
On the Transient Behavior of TCP Vegas
Sarut Vanichpun Wu-chun Feng

Department of Electrical & Computer Engineering Computer & Computational Sciences Division

University of Maryland, College Park Los Alamos National Laboratory

Abstract—Research has shown that TCP Vegas performs better
than TCP Reno with respect to overall network utilization, stabil-
ity, fairness, throughput, packet loss, and burstiness. In this pa-
per, we analyze and improve the transient behavior of TCP Vegas,
an important issue in today’s large “bandwidth-delay product”
networks. To quantify of our analysis, we introduce a new met-
ric that captures the transient performance of TCP, namely, the
(normailized) convergence time. We then consider the slow-start
mechanism in TCP Vegas and show that with a properly config-
ured � parameter, the transient behavior of TCP Vegas improves
with respect to convergence time.

I. INTRODUCTION

Many Internet applications and application protocols, e.g.,
HTTP and FTP, use TCP as their transport layer. Consequently,
researchers have focused much of their efforts in improving the
performance of TCP resulting in two notable implementations
of TCP — Reno [1] and Vegas [2].

To estimate the available bandwidth in the network, Reno
uses packet loss as an indicator for congestion. This causes a
periodic oscillation in the size of the congestion window and
may not be appropriate for emerging Internet applications [3–
5]. In contrast to Reno, Vegas performs better with respect
to overall network utilization [2, 6], stability and fairness [7,
8], throughput and packet loss [2, 4, 6], and burstiness [3, 4].
However, its lack of widespread adoption can be attributed to
its demonstrated incompatibility [7] with Reno.

Recently, Low [9] showed that Vegas achieves proportional
fairness while Reno does not and that both have different utility
and rate functions whence the incompatibility problem arises.
However, we showed in [10] how to configure the congestion-
control parameters, � and � , in Vegas to be compatible (and
competitive) with Reno in the steady state. And in this paper,
we extend that work and show that with a properly configured� , Vegas can also be made compatible with Reno in the tran-
sient state.

With the current deployment of large “bandwidth-delay
product” (BDP) networks, TCP research has focused on stabil-
ity, throughput, and fairness — properties of the steady state.
However, with these large BDP networks, the transient period
of TCP can greatly affect overall performance, an issue of par-
ticular importance in distributed computational grids. For ex-
ample, the time to converge to an optimal bandwidth value can
take on the order of minutes in a large BDP network of 1 Gb/s� 100 ms = 100 Mb. Thus, if TCP’s convergence mechanism
is too passive, the network may be underutilized, and a given
connection may not get its fair share of bandwidth.

In this paper, we introduce a metric to measure the transient
behavior of TCP, namely, the (normalized) convergence time
of TCP with respect to the uncongested BDP of the network.
In particular, we focus on the transient behavior of TCP Vegas.
With a careful analysis of the slow-start mechanism in Vegas,
we show that the convergence time of TCP Vegas can be im-
proved significantly with a properly configured � .

The rest of the paper is organized as follows. Section II pro-
vides an overview of TCP Vegas. Section III discusses the con-
vergence time of TCP protocols in general. In Section IV, we
present an extensive analysis of the Vegas slow-start mecha-
nism and suggest how to configure its � parameter in order to
achieve better performance. We confirm our analysis with sim-
ulation results in Section V. Lastly, we conclude and discuss
future work in Section VI.

II. BACKGROUND ON TCP VEGAS

A. Congestion Avoidance

The bandwidth-estimation scheme in Vegas is proactive in
that it tries to avoid rather than react to congestion (as in Reno).
Vegas uses the difference in the expected and actual flow rates
to estimate the available bandwidth in the network. When the
network is uncongested, the actual flow rate is close to the ex-
pected flow rate. However, if the actual rate is much smaller
than the expected rate, this indicates that buffer space in the
network is filling up and that the network is approaching a con-
gested state. This difference in flow rates can be calculated as���	�
��������������������������	 "!$#

, where
��%�&���������

and
�'���	 "!(#

are the expected and actual rates, respectively.
In its congestion-avoidance phase, Vegas uses two thresh-

old values, � and � (whose default values are 1 and 3, respec-
tively), to control the adjustment of the size of congestion win-
dow at the source host as follows. If

