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Abstract

Computational grids such as the Information Power
Grid [1], Particle Physics Data Grid [2], and Earth System
Grid [3] depend on TCP to provide reliable communication
between nodes across a wide-area network (WAN). Of the
available TCP implementations, TCP Reno and its variants
are the most widely deployed; however, Reno’s performance
in computational grids is mediocre at best.

Due to conflicting results in the evaluation of TCP im-
plementations [4, 5, 6, 7, 8, 9, 10, 11, 12, 13], we present
a detailed simulation study that unifies the conflicting re-
sults and demonstrates the limitations of earlier work. We
focus on the two most debated versions of TCP — Reno and
Vegas. Using real traffic distributions, we show that Vegas
performs well over modern high-performance links and bet-
ter than Reno with the proper selection of the Vegas param-
eters � and � . Our results exhibit ways to significantly en-
hance the performance of distributed computational grids
that rely on TCP.

Keywords: computational grid, distributed computing, net-
working, TCP, Reno, Vegas.

1. Introduction

Studying congestion-control algorithms in TCP is prob-
lematic due to their complexity and inconsistencies between

�
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different implementations of the same algorithm. Recent
work has shown that TCP Reno’s congestion control in-
duces chaotic behavior in a network [13, 14, 15], thus ad-
versely affecting all network performance. Some argue that
Vegas is more stable [5, 6, 9] while others argue that Reno
performs better [11, 16]. Most agree that Vegas performs
better under certain circumstances.

Unfortunately, many prior studies on TCP suffer from
unrealistic simplifications. Here we extend prior research
in three areas: (1) using more realistic traffic- and flow-
generation models, (2) using real-world networks, and (3)
showing how to manipulate the parameters � and � in TCP
Vegas to enhance its performance.

Our primary goal is to show that there exists an � , �
pair such that Vegas outperforms Reno in direct competi-
tion. While most researchers agree that networks with all
Vegas flows perform better than networks with all Reno
flows, they also claim that incremental adoption of Vegas
in a predominantly Reno environment is doomed because
the performance of Vegas in such an environment is pitiful.
To address this claim, we demonstrate that overall network
performance actually improves with the addition of Vegas
flows (with judiciously set values for � and � ) competing
head-to-head with Reno flows. The performance improve-
ments we exhibit justify the use of TCP Vegas in a compu-
tational grid and lend credence to the idea that incremental
adoption of Vegas is possible.

To this end, we first present requisite background infor-
mation. Next, we discuss our network topologies and traffic
models. Then, we present the results and analyses of our
experiments. We close with related work and our conclu-
sions.
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2. Background

To create useful models for our simulations, we must un-
derstand the diversity of TCP algorithms, the effects of RED
routers, and the simulation tool that we use, ns.

2.1. TCP Algorithms

The various TCP algorithms have different congestion-
control mechanisms, and implementations of these algo-
rithms may or may not implement features such as selec-
tive acknowledgements or window scaling. For our base-
line, we use TCP Reno with the following standard fea-
tures: a congestion window obeying additive increase by
one/multiplicative decrease by one half, slow start, initial
window of one, fast retransmit, fast recovery, and window
scaling.

The TCP Vegas algorithm [6] extends TCP Reno by try-
ing to avoid rather than react to congestion. When the con-
gestion window increases in size, the expected sending rate
( ����� ) increases as well. But if the actual sending rate
( ����� ) stays roughly the same, then there is not enough
bandwidth available to send at ����� . Thus, any increase in
the size of the congestion window will only fill buffer space
in the network rather than improve performance. Vegas at-
tempts to detect this phenomenon and avoid congestion by
adjusting the congestion-window size, and hence ����� , to
adapt to the available bandwidth.

To adjust the window size appropriately, Vegas uses two
threshold values, � and � . These values are traditionally set
to 1 and 3, respectively, and control the operation of Vegas
as follows:

� Let 	�
������������������� .

� If 	�
������ � , increase the congestion window linearly
during the next round-trip time (RTT).

� If 	�
����� � , decrease the window linearly during the
next RTT.

� Otherwise, do not change the congestion window.

