
Dynamic Right-Sizing: A Simulation Study

Eric Weigle and Wu-chun Feng�
ehw, feng � @lanl.gov

Research & Development in Advanced Network Technology (RADIANT)
Los Alamos National Laboratory

Los Alamos, NM 87545

Abstract— Virtually all network applications requiring reliable end-to-
end communication depend on TCP. Unfortunately, the performance of any
stock TCP is abysmal over wide-area networks (WANs) and even over local-
area networks (LANs) with very high-bandwidth links. Currently, network
researchers manually optimize TCP buffer sizes to achieve acceptable per-
formance over a given connection. Unfortunately, this manual optimization
requires changes to the kernel on both end hosts involved in the network
connection (changes that are only effective for connections between these
two hosts). Furthermore, because two administrative domains must be co-
ordinated to perform this optimization, this process can be tedious and time
consuming.

To address these problems, this paper illustrates the benefits of a new
technique called dynamic right-sizing. This technique dynamically and au-
tomatically determines the best buffer size, and hence flow-control window
size in TCP. Our simulation study shows that dynamic right-sizing can im-
prove the performance of flows by two orders of magnitude over stock TCP
implementations that have static flow-control windows.

Keywords: dynamic right-sizing, high-performance network-
ing, TCP, flow control, wide-area network.

I. INTRODUCTION

Over the past decade, TCP has become the ubiquitous trans-
port protocol for the Internet.1 However, stock TCP performs
abysmally over high-bandwidth or high-delay links. As a result,
the performance of application infrastructures such as computa-
tional grids [1] and high-volume web servers, which are built on
TCP, is crippled.

To address this problem, grid and network researchers con-
tinue to manually optimize buffer sizes to keep the network pipe
full, and thus achieve acceptable performance [2], [3]. Although
such tuning can increase delivered throughput by an order of
magnitude, it requires kernel-configuration changes that cannot
be made by the end user. Instead, system administrators at the
source and destination hosts must separately configure their sys-
tems to use large buffers, a tedious and time consuming process.
Furthermore, manual tuning only works for the pair of hosts that
are tuned. We propose a straightforward modification to TCP
that automatically and transparently addresses the above prob-
lems while maintaining connection semantics and the ubiqui-
tously deployed features of TCP.

To this end, we first briefly discuss TCP, focusing on its flow-
and congestion-control mechanisms and problems with current
implementations. We then discuss our approach and its implica-
tions, followed by our experiments and results. We finish with
related work and conclusions.

This work was supp orted by the U.S. Dept. of Energy through Los Alamos
National Laboratory contract W-7405-ENG- 36. This paper is LA-UR 01-5062.�

While there are many versions of TCP, we focus on TCP Reno as it is the
most commonly used and widely deployed variant. Hereafter, we mean TCP
Reno when we refer to TCP.

A. TCP Flow and Congestion Control

TCP relies on two mechanisms, flow and congestion control,
to set its transmission rate. Flow control ensures that the sender
does not overrun the receiver’s available buffer space while con-
gestion control ensures that the sender does not unfairly over-
run the network’s available bandwidth. TCP implements these
mechanisms via a flow-control window (�����	�) and congestion-
control window (
����	�).

Specifically, TCP calculates an effective window (����	�) as
����	�����������������	����
����	��� and then sends data at a rate of
����	� �"!$#�# , where !%#�# is the round-trip time of the connec-
tion. While the
����	� varies dynamically as the network state
changes, �����	� has always been static. Ideally, �����	� should
vary with the bandwidth-delay product of the network.

B. The Failure of TCP

Historically, a static �����	� sufficed as all communication
occurred over networks with low bandwidth-delay products.
Setting �����	� to small values allowed acceptable performance
while wasting little memory. Today, most operating systems
set �����	��&('*)�+-, , the largest window available without
scaling [4]. Yet bandwidth-delay products range between a
few bytes (.*'/+10�243657.*�83:9 ;<'/,) and a few megabytes
('/=<=?> @/A/BC0�243D5FEG@<@<�83H9JI > A�BK,). In the first case, we can
waste over 99% of memory allocated (36B/64KB = 0.05%).
In the latter case, we waste 99% of the network bandwidth
(64KB/7.8MB = 0.80%).

During the life of a connection, network delay changes
(due to transitory queueing and congestion) implying that the
bandwidth-delay product also changes. Thus a fixed value for
�����	� is never ideal; selecting a fixed value forces an implicit
decision to (1) underallocate memory and underutilize the net-
work or (2) overallocate memory and waste system resources.
Clearly, the solution is to dynamically and transparently adapt
�����	� to achieve good performance without wasting network or
memory resources.

