
PaPar: A Parallel Data Partitioning Framework for Big Data Applications

Hao Wang∗, Jing Zhang∗, Da Zhang, Sarunya Pumma, Wu-chun Feng

Department of Computer Science, Virginia Tech, Blacksburg, VA USA
Email: {hwang121, zjing14, daz3, sarunya, wfeng}@vt.edu

Abstract—Today, big data applications can generate large-
scale data sets at an unprecedented rate; and scientists have
turned to parallel and distributed systems for data analysis.
Although many big data processing systems provide advanced
mechanisms to partition data and tackle the computational
skew, it is difficult to efficiently implement skew-resistant
mechanisms, because the runtime of different partitions not
only depends on input data size but also algorithms that
will be applied on data. As a result, many research efforts
have been undertaken to explore user-defined partitioning
methods for different types of applications and algorithms.
However, manually writing application-specific partitioning
methods requires significant coding effort, and finding the
optimal data partitioning strategy is particularly challenging
even for developers that have mastered sufficient application
knowledge.

In this paper, we propose PaPar, a Parallel data Partitioning
framework for big data applications, to simplify the imple-
mentations of data partitioning algorithms. PaPar provides a
set of computational operators and distribution strategies for
programmers to describe desired data partitioning methods.
Taking an input data configuration file and a workflow con-
figuration file as the input, PaPar can automatically generate
the parallel partitioning codes by formalizing the user-defined
workflow as a sequence of key-value operations and matrix-
vector multiplications, and efficiently mapping to the parallel
implementations with MPI and MapReduce. We apply our
approach on two applications: muBLAST, a MPI implementa-
tion of BLAST algorithms for biological sequence search; and
PowerLyra, a computation and partitioning method for skewed
graphs. The experimental results show that compared to the
partitioning methods of applications, the codes generated by
PaPar can produce the same data partitions with comparable
or less partitioning time.

Keywords-Partition; Skew; Big Data; MapReduce; MPI

I. INTRODUCTION

In the past decade, big data processing systems have

been gaining momentum; and scientists have turned to these

systems to process large scale and unprecedented data. Most

of these systems provide advanced mechanisms to tackle

the load imbalance (a.k.a skew), which is a fundamental

problem in parallel and distributed systems. For example,

MapReduce [5] and its open source implementation Apache

Hadoop provide the speculative scheduling to replicate last

few tasks of a job on different compute nodes. Many

mechanisms, including [34], [2], [18], [25], [9], [16], [3],

[29], are also proposed to mitigate skew by optimizing task

∗Hao Wang and Jing Zhang have contributed equally to this work.

scheduling, data partitioning, job allocation, etc. Although

these runtime methods are able to handle skew to a certain

extent and do not require the code modification on appli-

cations, they can not get optimal application performance,

because the runtime of application not only depends on input

data size but also algorithms that will be applied on data.

Therefore, many research efforts have been taken to explore

the application-specific partitioning methods, including [1],

[19], [17], [4], [37]. However, manually writing application-

specific partitioning codes requires huge coding efforts.

More challenging is the truth that finding the optimal data

partitioning strategy is hard even for developers having

adequate application knowledge, leading to the iterative and

incremental development of design, evaluation, redesign,

reevaluation, and so on.

In this paper, we target the complexity of developing

application-specific data partitioning algorithms and propose

PaPar, a parallel data partitioning framework for big data

applications, to simplify their implementations. We identify

a set of common functionalities used in data partitioning

algorithms, e.g., sort, group, distribute, etc., and put them

into PaPar as the building blocks of computational operators

and distribution strategies. We provide a set of interfaces to

construct the workflow of partitioning algorithms with these

operators. PaPar can parse the configurations of input data

types and workflow jobs, generate the parallel codes after

formalizing the workflow as a sequence of key-value oper-

ations and matrix-vector multiplications. Finally, PaPar will

map the workflow sequence to the parallel implementations

with MPI and MapReduce.

In our evaluation, we use two applications as the case

studies to show how to use PaPar to construct user-defined

partitioning algorithms. The first driving application is

muBLAST [35], a MPI implementation of BLAST algo-

rithms for biological sequence search. The second is Power-

Lyra [4], a computation and partitioning method for skewed

graphs. We conduct our experiments on a cluster with 16

compute nodes. The experimental results show that the code

generated by PaPar can produce the same partitions as the

applications but with less partitioning time. Compared to the

multithreaded implementation of muBLASTP partitioning,

PaPar can achieve up to 8.6-fold and 20.2-fold speedups

for two widely used sequence databases. Compared to the

parallel implementation of PowerLyra partitioning, PaPar

can also deliver comparable performance for different input

2017 IEEE International Parallel and Distributed Processing Symposium

1530-2075/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPS.2017.119

605

IEEE IPDPS, Orlando, Florida, USA, May, 2017

graphs.

II. BACKGROUND AND MOTIVATION

In this section, we first describe our driving applications,

summarize the common functionalities needed in their data

partitioning, and then discuss our motivation and design

requirements.

A. Driving Applications

muBLASTP: BLAST is a fundamental Bioinformatics

tool to find the similarity between sequences. muBLASTP

is a MPI implementation of BLAST for protein sequences.

By building the index for each database partition instead

of input queries and optimizing the search algorithms with

spatial blocking through memory hierarchy, muBLASTP can

achieve better performance than the widely used BLAST

implementations, e.g., mpiBLAST [20]. The performance of

muBLASTP is sensitive to the partitioning methods: because

of the nature of heuristics in the search algorithms, the

runtime of sequence search depends on the distribution of

sequence lengths more than the total size of each partition.

The optimized partitioning method [36] tries to satisfy:

(1) database partitions have similar numbers of sequences,

(2) database sequences having the similar encoded length

are distributed to different partitions, and (3) the sizes of

encoded sequence data in partitions are similar. Figure 1

illustrates such an implementation. This method manipulates

a four-tuple index that represents the encoded sequence

pointer, the encoded sequence length, the description pointer,

and the description length for each sequence. The parti-

tioning method first sorts the index based on the encoded

sequence length, and then distributes sequences to different

partitions with a cyclic manner.

