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Abstract—The increasing demand for computation and the
commensurate rise in the power density of data centers have
led to increased costs associated with constructing and operating
a data center. Exacerbating such costs, data centers are often
over-provisioned to avoid costly outages associated with the
potential overloading of electrical circuitry. However, such over-
provisioning is often unnecessary since a data center rarely
operates at its maximum capacity. It is imperative that we
maximize the use of the available power budget in order to
enhance the efficiency of data centers. On the other hand,
introducing power constraints to improve the efficiency of a
data center can cause unacceptable violation of performance
agreements (i.e., throughput and response time constraints).

As such, we present a thorough empirical study of performance
under power constraints as well as a runtime system to set
appropriate power constraints for meeting strict performance
targets. In this paper, we design a runtime system based on a
load prediction model and an optimization framework to set the
appropriate power constraints to meet specific performance tar-
gets. We then present the effects of our runtime system on energy
proportionality, average power, performance, and instantaneous
power consumption of enterprise applications. Our results shed
light on mechanisms to tune the power provisioned for a server
under strict performance targets and opportunities to improve
energy proportionality and instantaneous power consumption via
power limiting.

I. INTRODUCTION

The number of large-scale data centers continues to grow
rapidly to accommodate the ever-increasing resource demand
of applications, e.g., [1], [16]. This, in turn, has exposed
power consumption as a first-order design constraint with a
commensurate increase in the cost of building infrastructure
capable of powering such massive data centers and the recur-
ring energy costs to keep such data centers operational. Such
data centers are typically over-provisioned to avoid unexpected
outages associated with the potential overloading of electrical
circuitry [14], [18]. But data centers rarely operate at their
peak power capacity, making over-provisioning unnecessary.

Figure 1 shows the cumulative distribution function (CDF)
of the instantaneous power consumption for the processor
package and memory subsystems running an enterprise trans-
action processing (SPECpower ssj2008 benchmark1 [4]) ap-
plication at three different load-levels on a dual-socket server.
The workload’s power consumption ranges between 25% and
55% of the peak power limit. Such characteristics provides us

1Hereafter, referred as SPECpower.

opportunity to support more resources under the same power
budget if we can cap the power consumption.
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Fig. 1. Illustration of the Opportunity to Limit Power Consumption.

In addition, these data centers are under-utilized due to
the inherent nature of the workloads [8], [14] and the need
to provide isolation to mitigate serious violation of perfor-
mance agreements (i.e., throughput and response time con-
straints) [18]. Unfortunately, power efficiency is traditionally
measured only when a server is maximally exercised, and
effective techniques to improve non-peak power efficiency is
an active research area.

Figure 2 shows the power consumption of a compute
server running SPECpower under different load-levels and the
hypothetical linear and ideal (i.e., energy-proportional) non-
peak power curves. As evident from the figure, there is room
to improve the non-peak power efficiency of the server with
respect to both the ideal as well as linear power curves.

Power-capping mechanisms, such as Intel’s Running Aver-
age Power Limit (RAPL) [2], [9], [22], [26], can be used to
set power limits on subsystems (e.g., processor package and
memory) and support more resources under the same power
budget. However, introducing arbitrary power limits can cause
serious violations of performance and the interactions between
subsystem-level power limits is not yet well understood. What
we desire is a thorough empirical study of mechanisms to
improve non-peak power efficiency, along with its effects on
the performance (both throughput and response time) of an
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Fig. 2. Illustration of Non-Peak Power Efficiency.

application, and a methodology to place appropriate power
caps on the system while meeting strict performance targets.

Towards enabling efficient power provisioning, we propose
a methodology to efficiently cap the power consumption of
applications by improving the non-peak power efficiency while
meeting performance targets. Specifically, our contributions
include the following:2

• Accurate models capturing the performance of an appli-
cation under power limit, while taking into account the
interaction between subsystem-level power limits.