Conceptually, ����� and ����� implies that each Ve-
gas flow tries to keep at least one packet but no more than
three packets queued in the network. Selecting these param-
eters holds an implicit tradeoff between network utilization,
goodput, and fairness; by using only the default settings
for these parameters, prior work inadvertently favored Reno
over Vegas [11]. Here, we make these choices explicit.
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Figure 1. Ideal link utilization of TCP Reno and
Vegas

Figure 1 shows the behavior of Reno and Vegas with
respect to link utilization in the simplest case, i.e., a sin-
gle Reno or Vegas flow between two hosts with no network
buffering (there are no routers) and the possibility of buffer
overflows (loss) on each host. One problem with TCP Reno
is quite apparent; its congestion-control algorithm is inher-
ently over-aggressive. Reno probes the network state by
inducing packet loss, resulting in a multiplicative decrease
(1/2) in the amount of data that it is allowed to send in the
subsequent round-trip time (RTT) interval. It then enters an
additive-increase phase to again probe the network state. As
soon as Reno reaches the optimal bandwidth; it again passes
it, drops a packet, and halves its sending rate. While Reno
continues slowly climbing toward the optimal bandwidth,
Vegas continues to send data near the optimal bandwidth.

2.2. Random Early Detection

To enhance TCP performance, Floyd and Jacobson
[17] introduced random early detection (RED) gateways
to detect incipient congestion. RED gateways maintain a
weighted average of the queue length (  "!$#&%('*) ), a minimum
and maximum threshold ( �+�,	�-/.10 and �+�,	2-4365 , respec-
tively), and an early-drop probability 7 . Packets are then
queued as follows:

� If (  "!$#&%('*)8�9�+�,	2-/.10 ), queue all packets.

� If (  :!;#&%('*)<�=�>��	 -/.10 and  "!$#&%('*)?�@�+�,	 -4365 ),
drop packets with probability 7 .

� If (  "!$#&%('*)8�9�+�,	2-4365 ), drop all packets.

One modification is to use a variable, rather than a constant,
drop probability 7 in the second case. Then 7 ranges from
0 to 1 as the average queue size ranges from �+�,	�-/.10 to
�+�,	2-4365 ; a simple linear normalizing formula can be used



for this purpose. We use this variation in our simulations,
with the effective formula:

7�� � � 0������	��
���������
������������
���������
RED can improve fairness and overall network performance
[17], and most routers in the current Internet implement it.
As most distributed computational grids will be connected
via sections of the Internet, this behavior must be consid-
ered.

2.3. Simulation using ns

For our experiments, we use the discrete-event simulator
ns, version 2.1b7a [18]. ns implements much of what we
wish to study; however, we have extended its functionality.
First, we introduced new code to create the traffic distribu-
tions discussed in Section 3. Second, we added instrumen-
tation to the existing classes for TCP Reno and Vegas so
that the effects of our new code could be monitored more
precisely. We verified the correctness of our changes by
running the test suites provided with ns as well as several of
our own programs. We verified the correctness of our traffic
generator by manual analysis of packet traces.

3. Experiments

Our experiments can be summarized as a search of the
feature space:

# !$'�� �"! #%$ '�!�& ��� 
(' $ � $ � .
Given only three topologies and three traffic distributions,
we can perform a brute-force search for �*) � values under
which Vegas performs well. (The above features obviously
do not capture all possible parameters, but they are the most
representative.) Given the large amount of data that a brute-
force search generates, we will derive simple heuristics to
guide future exploration and protocol tuning. In contrast to
other work [11, 16], our experiments show that with intelli-
gent choices for � and � , TCP Vegas outperforms Reno in
practically all circumstances.

3.1. Network Topologies and Parameters

We consider four networks; the topology of each is based
on the generic “butterfly” topology of Figure 2 with details
given in Table 1. The first network is that given in [11],
while the second and third networks model current and fu-
ture computational grids between Los Alamos and Sandia
National Laboratories, and the fourth shows performance
over a WAN grid with a 7.8-MB bandwidth-delay product.
Our results, in addition to [14], will show how poorly the
current TCP protocols will scale to next-generation compu-
tational grids.
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Figure 2. Generic Topology



Table 1. Parameters of Simulated Networks
Network 1 2 3 4

Nodes ( � ) 2 50 100 100
Links Bandwidth 10 100 1000 1000
L Delay 4 1 1 15
Link Bandwidth 1.55 155 622 622
BL Delay 4 1.5 1.5 20
Routers Buffer 4-50 33554 44739 44739
R1, �������	��
 3-10 6711 8948 8948
R2 ���������� 6-20 26843 35791 35791

Nodes ( � ) is the number of source or destination hosts,
meaning that the total number of nodes in the simulation
is ������� ( � source nodes, � destination nodes, and 2
router nodes). Bandwidth is in megabits per second (Mbps
or 1,000,000 bps); Delay is in milliseconds (ms); and Buffer
sizes and thresholds are in packets (pkts). We simulate stan-
dard 1500-Byte ethernet packets. Note that when abbrevi-
ated size units are given, we follow the convention that a
capital ‘B’ refers to Bytes, while a lowercase ‘b’ refers to
bits.