�
denotes the minimum-

observed round-trip time (also known as) !+*,��-/.0.),
�

de-
notes the actual round-trip time (

-/.0.
) of a packet, and 1

denotes the size of the congestion window, then
��%�&���������2�

143 � and
�'���	 "!(#5� 143 � . The estimated backlog of packets

in the network queues can then be computed as

6 �879������,�:���,�;�<�����	 �!(#>= �) !(*,��-/.0.�� 1 � 7?�@�A�(=
� B

(1)
For every RTT, the congestion-avoidance algorithm adjusts 1

11th IEEE International Conference on Computer Communications
and Networks (IC3N’02), Miami, Florida, October 2002. LA-UR 02-5522

as follows:

1�� �� � 1���� if
6
	 �

1 � � if
6
� �

1 otherwise (�� 6 � �) B
Conceptually, Vegas tries to keep at least � packets but no

more than � packets queued in the network. Thus, when there
is only one Vegas connection, 1 converges to a point that lies
between � ��� ��� ��� � and � ��� ��� ��� � where � ��� ��� � is the
maximum window size that does not cause any queueing.

B. Slow Start

Like Reno, Vegas has a slow-start mechanism that allows
a connection to quickly ramp up to the available bandwidth.
However, unlike Reno, to ensure that the sending rate does not
increase too fast during slow start, and hence, congest the net-
work, Vegas doubles the size of its congestion window only
every other RTT. In addition, every other RTT, Vegas calcu-
lates the difference in the flow rates (

�����
�
) and

6
given in (1).

When
6�� � (whose default is 1), Vegas leaves its slow-start

phase, drops its congestion window size by ��3�� and enters its
congestion-avoidance phase.1

III. CONVERGENCE TIME

Most research in TCP considers only properties of the steady
state, e.g., throughput, goodput, and fairness. However, with
the deployment of large BDP networks, the transient properties
of TCP are becoming increasingly important. In this section,
we propose a metric to measure the convergence time (������� �)
of TCP window protocols with respect to the uncongested BDP
of the network. We then extend the analysis for the case of
Vegas with an experimental study in Section V-B.

In order to define and understand the convergence time, we
consider a simple case when only one connection tries to fill
up an empty network of ! links connecting the source and the
destination. We denote the transmission rate of each of these !
links (in packets/s) as " �$# � � � # B B B # ! , and the total round-trip
propagation delay of the connection (in seconds) as % . Without
loss of generality, we assume that "'&��("*)�� B B B+�,"*- .
Since " & is the smallest transmission rate, link 1 behaves as a
bottleneck link. The uncongested BDP of this network is then
given by " & � where

� � %.� �/� !"0& � B B B�� �/� !"*- (2)

with
!

being the ACK size relative to the packet size.
Throughout our analysis, we assume that the TCP source is

a fluid model and always has a packet to transmit and that the
buffer sizes at routers are large enough so that packet loss is1

However, in this case we cannot interpret the value of 2 as the number
of backlogged packets in the network during slow-start. (See Section IV for
details.)

negligible. Moreover, we model the TCP-windowing mecha-
nism with respect to a “round” [11], or equivalently, “window
transmission.” A round starts with the transmission of 1 pack-
ets (back-to-back) where 1 is the size of congestion window
in that round. A round ends when the source receives the ACK
of the first packet in that round, then the source starts transmit-
ting a new packet of the next round.

Suppose that the total number of rounds in the transient pe-
riod is 3 . For

� � � # B B B # 3 , the time used by round
�

is given by� � �8� � � � , i.e., the uncongested delay (
�
) plus the queueing

delay in round
�

(
� �). Consequently, the transient period

.
is

the sum over all
� � # � � � #546# B B B # 3 and is given by

. � 78 ��9 &�: � � � ��; � 3 � � 78 �<9 & � � B (3)

Because the transient behavior of TCP in networks with the
same BDP are similar, 3 and

� � are constant for a given BDP
and TCP algorithm. From (3), we can naturally define the tran-
sient convergence of a TCP algorithm as the (normalized) con-
vergence time �/����� � :

� ���<� � � .
�;B (4)

� ����� � can be interpreted as the effective number of win-
dow transmissions (

. 3 �) in the transient period since it indi-
cates how many) !+*,�,-/.0. s are required to reach equilibrium.
Thus, it represents how fast TCP behaves in the transient state.
Moreover, �/������� is a constant metric of a TCP algorithm with
respect to BDP regardless of the number of links ! used by
the connection.