• Prediction of current load on the system through statisti-
cal models and a multi-dimensional optimization frame-
work to determine power limits on subsystems to main-
tain throughput while meeting response time constraints.

• A runtime system that leverages the load prediction model
and the optimization framework to place appropriate
power limits on subsystems.

• An analysis of the effects of a power-constraining runtime
system on the energy proportionality, power, and instan-
taneous power consumption of enterprise applications.

Leveraging the above contributions and using an enterprise
transaction-processing application and a web-serving applica-
tion as representative workloads, we draw six key inferences.
First, simple, but well defined and studied, basis functions
can be used to accurately model the non-linear relation-
ship between performance and subsystem-level power limits.
Second, subsystem-level power caps can be tuned to meet
strict performance targets. Third, the opportunity to achieve
ideal non-peak power efficiency reduces as system utilization
decreases. Fourth, power limiting of the memory subsystem
does not contribute much to the improvement of non-peak
power efficiency. Fifth, mixed workload deployment allows
for improvement in energy proportionality at low utilization-
levels relative to single workload deployment. Finally, power
limiting narrows the range of instantaneous power consump-
tion, allowing us to support more resources under same power
budget.

The rest of the paper is structured as follows. We start

2This is a follow-up paper to our previous work described in [26]

in Section II by giving an overview of the workloads and
the RAPL interface used for power management. Section III
describes our methodology to model the performance under
subsystem-level power limits. In Section IV, we present our
runtime system to minimize power while meeting strict perfor-
mance targets. The runtime system leverages a load prediction
model and an optimization framework. We describe our em-
pirical results on the effects of subsystem-level power limits
on energy proportionality, power efficiency, and instantaneous
power consumption in Section V. Related research is described
in Section VI, and Section VII concludes the paper.

II. BACKGROUND

We provide an overview of the transaction processing appli-
cation (SPECpower benchmark), the web serving application
(SPECweb2009 benchmark3 [6]) and RAPL interfaces. Specif-
ically we discuss the details of the benchmark and the features
of the RAPL interfaces.

A. Overview of SPECpower Benchmark

SPECpower is an industry-standard benchmark that mea-
sures both the power and performance of a server node. The
workload captures a server-side Java transaction processing
application, which is based on the SPECjbb2005 benchmark.
The system setup consists of two machines: the system under
test (SUT) and the control and collection system (CCS).

The SPECpower benchmark is a graduated workload, i.e.,
it runs the workload at different load-levels and reports the
power and performance at each load-level [5]. The benchmark
uses a calibration phase to determine the maximum throughput
possible and it is set as the throughput target for 100% load-
level. The target for the rest of the load-levels is calculated
as a percentage of the throughput target for 100% load-level.
For example, if the throughput target for 100% load-level is
100,000, then the target for 70% load-level is 70,000, 60% is
60,000, and so on. The throughput is measured in server-side
Java operations per second (ssj ops).

B. Overview of SPECweb Benchmark

SPECweb is an industry standard benchmark for measuring
front-end web server performance. It allows the user to mea-
sure performance based on the request handling capability and
response time maintained by a server node. The benchmark
consists of four different components: clients, web server
(system under test – SUT), back-end simulator (BeSim), and
prime client.

The main performance and power metric for the benchmark
is simultaneous user sessions (SUS) and SUS/watt respec-
tively. In addition to SUS, the SPECweb benchmarks adds
two different response time performance metrics, namely
TIME GOOD and TIME TOLERABLE. By default, 95% and
99% of the requests should have response time less that
TIME GOOD and TIME TOLERABLE respectively. Because
response time is important for web serving applications, the
constraints are based on the 95th or 99th percentile response

3Hereafter, referred to as SPECweb.
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time (instead of the average). Meeting such strict response
time constraints is challenging from the perspective of power
management. Similar to SPECpower, we can control the
benchmark parameters to execute the benchmark at different
load-levels i.e., different SUS. This benchmark also allows us
tweak a set of input parameters. We refer the reader to [25]
for a full list of configurable parameters.

