
On the Multi-Dimensional Acceleration of

Stochastic Blockmodeling for Community Detection

Frank Wanye

Dept. of Computer Science

Virginia Tech

Blacksburg, USA

wanyef@vt.edu

Wu-chun Feng

Dept. of Computer Science

Virginia Tech

Blacksburg, USA

wfeng@vt.edu

AbstractÐStochastic block partitioning (SBP) is a community
detection algorithm that is highly accurate even on graphs with a
complex community structure. However, SBP is much slower than
more commonly used algorithms, such as Louvain, making SBP
impractical for analyzing large real-world graphs with millions
of edges. Thus, we aim to realize fast and accurate community
detection on large graphs by accelerating the highly accurate
SBP algorithm via sampling, parallel and distributed computing
on a cluster as well as algorithmic optimization. We compare
our approach to other community detection algorithms, showing
that SBP accelerated with our methods on 64 compute nodes is
up to 1,163× faster than the official ªGraph Challengeº baseline
SBP implementation, while still being more accurate than the
Louvain and Leiden algorithms on large graphs.

Index TermsÐcommunity detection, graph analytics, stochastic
blockmodels, stochastic block partitioning, graph clustering

I. INTRODUCTION

Stochastic block partitioning (SBP) [1] is a community de-

tection algorithm based on inference over the degree-corrected

stochastic blockmodel (DCSBM). It is based on a Markov

chain Monte-Carlo inference method that minimizes the de-

scription length of the DCSBM. SBP is more accurate and less

prone to overfitting than the more commonly used modularity-

based methods. However, SBP is both slow and based on

the inherently sequential Markov chain Monte-Carlo (MCMC)

inference, making it hard to parallelize and thus limiting its

applicability to real-world graphs, which often have upwards

of millions of edges. Table I shows that while SBP is more

accurate than the Leiden community detection algorithm, it is

414× to 15,476× slower than SBP.

We present our work on accelerating SBP and making

it a more viable option for performing accurate commu-

nity detection on large graphs. We accelerate SBP through

sampling, parallel and distributed computing, and algorithmic

optimizations. We then compare our results against two SBP

implementations as well as the Louvain [2] and Leiden [3]

algorithms built on top of the igraph library [4]. By com-

bining all three acceleration methods we reduce the runtime

difference between SBP and Leiden on the 50k vertex graph

from 15,476× down to 4.5×, while still being more accurate

than Leiden.

This project was supported in part by NSF I/UCRC CNS-1822080 via the
NSF Center for Space, High-performance, and Resilient Computing (SHREC).

II. METHODS

Below we present our three strategies for accelerating SBP.

A. Data Reduction via Sampling

We develop a sampling framework called SamBaS [5], [6]

that (a) preserves community structure, (b) speeds up SBP, (c)

generates community detection on the entire graph, not just the

sampled portion, and (d) maintains, and in some cases, even

improves community detection accuracy over SBP without

sampling, given the right sampling parameters.

The method consists of four steps. In Step 1, a subgraph

is sampled using one of several vertex sampling algorithms.

Then, in Step 2, SBP is run on the sampled subgraph. In

Step 3, the community detection results from the sampled

subgraph are propagated to the rest of the graph based on

connectivity. Finally, in Step 4, the results are fine-tuned by

running the Metropolis-Hastings algorithm on the entire graph.

We find that the choice of sampling algorithm is greatly

influenced by the density and degree distribution of the graph.

B. Parallel and Distributed Computing

The asynchronous Gibbs algorithm [7] has been shown to

be an effective means of parallelizing MCMC methods when

the number of computational dependencies is low. However,

when applied to community detection, it often leads to a

drastic decrease in accuracy [8]. To that end, we develop

a lock-free hybrid shared-memory parallel algorithm [8]. It

estimates the information content [9] of a vertex based on

its degree and processes those vertices sequentially using

Metropolis-Hastings. Then, it processes the remaining vertices

using asynchronous Gibbs. Because real-world graphs usually

have a power-law degree distribution, the majority of vertices

are processed in parallel, accelerating the computation while

maintaining accuracy.