Figure 1: The partitioning method in muBLASTP: sort and distribute
sequences based on the encoded sequence length.

PowerLyra: PowerLyra is a graph computation and parti-

tioning engine on skew graphs. Other than the vertex-cut and

edge-cut partitioning methods, PowerLyra provides a hybrid

method to partition graph data. It first does the statistics to

generate a user-defined factor, e.g., vertex indegree or out-

degree, then splits vertices to a low-cut group and a high-cut

group based on this factor, and applies different distribution

policies on each group. Integrated with GraphLab [22], Pow-

erLyra can bring significant performance benefits to many

graph algorithms, e.g., PageRank, Connected Components,

etc. Figure 2 from [4] shows this hybrid-cut method. In this

case, PowerLyra uses the vertex indegree to divide the low-

cut group and high-cut group with a predefined threshold.

For the low-cut group, PowerLyra evenly assigns a vertex

with all its edges (in-edges) to a partition; and for the high-

cut group, PowerLyra distributes edges of each vertex to

different partitions.

Figure 2: The hybrid-cut in PowerLyra: count vertex indegree, split vertices
to the low-cut group and high-cut group; for the low-cut, distribute a vertex
with all its in-edges to a partition, and for the high-cut, distribute edges of
a vertex to different partitions.

B. Motivation

These driving applications illustrate the application-

specific methods are necessary for better performance and

scalability, even if the underlying systems provide the data

partitioning methods. We also observe that there are several

common functionalities used in these two applications to

partition data, e.g., the sort operation: muBLASTP needs to

sort sequences (as the value) by the encoded sequence length

(as the key), and PowerLyra may group the edges belonging

to a same in-vertex (as the value) and sort them by the

vertex indegree (as the key). Therefore, our motivation is to

design a framework to provide such common functionalities

and simplify the implementations of application-specific

partitioning algorithms. This task is not straightforward:

even if the same functionality is needed, the requirements

on these functionalities are quite different. For example,

for the sort operation, the key and value in muBLASTP

can be obtained from input data, i.e., the encoded sequence

length and the sequence entry; while in PowerLyra, neither

the key (the vertex indegree) nor the value (the grouped

edges belonging to a same in-vertex) can be retrieved from

input. As a result, the framework must have the capability

to concatenate multiple operators, add/delete data attributes,

and change data formats on demand. We summarize the

design requirements:

Correctness: The framework needs to generate the user-

defined partitioning codes. For the same input data, the

partitions produced by the framework should be the same

to those generated by the original partitioning algorithms.

Comprehensiveness: The framework needs to provide ade-

quate building blocks to construct user-defined partitioning

algorithms, and be able to extend more building blocks

as well. Other than the key-value concept for unstruc-

tured data, the framework also needs to provide easy to

606

IEEE IPDPS, Orlando, Florida, USA, May, 2017

use interfaces to define multiple data types, considering

many scientific applications manipulate structured and semi-

structured data. Not only processing data from the input

file, the framework also needs to support the in-memory

data partitioning, because the intermediate data may need

repartitioning and redistribution at runtime. Efficiency: The

generated partitioning codes should be optimized to avoid

data partitioning to be a performance bottleneck. Therefore,

the framework needs to adopt the sophisticated techniques

from recent research.

III. METHODOLOGY

Figure 3 shows the high-level architecture of our frame-

work. The user interfaces are two configuration files. One is

to describe the input data format, and the other is to describe

the computational operations in the user-defined partitioning

algorithm. By parsing the input data configuration and the

workflow configuration, the framework can understand the

data structure and set corresponding keys and values for

each operation listed in the workflow. Users are allowed to

register their own computational operator as a new building

block by inheriting the Operator class and implementing the

functionality, which will be discussed in Section III-B. The

PaPar framework will generate the workflow which will be

launched as a sequence of jobs at runtime.

A. Interface for Data Types

To read the structured data, MapReduce framework, e.g.,

Hadoop, provides a base class to unify the user interface:

users need to implement their own parser for the input

data structure by inheriting the Hadoop InputFormat class.

In this class, users need to implement getSplits method

to split the input file and generate a list of data blocks,

each of which will be assigned to an individual mapper at

runtime. Users also need to implement the getRecordReader
method to extract individual input elements (records) from

each split, and set the key and value for the mapper.

Although many research projects [28], [14], [15], [31], [23],

[32] have leveraged this mechanism to process structured

data on MapReduce, and we also support this mechanism

in PaPar, we prefer a programming-free method as the

interface for user-defined data structures. We provide the

InputData configuration file to allow users to describe their

data structures.

Figure 4 shows the example how to describe the BLAST

sequence index. The input_format and start_position sec-

tions indicate that BLAST sequence file is a binary file,

and the index data starts at 32 bytes. The element section

describes the index data structure consisting of four integers:

seq_start, seq_size, desc_start and desc_size. According to

the configuration file, the parser of PaPar will tell the

InputFormat class to skip the first 32 byte of the file, and

treat every 16 bytes (4 bytes/integer * 4 integers) as an entry.

Figure 5 shows the example for the text format used in

Figure 3: The high-level architecture of PaPar framework

PowerLyra. The element section indicates that each element

represents an edge from vertex_a to vertex_b, separated by

the Tab character "\t" and ended with the Enter character

"\n". Similarly, the InputFormat class will treat each line in

the text file as an entry, and fill two characters in each line

to a two-tuple. Note that for derived data types, users may

need to declare the nested elements in the configuration file.

By providing such a configuration file as an interface, PaPar

can support different input data types.

1 <input id="blast_db" name="BLAST Database file">
2 <input_format>binary</input_format>
3 <start_position>32</start_position>
4 <element>
5 <value name = "seq_start" type = "integer"/>
6 <value name = "Seq_size" type = "integer"/>
7 <value name = "desc_start" type = "integer"/>
8 <value name = "desc_size" type = "integer"/>
9 </element>

10 </input>

Figure 4: Data type description for BLAST index

1 <input id="graph_edge" name="edge lists">
2 <input_format>text</input_format>
3 <element>
4 <value name = "vertex_a" type = "String"/>
5 <delimiter value="\t"/>
6 <value name = "vertex_b" type = "String"/>
7 <delimiter value="\n"/>
8 </element>
9 </input>

Figure 5: Data type description for graph data

B. Operators

We define a set of operators as the building blocks to

implement the workflow of desired partitioning algorithms.

