PERFORMANCE, POWER, AND ENERGY OF IN-SITU AND POST-PROCESSING VISUALIZATION: A CASE STUDY IN CLIMATE SIMULATION

Vignesh Adhinarayanan\(^1\), Scott Pakin\(^1\), David Rogers\(^1\), Wu-chun Feng\(^1\), James Ahrens\(^1\)

\(^1\) Department of Computer Science, Virginia Tech, Blacksburg, VA 24060

\(^1\) CCS-7 Division, Los Alamos National Laboratory, Los Alamos, NM 87544

Introduction

- Off-chip data movement can consume hundreds of times as much energy as on-chip data movement.
- More data produced from high-resolution simulation to increase fidelity. More power/energy for storage subsystem.
- Problematic because future supercomputers will be power-limited.

Hypothesis

Reducing disk reads and writes using the following techniques will save significant amount of energy and power:

- Temporal sampling: Write output only every few time steps.
- In-situ visualization: Produce images during simulation (without writing raw data to the disk) and write only the compact image representation.

Key Findings

- **55% energy savings for in-situ visualization**
- **6.3% improvement in performance for MPAS-O using RAPL interface**

Results

- **Visualization Pipelines Evaluated**
 1. **Baseline** — "Traditional" post-processing without any sampling
 2. **Post-processing** — "Modern" post-processing with temporal sampling (i.e., write every n iterations — in this case, n = 24)
 3. **In-situ** — Produce images in-situ alongside simulation and write compact image representation once every 24 iterations

Key Findings

1. **In-situ Visualization vs. Baseline ("Traditional" Post-Process)**
 - Serves 93% energy for MPAS-O for the given problem size
 - Despite consuming 3% more power on average
 - But amortized by 94% faster execution from reduced I/O wait

2. **In-situ Visualization vs. Post-processing ("Modern" Post-Process)**
 - Serves 4% energy for MPAS-O for the given problem size
 - Despite consuming 3% more power on average
 - But amortized by 7% faster execution from reduced I/O wait

3. **Energy saved from disk subsystem almost negligible**
 - Nearly all energy saved from reduced system idling

4. **97.5% lower storage requirement for in-situ pipeline**

Preliminary Results at Scale

- **Problem size**: 60-km grid size
- **Sampling rate**: One output per simulated day
- **Key finding**: 55% energy savings for in-situ pipeline (vs. modern post-processing pipeline)
- **More aggressive sampling possible to save more energy, but risks missing important events of simulation**

Experimental Setup

- **Single-Node Setup**

<table>
<thead>
<tr>
<th>Component</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>2x Intel Xeon E5-2665 @ 2.4GHz</td>
</tr>
<tr>
<td>DRAM</td>
<td>4x 16GB DR3-J3-333</td>
</tr>
<tr>
<td>Disk</td>
<td>500GB Seagate 7200rpm</td>
</tr>
</tbody>
</table>

Power Measurement

- Power measured at 1-Hz frequency using the following methods for different components:
 - **Full system** — WatsUp Pro power meter
 - **Processor and DRAM** — Intel RAPL interface (statistical model based on performance counters)
 - **Disk** — Statistical power model based on iostat statistics

MPAS Ocean simulation

- **HPC System Setup**
 - Compute cluster
 - 128 nodes of Caddy supercomputer
 - 2x Intel E5-2670 CPU/node
 - 64 GB RAM/node
 - Power measured for 10 nodes using cage power meter and extrapolated
 - Storage cluster
 - 5 nodes running Lustre file system
 - 1 master node, 2 metadata servers, 2 object storage servers
 - Intelligent PDU's for power measurement

Application

- Same cognitive value for both visualization pipelines

Conclusion

- In-situ visualization offers the following advantages:
 - Reduced energy consumption (by reducing system idling or I/O wait time)
 - Reduced power (by using fewer storage nodes)
 - Improved performance (by reducing I/O wait time and by making more power available for compute nodes)

Bibliography

Implications

- **Lower storage requirements**
 - Fewer I/O nodes
 - Fewer I/O nodes — More power for compute nodes
 - Assuming 10% nodes reserved in a HPC data center for storage,
 - Data center power goes down by ~ 10%
 - Estimated increase in power budget for compute nodes ~ 10%
 - 6.3% improvement in performance for MPAS-O using RAPL interface

Acknowledgment

This work was supported in part by Dr. Lucy Nowell, Program Manager for the Advanced Scientific Computing Research (ASCR) program office in the Department of Energy’s (DOE) Office of Science via DE-SC0012637. The authors also wish to thank Francesca Samsel for the visualization and Greg Abram for early discussions on this work.