C. Intel’s Running Average Power Limit (RAPL) Interfaces

RAPL debuted in Intel Sandy Bridge processors. The RAPL
interfaces provide mechanisms to enforce power consumption
limits on a specific subsystem. The RAPL interfaces can
be programmed using the model-specific registers (MSRs).
MSRs are used for performance monitoring and controlling
hardware functions. These registers can be accessed using two
instructions: (1) rdmsr, short for read model-specific registers
and (2) wrmsr, short for write model-specific registers.

RAPL interfaces operate at the granularity of a processor
socket. The server platforms provide control over three do-
mains (i.e., subsystems): (1) package (PKG), (2) power plane
0 (PP0),4 and (3) DRAM. Each domain consists of its own
set of RAPL MSR interfaces. On a server platform, RAPL
exposes four capabilities: power limiting,5 energy metering,6

performance status, and power information. We refer the
reader to the Intel software developer’s manual [2] and existing
literature [22], [26] for more information on RAPL interfaces.

III. MODELING PERFORMANCE UNDER POWER LIMIT

It is unclear how subsystem-level power limits will affect
the throughput and the response time of the benchmarks,
particularly satisfying the constraints based on 99th-percentile
response times. Therefore, in this section, we model the
relationship between performance (i.e., throughput and re-
sponse time) and subsystem-level power limits to facilitate
the design of a runtime system. In case of the SPECweb
benchmark, we take the response time constraints into account
(i.e., TIME GOOD and TIME TOLERABLE) in addition to
the throughput.

First, we provide details of our experiment setup and the
configurations used for each workload. Next, we provide
an overview of non-linear models and their mathematical
forms. Finally, we discuss our experiences in modeling the
relationship between performance and subsystem-level power
limits. We then use these models to design a runtime system
using a load prediction model and an optimization framework
in Section IV and evaluate our framework with different
performance requirements on a real system in Section V.

A. Experimental Setup

The SUT is a dual-socket and dual-memory node setup with
two Intel Xeon E5-2665 processors for a total of 32 cores when

4PP0 subsystem includes components such as ALUs, FPUs, L1 and L2
caches [3].

5RAPL maintains an average power limit over a sliding window instead of
enforcing strict limits on the instantaneous power.

6The DRAM RAPL domain’s energy consumption includes the DRAM
modules’ energy consumption.

hyperthreading is ON. It has 256 GB of memory. Watts Up
power meter is used for full system power measurements. In all
our experiments, we use the least possible value as the sliding
(time) window for power limiting (i.e., 976 microseconds).

1) Setup for SPECpower: The CCS has an Intel Xeon
E5405 processor with dual quad cores and 8 GB of RAM.
We used all the cores in SUT for our experiments. Eight
JVMs with four threads each were used. The four threads
in each JVM were pinned to two adjacent physical cores on
the SUT. To further enhance the performance of the SUT,
we enabled large page memory (HugeTLB) support and set
aside 32 GB for huge page allocation. Note that HugeTLB
support is enabled only for SPECpower. In order to provide
consistent performance results in all our experiments, we
fix the input.load level.target max throughput parameter to
achieve the same performance. It was set to 140,000 ssj ops
for each JVM for a total of 1,120,000 ssj ops for the entire
run. In all our experiments, 100% load-level corresponds to
1,120,000 ssj ops.7 We changed the runtime to 120 seconds
using the input.load level.length seconds parameter.

