUs are used for the computation.

Figure 7 shows the performance improvements by the load
rebalancing. As can be seen, with task migration enabled in the
framework, performance is improved for all four algorithms.
Specifically, speedup of the matrix multiplication is 1.7 times;
n-body is 1.9 times faster; matrix transpose is 1.7 times faster;
and Smith-Waterman is 1.4 times faster. From these results,
we can see that migration is very useful when load imbalance
exists across physical GPUs.

VII. SUMMARY AND REMAINING WORK

In this work, we propose the VOCL framework to support
the transparent virtualization of GPUs, which in turn can
generalize the utilization of GPUs in large-scale heterogeneous
computing systems. We implement the framework and the
various optimization techniques to reduce the overhead caused
by the framework. We also extend the VOCL framework to
support live migration of virtual GPUs across physical GPUs.

However, VOCL is still in its early stage and just provides
the basic functionalities for virtualization. There are still
several problems to be followed. 1) Load metrics on physical
GPUs. To achieve load balance, we need a metric to effectively
measure the load on each physical GPU. The challenge is
that different kernels have different computation and memory
access properties and the computation load is also affected
by problem size. 2) Based on the metric, we will propose
some resource management strategies, which can allocate GPU

resources to tasks to achieve the best performance and/or
energy consumption.
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