Users can construct a workflow through the Workflow con-

figuration file. For a data partitioning program, we observe

that the input and output data formats are usually same,

while the formats of intermediate data during partitioning

may be different. For example, as discussed in Section II-B,

607

IEEE IPDPS, Orlando, Florida, USA, May, 2017

the PowerLyra hybrid-cut will count the vertex indegree,

which is a new attribute. Based on the behaviors of operators

on input data, we define three types of operators. First,

the Basic operators, e.g., sort, distribute, split, group, etc.,

will reorder input data but not add or delete any attribute.

For example, the sort operation will move entries from

one compute node to another but keep data unchanged.

Although multiple basic operators are usually concatenated

to construct a workflow, a single basic operator can also

be treated as a complete workflow. Second, the Add-on
operators, e.g., count, max, min, mean, sum, etc., will add or

delete data attributes. Different with the basic operators, the

add-on operators themselves can not construct a workflow or

a job in the workflow. They need to cooperate with the basic

operators. Third, the Format operators, e.g., orig, pack, and

unpack, can change the data format, but not reorder data or

add/delete any attribute. Note that the input and output data

discussed in this section refers to the input and output of an

operator instead of the input and output files of a partitioning

program.

Table I shows the details of the operators. Most of them

will set one field of input data (or intermediate data) as the

key and do the computation following the key-value concept.

We will present more details with the driving applications in

Section III-C. In this paragraph, we focus on the policy pa-

rameter used in distribute, which is an operator not following

the key-value concept. In a partitioning algorithm, an entry

from the input file is usually put into one partition of output.

Although sometimes one entry may be put into multiple

partitions for better performance or fault tolerance [8], we

discuss the one-to-one mapping like the perfect hash in this

paper. We design two basic types of policies, i.e., cyclic

and block. The partitioning algorithms generated by PaPar

will read the parameters policy and numPartitions from the

configuration file at runtime, and formalize the policy to a

matrix-vector multiplication operation. We borrow the idea

of a domain-specific language (DSL) [7] to define a policy

as a permutation matrix: Lkm
m , xik+j �→ xjm+i, 0 � i <

m, 0 � j < k, which performs a stride-by-m permutation

on a vector x having km items. In the distribution policy,

x is the input data represented as a vector having km
entries, and m is the stride to permute entries. Figure 6(a)

illustrates the example to permute 4 entries with the stride 2

in the cyclic manner. The corresponding permutation matrix

is L4
2. Figure 6(b) illustrates the example for the block

policy, which will not permute entries and the matrix is L4
4.

After the permutation, the contiguous data will be sent to

2 partitions for the distribution. The benefit of using the

permutation matrix is to decouple the distribution policies

from the workflow when PaPar generates the codes: at

the time of code generation, it is not necessary to bind a

distribution policy; and at runtime, the parameters policy
and numPartitions will be processed and the permutation

matrix will be generated, while the codes of the distribution

operator are not changed. At runtime, the matrix-vector

multiplication is enforced by multiple mappers in parallel

and each mapper only processes its local data distribution

based on the multiplication result.

(a) Cyclic matrix L4
2 (b) Block matrix L4

4

Figure 6: Formalize the distribution polices to matrix-vector multiplication

Though the operators listed in the table are sufficient for

most cases, PaPar allows users to define their own operators.

Users need to inherit one of these three operator classes, and

provide a configuration file to describe the operator. Figure 7

shows an example of customized sort. The user needs to

specify the class and argument types to tell the framework

how to invoke it.

1 <prog id="Sort" type="operator"
2 name="MapReduce sort operator">
3 <import classpath="/user/mr/sort"
4 package="com.mr.sort" class="Sort"/>
5 <arguments>
6 <param name="inputPath" type="String"/>
7 <param name="outputPath" type="String"/>
8 <param name="keyId" type="KeyId"/>
9 <param name="ascending" type="boolean"

10 default="true"/>
11 </arguments>
12 </prog>

Figure 7: Configuration file for sort operator

C. Case Studies

To demonstrate the capability and usability of PaPar, we

use muBLASTP and PowerLyra as the case studies.

muBLASTP: Figure 8 shows the workflow configuration

file of muBLASTP partitioning. Three parameters listed in

the argument section are the input file name, the output file

name, and the number of partitions. Two operators sort and

distribute are defined, each of which will be mapped to a job.

We use the symbol $ to represent the variable coming from

intermediate data. For example, for the operator distribute,

its input comes from the output of operator sort, which

is labeled as "$sort.outputPath" in the configuration. The

optional parameter num_reducers is used to launch reducers

at runtime. Each operator can use a parameter defined in

the workflow arguments or overwrite it in its own parameter

section.

Figure 9 illustrates the workflow of muBLASTP parti-

tioning, which sorts input by the encoded sequence length

and then distributes elements evenly to multiple partitions

with the cyclic policy. This figure follows the MapReduce

style. In the figure, the left most part shows the index data

of muBLASTP. Two jobs are launched in the workflow. The

sort job sorts entries by using the sequence length seq_size.

608

IEEE IPDPS, Orlando, Florida, USA, May, 2017

Table I: Operators of PaPar workflow

Basic Operator

Sort(String inputPath, String outputPath, Class<?> inputFormat, Class<? extends Format> outputFormat, ValueId key, int flag, Class<? extends
AddOn> addOn)
Sort data with the given key. inputPath: path of input. ouputPath: path of output. inputFormat: the format of input data. outputFormat: the format of
output data. key: key to sort input data. flag: pre-defined sorting type; -1: ascending, 1: descending. addOn: add-ons.

Group(String inputPath, String outputPath, Class<?> inputFormat, Class<? extends Format> outputFormat, ValueId key, Class<? extends AddOn>
addOn)
Group data with the given key. inputPath: path of input. ouputPath: path of output. inputFormat: the format of input data. outputFormat: the format
of output data. key: key to group input data. addOn: add-ons.