2) Setup for SPECweb: We used 26 clients, 1 prime client
and 2 Besim for our experiments. The prime client is an Intel
Xeon E5405 processor with two quad cores and 8 GB of RAM.
The Besims had two dual core AMD Opteron 2218 processors
with 4 GB of RAM. In this paper, we benchmark only the
SPECweb PHP Ecommerce workload. We used a Apache
installation with php module as our web serving application.
We setup a bonded Ethernet link with the available ports on
the SUT to enable data transmission upto 2 Gbps. Note that
the bonded Ethernet link is only setup for SPECweb. Because
the network bandwidth is saturated at 13000 SUS, 100% load-
level corresponds to 13000 SUS in all our experiments with
SPECweb. In addition to the load-level, we also maintain the
response time constraints. By default, 95% (TIME GOOD
parameter) and 99% (TIME TOLERABLE parameter) of the
requests need to have response times less than 3 and 5
seconds, respectively. These response time constraints are used
in the compliant runs. The load-level is changed by manu-
ally modifying the SIMULTANEOUS SESSIONS parameter.
We modified the RUN SECONDS input parameter to 420
seconds. Since we focus only on the processor package and
memory power management, we load all the data associated
with the Ecommerce workload into RAMFS to keep the data
set in memory and minimize the involvement of disks.

B. Overview of Non-linear Models

Non-linear models are widely used in a variety of scientific
fields. In our case, we use non-linear models to capture
the relationships between the throughput, response time, and
subsystem-level power limits for SPECpower and SPECweb
benchmarks.

Through our experimental data, we determined that two
non-linear forms (Gompertz’s and Power-Law model) are
sufficient to capture the relationships required to design an

7This value was determined by averaging 10 calibration runs.
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optimization framework.8 Table I presents mathematical forms
of these models. We chose the most basic form of these models
for simplicity. In Sections III-C, we use these basic forms
to capture the non-linear relationship between throughput,
response times and power limits.

TABLE I
MODELS AND THEIR MATHEMATICAL FORMS

Model Name Function

Gompertz Model α(eβe
γx

)

Power-Law Model (αxβ) + γ

C. Performance Under Power Limit

To model performance under a power limit, we use a non-
linear regression approach in which a non-linear mathematical
model is used to describe the relationship between the response
variable and the predictor variables. In general, modeling
involves the collection of a data set, followed by the creation
of the model.

TABLE II
DATA SET USED

Benchmark Power Limit Ratios
{PP01, PP02...}X{DRAM1, DRAM2...}

SPECpower
{1.00, 0.90, 0.80, 0.70, 0.60, 0.50, 0.40, 0.30, 0.20,

0.10} X {1.00, 0.95, 0.90, 0.85, 0.81, 0.76, 0.71, 0.67,
0.62, 0.57}

SPECweb

[{1.00, 0.90, 0.81, 0.71, 0.62} X {1.00, 0.98}], [{0.87,
0.78, 0.68, 0.59, 0.50} X {.97, .96}], [{0.78, 0.68, 0.59,

0.50, 0.40} X {0.96, 0.95}], [{0.59, 0.53, 0.46, 0.40,
0.34} X {0.95, 0.94}], [{0.39, 0.35, 0.32, 0.29, 0.26} X

{0.94,0.93}]

A description of the data set is given in Table II. Note that
the data is presented as Cartesian products (i.e., AXB is set of
all pairs of (a, b) where a ∈ A and b ∈ B). In our experiments,
the data set for SPECpower uses 10 different power limits
for both PP0 and DRAM subsystems. For SPECweb, we use
25 PP0 power limits and 10 DRAM power limits. We do
not include the results of the power limiting of the package
subsystem in this paper because our experiments reveal that
all the power savings comes from the PP0 subsystem when we
limit the power consumption of the package subsystem [26].
The relationship between performance and power limit ratio is
modeled instead of using the actual power limit, as ratios act as
a good system independent metric. These ratios are calculated
as follows:

Power Limit Ratio =
Power Limit on the Subsystem

Highest Power Limit Used

For SPECpower, we collect the data at 100% load-level using
the load level.target max throughput parameter and running
it through every possible combination of power limits for a

8We investigated creating models using several non-linear forms such
as exponential, power law, logistic, monomolecular and Gompertz model.
However, we only discuss the models that best fit our data in this paper.

total of 100 data points. In case of SPECweb, we use five
different combinations of data sets as shown in Table II. Each
of the combination corresponds to running SPECweb at load-
levels between 100% and 20% in steps of 20. We make sure
that the response time metrics are satisfied while collecting
the data since SPECweb is a latency-sensitive application. The
non-linear models are built using R [7]. Specifically, we use
the nls2() package to perform non-linear regression.