3.2. Network Traffic

By default, one traffic flow (a traffic generator and an as-
sociated TCP Reno or TCP Vegas transport protocol) runs
on each source node ( � . ) and transmits to its respective des-
tination node ( 	 . ). When results with ‘reverse path’ or
‘two-way’ traffic are given, this means that each destination
node 	2. also acts as a source node, sending traffic along the
reverse path to source node � . . Two-way traffic doubles the
total number of flows and introduces two behaviors: ack
loss and compression. When reverse path traffic is intro-
duced, ack packets must compete for bandwidth and queue
space. This means that some ack packets may be dropped as
queues become full (loss), and their inter-packet timing may
be altered as they are queued and later released in a burst
(compression). In some situations, these behaviors can sig-
nificantly affect results [19], and we present them when this
is the case.

For our experiments, there are always equal numbers of
Reno and Vegas flows; so with one-way traffic we have

� �
of each type, with two-way traffic we have � of each type.

Traffic libraries (such as tcplib [20]) are available to drive
simulations, but they are fundamentally flawed. Such traces
were made using the tcpdump tool available on Unix plat-
forms, meaning that they were captured after having passed
through TCP. Passing these packet traces back through TCP
again is meaningless. Furthermore, the available traces are
several years old and are not representative of current traf-
fic. None capture traffic in a computational grid. For all
these reasons, we have created our own generators.

As a first approximation, network traffic is typically

modeled as an infinite file transfer. The next approxima-
tion adds variation over packet transmission times, explic-
itly with an exponential on/off traffic source or implicitly by
setting up background traffic [9]. The most realistic traffic
models contain variations in inter-flow times, flow lengths,
and packet sizes. We use all the above features of real traf-
fic except for variation in the packet size, which ns does
not adequately support. Prior research has used only the
first overly simplistic traffic type or has neglected to con-
sider bidirectional traffic, which can seriously affect results
[19]. We refer to [21] for further background on our traffic
models, which are summarized in Tables 2 and 3.

Traffic Flow Flow Packet
Type Arrival Length Spacing

Infinite File all at time 0 � constant
Interactive Poisson Pareto Pareto on/off

No Packet Spacing Poisson Pareto n/a

Table 2. Summary of traffic models

For infinite file traffic, requests to transfer a packet are
made every  
 # # ��� ! ! �"! � & ' # !;' � 
$# ! seconds for the dura-
tion of the simulation. We also refer to this traffic as “con-
stant bit rate” or “CBR”. Applications transferring large
data sets generate this type of traffic.

Interactive traffic uses a Pareto on/off distribution for
packet spacing; an exponential on/off distribution was also
tested but produced no significant differences. We also refer
to this model as “Pareto”. Applications for data set visual-
ization generate this type of traffic.

Cluster and grid communication patterns depend heavily
on the algorithms being executed [22]. Our model assumes
that traffic between nodes is frequent and mostly small, with
less frequent larger transmissions. This is similar to the In-
teractive model except that packet spacing is ignored; all
packets for a given flow (data at an upper level, such as an
MPI message) are presented to TCP at the same time and
should be transmitted as soon as possible. We refer to this
model as the No Packet Spacing (NPS) model, as it is the
same as Pareto traffic with that exception. Scientific appli-
cations which pass messages between nodes and perform
checkpoint operations generate this type of traffic.

The values in Table 3 are representative of traffic on the
networks in Table 1. Different networks use different val-
ues: % represents the values for network 1 at the lower end
of the range and the remaining networks at the higher end
while the lower values marked with & represent network 2,
the higher values for 3 and 4. (Note that direct numerical
comparisons of bandwidth acquired between traffic types is
invalid, as each model attempts to send different amounts of
data.)