For Vegas, we can interpret � ����� � in a much simpler form
using the fact that if the sending rate is smaller than the avail-
able rate of the link (= >?��"0&), then

� � �A@ . Recall that when a
connection is in an empty network, Vegas has

� � �B@ at almost
all
�

except the last few rounds that the congestion-window size
exceeds the BDP of the network (1 � " & �). Therefore, we
approximate C 7��9 & � �ED @ and get

. DA3 � and � ���<� � D�3
B (5)

IV. ANALYSIS OF SLOW START IN VEGAS

While the default parameter � � � is appropriate for yes-
terday’s small BDP networks, today’s larger BDP networks al-
low the bandwidth allocated for each connection to be much
larger, and hence, the equilibrium congestion-window size to
be larger. In these larger BDP networks, Vegas with � � � pre-
maturely stops the exponentially-increasing, slow-start phase
too early and enters the slower, congestion-avoidance phase
(where only a linear increase every RTT is possible) until it
reaches its equilibrium congestion-window size. As a result,
Vegas has a very long transient period and the connection stays
longer in the network than it should. (See, for example, Sec-
tion V-A)

By properly selecting � , we can control the duration of slow-
start, and hence, the size of congestion window (1��) that Ve-
gas stops at upon leaving slow-start. In this section, we first
derive the critical window size (1 �) for a given value of � .
Then, we propose two approaches for configuring � to achieve
better transient performance, i.e., better ��������� .
A. Critical Window Size

Suppose that a Vegas connection uses ! links to connect
from the source to the destination in an empty network and that"*� # �'� � # B B B # ! and % are as defined in Section III. Without
loss of generality, we again assume that " & ��") � B B B � " - .
Furthermore, the assumptions on Vegas source and buffer sizes
are similar to those given in Section III.

Recall that in slow-start, Vegas doubles its congestion win-
dow every other RTT. More precisely, in its “active” round,
Vegas adds two packets in the sender queue each time an ACK
of the previous round is received. Since " & is the smallest
transmission rate (and we assume that there is no congestion
in ACK path), the spacing between each ACK of the previ-
ous round is ��3�" & seconds. When the last ACK of the pre-
vious round is received, the sender adds the last two packets
of the active round in the sender queue. Since the transmis-
sion time at the sender queue for each packet is &��� , the last

packet will see =) packets waiting ahead of it in the sender
queue, where 1 is the size of congestion window in the ac-
tive round. However, for the queues at other nodes along the
connection, the last packet will see no packet in the queues be-
cause � 3 " & � ��3�"*) � B B B � ��3�"*- . Therefore, this last packet
experiences the highest RTT of the round and its) !+*,��-�.'.
and

-/.0.
are given by

�
in (2) and

� � � � 14 "0& # (6)

respectively. For the analysis in the remainder of this section,
we assume that

!
, the ACK size relative to the packet size, is

small compared to 1, and we write only 1 for �/� ! .2

By combining (6) and (1), TCP Vegas will stop its slow-start
phase if

1 143 4 " &
143 4 "0& � � � � B (7)

By solving (7) for 1 , the critical window size that TCP Vegas
stops its slow-start phase is given by

1 � 7 � =5� � ��� �) � � "0& � �4 B (8)

In an actual Vegas implementation,
�

is the average
-/.0.

rather than the actual
-�.'.

of a packet. Thus,
�

for the last
packet is the average of the actual

-/.0.
s of all packets in the

�
Over our production network, our network monitoring showed that the

ACK size was an order of magnitude smaller than the average packet size.

same round, i.e.,
� � � � =	 ��� , rather than

� � � � =) ��� , as
given in (6). By using the average

-/.0.
, we have

1 � 7 � = � � � � �) ����
 " & � �4 B (9)

B. � Selection

From (9), for any critical window size 1 � , the “ideal” � is
given by

� � 1 �)� " & � � 1 � B (10)

Although this ideal � is specific to our simplified model, we
use (10) as a suggestion for setting � in general situations and
verify by simulations that it is indeed useful.