Root mean square error (RMSE) is used to determine the
quality of fit of our models. By definition, residual is the differ-
ence between the observed value and predicted value, as shown
in Equation (1), where Yi is the observed value, f() is the
model, and f(Xi) represents the predicted value as estimated
by the model. The RMSE for a model is calculated as shown
in Equation (2), where N is the number of predictions.

Residual = (Yi − f(Xi)) (1)

RMSE =

√∑
Residual2

N
(2)

We are interested in modeling the upper bounds as these
upper boundary conditions will later be used to determine
subsystem-level power limits to minimize the power con-
sumption given performance constraints using an optimization
framework. We also model the interaction term for understand-
ing the effects of simultaneously changing the power limits on
two different subsystems. Figures 3 and 4 show our non-linear
models for subsystem-level power limiting of SPECpower and
SPECweb, respectively. The figures also show how we use
the data set in Table II to identify the upper bounds. The
curves f1(x), f2(x), and f3(x) represent our model for the
boundaries. For SPECpower, throughput is indirectly modeled
using load-levels achieved (i.e., as a percentage of maximum
throughput possible). The throughput of SPECweb is indirectly
modeled as a percentage of maximum SUS possible. The
power constraints placed on subsystems limit the maximum
possible operations processed by the SPECpower benchmark,
which is clearly evident in Figure 3. Similar behavior can
be seen for SPECweb. There are three parts in the model:
PP0 power limit ratio – f1(), DRAM power limit ratio – f2(),
and the interaction term – f3(), which is the product of both
those ratios. Each of the terms is modeled separately to keep
the basic forms of the models used for non-linear regression
simple. Table III summarizes our models, their parameters,
and quality of fit.

IV. RUNTIME SYSTEM

The runtime consists of three parts: load-level detection,
the optimization framework and the algorithm for the runtime
system. We describe each of these components in rest of the
section.

A. Load-Level Detection

The runtime system should detect the load-level of the ap-
plication in order to set appropriate power limits. To facilitate
this process, we used last-level cache misses (LLCM) per
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TABLE III
MODELS AND THEIR PARAMETERS FOR PERFORMANCE MODELING

UNDER POWER LIMIT. SEE TABLE I FOR BASIC FORMS OF THE MODELS.
RMSE = ROOT MEAN SQUARED ERROR.

Predictor Model Name α β γ RMSE
SPECpower

PP0 power limit
ratio–f1(x)

Gompertz 98.66 -3.95 -5.95 1.08

DRAM power
limit ratio–
f2(x)

Power Law 105.11 4.42 -1.31 1.41

Interaction term
–f3(x)

Gompertz 100.67 -3.29 -5.95 1.75

SPECweb
PP0 power limit
ratio –f1(x)

Gompertz 99.87 -12.58 -7.53 0.39

DRAM power
limit ratio–
f2(x)

Power Law -45.80 -16.30 152.6 1.05

Interaction term
–f3(x)

Gompertz 99.59 -10.62 -7.43 0.28

second (LLCM/S) as an indicator to determine the load-level.
LLCM is a good indicator of performance for a variety of
applications as shown in [13], [19]. The relationship between
LLCM/S and the load-level is modeled similar to the models
presented in Section III. Figure 5 shows our models. We use
linear regression9 for modeling the relationship in case of
SPECpower and non-linear regression (Power-Law model) in
case of SPECweb. The points in the figure are the training data
set and the lines and curves are the models. The regression
parameters for our models are given in Table IV.