At time zero, the start of Pareto and NPS flows is de-
layed by the inter-flow time on average (as though flows



Traffic Type Parameter Values

Infinite File Rate 10-100 Mb �
Pareto&NPS Mean inter-flow time 0.5 s
Pareto&NPS Mean flow length 10-100 MB

�
Pareto&NPS Flow length shape 1.5
Pareto&NPS ON rate 100 Mb-1 Gb

�
Pareto Mean ON time 30 ms
Pareto Mean OFF time 70 ms
Pareto ON/OFF shape 1.5

Table 3. Traffic parameters for distributions

had just terminated on all nodes). Thus, it takes a few sec-
onds in simulation time to achieve a network state as would
be found in a live network. Simulations were run for 200
seconds to minimize this factor and to ensure that the dif-
ferences we report between flows are not due to transient
conditions (simulations for longer periods reveal no signifi-
cant differences from the following results).

4. Results and Analysis

We now present our results, focusing on the total amount
of reliably transmitted data (as measured by the number of
ACK packets) and the amount of data lost (as measured by
the number of retransmitted packets). From these metrics,
we can then calculate link utilization, goodput, or fairness.

In the following figures, each pair of bars represents the
aggregate bandwidth or loss results from a single simula-
tion; that of all TCP Reno flows (white) and all TCP Vegas
flows (black) as they competed against each other with the
given parameters.

4.1. Network 1 with Varied Queue Sizes

First, we look at a simple head-to-head competition of
one Reno flow versus one Vegas flow, varying the queue size
for our bottleneck link. We use CBR traffic for comparison
with the work done in [11].

We are only interested in queue sizes indirectly; Reno
aggressively probes the network and uses any available
buffer space while Vegas only buffers between � and �
packets on average. Varied queue sizes exhibit the effects
this difference has on the protocols’ performance. By ty-
ing � and � to the queue sizes, Vegas is forced to set its
congestion window to a value comparable to that of Reno,
so Reno has no unfair advantage. For a network with only
Vegas flows, router buffer space would be less relevant [6].

To guide our choice of � and � , we initially developed
the following heuristic. Assume that Reno uses 75% of the
bandwidth on average while Vegas uses 100% (Figure 1)
and that the bandwidth acquired corresponds directly to the

buffer size utilized. Then, to achieve long-term fairness be-
tween Reno and Vegas, the following constraints should be
met: � ����� $	� 
 ��
� � � 
 �

�


and
� �
� $	��� ��
� � ��� ��
 .

where
� 
 and

���
represent the fraction of buffer size

for each Reno and Vegas flow, respectively. Note how
Reno requires twice as much buffering for the same perfor-
mance. These figures are only valid for this simple case; for
more complex cases, ‘overlapping’ of the sawtooth pattern
more effectively utilizes bandwidth, and we will want Reno
and Vegas to use approximately the same amount of buffer
space.

Of
� 
 and

���
, we can only control

���
indirectly and

cannot control
� 
 at all. We assume that Reno will use any

queue space that Vegas does not and consider � and � to be
the minimum and maximum number of packets Vegas tries
to keep enqueued. This analysis leads us to the following
possible heuristic.

set � ������� � � ��� .�� � �9��� and set � ������� � � � � .�� � �
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Figure 3. Network 1, variation of queue sizes

The results for this choice are presented in Figure 3.
Note that full bottleneck link utilization with one-way traf-
fic would be to send 25,833 1500-Byte ethernet segments
over the 1.55-Mbps link during our 200 second simulation.
For two-way traffic, full utilization is 25,162 packets given
the the 40-Byte ACK packets on the reverse path.

For simple one-way flows, our linear heuristic based on
queue size is too timid for queue sizes 10 or below (Reno
beats Vegas). For queue sizes between 10 and 20, Reno and
Vegas compete well, and for larger queue sizes, Vegas does
much better than Reno. Link utilization is above 99% in all
cases.

Adding reverse-path traffic slightly decreases the amount



of bandwidth each flow acquires (due to the higher over-
all traffic on the network) and changes the pattern in favor
of Vegas. These changes are due to the slight increase in
drop rates at the routers (due to 40-Byte ACK packets com-
peting with 1500-Byte reverse-path data packets); as Reno
has twice as many packets buffered as Vegas does, Reno is
much more likely to lose one of their packets than Vegas.
Link utilization varies from 78% to 90%.