TCP suffers from problems other than the static �����	� , in-
cluding self-similar (chaotic) behavior [5], [6], [7] and a slowly-
converging, additive-increase period.2 These congestion-control
problems are serious and will appear in our results, but they are
orthogonal to the problem that we addressing here, namely static
flow-control windows. However, we are working on solutions to
congestion control, as are others [8], [9], [10].

L
For a 8MB bandwidth-delay product, convergence to the optimal band-

width can take as long as MON�P6QSR �L"T RVUXW�Y[Z L]\^ \`_ UXa�W�W \b�ced�f RVU becedgfh iji RW�klUXW�W bh iji6m Y�n�n�o , or nearly four and a half minutes!

Proceedings of the 10th IEEE International Conference on Computer
Communications and Networks, Oct. 15-17 2001 (ICCCN01).

2

II. DYNAMIC RIGHT-SIZING

Ideally, the transmission window (����	�) should be limited
only by the congestion window (
����	�). Recall that ����	� �
���e���e�����	����
����	�j� , so network utilization is maximized when
�����	� �
����	� , and memory use is most efficient when
�����	���
����	� .

For simulation purposes, we could simply set �����	���

����	� . In our implementation, however, we provide some lee-
way (�
����	��� �����	���
	��) due to the nonzero overhead of mem-
ory allocation and deallocation. For � sufficiently small, we can
reproduce the performance of dynamically sizing flow-control
windows in these simulations.

We refer to the process of dynamically sizing flow-control
windows as dynamic right-sizing [11] and use the algorithm be-
low to implement it.

Let ����	�V� receiver’s advertised window (which is used
to set �����	� at the sender)

����	�V� sender’s congestion window
���� ���	� � maximum amount of memory that any
one connection can utilize.

At the source,
�����	��� �������
����	��������	���X���� ���	�j� .

At the destination,����	� � =V58
����	� if sender in slow start����	� �
����	��� E if sender in additive increase.

We modify the sender only by adding the parameter
��������	� , limiting the sending rate when administrators are un-
willing to dedicate the resources required. With this formula,
��������	� can be viewed as the maximum flow window or the
maximum congestion window. We use ��������	� to simulate
the problem of sharing limited memory among multiple con-
nections. In practice, it is unlikely to be used; instead a fairness
algorithm would control memory allocation among competing
connections.

The receiver must infer the TCP state and congestion window
of the sender. This can be done by observing time stamps on
received packets and calculating mean transfer rates over the last
several RTTs. To conserve memory, /���	� can be reduced a few
RTTs after a multiplicative decrease is detected (enough time
for packets buffered in the network to reach the receiver).

A. Benefits of Dynamic Right-Sizing

The major benefits of dynamic right-sizing include improved
memory and network performance. Our approach also gives full
and valid interoperability with other TCP implementations and
transparency to the user (i.e., no complex administration) and is
also provably fair.

Other approaches either affect TCP semantics [12] or are spe-
cialized non-TCP protocols that are obviously not interopera-
ble, particularly over the wide-area network (WAN), e.g., VIA
[13]. For significant performance improvements, TCP imple-
mentations require the window-scaling extensions [4], but this
technique works without them.

Often, system administration is just an irritating inconve-
nience, but sometimes it is more than that. When firewalls are

involved, connections between hosts on opposite sides are of-
ten broken into two connections — one from the source to the
firewall and another from the firewall to the destination. So, re-
gardless of the settings at the hosts, the firewall will be the bot-
tleneck. Because firewalls are typically controlled by security-
minded administrators, changing the firewall configuration can
be difficult. If the firewall is under the control of a different insti-
tution, it may simply be impossible. Using dynamic right-sizing
(as part of TCP) in the firewall makes this problem disappear.

Our approach is fair with respect to TCP Reno; we implement
dynamic right-sizing in TCP Reno and do not alter its additive-
increase, multiplicative-decrease (AIMD) mechanism. Special-
ized protocols like VIA cannot make this claim. Although flows
using dynamic right-sizing acquire more bandwidth than those
without it, that does not make it unfair. Flows that properly
configure both endpoints should receive better performance than
misconfigured flows. Dynamic right-sizing automatically makes
the proper adjustments to flow-control windows, so we expect
better performance with dynamically right-sized flows than for
generally misconfigured static flows.