From (10), we need to know " & and 1 � in order to set � .
In a realistic situation, " & and 1� should be replaced by the
available rate (�) and the target window size (�1) of Vegas at
the steady state. The reason for the above interpretation is that
we want to configure � so that the slow-start phase drives the
congestion-window size to nearly �1 before changing over to
the slow linear increase/decrease congestion-avoidance phase.
At steady state, � � 6 � � , thus from (1), we have

� ��1 � � � � � (11)

where � � = � is the rate of TCP at steady state. From (11), we
can conservatively set the target window as a function of � by

�1 � � � �4� # i.e. # 6 � �5B (12)

Now, let 1 � # � � � #54 # B B B #�� , be the size of the conges-
tion window in round

�
during the slow-start phase where

� is the last round of the slow-start phase. Because Vegas
doubles its window size every other RTT, 1 � � 1 ��� & for� � � #�� # B B B #�� � � , and these values can be determined based
upon the knowledge of 1 & . After Vegas exits slow start, its
congestion-window size decreases to ��+1 � . From the analysis
in Section IV-A, if we want Vegas to stop its slow start at 1 � ,
then we should find � such that

1 ���) 	 1 � 7 � = ��1 � B (13)

From the above equations, we propose two approaches for
setting � . The first approach may still suffer from a large tran-
sient period

.
(although not nearly as large as when the default� is used), but it is simpler to calculate and implement. The

second approach reduces the transient period
.

, and hence, the
convergence time � ���<� � even further than the first approach.

1) Approach 1: Basic: If �1 lies between : ��(1 � #���(1 ���) = ,we would like to stop the slow-start phase at 1 � � 1 � and
allow Vegas to linearly increase its window over the interval: �� 1 � # �� 1 ���) = . Let �1 � � =��! �" � =#�) be the average window
size in the interval

7 1 �$�) # 1 � ; . By setting 1 � � �1 � , we have

from (13) that Vegas stops its slow-start at 1 � . From (10), we
propose Approach 1 for setting � , denoted by � & , as

� & �������"7�� �1)�� � � � �1 � � # � = if �1
	 : �� 1 � # �� 1 ���) = (14)

where
� � �

denotes the floor of
�

and 1 is a lower bound for
the value of � . By choosing � � � & , we allow the possibil-
ity of overshoot above the chosen �1 but ensure that only lin-
ear increase is used in congestion-avoidance mode to reach the
steady state. As a result, when the actual target window size �1
is closer to the other end of the range, i.e., near ��(1 ���) , Vegas
may still have a relatively large transient period due to the slow
linear increase. The result of configuring � � � & is shown in
Section V-D.

2) Approach 2: Enhanced: To get faster transient response,
we allow both overshoot and linear decrease in the transient
state. In this approach, we stop the slow-start phase at 1 � �
1 � if �1 	 : ��$1 � # �� =�� � =�����") =

and at 1 � � 1 ���) if �1 	
: � � = � � = ����") # � � 1 ���) = . Vegas then performs linear increase if
1 � � 1 � and linear decrease if 1 � � 1 ���) . By setting
1 � � �1 � and 1 � � �1 ���) for the first and second cases,
respectively, we arrive at Approach 2 for setting � :

�) �
�� � �����"7�� �= "�	�� > � �= � � # � = if �1�	 : ��(1 � # �� = � � = ����") =

�����"7�� �= "����"	�� > � �= ����" � # � = if �1�	 : �� =#� � =�����") # �� 1 ���) = B
(15)

As we mentioned above, we need to know the available rate
of the connection which is generally not available from the net-
work. However, many “available bandwidth” probing methods
have been proposed. For example, Allman and Paxson [12]
reports available bandwidth probing techniques for initializing*�* ����� � *��

of Reno. In addition, the use of the next-generation
active queue-management (AQM) schemes where the informa-
tion can be transmitted back to the source by ECN [13], can
provide this piece of information for setting � .

V. EXPERIMENT

To verify our analysis, we run simulations of TCP Vegas us-
ing the discrete-event simulator ns, version 2.1b8a [14]. For
all simulations, each connection generates FTP traffic with the
packet size and ACK size fixed at 1 KB and 40 bytes, respec-
tively.

A. Vegas in ns

In the slow-start phase for Vegas, the window size is updated
as � # � # � #�� #
 #
 # � 4 # � 4 # B B B , or equivalently,

1 � � �� � � for
� � � # 4

��� 4�� �! ��"�� for
� � � # � # B B B # (16)

TABLE I�!
WITH DIFFERENT 2 IN TWO-LINK NETWORK WITH " 1$#&%�')(�(�(

PACKETS/S, " �*#&%�(�'+(�(�(PACKETS/S AND , #.-/(MS0
BDP � 1 1.243 � (ns) 1.2 (ns)

40.2288 201.1 1 28.87 24 48
40.2288 201.1 2 41.12 24 48
40.2288 201.1 5 65.98 48 96
40.2288 201.1 8 84.33 48 96
40.2288 201.1 12 104.44 96 192

where 1 � denotes the size of congestion window in round
�
.