The difference between our experimental results and
those predicted by our formula (equal performance by Reno
and Vegas) is due to several factors. First, we are working
in a 200-second simulation with real values for various pa-
rameters rather than an infinitely long simulation with in-
finite bandwidth (where the delimiting factor is only queue
size). Furthermore, we want the ‘apparent’ or ‘effective’
size (the size below which is it unlikely for a packet to be
dropped) rather than the absolute fair queue size. This ap-
parent size is time-dependent, given the fluctuations caused
by Reno’s additive-increase, multiplicative-decrease behav-
ior. Note that by slightly changing our heuristic, increasing
� and � for queue sizes below 20, Vegas will beat Reno for
all queue sizes.

4.2. Network 1 with Varied RED Thresholds

For this set of experiments, we fix the queue size at 25
packets and vary the RED minimum ( �>��	�-/.10 ) and max-
imum ( �+�,	2-4365 ) thresholds. We use a single Reno and a
single Vegas flow, each with CBR traffic, as done in [11].

In [11], the performance of Vegas was shown to drop as
RED thresholds were increased. This is due to the fact that
the apparent queue size is increasing — Reno will automat-
ically probe the network and exploit this space, but Vegas
will not as it is constrained by the default � � � and � ���
values. Consequently, the experiments in [11] are inadver-
tently “rigged” to favor Reno over Vegas.

To account for the above factors, we view �+�,	 -/.10 and
�+�,	 -4365 as the apparent queue size and continue as in the
prior experiment but with

� ���+�,	2-/. 0�� � and � � �+�,	2-4365+� � .
to produce the following results.
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Note how similar Figures 3 and 4 are. In fact, the only
significant difference occurs in the second set of bars of
each figure, i.e., ��� � and � 
 # ��� )�� &�� ��� , respec-
tively; for 1-way traffic, Vegas performs better than Reno
does with RED, due simply to the randomness induced by
RED.

The heuristic here was selected to produce results similar
to the prior section. A more obvious formula,

� � �+�,	2-/. 0 and � ���>��	2-/3 5 ,
allows Vegas to outperform Reno in all cases. Unfortu-
nately, loss rates also increase and link utilization decreases,
which is undesirable.

If we examine Figures 3 and 4 carefully, we see that if
the goal is even competition between Reno and Vegas, our
heuristic results in values too small for small queue sizes
and too large for large queue sizes. In fact, these values are
off by an amount proportional to the queue size! This leads
us to the obvious conclusion that the heuristic we desire is
not fixing � � �+�,	2-/.10 �	�/3 and � � �+�,	2-4365 �	��
 ,
with �/3 )��
 constant as we have done here; instead we de-
sire proportionality to queue size or effective queue size
(based on the RED thresholds): �����43 $ �>��	 -/.10 and
� ���
 $ �+�,	2-4365

4.3. Network 2

Now we consider our true interest — real-world net-
works such as the current computational grid (see Table
1) between Los Alamos and Sandia National Laboratories.
Figure 4.3 presents the results for two-way traffic on this
network. Full utilization is � � � $ � ��� packets. (See Table
1; � � � ��� � � $ 
�� ������� ����� 

�� 
 $ � � � � $ 
��� 
 $ 
���� �
 ������� . ).
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Figure 5. Results for network 2

Here we see that the default � and � of 1 and 3 are clearly
inadequate; but by increasing them to 100 and 105, the per-
formance under CBR and NPS traffic for Vegas is better
than that of Reno. These values are arbitrary; any suffi-
ciently large values will work.

For insight into the selection of � and � values, recall
that � and � are tuned here primarily to keep Reno from
acquiring an unfair share of bandwidth (see subsection 4.1).
The actual number of packets a fair flow can have unac-
knowledged is just the � & # � � 
$� '*) $ � !  �&�� product of the
network divided by the number of flows. In this case, that
is:
� � � � ��� � � $ 
�� ����� � ����� 

�� 
�� $ � ��� � $ 
��
 ����� - � �

$ 
 �� 
 $ 
���� �
 �������� � �& �"� �
which is only about two packets. Thus, without TCP Reno,
the default � ���	) � � � would suffice; with TCP Reno
competition, we must modify these values.