More rigorously, we use the following measure of fairness:
Flows should acquire bandwidth proportional to the resources
(in our case, memory) they dedicate to the connection. Thus,
even if dynamic right-sizing reduces the share of bandwidth uti-
lized by static flows, dynamic right-sizing would still be fair
(since all the static flows would have to do to compete is to in-
crease the memory allotted to their flow-control windows).

III. EXPERIMENTS

In this study, we simulate and analyze three general cases
that show the effects of incremental adoption of dynamic right-
sizing:�

All connections use static flow-control windows, i.e., today’s
Internet.�

Some connections use static flow-control windows while oth-
ers use dynamic flow-control windows.�

All connections use dynamic flow-control windows.
Figure 1 shows the generic topology over which we run our

simulation experiments. Links run at 100Mbps with 10ms delay
in one set of experiments; in the other 1Gbps with 16ms delay.
The RTTs for these experiments are 60ms and 96ms, respec-
tively, representative of physically long connections present in
the global Internet.

S3

S2

S1

SN DN

D3

D2

D1

R1 R2

Fig. 1. Generic Topology

Buffer space available in network queues heavily influences
TCP Reno’s performance. This is due to the bursty nature of the
traffic generated by TCP Reno [6], [7] causing dramatic varia-
tion in queue lengths. To study these effects, we simulate queue

3

sizes of 100, 500, and 16,384 packets in routers R1 and R2. The
latter queue size represents an ideal router where packets are
never dropped. Host buffers are set to not drop packets locally.
All nodes used a drop-tail queueing algorithm; use of random
early detection (RED) gateways did not noticeably change the
overall results.

For static flows, we set �����	� to the default of 64KB. All
flows are one-way, constant bit rate (CBR) transmissions at the
link speed (100 Mbps or 1000 Mbps) from sources ��� to desti-
nations ��� where �[���	��
 E<�X�� . Use of other traffic models such
as Poisson or Pareto, or the inclusion of reverse path traffic [14]
did not produce significantly different results. We believe that it
is unlikely that traffic patterns alone would cause significant dif-
ferences between TCP with and without dynamic right-sizing.

IV. RESULTS AND ANALYSIS

The experimental results in this section will show that TCP
flows with dynamic right-sizing outperform flows without it.
As a uniform basis for comparison, we track the delivered
bandwidth at the receiver (as measured by the number of ac-
knowledgement packets returned to the sender) as a function of
��������	� . We also consider performance with respect to link
utilization, packet loss, and fairness among flows.

We structure our discussion as follows. We first discuss the
current situation on the Internet where all flow-control windows
are static in size, i.e., static flows. We then consider a head-to-
head comparison of static flows vs. dynamic flows, i.e., dynami-
cally right-sized flows. Lastly, we evaluate situations that would
exist with incremental adoption of dynamic right-sizing.

A. Static Only

Over the 100Mbps topology, at most 1,666,666 packets can
be sent during our 200-second simulation. This is shown as the
maximum value on the y-axis in Figure 2. Each point in these
figures represents an independent TCP simulation for the given
maximum congestion window. The use of the line segments
to connect the points represents the expected continuity when
simulations are run at intermediate points (which we validated
by several tests). For the 1000Mbps simulation, the value is ten
times larger.

0

200

400

600

800

1000

1200

1400

1600

0 100 200 300 400 500 600 700

Pa
ck

et
s

R
ec

ei
ve

d
(x

10
00

)

Maximum Window (packets)

100Mb
1000Mb

Fig. 2. Static Flow Only

The results in Figure 2 clearly illustrate the inadequacy
of static flow-control windows in a WAN. In this case, the
static flow throttles the bandwidth to ������� �������� ������� ����� & A >lI�� and�

��� ������ ��� ������� ����� & @?>l.<.!� of what is available over the 100Mbps and
1000Mbps topologies, respectively! This is obviously atrocious
and motivates the current laborious practice of hand-tuning con-
nections. Using dynamic right-sizing would automatically in-
crease �����	� , and hence, ����	� appropriately, without the waste
of memory that manual tuning would incur.

The above behavior is clarified by the following analysis.
With a fixed 64KB �����	� (i.e., 44 standard Ethernet packets),
����	� cannot grow beyond 64KB even though
����	� can. Thus,
the performance of the static flow is uniform no matter how
large
����	� grows beyond 64KB. And with the bandwidth-delay
products of the 100Mbps and 1000Mbps networks being at least
500 and 5000 packets, respectively (more with realistic queue-
ing delays), the static �����	� throttles bandwidth to at most
�������� & A > A"� and ���� ����� & @?> A<A"� of what is available over the

100Mbps and 1000Mbps topologies, respectively. These per-
centages decrease further with increased bandwidth-delay prod-
ucts caused by realistic queueing delays.