With the default value of � , i.e., � � � , Figure 1 shows
the transient behavior of Vegas for an the empty network with" � � @ # @ @ @ packets/second and % � 4 @ ms. In this case,
the transient period is

. � � B65 � seconds, and the convergence
time � ���<� �87 �:9
 which is very long since approximately 176-/.0.

s are needed to reach the steady state. This slow con-
vergence behavior is due to the fact that TCP Vegas stops its
slow-start phase earlier than it should and changes to the slower
linear increase of the congestion-avoidance phase.

B. Convergence Time

Figure 2 shows � ���<� � of a Vegas connection with � � �
with no competing connections. The notation “1link” indicates
the results in a one-link network while “mlink” represents the
results in a multiple-link network.3 Clearly, the values of � �������
are independent of the number of links and are constant for
each value of BDP. Hence, � ������� is a performance measure
of TCP algorithms in the transient state. Again, we note that
by fixing � � � , Vegas requires an exorbitant amount of time
to converge to the available bandwidth as the BDP increases.
Thus, the default configuration of Vegas is not appropriate for
networks with a high BDP.

C. Critical Window Size

In order to verify (9), we consider the case of one Vegas
connection in a network with two links having transmission
rates " & and ") packets/s, respectively and vary the values of� . Our analysis is “correct” if 1 � satisfies (13), i.e., it lies
between 1 ���) and 1 � where 1 � is the congestion window
size in the round that Vegas stops its slow-start phase. The
results in Table I follows the analysis for all values of � .

D. � Selection

Figure 3 shows that with the proper configuration of � , the
convergence time of Vegas improves dramatically, particularly
for large BDP networks. By choosing � � � & (i.e., ct1 in
Figure 3), we see that Vegas still suffers from a relatively long
convergence time because the equilibrium window size is quite;

We ran simulations for many different number of links and get virtually the
same results in each case.. Here, we represent a multiple-link network using a
2-link network.

far from the value of the window size that Vegas stops its slow-
start phase; this is especially true in larger BDP networks. By
setting � � �) (i.e., ct2 in Figure 3), Vegas sustains or im-
proves the convergence times over all the networks.

Now, we show an example of the improved transient behav-
ior of Vegas with a properly configured � . Consider the situa-
tion when four connections compete in a bottleneck link with" & � � @ # @ @ @ packets/s. Each connection connects to the bot-
tleneck link using a link with ") � 5 @ # @ @ @ packets/s and has
total propagation delay % � 4 @ ms. The first two connections
start at time 0 seconds with � � � & � 5 for �1 � � @ �%B
 and the
last two connections start at time 2 seconds with � � � & � �
for �1 � 56�%B � .4 Figure 4 shows the results of this experiment.
When there are two connections, both connections stop slow
start at the window size of 96 and converge near �1 thus hav-
ing small convergence times. However, when there are four
connections, the new connections stop their slow-start phases
at a window size of 24 (shortly after time

� � 4 s) while we
expect them to stop at the window size of 48. As a result, all
connections take a long time before converging to the steady
state.

The above problem can be explained as follows: Since the
network is already fully utilized, the) !+*,�,-/.0. of the new
connection is larger than that of the existing connection start-
ing in an empty network. Thus,

6
in slow-start mode get large

faster and the connection stops the slow-start at the smaller size
of congestion window than 1 � as analyzed in (9). Hence, our
prediction of � tends to be conservative as needed in the realis-
tic situation (i.e., preventing a packet loss). This also suggests
that to further improve the transient period of Vegas, we may
need to modify its congestion-avoidance algorithm.

VI. CONCLUSION

Prior research has focused on the steady-state behavior of
TCP algorithms. In contrast, this paper addresses the transient
behavior of TCP algorithms and introduces a new metric —
the (normalized) convergence time � ����� � — to measure the
transient performance of TCP. In particular, we show how in-
appropriate the default configuration of Vegas (� � �) is in
high BDP networks and propose two approaches to set � ap-
propriately so that Vegas can achieve faster transient response
without causing any packet loss.