One heuristic for this network is to calculate 
����������
where � is the number of flows. This gives the effective
fair queueing space per flow; which is about 134 packets
here ( 	�
 
 
��� ). The values for � and � may be then be set
slightly smaller than this value to achieve comparable per-

formance to Reno. (The difference is due to the superior
properties of the Vegas algorithm; using 
��� ��� �� often re-
sults in unfairly poor performance for Reno flows and is
generally a bad idea).

However, Reno does outperform Vegas for Pareto traf-
fic, regardless of � and � . Tests for values up to 1000 re-
veal that the problem is not due to an improper choice of
these parameters, but is instead fundamental to current im-
plementations of TCP Reno and Vegas and the heavy-tailed
distribution. The problem is two-fold.

First, Reno is more aggressive during slow start, and in
this case, benefits. Reno doubles its congestion window ev-
ery RTT whereas Vegas doubles it every other RTT. Vegas
does this in order to detect what effects its change has on
the network before rampantly sending more data. Two solu-
tions to this problem are immediately apparent: (1) If most
flows use Vegas (and hence, the same slow-start algorithm),
they would compete fairly with each other. (2) The use of
ECN [23] or similar ideas to glean information from the net-
work can allow Vegas to double its window at the same rate
as Reno without adverse affects.

A second problem is that these parameters along with
running Pareto traffic through TCP Reno creates unpre-
dictable fluctuations in queue length; thus interfering with
the RTT estimates used by Vegas. Vegas then uses these
inaccurate estimates to control its sending rate, to its detri-
ment. This problem is due to the bursty nature of aggregated
TCP Reno flows [13] and would disappear if all flows were
TCP Vegas.

Figure 4.3 also shows that the loss rates for TCP Reno
are 20 to 70 times higher than those of TCP Vegas in this
simulation. This is obviously bad for the network, and it can
also drastically affect the performance of a grid application
using TCP for data transport. When a loss occurs, it must be
detected (via observation of the acknowledgements coming
from the receiver) at the sender side, and the packet must be
retransmitted. Thus, any lost packet arrives at the destina-
tion delayed at least one full RTT. If that packet contained
critical data, the upper-level grid application may block the
entire time. Therefore, loss patterns are often more impor-
tant than total deliverable bandwidth. So, Vegas may pro-
vide better performance to a grid application, even provid-
ing lower total bandwidth, due to the lower loss rates.

4.4. Network 3

This network represents the future computational grid
between Los Alamos and Sandia National Laboratories.
The results are presented in Figure 6, again for bidirectional
traffic.
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Figure 6. Results for network 3

The figure with ”Data Acknowledged” on the dependent
axis presents two new features. First, � and � must oc-
casionally be set quite high for Vegas to outperform Reno.
Second, simply increasing � and � is sometimes insuffi-
cient to increase performance; for NPS traffic, Vegas per-
forms better with �*) � set at 75 and 80 than it does with
�*) � over-aggressively set at 1000 and 1100.

These values concur with the the heuristic used in the
prior section; setting � and � approximately equal to the
effective queue size, 
��� ������ would indicate setting �*) �
to be slightly less than

��� � �

 ���

� � � for fair competition
with Reno. Note that this is exactly what we see, for
� � � � ) � � �

�
. Unfortunately, due to the somewhat

chaotic feedback behavior of TCP [13], combined with a
random traffic generator, RED, and the high bandwidth of
the network, these values may need to be significantly in-
creased to make Vegas competitive. This is the case for
TCP with a Pareto traffic generator, most likely due to the
heavy-tailed nature of the distribution and the effects listed
in the prior subsection.

Recall that we only seek to show that Vegas is compet-
itive with Reno for some administratively set choice of pa-
rameters � and � . Once most TCP flows are TCP Vegas,

choosing parameters will be less of an issue [6, 9]. This is
also why we we present results at different values of these
parameters for each network.

As in the previous section, even when Vegas and Reno
achieve similar bandwidth, Vegas may give better overall
performance due to the extreme loss rates that Reno suffers.
These losses are due to Reno’s over-aggressive nature, in
particular its use of slow-start restart. Using slow start on
a chaotically congested network (also caused by TCP Reno
[13]) can lead to the loss of up to a full bandwidth-delay
product’s worth of packets. On this network, that is ��� � $
��� � � � � � � ��� �

worth of data. TCP Vegas avoids most
of these losses with a less aggressive slow start.