Split(String inputPath, List<String> outputPathList, Class<?> inputFormat, List<? extends Format> outputFormat, ValueId key, SplitPolicy policy,
Class<? extends AddOn> addOn)
Split data with the given split operation and key. inputPath: path of the list of inputs. outputPathList: file list for outputs. inputFormat: the format of
the input data. outputFormat: the format of the output data. key: key for splitting. policy: the policy for splitting data. addOn: add-ons.

Distribute(String inputPath, String outputPath, Class<?> inputFormat, Class<? extends Format> outputFormat, DistrPolicy policy, int numPartitions,
Class<? extends AddOn> addOn)
Distribute data with the given policy. inputPath: path of input. ouputPath: path of output. inputFormat: the format of input data. outputFormat: the
format of output data. policy: policy of distribution: cyclic and block. numPartitions: number of partitions. addOn: add-ons.

Add-on Operator

count(List<T> elements, ValueId key) Count the number of elements with the specific key.

max(List<T> elements, ValueId value) Get the maximum of the specific values of elements.

min(List<T> elements, ValueId value) Get the minimum of the specific values of elements.

mean(List<T> elements, ValueId value) Get the average of the specific values of elements.

sum(List<T> elements, ValueId value) Get the sum of the specific values of elements.

Format Operator

orig(List<T> keyVale) (default) Output data with the input format.

pack(List<T> keyVale) Output data with the packed format.

unpack(List<T> keyValue) Output data with the unpacked format.

The mappers will shuffle key-value pairs to different re-

ducers according to the range of keys, which is sampled

when reading the input. The data sampling will be discussed

in Section III-D. In this case, as an example, the entries

having the key seq_size ranging from 90 to 95 are assigned

with the reduce-key "1", and then shuffled to the reducer

"1". The reducers will sort entries by the key seq_size and

write output data after removing the temporary reduce-key,

because the basic operators will only reorder data but not

change data as the definition.

The distribute job will distribute entries with the cyclic

policy. The mappers will enforce the cyclic policy by ap-

plying the matrix-vector multiplication in parallel. In this

case, each mapper knows there are 4 entries at local and

3 partitions for the output. Therefor, the permutation matrix

L4
3 is generated to permute the entires locally. After that, the

mapper will distribute the entries to corresponding partitions.

For example, the mapper "0" will send the entries "0" {566,

51, 490, 120}, "3" {1041, 79, 1107, 76} to the partition

"0", the entry "1" {783, 64, 799, 91} to the partition

"1", and so on. Because a reducer is launched to write

data for a partition, the reducer id is used as the reduce-

key. The reducers of the distribute job will write data to

the output after removing the temporary reduce-key. Note

that, some applications may need to adjust output data.

For example, muBLASTP needs to recalculate the start

pointers of sequence data and description data. This process

has been implemented as a user-defined add-on operator.

The algorithm recalculating the muBLASTP index has been

discussed in [36], and we skip the details in this paper.

PowerLyra: As introduced in Section II-A, the hybrid-cut

of PowerLyra will generate the new attributes and use them

as the key and value of corresponding operators. Figure 10

shows the configuration file, which concatenates three basic

operators group, split, and distribute in the workflow.

Figure 10 shows the details. The input data represents

edges, i.e., vertex_a → vertex_b). The group job uses out-

vertex vertex_b as the key to group edges in the map stage,

and uses the add-on operator count to add a new attribute on

each edge, i.e., vertex indegree, and uses the format operator

pack to pack output data in the reduce stage. The split job

then splits the packed entries based on the key indegree,

which is the new attribute added by the add-on operator

count. The split operator will send the entries which indegree
are larger than or equal to threshold, i.e., 4 in this example, to

the high-degree output, and others to the low-degree output.

Note that, for the high-degree output, the format operator

unpack is used to unpack data from the packed organization

(as shown in the step 5 in the figure). The third job distribute
will then operate on two different formats of intermediate

609

IEEE IPDPS, Orlando, Florida, USA, May, 2017

1 <workflow id="blast_partition"
2 name="BLAST database partition">
3 <arguments>
4 <param name="input_path" type="hdfs"
5 format="blast_db"/>
6 <param name="output_path" type="hdfs"
7 format="blast_db"/>
8 <param name="num_partitions" type="integer"/>
9 <param name="num_reducers" type="integer"

10 value="3"/>
11 </arguments>
12 <operators>
13 <operator id="sort" operator="Sort"
14 num_reducers="$num_reducers">
15 <param name="inputPath" type="String"
16 value="$input_path"/>
17 <param name="ouputPath" type="String"
18 value="/user/sort_output"/>
19 <param name="key" type="KeyId"
20 value="seq_size"/>
21 </operator>
22 <operator id="distr" operator="Distribute">
23 <param name="inputPath" type="String"
24 value="$sort.ouputPath"/>
25 <param name="outputPath" type="String"
26 value="$output_path"/>
27 <param name="distrPolicy" type="DistrPolicy"
28 value="roundRobin"/>
29 <param name="numPartitions" type="integer"
30 value="$num_partitions"/>
31 </operator>
32 </operators>
33 </workflow>

Figure 8: Configuration file for muBLASTP

data and generate two permutation matrices, i.e., L4
3 for the

high-degree and L3
3 for the low-degree. Note that L3

3 in this

case happens not to permute data, because there are 3 entries

for 3 partitions. In a general case, LM
N will enforce the cyclic

distribution when M is larger than N. As the distribute is the

last step in the workflow, all data will be unpacked to make

sure the output has the same format of input.