B. One Static vs. One Dynamic

Figure 3 presents results for one flow of each type and queue
sizes of 100 and 500 packets over the 100Mbps network. We
vary �����	� from 50 packets to 700 packets, sizes correspond-
ing to window sizes of 73KB (i.e., just larger than the static
flow window size of 64 KB) up to 1 MB. This case most clearly
shows the interaction between flows using static and dynamic
flow-control windows.

0

200

400

600

800

1000

1200

1400

1600

0 100 200 300 400 500 600 700

Pa
ck

et
s

R
ec

ei
ve

d
(x

10
00

)

Maximum Window (packets)

Static, Q=100
Static, Q=500

Dynamic, Q=100
Dynamic, Q=500

Fig. 3. Static vs. Dynamic Flow

The upper two lines are dynamic flows while the lower two
are static flows. When the rate limiting ���� ���	� is relaxed,
the dynamic flows deliver over 90Mbps throughput, while the
static flows remain unaffected and deliver a paltry 8.7 Mbps of
throughput!

No differences based on queue size are evident until ���� ���	�
reaches 650 packets. There, for a queue size of 100 packets, the
dynamic flow overflows the router’s buffer and induces massive
packet loss. The dynamic flow cuts its sending rate due to these

4

losses, and the static flow regains some bandwidth.
This value (��������	�V&�'/.<@) is significant; it is precisely the

actual bandwidth-delay product for this network with queueing
delays. A study of
����	� over time for queue size 100 and a
��������	� ��'/.<@ explains the performance drop.

0

100

200

300

400

500

600

700

0 50 100 150 200

C
on

ge
st

io
n

W
in

do
w

 (
pa

ck
et

s)

Time (seconds)

Dynamic
Static

Fig. 4. Congestion Window Over Time

While the graph of
����	� for the static flow is smooth curve,
it is highly variable for the dynamic flow. This occurs due to the
use of slow-start restart. The dynamic flow enters slow start at
the beginning of the transmission, allows its congestion window
to grow up to the limit of 650 packets, which then allows a large
burst onto the network, and produces loss rates of up to 27%.
The dynamic flow interprets this as a sign of heavy congestion
and temporarily backs off completely, but when it attempts to
continue transmission, it again uses the slow-start mechanism,
and the cycle continues.

This is a problem with TCP and the AIMD mechanism. If
we turned off slow-start restart, performance would improve,
but it would be a point-specific solution. In many cases, slow-
start restart actually helps performance. This problem is unfor-
tunately brought to the forefront by the use of dynamic right-
sizing. Note that hand-tuning these connections would do even
worse as a window must be selected before the transient con-
nection dynamics are known. Furthermore, even the ”bad” part
of this graph for flows with ���� ���	� � '<@/@ , using dynamic
right-sizing still performs significantly better.

We propose three solutions to the above problem. The first
solution simply increases the queue sizes in the routers so that
losses are simply avoided, the effects of which are seen in Fig-
ure 3 for a queue size of 500 packets. In this case, the dy-
namic flow achieves nearly 100% network utilization and de-
livers 93.8Mbps throughput! However, this solution is the least
realistic of the three solutions we discuss here because the Inter-
net is an immense, decentralized, distributed system. The likeli-
hood of all the routers in the Internet being upgraded with large
buffers is effectively zero; and in fact, vendors generally under-
engineer their routers with less buffer space and rely on TCP for
retransmissions in order to save money.

Another solution resets the congestion window to various
fractions of the prior window after a loss [15]. This approach
is quite important when the network delay is high because ad-

ditive increase takes too long to converge (see section I-B) over
high bandwidth*delay networks. Even better would be to avoid
the losses altogether as other versions of TCP such as TCP Ve-
gas [16] would do.

Our last solution is probably the most realistic and deployable
of the three: adding a simple heuristic over the ���� ���	� vari-
able that collects performance information based on the value
of ���� ���	� . If performance degrades when ���� ���	� is in-
creased and the congestion window is fluctuating rapidly, we
know that we are overshooting available bandwidth and need
to decrease ��������	� slightly. In essence, this technique uses
the flow-control mechanism as a secondary congestion-control
mechanism, which is inelegant but effective [10].