4.5. Network 4

We now consider the same computational grid as in the
prior section but with increased delay (in order to simulate
a more widely distributed grid).
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Figure 7. Results for network 4, high delay

All flows have problems with a large RTT. Although
mostly incomparable due to the selection of different � and
� parameters, the performance differences between figures



6 and 7 are still apparent. Careful study of these graphs
reveals several things.

For stable CBR traffic, the RTT is unimportant as TCP
does not have to respond to dramatic changes in network
state. The acknowledgement values are only slightly lower
than in the prior simulation, primarily due to the higher
amount of time required for the congestion window to grow
to appropriate values.

For Pareto and NPS traffic, we find poorer performance.
As in the prior section, TCP Reno and Vegas perform
similarly for values of � and � above 50. This is also
due to the high delay in the network; the performance of
TCP here is dominated by the flow-control behavior of
acknowledgement-based self-clocking and similar features
which are the same for all TCP algorithms. Performance
differences between Pareto and NPS traffic are obviously
due to the packet spacing. When an NPS flow begins trans-
mission, it may flood the network and lose many packets.
The distribution of packet arrival times in a Pareto flow
makes this less likely.

Other than the increased delay, this network is the same
as the prior network; meaning that the effective fair queue
size and choice of � and � parameters via our simple heuris-
tic remains the same. Indeed, the crossover point for Reno
outperforming Vegas to Vegas outperforming Reno is for �
and � near 89 packets.

We do not present results for that point, because only
slightly larger values are required to make Vegas compet-
itive with Reno. This is due to the increased delay in the
network; here the � & # � � 
$� '*) $ � !  �&�� product is:

��� � ����� � � $ 
 � ������� ����� 

�� 
 � $ � �
� �
� � $ 
 �
 ����� - � �

which, converted to packets (via 
 �� 
 $ 
���� �
 ������� ) gives a fairly
large value:

� � � � � & ' # !;' � � � � � 3�� � � � ��
�����

In all prior simulations, the value of � & # � � 
$� '*) $
� !; &�� ! #
	 � �6! ! � � �& �"� � was below 4 packets, meaning
that the only reason to increase the defaults of � � � and
� � � was to keep Reno from unfairly using bandwidth.
With this network, Vegas must also try to keep more pack-
ets queued in routers to effectively cope with the increased
delay in feedback information. Thus, for this network, �
and � must first be increased to cope with the high delay,
and then again to keep Reno from unfairly using bandwidth.
This leads to the values given above.

The link utilization in network 4 is significantly worse
than in network 3. Here the values are only 92% for CBR
traffic, 55% for Pareto traffic, and 32% for NPR traffic. The
latter numbers are unacceptably bad. Using all Vegas flows
would help solve this problem. Loss rates approximately
double due to the increased time it takes for a flow to re-
spond to changes in the network state; with TCP Reno los-

ing from 3-6% of its data precisely in those cases where
latency most matters (Pareto/NPS distributions).

5. Related Work

We made a few simplifying assumptions, with one in par-
ticular that should be removed in future work: we have only
tested traffic of a given type against traffic of that same type.
Real networks have multiple types of traffic in competition,
and we would like to test this — first by studying the rela-
tive proportion of various types on our network and then by
using that data in our simulations.

Other extensions of this work include developing a more
mathematical model of our systems to find provably opti-
mal values for � and � , using uncontaminated traffic traces
to drive simulations, or using implementations of Reno and
Vegas to emulate these networks. We are also looking at
ways to use ECN or other mechanisms to set � and � rather
than basing these values on information (the number of
flows in the network or the effective fair queue space) that
is difficult to infer.

6. Conclusion

Prior research has used carefully crafted examples to
study the performance of Reno or Vegas. In this paper, we
have generalized those examples and made them more real-
istic. We are confident that Vegas can and will effectively
compete with Reno in nearly all situations.

In particular, we showed how inappropriate the default
values of ����� and � � � are, explained their relationship
to variations in network and traffic parameters, and then dis-
cussed how to use the effective queue size to set these pa-
rameters to improve performance. We have also shown how
switching from Reno to Vegas will improve overall perfor-
mance. Given that TCP is ubiquitous in today’s networks,
these results lead us to believe that many would benefit from
more widespread adoption of TCP Vegas.
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