D. Implementations

We map our framework on top of Apache Hadoop (2.7.0),

MapReduce-MPI (abbr. MR-MPI) [24], and MPI. The in-

terfaces of first two MapReduce systems are similar. On

Hadoop, we implement the interfaces of processing struc-

tured data by inheriting InputFormat class. We implement

those operators in Java, and generate Hadoop jobs for the

workflow. On MR-MPI, an open-source C++ implementa-

tion of MapReduce on MPI, we use C++ to implement

mappers and reducers by calling MR-MPI interfaces. The

MR-MPI library can help us to hide the details of MPI based

data shuffle and synchronization. On MPI, we currently

use MPI non-blocking interfaces (Isend, Irecv, and Wait)

to implement the data shuffle. During the execution of a

PaPar-generated partitioner, the jobs are launched one by one

following the order defined in the workflow configuration

file. Several important techniques are also implemented as

below:

Code Generation: We implement a parser to parse the

configuration files and generate the Hadoop or MPI based

partitioner by directly calling the backend implementations

of operators. This method has been widely used in the

code generation from a higher-level description to a lower-

level implementation, e.g., from SQL to MapReduce jobs

in Apache Hive [13], from SQL to GPU kernels [33], from

DSL to SIMD implementations of sorting networks [12],

etc. We plan to use an internal representation (IR) [6] to

decouple the binding between the frontend and the backend

in the future work.

Data Sampling: We implement the data sampling to

balance the workload for the reduce stage. For example, for

the sort operator, the temporary reduce-key corresponding

to the range of input data is needed. In order to avoid the

imbalance on reducers, we follow the mechanisms proposed

in [9] to sample data on every node and approximate to

the global data distribution. Based on the distribution of the

user-set key and the number of reducers, we set the proper

data range for each temporary reduce-key.

Data Compression: This optimization is used to com-

press the packed data. As shown in the hybrid-cut of Pow-

erLyra, the group operator will call the pack operator to pack

edges having the same in-vertex, resulting in the redundant

data in this packed format. As shown in Figure 11, after the

step 3, the reducer 0 has the packed data as {{2, 1, 4}, {3,

1, 4}, {4, 1, 4}, {5, 1, 4}}, and the redundant data is 1. This

optimization uses the Compressed Sparse Row (CSR) and its

transposition Compressed Sparse Column (CSC), which are

widely used in sparse matrix computations [30], [21], [27],

to compress data. In this case, the CSC format {0, {2, 3, 4,

5}, {4, 4, 4, 4}} is used: 0 is the start pointer of the in-vertex

1, the first vertex in the graph; {2, 3, 4, 5} is the out-vertex

id array, and {4, 4, 4, 4} is the value array. Because the

value array may include different values (depending on the

algorithm to generate the attribute), we do not compress

the value array to keep the generality. This optimization

can improve the data communication performance, while it

highly depends on the input data. We have observed up to

13% improvement for the graph datasets in our evaluation.

IV. EXPERIMENTS

A. Experimental Setup

We conduct our evaluations on a homogeneous cluster

consisting of 16 compute nodes. Each node has two 8-

core Intel Xeon E5-2670 (Sandy Bridge) CPU running at

2.60 GHz, 64 GB memory, and 512 GB local disk. These

nodes are linked by 10Gbps Ethernet and a Quad Data Rate

(QDR) InfiniBand interconnect. Because both muBLASTP

and PowerLyra are implemented in C++, we map PaPar

on MR-MPI that leverages the MapReduce concept and the

in-memory communication on MPI to provide comparable

performance. All codes are compiled with MVAPICH2

library (version 2.2) and GCC 4.5.3. In all experiments, the

execution time is the average time of five runs without I/O

time.

610

IEEE IPDPS, Orlando, Florida, USA, May, 2017

Figure 9: The workflow of muBLASTP data partitioning. The Sort job will sort the index elements by the user-defined key seq_size (in the dashed boxes),
including: (1) mappers will shuffle data to reducers with the sampled reduce-key; (2) reducers will sort data by the key seq_size; (3) store data by removing
the reduce-key. The Distribute job will distribute the sorted elements to partitions with the cyclic policy, including: (4) mappers will shuffle data to reducers
with the generated reduce-key (reducer id); (5) remove the temporary reduce-key.

1 <workflow id="hybrid_cut" name="Hybrid-cut">
2 <arguments>
3 <param name="input_file" type="hdfs"
4 format="graph_edge"/>
5 <param name="output_path" type="hdfs"
6 format="graph_edge"/>
7 <param name="num_partitions" type="integer"/>
8 <param name="threshold" type="integer"/>
9 </arguments>

10 <operators>
11 <operator id="group" operator="group">
12 <param name="inputPath" type="String"
13 value="$input_file"/>
14 <param name="outputPath" type="String"
15 value="/tmp/group" format="pack"/>
16 <param name="key" type="KeyId"
17 value="vertex_b"/>
18 <addon operator="count" key="vertex_b"
19 attr="indegree"/>
20 </operator>
21 <operator id="split" operator="Split">
22 <param name="inputPath" type="String"
23 value="$sort.outputPath"/>
24 <param name="outputPathList"
25 type="StringList"
26 value="/tmp/split/high_degree,
27 /tmp/split/low_degree"
28 format="unpack,orig"/>
29 <param name="key" type="KeyId"
30 value="$group.$indegree"/>
31 <param name="policy" type="SplitPolicy"
32 value="{>=,$threshold},
33 {<,$threshold}"/>
34 </operator>
35 <operator id="distr" operator="Distribute">
36 <param name="inputPath" type="String"
37 value="/tmp/split/">
38 <param name="outputPath" type="String"
39 value="$output_path"/>
40 <param name="policy" type="distrPolicy"
41 value="graphVertexCut"/>
42 <param name="numPartitions" type="integer"
43 value="$num_partitions"/>
44 </operator>
45 </operators>
46 </workflow>

Figure 10: Configuration file for PowerLyra hybrid-cut

In the muBLASTP experiments, two partitioning methods

are generated by PaPar. One is the default method to keep

the number of sequences in partitions similar. We label it as

"block". The other is the optimized method that will sort the

index and distribute the sequences in a cyclic manner. We

label it as "cyclic". We use two popular protein databases

as the test datasets: env_nr database and nr database. The

env_nr database consists of about 6,000,000 sequences with

the total size at 1.7 GB, and the nr database has over

85,000,000 sequences with the size at 53 GB. Most of the

sequences in two databases are less than 100 letters. We

follow the experimental setups in [35] to randomly pick up

sequences from corresponding databases to construct three

batches, each of which includes 100 sequences. In the batch

"100" and "500", all sequences are less than 100 and 500

letters, respectively; and for the "mixed" batch, we randomly

select 100 sequences without the limitation of length.