For brevity, the results over the 1000Mbps network are not
included here as they are similar to the 100Mbps results but with
appropriate scaling by a factor of ten with respect to bandwidth,
network utilization, and optimal ”maximum window” size, i.e.,
6500 packets for queue size 100.

C. Mostly Static

Figure 5 shows the results of our experiments with ten static
TCP flows and one dynamic TCP flow. Two sets of lines are
plotted: one representing the arithmetic mean of the static flows
and the other for the single dynamic flow. The scale on the de-
pendent axis has been reduced from 1,666 to 1,200 thousand
packets as the increased number of flows individually acquire
less bandwidth. Three router queue sizes are tested: 100, 500,
and 16,384.

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600 700

Pa
ck

et
s

R
ec

ei
ve

d
(x

10
00

)

Maximum Window (packets)

Static, Q=100
Static, Q=500

Static, Q=16384

Dynamic, Q=100
Dynamic, Q=500

Dynamic, Q=16384

Fig. 5. Ten Static Flows, One Dynamic Flow

We observe similar behavior as in the prior section. For
the smallest queue size, there is a sudden performance drop
as we overflow the queueing available in the network, when
��������	��� ;<@/@ . The value here is lower than the prior sec-
tion due to the higher number of flows competing for queue
space. Unfortunately, this is also a situation where static flows
outperform dynamic flows. With 11 competing flows, the effec-
tive queue size per flow is only 9 packets; large windows per-
mit TCP Reno to send large bursts, and thus incur many losses.
Recall that this is a known problem of TCP Reno with known
solutions.

5

For a queue size of 500, the network can handle larger bursts.
Here, the dynamic flow performs well until ��������	��� '<@<@ .
At this point, since the effective queue size per flow is now 45
packets, the dynamic flow still outperforms the static flows.

Lastly, with a queue size of 16,384 (large enough to avoid
packet loss), the dynamic flow achieves nearly 16 times the
bandwidth of any static flow. For ��������	� � I*@<@ , network
utilization is over 99%.

As shown in Figure 5 for queue sizes of 500 and 16,384, the
dynamic flow demonstrates a sublinear increase in bandwidth
as ��������	� increases; an increase in ���� ���	� leads to larger
bursts, that leads to longer queueing delays, that leads to an in-
creased bandwidth-delay product, that in turn requires an even
larger flow window for full network utilization. Increased delay
also causes decreased performance for static flows as they hold
constant the number of packets allowed outstanding per RTT
while the RTT increases from 60ms to over 120ms in this case.
Other TCP versions, such as TCP Vegas, avoid this feedback be-
havior by avoiding the use of large amounts of queue space in
the network.

As far as the network is concerned, dynamic flows are no
more than static flows with large buffers allocated. Thus, all
prior research into the fairness and stability of TCP carries over
when dynamic right-sizing is used. Although the dynamic flow
achieves larger bandwidth than the static flows for sufficiently
large ���� ���	� , this is not unfair. To show this, we use our
measure that flows should achieve bandwidth comparable to the
resources they dedicate to the connection. The dynamic flow
allocates 16 times the memory (700 packets = 1 MB versus 44
packets = 64 KB) and receives 16 times the bandwidth. Under
this measure, the results above are perfectly fair for a queue size
of 16,384 and quite unfair against dynamic flows for a queue
size of 100.

For the 1000Mbps network, we find results similar to Figure
5 with ���� ���	� and queue sizes appropriately scaled up by a
factor of ten.

D. Equal Number of Static & Dynamic

Figure 6 shows the results of our experiments with an equal
number of dynamic and static flows, five each. As in the pre-
vious section, we plot two curves: one representing the mean
throughput of the static flows and the other representing the
mean throughput of the dynamic flows. The scale on the de-
pendent axis is reduced further from 1200 to 400 packets as the
increased number of flows each acquire less total bandwidth.

For the smallest queue size, we see some erratic behavior.
As in the ”mostly static” set of experiments with a queue size
of 100, the performance of dynamic flows drops heavily for
��������	�V&)/@/@ when queues become full. Unexpectedly, there
is another jump when ��������	� ��'/.<@ . A closer look at the pre-
averaged data reveals an interesting anomaly that we address
below.