To set � , however, Vegas needs to estimate the available
bandwidth of the network at the steady state. As discussed
at the end of Section IV-B, our future work will incorporate
bandwidth-estimation schemes and AQM routers along with a
form of ECN to provide Vegas with the necessary information
to set � . Further, we will extend our analysis to the case when
many connections are present in the network and examine how
to improve the congestion-avoidance phase to achieve not only
better convergence time but also better throughput and fairness
between connections.
�
The values of

��
and 2 are chosen so that each connection gets a fair share

of bandwidth when there are two and four connections, respectively.

REFERENCES

[1] V. Jacobson, “Modified TCP Congestion Avoidance Algorithm,” Tech-
nical Report, April 1990.

[2] L. Brakmo and L. Peterson, “TCP Vegas: End to End Congestion Avoid-
ance on a Global Internet,” IEEE Journal on Selected Areas in Commu-
nication, vol. 13, no. 8, pp. 1465–1480, October 1995.

[3] A. Veres and M. Boda, “The Chaotic Nature of TCP Congestion Con-
trol,” in Proc. of IEEE INFOCOM 2000, March 2000.

[4] W. Feng and P. Tinnakornsrisuphap, “The Failure of TCP in High-
Performance Computational Grids,” in Proc. of SC2000: High-
Performance Networking and Computing Conf., November 2000.

[5] Y. R. Yang, M. S. Kim, and S. S. Lam, “Transient Be-
haviors of TCP-friendly Congestion Control Protocols,”
ftp://ftp.cs.utexas.edu/pub/lam/transient tech.ps.gz, July 2000.

[6] J. S. Ahn, P. B. Danzig, Z. Liu, and L. Yan, “Evaluation of TCP Vegas:
Emulation and Experiment,” in Proc. of ACM SIGCOMM 1995, August
1995, pp. 185–195.

[7] J. Mo, R. J. La, V. Anantharam, and J. Walrand, “Analysis and Compari-
son of TCP Reno and Vegas,” in Proc. of IEEE INFOCOM 1999, March
1999, pp. 1556–1563.

[8] G. Hasegawa, M. Murata, and H. Miyahara, “Fairness and Stability of
Congestion Control Mechanisms of TCP,” in Proc. of IEEE INFOCOM
1999, March 1999, pp. 1329–1336.

[9] S. Low, “A Duality Model of TCP and Queue Management Algorithms,”
in Proc. of ITC Specialist Seminar on IP Traffic Measurement, Modeling
and Management, September 2000.

[10] E. Weigle and W. Feng, “A Case for TCP Vegas in High-Performance
Computational Grids,” in IEEE International Symposium on High Per-
formance Distributed Computing, August 2001.

[11] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
Throughput: A Simple Model and Its Empirical Validation,” IEEE/ACM
Transactions on Networking, vol. 8, no. 2, pp. 133–145, 2000.

[12] M. Allman and V. Paxson, “On Estimating End-to-End Network Path
Properties,” in Proc. of ACM SIGCOMM 1999, August 1999, pp. 263–
274.

[13] K. Ramakrishnan and S. Floyd, “A Proposal to Add Explicit Congestion
Notification (ECN) to IP,” RFC 2481, January 1999.

[14] S. McCanne and S. Floyd, “ns Network Simulator, version 2.1b8a,”
http://www.isi.edu/nsnam/ns.

0

50

100

150

200

250

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
on

ge
st

io
n

w
in

do
w

time(s)

"cwnd"

Fig. 1. Example of transient behavior of Vegas with 2 #��

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700

ct

BWxDelay

"1link"

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700

ct

BWxDelay

"1link"
"mlink"

Fig. 2. ����� 2�� of TCP Vegas with 2 # �

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700

ct

BWxDelay

"ct"

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700

ct

BWxDelay

"ct"
ct1

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700

ct

BWxDelay

"ct"
ct1
ct2

Fig. 3. Convergence time of Vegas. (�	� , �	� � , and �	��
 denote ����� 2� of Vegas
with 2 #�� , 2 # 2 1 , and 2 # 2 � , respectively.)

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
on

ge
st

io
n

w
in

do
w

time(s)

"cwnd1"

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
on

ge
st

io
n

w
in

do
w

time(s)

"cwnd1"
"cwnd2"

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
on

ge
st

io
n

w
in

do
w

time(s)

"cwnd1"
"cwnd2"
"cwnd3"

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
on

ge
st

io
n

w
in

do
w

time(s)

"cwnd1"
"cwnd2"
"cwnd3"
"cwnd4"

Fig. 4. Congestion windows of 4 Vegas connections in the bottleneck net-
work. Two connections start at 0 s and another two connections start at 2 s