In the PowerLyra experiments, we generate codes for three

types of partitioning methods, "edge-cut", "vertex-cut", and

"hybrid-cut" shown in Figure 2 . We choose PageRank as

the test algorithm, which computes the rank of vertices in

a graph. We use the snapshot version of PowerLyra with

the tuned command line parameters downloaded from the

PowerLyra website. The threshold parameter of hybrid-cut

is set to 200 to divide the vertices into the low-cut or high-

cut group. We choose three graph datasets: Google, Pokec
and LiveJournal, from SNAP [26]. The datasets are stored

in the EdgeList format as shown in Figure 5. Table II shows

the statistics of these datasets.

Table II: Statistics of graph datasets

Graph Vertices Edges Type Triangles
Google 875713 5105039 Directed 13391903

Pokec 1632803 30622564 Directed 32557458

LiveJournal 4847571 68993773 Directed 177820130

In our evaluations, we first compare the partitions gener-

ated by PaPar and by the partitioning programs of driving

applications. The results show that PaPar can produce the

same partitions as the driving applications. After that, we

present the performance numbers, including the execution

time of applications with different partitioning algorithms,

611

IEEE IPDPS, Orlando, Florida, USA, May, 2017

Figure 11: The workflow of PowerLyra hybrid-cut algorithm. The Group job will group the edges by in-vertex, including: (1) mappers will shuffle data
to reducers by setting the in-vertex id as the reduce-key; (2) the add-on operator count will add a new attribute indegree for each edge; (3) the format
operator pack will change the output format to the packed one. The Split job will split data into two groups, including: (4) based on the split condition in
the configuration file (indegree is larger than or equal to 4 in this case), mappers will set the reducer id as the temporary reduce-key and shuffle data to
reducers; (5) based on the different formats of output files, the unpack operator is applied on the high-degree part to unpack the data format. The Distribute
job will distribute the entries in the cyclic manner, including: (6) mappers will shuffle data to reducers by setting the reducer id as the reduce-key; (7)
reducers will remove the temporary reduce-key.

the partitioning time on the given input data sets, and the

scalability on multiple compute nodes.

B. Evaluation of BLAST Database Partitioning

Figure 12 shows the normalized execution time of

muBLASTP search for three batches on 8 and 16 compute

nodes with the cyclic and block polices. muBLASTP follows

the MPI + OpenMP programming model, and the best

performance can be achieved when binding a MPI process

to one CPU (socket) and launch multiple OpenMP threads

(8 on our Intel Sandy Bridge CPU) in one MPI process.

As a result, on 8 nodes, we produce 16 (8 * 2) partitions;

and on 16 nodes, the partition number is 32 (16 * 2).

In these figures, the cyclic policy is the clear winner that

can bring obvious performance benefits to muBLASTP, no

matter which combination of database and batch is used.

We also observe that the cyclic policy can achieve more

performance benefits for the larger batch, i.e. the batch

"500". That means the skew is more significant for the longer

queries because they have relatively longer search time.

Because the cyclic policy can deliver better performance

to muBLASTP search, we compare the partitioning time of

PaPar and default muBLASTP partitioning for this policy.

Figure 13(a) shows the normalized partitioning time on 16

nodes for the env_nr and nr databases, respectively. Because

the current implementation of muBLASTP partitioning only

provides a multithreaded method for the input database [35],

it can not scale out on 16 nodes. On the contrary, PaPar

can map to MapReduce and MPI implementations, and

scale on multiple compute nodes. As shown in the figure,

PaPar can achieve 8.6x and 20.2x speedups over default

muBLASTP partitioning on 16 nodes for two databases,

respectively. Note that even on a single compute node, PaPar

is faster, thanks to ASPaS [12], a highly optimized mergesort

implementation on multicore processors. We used it in

the sort operator implementation. Figure 13(b) shows the

scalability up to 16 nodes. Compared to its own single node

(a) env_nr database on 8 nodes (b) env_nr database on 16 nodes

(c) nr database on 8 nodes (d) nr database on 16 node

Figure 12: Normalized execution time of muBLASTP with the cyclic
partitioning and block partitioning (normalized to cyclic) on env_nr and
nr databases.

implementation, PaPar can obtain 7.9x and 14.3x speedups

for the nr and evn_nr databases, respectively.

C. Evaluation of Hybrid-Cut Graph Partitioning

Figure 14 shows the normalized execution time of PageR-

ank with "hybrid-cut", "edge-cut", and "vertex-cut" on 8 and

16 nodes. The hybrid-cut can deliver the best performance

as we expected. The vertex-cut distributes a vertex with all

its in-edges to a partition, which favors the vertices having

low-degrees. Because the three datasets in our experiments

follow the power law distribution that have much more low-

degree vertices, the vertex-cut, instead of the edge-cut, has

the closer performance to the hybrid-cut.

612

IEEE IPDPS, Orlando, Florida, USA, May, 2017

(a) Partitioning time on 16 nodes (b) Scalability (up to 16 nodes)

Figure 13: Partitioning time (cyclic) for env_nr and nr databases, and
strong scalability of codes generated by PaPar, compared to muBLASTP
partitioning program.

(a) PageRank running on 8 nodes (b) PageRank running on 16 nodes

Figure 14: Normalized execution time of PageRank (with PowerLyra) for
hybrid-cut, edge-cut, and vertex-cut (normalized to hybrid-cut).

Figure 15(a) shows the normalized partitioning time of

PaPar codes and PowerLyra on 16 nodes for the hybrid-

cut. On the Google and Pokec datasets, PowerLyra has the

better performance; while PaPar can deliver 1.2x speedup on

the LiveJournal dataset. There are several reasons leading to

the variable performance comparison. PaPar is mapped on

MR-MPI to balance the programmability and performance

but without those optimizations on multicore processors

used by PowerLyra, e.g., the NUMA-aware data access.

Therefore, PowerLyra is faster for the small and medium

datasets, where the single node performance counts more.