Table I shows that the jump in the averaged data is due to
a single dynamic flow’s acquisition of many times the band-
width of other dynamic flows. Unfortunately, the explanation is
due to our use of a deterministic simulator and constant packet
size. When packets arrive at a router on multiple links simulta-
neously, they are queued based on the numbering of the links,

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600 700

Pa
ck

et
s

R
ec

ei
ve

d
(x

10
00

)

Maximum Window (packets)

Static, Q=100 Dynamic, Q=100
Static, Q=500 Dynamic, Q=500

Static, Q=16384 Dynamic, Q=16384

Fig. 6. Five Static Flows, Five Dynamic Flows

Flow # 1 2 3 4 5

Static 108 112 113 112 108
Dynamic 389 66 55 71 74

TABLE I
THOUSAND PACKETS ACKNOWLEDGED FOR 100MB

NETWORK, Q=100, MAXIMUM DYNAMIC WINDOW=650

i.e., lowest number first. Thus, when packets arrive at the same
time, certain flows (those on lower numbered links) will have an
advantage — especially when the first packet enqueued fills the
queue and the second one is dropped.

In an attempt to minimize the effects of deterministic queue-
ing, we interleaved the creation of static and dynamic flows. Un-
fortunately, that was insufficient here due to the particular packet
timings. Similar artifacts can be seen in the real world, based on
the particular queueing disciplines of routers. Random queue-
ing order and random packet sizes reduce this effect but produce
other unusual patterns.

When the queue size is 500, we again find the expected per-
formance although it is slightly obfuscated due to the larger vari-
ation that five dynamic flows allow. The point at which network
queues become saturated is less noticeable but still apparent at
��������	�V&)�.<@ .

For the largest queue size, behavior is also similar to this case
in the prior section. Comparing this graph to the graph with ten
static and one dynamic flows for ��������	� �:I"@<@ , we see that
the drop in each static flow’s performance is now closer to ��instead of �� . That might seem unfair. However, we verify the
experimental results in Figure 6 using our fairness definition.�

10 flows share bandwidth, 5 of which allocate I*@<@ 3�����8����X3�5
E�.<@<@ �����
	����	����	���� � E�BK, of memory and 5 of which allocate
'*)�+-, of memory, for a a total of .")/)/@/+-, allocated.�

Assuming 100% link utilization, a flow should receive
�����

�������
� �����

��� � EGA > ;/A<+10 2�3 per kilobyte they allocate to the con-
nection.�

Thus, dynamic flows should acquire �
��� ��� ��� ���
�
��� 5 E�@/=")�+-, �

EGA ��A�=*@<+]0�2�3 , while static flows should acquire �
�!� �"� �������
�
��� 5

'*)�+-, �KE/�gE"I"'<+]0�2�3 .

6

�
That resolves to ; Eg) � @<@/@ packets for dynamic connections

and E�� ��'/@<@ packets for static connections, given a =*@/@/3 sim-
ulation and E�.<@<@<, segments.�

These values correspond almost exactly to the last graph in
Figure 6.

Similar analysis can be performed for the remaining points
to conclude that the performance differences between static and
dynamic flows is fair.

Because the results over the 1000Mbps topology are some-
what different for this set of experiments, Figure 7 present the
results here for five static and five dynamic flows at 1000Mbps
speeds and queue sizes of 100 and 16,834. The scale has been
increased by a factor of ten.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1000 2000 3000 4000 5000 6000 7000

Pa
ck

et
s

R
ec

ei
ve

d
(x

10
00

)

Maximum Window (packets)

Static, Q=100
Static, Q=16384

Dynamic, Q=100
Dynamic, Q=16384

Fig. 7. Five Static, Five Dynamic at High Bandwidth

For the queue size of 100, we see the same expected drop
when queues are saturated for a maximum window of 6500
packets. Increasing the queue space to 16,384 packets again in-
creases the performance of the dynamic flows dramatically and
decreases the bandwidth acquired by the static flows as dictated
by the fairness measure. This graph shows how painfully inade-
quate static TCP flows are for high bandwidth connections with
high delay. For a maximum dynamic window of 7000 packets
(10MB), the dynamic flow utilizes 93 times the bandwidth of a
static flow! Ten static flows would utilize less than 6% of the
available bandwidth while the five static and five dynamic flows
utilize about 99.5% of the link’s bandwidth for all maximum
dynamic windows at or above 2000 packets.

E. Mostly or All Dynamic

When most flows are dynamic, the effects the few static flows
have on the network are negligible. Consequently, this case is
essentially that of all dynamic flows. We combine our discus-
sion of the two here.