9The linear regression is of the form: Load-Level = α LLCM/S + β.

TABLE IV
MODELS FOR LOAD-LEVEL DETECTION

Benchmark Model Name α β γ
SPECpower Linear 103.69 7.63 -
SPECweb Power Law 101.42 2.51 5.69
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Fig. 5. Models for Load-Level Detection

B. The Optimization Framework

The models proposed in Section III are used in our op-
timization framework. We define and solve these non-linear
optimization problems to minimize power for a given per-
formance Y (i.e., throughput for SPECpower and throughput
and response time constraints for SPECweb). The variables in
our optimization framework are PP0 power ratio (X1), DRAM
power ratio (X2), and the interaction term (X1*X2).

Equation (3) presents the optimization problem. In gen-
eral, for subsystem-level power limiting, we find the
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smallest power ratio (i.e., X1 and X2) given a per-
formance constraint (i.e., constraint on Y1). As already
discussed, we model only the boundaries. As a conse-
quence, we have inequalities in Equation (3). f1(X1),
f2(X2), and f3(X1 ∗ X2) from Figures 3 and 4 are
used as upper-bound constraints on performance. The set
{(PP0RLB , PP0RUB), (DRAMRLB , DRAMRUB)} are
the upper bound and lower bound for the PP0 and DRAM
power limit ratios. The set for SPECpower and SPECweb are
{(1.00, 0.10), (1.00, 0.57)} and {(1.00, 0.26), (1.00, 0.93)}
respectively. In all our experiments, we solve these non-linear
optimization problems using the MINOS solver.

Minimize :X1 +X2

Subject to :

f1(X1) ≥ Y

f2(X2) ≥ Y

f3(X1 ∗X2) ≥ Y

V ar : PP0RLB ≤ X1 ≤ PP0RUB

V ar :DRAMRLB ≤ X2 ≤ DRAMRUB

(3)

C. Runtime Algorithms

We propose runtime power management schemes which
leverage the load-level detection model and the optimization
framework described in Section IV-A and IV-B, respectively.
Our runtime systems can be used in two cases. In the first case,
a single application is run on the entire system and in the sec-
ond case two different applications that needs to run at load-
levels less than 50% are executed. In both cases, appropriate
subsystem-level power limits required are identified and set on
the system. We propose two different algorithms addressing
each case: algorithm without workload consolidation and
algorithm with workload consolidation. The algorithm without
workload consolidation, used for the first case, is described in
Figure 6. The power management scheme monitors the LLC
misses for first N seconds and places appropriate power limits
on subsystem based on offline models.

1 Input: Workload --> W1.
2 Launch workload W1.
3 Calculate LLCM/S over first N seconds.
4 Determine the load-level using the appropriate load-

level detection model shown in Section IV-A.
5 Set appropriate PP0 and DRAM power limits on all sockets

using the optimization framework shown in Section IV-B.

Fig. 6. Algorithm Without Workload Consolidation

The algorithm with workload consolidation, used for second
case, is described in Figure 7. In the second scheme, we
consolidate the workload on to a single socket and memory
node and launch another workload in the other socket. We also
place appropriate subsystem-level power limits on the socket
depending on the workload. This scheme was developed as
previous work has shown that deploying mixed workloads can
smooth the instantaneous power profile of the system and such

1 Input: Workloads --> W1 and W2
2 Lines 2 through 4 in Figure 6.
3 if load-level < 50%
4 then
5 Consolidate the workload W1 on to a single socket and

memory node.
6 Launch workload W2 and confine it to the second

socket and memory node.
7 for each socket
8 do
9 Calculate LLCM/S over first N seconds.

10 Determine the load-level using the appropriate
load-level detection models shown in Section IV-A.

11 Set appropriate PP0 and DRAM power limits on the
socket using the optimization framework shown in
Section IV-B.

12 done
13 endif

Fig. 7. Algorithm With Workload Consolidation

deployment can reduce the difference between average and
peak power [14]. As we will show in Section V, deploying
mixed workloads can help improve the energy proportionality
of the system.