However, such a benefit is offset in the communication

intensive case on multiple nodes. Although PowerLyra is

integrated with GraphLab on top of MPI, its data shuffle is

still based on the socket communication on Ethernet. On the

contrary, PaPar maps to MR-MPI that uses MPI instead of

socket communication. In our experiments, the MVAPICH2

library can use Remote Direct Memory Access (RDMA)

communication on InfiniBand to improve the performance.

Furthermore, PowerLyra uses the dynamic approach that cal-

culates scores for low-degree vertices in each partition. This

method introduces additional overhead, especially for graphs

which vertices cluster together, e.g., the LiveJournal dataset.

Figure 15(b) also demonstrates the variable performance.

PowerLyra can scale up to 8 and 16 nodes for the Pokec

and LiveJournal datasets, respectively, but cannot scale on

multiple nodes for the Google dataset; while, PaPar can scale

up to 16 nodes for all three datasets.

(a) Partitioning time on 16 nodes (b) Scalability (up to 16 nodes)

Figure 15: Partitioning time (hybrid-cut) and strong scalability of codes
generated by PaPar framework, compared to PowerLyra.

V. RELATED WORK

Over the past few years, many efforts have been taken

to explore the skew problem. The speculative scheduling

is the basic method of MapReduce that can speculatively

relaunch last few tasks on other nodes. Late [34] specula-

tively launches tasks having the longest estimation remaining

time. Mantri [2] restarts the task having inconsistent runtime.

Flexslot [10], [11] dynamically changes the numbers of slots

for stragglers. These methods require rerun the whole task or

subtasks, assuming the skew comes from the heterogeneous

hardware malfunction or resource contention.

The dynamic methods usually use data repartitioning and

migration to resolve the skew problem at runtime. Skew-

tune [18] mitigates the skew for MapReduce applications

by identifying the straggler, repartitioning its unprocessed

input data, and rescheduling data to other nodes. Libra [3]

has revealed the keys having more values may become a

performance bottleneck in the reduce stage, and proposes

a solution to repartition large keys with a new sampling

method. OLH [25] proposes a key chopping method and a

key packing method to split large keys and group medium

keys, respectively. TopCluster [9] proposes a distributed

monitoring framework to capture the local data distribution

on each mapper, identify the most relevant subset data,

and approximate the global data distribution. This method

provides complete information for appropriate skew tack-

ing methods. Although these mechanisms can mitigate the

skew without the modification of applications, the effort

to improve partitioning algorithms is still valuable, because

application-specific partitioning methods can get better per-

formance and scalability as illustrated in SkewReduce [17],

PowerLyra [4], and Polymer [37]. It is possible to ex-

tend PaPar to support the dynamic workload redistribution.

For example, when repartitioning intermediate data from

Mappers to Reducers is necessary, we can use the PaPar

distribution function with the cyclic policy to rebalance the

key-value pairs between reducers.

For the static mechanisms, SkewReduce [17] proposes a

cost function based framework for spatial feature extraction

applications manipulating multidimensional data. Power-

Lyra [4] is a graph computation and partitioning engine for

613

IEEE IPDPS, Orlando, Florida, USA, May, 2017

skew graphs. The hybrid-cut method is proposed to partition

input data. Polymer [37] is a graph processing engine for

the NUMA compute node. A differentiated partitioning and

allocation mechanism can put graph data into the local

memory bank, and a NUMA-aware mechanism can convert

random accesses on local memory to sequential accesses on

remote memory. Our work proposes a framework to enforce

user-defined partitioning methods, and can be integrated with

the previous research to simplify their implementations.

VI. CONCLUSIONS

In this paper, we propose the PaPar framework to generate

application-specific partitioning algorithms. Taking two con-

figuration files as input, PaPar can formalize the partitioning

workflow as a sequence of key-value operations and matrix-

vector multiplications, and map to implementations on MPI

and MapReduce. We use muBLASTP and PowerLyra as

the case studies to show how to generate the user-defined

partitioning algorithms with PaPar. Our evaluations illustrate

PaPar can generate the same partitions with comparable or

less partitioning time.

ACKNOWLEDGEMENT

This research was supported in part by the NSF BIGDATA

program via IIS-1247693 and the NSF XPS program via

CCF-1337131. We also acknowledge Advanced Research

Computing at Virginia Tech for access to high-performance

computational resources.

REFERENCES

[1] A. Abou-Rjeili and G. Karypis. Multilevel algorithms for partitioning power-law
graphs. In Proceedings of the 20th IEEE International Parallel & Distributed
Processing Symposium, pages 10–pp. IEEE, 2006.

[2] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica, Y. Lu, B. Saha,
and E. Harris. Reining in the outliers in map-reduce clusters using mantri. In
OSDI, volume 10, page 24, 2010.

[3] Q. Chen, J. Yao, and Z. Xiao. Libra: Lightweight data skew mitigation in
mapreduce. IEEE Transactions on Parallel and Distributed Systems, 26(9):2520–
2533, 2015.

[4] R. Chen, J. Shi, Y. Chen, and H. Chen. Powerlyra: Differentiated graph
computation and partitioning on skewed graphs. In Proceedings of the Tenth
European Conference on Computer Systems, page 1. ACM, 2015.

[5] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large
clusters. In OSDI. USENIX Association, 2004.

[6] C. Dubach, P. Cheng, R. Rabbah, D. F. Bacon, and S. J. Fink. Compiling a high-
level language for gpus:(via language support for architectures and compilers).
In ACM SIGPLAN Notices, volume 47, pages 1–12. ACM, 2012.

[7] F. Franchetti, F. de Mesmay, D. McFarlin, and M. Püschel. Operator language: A
program generation framework for fast kernels. In Domain-Specific Languages,
pages 385–409. Springer, 2009.

[8] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph:
Distributed graph-parallel computation on natural graphs. In OSDI, pages 17–
30, 2012.

[9] B. Gufler, N. Augsten, A. Reiser, and A. Kemper. Load balancing in mapreduce
based on scalable cardinality estimates. In 2012 IEEE 28th International
Conference on Data Engineering, pages 522–533. IEEE, 2012.