Thus far, we have presented results showing how well dy-
namic flows perform over static flows. One foreseeable prob-
lem is that when a network runs only dynamic flows, it may be
less stable due to heightened competition between flows. This
does occur but produces behavior no more adverse than when
too many static flows try to utilize a link.

Figure 8 shows the results from our experiments with ten dy-
namic flows on the 100Mbps network with queue sizes of 100

0

50

100

150

200

250

0 100 200 300 400 500 600 700

Pa
ck

et
s

R
ec

ei
ve

d
(x

10
00

)

Maximum Window (packets)

Acks, Q=100
Acks, Q=16386

Rexmits, Q=100
Rexmits, Q=16386

Fig. 8. Ten Dynamic Flows

and 16,384. When the queue size is 100, the large losses are
caused by the slow start / slow-start restart problem that we dis-
cussed earlier. Increasing the queue size decreases these losses
to zero, and we see a perfectly horizontal line where each flow
shares the same bandwidth. This can be explained as follows:
For this 100Mb network, the fair bandwidth per flow is 10Mb.
This leads to a fair bandwidth-delay product of between 50 and
100 packets, depending on queueing delay. This value is below
the maximum value on the x-axis of this graph. Thus perfor-
mance does not depend on ���� ���	� — all values in this graph
are above 50 and never limit our flows.

V. RELATED & FUTURE WORK

Researchers at the Pittsburgh Supercomputing Center have an
implementation of a similar idea which they refer to as ”Au-
tomatic TCP Buffer Tuning” [12]. Our approach differs from
theirs in one significant aspect: their advertised window is al-
ways simply the maximum socket size. This assumes that mem-
ory on the receiver is never a concern. We believe that this is
an invalid assumption and that it violates TCP semantics in the
sense that there will be cases when the host is unable to accept
as much data as its advertised window claims it is able to ac-
cept. One case where this is serious is the case where a server
has many connections such that the sum of the advertised win-
dows is greater than available memory. The receiver must either
drop packets it advertised it could handle (violating TCP seman-
tics) or try to allocate nonexistent memory (crashing the ma-
chine). The choice will obviously be to drop packets, which seri-
ously affects performance due to TCP congestion-control mech-
anisms. Our approach avoids these problems by maintaining the
TCP flow-control semantics and using the advertised window in
its original sense.

There are many problems with TCP in its various incarna-
tions, as we have repeatedly pointed out. Many of these [17],
[6], [7] become more pronounced when dynamic right-sizing is
used and make it more important to apply the known solutions
[16], [18], [19], [20]. As system administrators and kernel de-
velopers slowly come to the realization that they need to upgrade
their implementations of TCP, those problems will disappear.

In particular, we also performed all the above simulations

7

with TCP Vegas and found that with the proper choice of its
� and

�
parameters, performance is generally better than TCP

Reno, and there is less dependence on router buffer sizes. Using
packet spacing with TCP Vegas eliminates the dependency alto-
gether. We chose to present results for TCP Reno alone as few
people use TCP Vegas.

We are currently working on an implementation of this work
in the Linux 2.4.4 kernel and plan to investigate the effects of
dynamic right-sizing when other TCP extensions such as For-
ward Acknowledgement [21] or TCP Pacing [17] are enabled. In
addition, we will study how dynamic right-sizing interacts with
routers that implement explicit congestion notification [22], [23]
and new queueing disciplines such as BLUE [24].

VI. CONCLUSION

In this paper, we presented a comprehensive set of simula-
tion results that demonstrate the benefits of using dynamic right-
sizing in a wide range of networks. The approach delivers high
performance and satisfies the goals of being dynamic and effi-
cient with respect to utilizing resources as well as being fair and
transparent to the end user, as described below.

First, by using an implementation of TCP that dynamically
resizes its flow control window, the performance of TCP is no
longer artificially throttled and can deliver orders of magnitude
higher throughput between communicating nodes in a compu-
tational grid or to high-volume web servers. Second, this tech-
nique results in better overall network and kernel memory uti-
lization by not statically allocating inappropriately sized buffers.
Third, dynamic right-sizing eliminates the need for having to
deal with the administrative headaches of optimizing buffers.
Fourth, dynamic right-sizing is fair in the sense that flows ac-
quire bandwidth proportional to the resources that it dedicates
to the connection. And lastly, the above benefits are achieved
transparently to the end user.

REFERENCES

[1] Ian Foster and Carl Kesselman, Eds., The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann Publishers, 1999.

[2] Pittsburgh Supercomputing Center, “Enabling High-Performance Data
Transfers on Hosts,” http://www.psc.edu/networking/perf tune.html.