V. EVALUATION

Our runtime system which leverages the models and op-
timization framework allows us to run a workload at the
optimal power limit possible. The runtime system is used to
determine the power limit for each subsystem for a particular
load-level, the subsystem-level power limit is set on our
evaluation system and results are reported. We show results
for three workload cases: SPECpower without consolidation
(SP) (using algorithm shown in Figure 6), SPECweb without
consolidation (SW) (using algorithm shown in Figure 6)
and SPECpower+web with consolidation (SPW10) (using al-
gorithm shown in Figure 7). In this section, we look at
the impact of our runtime system on energy proportionality,
power savings and instantaneous power consumption in each
workload case. We use the same experiment setup described
in Section III-A.

A. Energy Proportionality

We are interested in analyzing the energy proportionality of
the system. The deviation of the power curve of the system
from the ideal power curve is of particular interest to us. To
illustrate with an example, Figure 2 shows the average power
consumed by the testbed running SPECpower benchmark at
each load-level, the hypothetical linear power trend and the
hypothetical ideal energy proportional power trend for the
system. We would like the area between the system and the
ideal power trend to be as small as possible. Henceforth, this

10In the SPW case: (1) SPECweb is launched first, followed by SPECpower,
(2) The runtime for SPECpower is changed to 420 seconds, (3) X% load-level
of SPECpower + X% load-level of SPECweb is reported as 2∗X% load-level
for the system. For example, 10% load-level of SPECpower and SPECweb is
reported as 20% load-level for the system and (4) The maximum load-level
we could achieve on a single socket and memory node while maintaining
performance was 43% for SPECpower and 46% for SPECweb. Therefore,
we show results only to a maximum of 80% load-level for SPW (i.e., 40%
SPECpower + 40% SPECweb).
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Fig. 8. Energy Proportionality – Left: SP, Right: SP With Runtime System
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Fig. 9. Energy Proportionality – Left: SW, Right: SW With Runtime System
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Fig. 10. Energy Proportionality – Left: SPW, Right: SPW With Runtime System

area will be referred to as energy proportionality gap (EPG).
We are also interested in the linearity of the system power
curve which is the area between the system power trend and
linear trend. Henceforth, this area will be referred to as linear
deviation gap (LDG).

Figures 8, 9 and 10 show the energy proportionality at
different load-levels for the three workload cases with and
without the runtime system. The Y-axis represents the percent-
age of peak power11 consumed by the system or subsystem and

11Peak power is the average power consumed at the 100% load-level of the
vanilla run of that workload.

X-axis represents the load-level. The ideal case (green line)
consumes 40% of peak power at 40% load-level, 60% of peak
power at 60% load-level and so on. We show the energy pro-
portionality for the full system, PKG, DRAM, PP0, and Un-
core (PKG-PP0) [3]. We emphasize that all the results shown
are measurements from running the three workload cases on a
real system. The target throughput is achieved within a range
of 2% and the response time constraints are maintained for
SPECweb benchmark in all the cases reported. As observed,
we achieve energy proportionality for the full system only
at 80% or higher load-levels. We want to stress that the
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system consumes 120 watts when idling which is 36.51% and
54.88% of peak power for SPECpower and SPECweb, respec-
tively. However, there is energy proportionality improvement
even at low load-levels. PP0 subsystem followed by PKG
achieves the best energy proportionality improvement. PP0
and PKG achieve better-than-energy-proportional operation for
load-levels 40% and 60% or higher respectively. The DRAM
subsystem achieves only a negligible improvement in energy
proportionality. Overall, we observe that the opportunity to
achieve ideal energy-proportional power consumption reduces
as the load-levels decrease.
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Fig. 11. EP Metric (RS - With Runtime System)

We quantify the EPG using the EP metric [23]. The EP
metric is calculated as shown in Equation 4 where AreaSystem

and AreaIdeal represent the area under the system and ideal
power curve respectively. A value of 1 for the metric represents
an ideal energy-proportional system. A value of 0 represents a
system that consumes a constant amount of power irrespective
of the load-level. A value greater than 1 represents a system
which is better than energy-proportional.