We then develop a distributed-memory parallel algorithm

that distributes our parallel SBP implementation across the

nodes of a cluster [10]. In this method, we duplicate the graph

data across all compute nodes, run the hybrid parallel approach

on distinct sets of vertices on each node, and utilize MPI all-

to-all communication primitives to synchronize the changes

to the blockmodel at the end of each iteration. To ensure

load balancing and an even distribution of highly informative

IEEE Cluster 2023 Santa Fe, NM



vertices across compute nodes, we assign vertices to compute

nodes based on their degrees.

C. Algorithmic Optimizations

We translate the ªGraph Challengeº [1] SBP implementation

from Python to C++ and then develop algorithmic optimiza-

tions to (a) improve the runtime of SBP and (b) improve the

accuracy of SBP when used in conjunction with parallel and

distributed computing methods.

The runtime optimizations include (a) utilizing disjoint sets

to perform block merges in approximately linear time, (b)

using a sparse vector of changes to the blockmodel to compute

changes in description length and update the blockmodel, (c)

storing a cache of precomputed log values, and (d) storing the

blockmodel matrix transpose for faster column-wise indexing.

Our first accuracy optimization is vertex-level batching to

increase the communication frequency in parallel and dis-

tributed SBP implementations, leading to less stale information

being used in internal computations. The second involves a

more accurate way to estimate the information content of a

vertex for the hybrid parallel algorithm. Instead of estimating

this value based on vertex degree as done in [8], we base this

estimate on the product of the degrees of the vertices that make

up the edges of the graph. This method is more consistent with

the findings in [9].

III. RESULTS

We combine all three acceleration methods described above

and compare the resulting accelerated SBP against five of the

official ªGraph Challengeº graphs with high overlap and high

block-size variation. We run our experiments on a 64-node

cluster equipped with 128-core AMD EPYC 7702 CPUs and

256 GB of RAM.

Table I summarizes our results in terms of both normalized

mutual information and the number of identified communities;

SBP is consistently more accurate than Louvain and Leiden.

We also show that our accelerated SBP is up to 1,163× faster

than the ªGraph Challengeº baseline. Thus, we reduce the

runtime difference between SBP and Leiden from 1,436× to

just 4.5× while still being more accurate than the latter on

larger graphs.

IV. CONCLUSION

We present our work toward accelerating highly accurate

community detection. We accelerate SBP - a highly accurate

community detection algorithm based on MCMC inference

- via sampling, parallel and distributed computation, and

algorithmic refinements. Used in combination, our methods

accelerate SBP by up to 1163× while maintaining an accuracy

advantage over Louvain and Leiden.

In future work, we plan to more thoroughly evaluate the

accuracy of SBP against other community detection methods

on a wide variety of synthetic and real-world graphs. We also

plan to improve the scalability of our approach by introducing

data distribution to our distributed SBP method and exploring

additional algorithmic refinements.

TABLE I
RESULTS ON SELECTED GRAPH CHALLENGE GRAPHS

Num. Vertices 1k 5k 50k 200k 1M

Algorithm Normalized Mutual Information

SBP (Graph Challenge) 0.79 0.87 0.92 - -
SBP (graph-tool [11]) 0.91 0.94 0.98 0.93 -
SBP (accelerated) 0.75 0.78 0.90 0.88 0.83
Louvain (igraph) 0.78 0.70 0.85 0.82 0.62
Leiden (igraph) 0.82 0.76 0.81 0.80 0.62

Algorithm Community Ratio1

SBP (Graph Challenge) 0.64 0.58 0.59 - -
SBP (graph-tool) 0.73 0.74 1.22 0.59 -
SBP (accelerated) 0.45 0.37 0.59 0.42 0.26

Louvain (igraph) 0.55 0.37 0.43 0.35 0.06
Leiden (igraph) 0.64 0.53 0.39 0.42 0.20

Algorithm Runtime (s)

SBP (Graph Challenge) 67 662 30952 - -
SBP (graph-tool) 5 18 602 6224 -
SBP (accelerated) 4 6 25 117 713
Louvain (igraph) < 1 < 1 4 47 297
Leiden (igraph) < 1 < 1 2 15 119

1 Community Ratio = Number of communities identified by algo-
rithm divided by the number of communities in ground truth. The
closer to 1.0, the better.