[3] Brian Tierney, “TCP Tuning Guide for Distributed Applications on Wide-
Area Networks,” in USENIX & SAGE Login, http://www-didc.lbl.gov/tcp-
wan.html, February 2001.

[4] D. Borman, R. Braden, and V. Jacobson., “TCP extensions for high per-
formance (RFC1323),” May 1992.

[5] Wu-chun Feng and P. Tinnakornsrisuphap, “The Failure of TCP in High-
Performance Computational Grids,” in Proceedings of SC 2000, Novem-
ber 2000.

[6] András Veres and Miklós Boda, “The Chaotic Nature of TCP Congestion
Control,” in Proceedings of IEEE Infocom 2000, March 2000.

[7] Y. Richard Yang, Min Sik Kim, and Simon S. Lam, “Tran-
sient Behaviors of TCP-friendly Congestion Control Protocols,”
ftp://ftp.cs.utexas.edu/pub/lam/transient tech.ps.gz, July 2000.

[8] Deepak Bansal and Hari Balakrishnan, “Binomial Congestion Control
Algorithms,” in Proceedings of IEEE INFOCOM 2001, April 2001.

[9] Sergey Gorinsky and Harrick Vin, “Additive Increase Appears Inferior,”
Tech. Rep. TR2000-18, UT-Austin, May 2000.

[10] Lampros Kalampoukas, Anujan Varma, and K. K. Ramakrishnan, “Ex-
plicit Window Adaptation: A Method To Enhance TCP Performance,”
Tech. Rep. UCSC-CRL-97-21, University of California at Santa Cruz.

[11] Mike Fisk and Wu-chun Feng, “Dynamic Adjustment of TCP Window
Sizes,” http://public.lanl.gov/mfisk/fisk/web/papers/tcpwindow.pdf, July
2000.

[12] J. Semke, J. Mahdavi, and M. Mathis, “Automatic TCP Buffer Tuning,”
ACM SIGCOMM 1998, vol. 28, no. 4, October 1998.

[13] Compaq Computer Corporation, Intel Corporation, and Microsoft Corpo-
ration, “Virtual Interface Architecture,” http://www.viarch.org/.

[14] Lixia Zhang, Scott Shenker, and David D. Clark, “Observations on the
Dynamics of a Congestion Control Algorithm: The Effects of Two-Way
Traffic,” in Proceedings of ACM SigComm 1991, September 1991.

[15] Y. Yang and S. Lam, “General AIMD Congestion Control,” in Proceedings
of ICNP 2000, May 2000.

[16] Lawrence Brakmo and Larry Peterson, “TCP Vegas: End to End Conges-
tion Avoidance on a Global Internet,” IEEE Journal on Selected Areas in
Communication, vol. 13, no. 8, pp. 1465–1480, October 1995.

[17] Amit Aggarwal, Stefan Savage, and Thomas Anderson, “Understanding
the Performance of TCP Pacing,” in Proceedings of IEEE INFOCOM
2000, March 2000.

[18] U. Hengartner, J. Bolliger, and T. Gross, “TCP Vegas Revisited,” in Pro-
ceedings of IEEE Infocom 2000, March 2000, pp. 1546–1555.

[19] Richard J. La, Jean Walrand, and Venkat Anantharam, “Issues in TCP
Vegas,” http://www.path.berkeley.edu/ hyongla/PAPERS/vegas issue.ps.

[20] Steven Low, Larry Peterson, and Limin Wang, “Understanding TCP Ve-
gas: Theory and Practice,” Submitted for publication, February 2000.

[21] Matthew Mathis and Jamshid Mahdavi, “Forward Acknowledgement: Re-
fining TCP Congestion Control,” ACM Computer Communication Review,
vol. 26, no. 4, October 1996.

[22] Sally Floyd, “TCP and Explicit Congestion Notification,” ACM Computer
Communication Review, vol. 24, no. 5, pp. 10–23, October 1994.

[23] K. Ramakrishnan and Sally Floyd, “A Proposoal to Add Explicit Conges-
tion Notification (ECN) to IP (RFC2481),” January 1999.

[24] W. Feng, D. Kandlur, D. Saha, and K. Shin, “Blue: A New Class of Active
Queue Management Algorithms,” University of Michigan CSE-TR-387-
99., April 1999.

[25] Van Jacobson, “Congestion Avoidance and Control,” ACM Computer
Communications Review, vol. 18, no. 4, pp. 314–329, August 1988.