[10] Y. Guo, J. Rao, C. Jiang, and X. Zhou. Flexslot: Moving hadoop into the cloud
with flexible slot management. In High Performance Computing, Networking,
Storage and Analysis, SC14: International Conference for, pages 959–969.
IEEE, 2014.

[11] Y. Guo, J. Rao, C. Jiang, and X. Zhou. Moving mapreduce into the cloud
with flexible slot management and speculative execution. IEEE Transactions on
Parallel and Distributed Systems, 2016.

[12] K. Hou, H. Wang, and W.-c. Feng. Aspas: A framework for automatic simdiza-
tion of parallel sorting on x86-based many-core processors. In Proceedings of
the 29th ACM on International Conference on Supercomputing, pages 383–392.
ACM, 2015.

[13] Y. Huai, A. Chauhan, A. Gates, G. Hagleitner, E. N. Hanson, O. O’Malley,
J. Pandey, Y. Yuan, R. Lee, and X. Zhang. Major technical advancements in
apache hive. In Proceedings of the 2014 ACM SIGMOD international conference
on Management of data, pages 1235–1246. ACM, 2014.

[14] W. Jiang, V. T. Ravi, and G. Agrawal. A map-reduce system with an alternate
api for multi-core environments. In Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, pages 84–93.
IEEE Computer Society, 2010.

[15] T. Kaldewey, E. J. Shekita, and S. Tata. Clydesdale: structured data processing
on mapreduce. In Proceedings of the 15th international conference on extending
database technology, pages 15–25. ACM, 2012.

[16] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and P. Kalnis.
Mizan: a system for dynamic load balancing in large-scale graph processing. In
Proceedings of the 8th ACM European Conference on Computer Systems, pages
169–182. ACM, 2013.

[17] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. Skew-resistant parallel
processing of feature-extracting scientific user-defined functions. In Proceedings
of the 1st ACM symposium on Cloud computing, pages 75–86. ACM, 2010.

[18] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. Skewtune: mitigating
skew in mapreduce applications. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, pages 25–36. ACM, 2012.

[19] D. LaSalle and G. Karypis. Multi-threaded graph partitioning. In Parallel &
Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium on,
pages 225–236. IEEE, 2013.

[20] H. Lin, X. Ma, W. Feng, and N. F. Samatova. Coordinating Computation and
I/O in Massively Parallel Sequence Search. IEEE Transactions on Parallel and
Distributed Systems, 22(4):529–543, 2011.

[21] W. Liu and B. Vinter. Csr5: An efficient storage format for cross-platform sparse
matrix-vector multiplication. In Proceedings of the 29th ACM on International
Conference on Supercomputing, pages 339–350. ACM, 2015.

[22] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein.
Distributed graphlab: a framework for machine learning and data mining in the
cloud. Proceedings of the VLDB Endowment, 5(8):716–727, 2012.

[23] M. Niemenmaa, A. Kallio, A. Schumacher, P. Klemelä, E. Korpelainen, and
K. Heljanko. Hadoop-bam: directly manipulating next generation sequencing
data in the cloud. Bioinformatics, 28(6):876–877, 2012.

[24] S. J. Plimpton and K. D. Devine. Mapreduce in mpi for large-scale graph
algorithms. Parallel Computing, 37(9):610–632, 2011.

[25] S. R. Ramakrishnan, G. Swart, and A. Urmanov. Balancing reducer skew in
mapreduce workloads using progressive sampling. In Proceedings of the Third
ACM Symposium on Cloud Computing, page 16. ACM, 2012.

[26] S. N. A. Project. Stanford Large Network Dataset Collection. http://snap.
stanford.edu/data/.

[27] N. Sedaghati, T. Mu, L.-N. Pouchet, S. Parthasarathy, and P. Sadayappan.
Automatic Selection of Sparse Matrix Representation on GPUs. In Proceedings
of the 29th ACM International Conference on Supercomputing, ICS ’15. ACM,
2015.

[28] S. Sehrish, G. Mackey, J. Wang, and J. Bent. MRAP: A Novel MapReduce-
based Framework to Support HPC Analytics Applications with Access Patterns.
In Proceedings of the 19th ACM International Symposium on High Performance
Distributed Computing, pages 107–118. ACM, 2010.

[29] S. Tang, B.-S. Lee, and B. He. Dynamic job ordering and slot configurations for
mapreduce workloads. IEEE Transactions on Services Computing, 9(1):4–17,
2016.

[30] H. Wang, W. Liu, K. Hou, and W.-c. Feng. Parallel transposition of sparse
data structures. In Proceedings of the 2016 International Conference on
Supercomputing, page 33. ACM, 2016.

[31] Y. Wang, W. Jiang, and G. Agrawal. SciMATE: A Novel MapReduce-like
Framework for Multiple Scientific Data Formats. In Cluster, Cloud and Grid
Computing (CCGrid), 2012 12th IEEE/ACM International Symposium on, pages
443–450. IEEE, 2012.

[32] Y. Wang, A. Nandi, and G. Agrawal. SAGA: Array Storage as a DB with
Support for Structural Aggregations. In Proceedings of the 26th international
conference on scientific and statistical database management, page 9. ACM,
2014.

[33] Y. Yuan, R. Lee, and X. Zhang. The yin and yang of processing data warehousing
queries on gpu devices. Proceedings of the VLDB Endowment, 6(10):817–828,
2013.

[34] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica. Improving
mapreduce performance in heterogeneous environments. In OSDI, volume 8,
page 7, 2008.

[35] J. Zhang, S. Misra, H. Wang, and W.-c. Feng. mublastp: database-indexed protein
sequence search on multicore cpus. BMC bioinformatics, 17(1):443, 2016.

[36] J. Zhang, S. Misra, H. Wang, and W.-c. Feng. Eliminating Irregularities of
Protein Sequence Search on Multicore Architectures. In Proceedings of the 31st
IEEE International Parallel & Distributed Processing Symposium. IEEE, 2017.

[37] K. Zhang, R. Chen, and H. Chen. Numa-aware graph-structured analytics. In
ACM SIGPLAN Notices, volume 50, pages 183–193. ACM, 2015.

614

IEEE IPDPS, Orlando, Florida, USA, May, 2017