REFERENCES

[1] E. Kao, V. Gadepally, M. Hurley, M. Jones, J. Kepner, S. Mohindra,
P. Monticciolo, A. Reuther, S. Samsi, W. Song, D. Staheli, and
S. Smith, ªStreaming graph challenge: Stochastic block partition,º
in 2017 IEEE High Performance Extreme Computing Conference

(HPEC). Waltham, MA: IEEE, 9 2017, pp. 1±12. [Online]. Available:
doi.org/10.1109/HPEC.2017.8091040

[2] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, ªFast
unfolding of communities in large networks,º Journal of Statistical

Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, 10
2008. [Online]. Available: doi.org/10.1088/1742-5468/2008/10/P10008

[3] V. A. Traag, L. Waltman, and N. J. van Eck, ªFrom Louvain to
Leiden: guaranteeing well-connected communities,º Scientific Reports

2019 9:1, vol. 9, no. 1, pp. 1±12, 3 2019. [Online]. Available:
doi.org/10.1038/S41598-019-41695-Z

[4] G. CsÂardi and T. Nepusz, ªThe igraph software package for complex
network research,º InterJournal, vol. Complex Systems, p. 1695, 2006.
[Online]. Available: https://igraph.org

[5] F. Wanye, V. Gleyzer, and W.-c. Feng, ªFast Stochastic Block
Partitioning via Sampling,º in 2019 IEEE High Performance Extreme

Computing Conference (HPEC). Waltham, MA, USA: IEEE, 9 2019,
pp. 1±7. [Online]. Available: doi.org/10.1109/HPEC.2019.8916542

[6] F. Wanye, V. Gleyzer, E. Kao, and W.-c. Feng, ªSamBaS: Sampling-
Based Stochastic Block Partitioning,º arXiv, 8 2021. [Online]. Available:
doi.org/10.48550/arXiv.2108.06651

[7] A. Terenin, D. Simpson, and D. Draper, ªAsynchronous Gibbs
Sampling,º in International Conference on Artificial Intelligence and

Statistics. Palermo: PMLR, 6 2020, pp. 144±154. [Online]. Available:
doi.org/10.48550/arXiv.1509.08999

[8] F. Wanye, V. Gleyzer, E. Kao, and W.-c. Feng, ªOn the
Parallelization of MCMC for Community Detection,º in Proceedings

of the 51st International Conference on Parallel Processing. New
York, NY, USA: ACM, 2022, pp. 1±13. [Online]. Available:
doi.org/10.1145/3545008.3545058

[9] E. K. Kao, S. T. Smith, and E. M. Airoldi, ªHybrid Mixed-
Membership Blockmodel for Inference on Realistic Network
Interactions,º IEEE Transactions on Network Science and Engineering,
vol. 6, no. 3, pp. 336±350, 7 2019. [Online]. Available:
doi.org/10.1109/TNSE.2018.2823324

[10] F. Wanye, V. Gleyzer, E. Kao, and W.-c. Feng, ªExact Distributed
Stochastic Block Partitioning,º arXiv, 5 2023. [Online]. Available:
doi.org/10.48550/arXiv.2305.18663

[11] T. P. Peixoto, ªThe graph-tool python library,º figshare, 2014. [Online].
Available: doi.org/10.6084/m9.figshare.1164194

IEEE Cluster 2023 Santa Fe, NM