EP = 1− AreaSystem −AreaIdeal
AreaIdeal

(4)

Figure 11 shows the EP metric value for full system and
subsystems for the three different workload cases. As evident
from the figure, we improve the energy proportionality in all
cases. In case of PP0 subsystem, we achieve EP metric > 1
in all the three workload cases. At the full system-level, SP
has the best energy proportionality and SW has the worst.
SPW achieves energy proportionality that is greater than SW
and less than SP. Similar behavior is observed even in the
case of subsystems. This makes an interesting case for co-
running two different workloads in order to achieve better
energy proportionality.

The LDG is quantified using LD metric [27]. The LD
metric is calculated using Equation 5. For an linear energy-
proportional system, the LD metric will be 0. LD metric > 0
and < 0 indicate superlinear and sublinear energy proportional
systems.

LD =
AreaSystem

AreaLinear
− 1 (5)
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Fig. 12. LD Metric (RS - With Runtime System)

Figure 12 shows the LD metric value for full system and
subsystems for the three different cases. At the full system-
level, our runtime system changes the LD metric to negative
in all workload cases. In case of the subsystems, the LDG for
DRAM and Uncore see negligible improvement. However, the
LD metric for PP0 and PKG subsystem become negative due
to our runtime system in all cases.

B. Power Savings

Here we report the power-saving results for the three
different workload cases. Figure 13 shows the power savings
due to our runtime system for different load-levels for the
system and the subsystems. The best power savings came from
the SW workload for the full system. We save up to 11%, 15%
and 12% for SP, SW and SPW respectively. We observe that
the highest power savings is achieved at different load-levels
for each workload case.

At the subsystem-level, all of the power savings came from
the PP0 subsystem. Moreover, The best power savings across
all workloads and load-levels is consistently achieved for the
PP0 subsystem. We save upto 32%, 48% and 42% of PP0
power for SP, SW and SPW respectively. The rest of the
subsystem (including DRAM) provided no or negligible power
savings. However, our runtime system was able to determine
the optimal DRAM-level power limit to meet the performance
targets. Placing appropriate power limits, even though we
get negligible power savings from DRAM subsystem, has
advantages with respect to improving the instantaneous power
profile of the server.

C. Instantaneous Power Profile

Power provisioning is directly dependent on the instanta-
neous power consumption of the servers. Figure 14 shows
the cumulative distribution functions (CDFs) of instantaneous
power profile of the three workload cases. The CDFs present
the percentage of time spent at or below a given percentage of
the maximum power limit possible for PKG+DRAM subsys-
tems. The maximum power limit possible for our dual-socket
server for the PKG+DRAM subsystems is 510 watts [2], [26].

In each workload case, our runtime system is capable of
narrowing the range of instantaneous power used by the server.
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Fig. 13. Power Savings Achieved Due to the Runtime System – Left: SP, Center: SW amd Right: SPW
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Fig. 14. Instantaneous Power Consumption Distribution – Left: SP, Center: SW amd Right: SPW (RS = With Runtime System)

Such narrow power range provides two advantages: (1) by
removing the small number of instances in which the vanilla
run’s CDF intercepts the 100% line, we will able to support
more resources under the same power budget and (2) we
reduce the difference between average and the instantaneous
peak power drawn. The SPW workload case with the runtime
system, similar to energy proportionality, has a distribution
which is narrower than SW. Such characteristics provide strong
arguments for co-running workloads to improve the energy
proportionality of servers at low utilization and help implement
better power provisioning strategies.

VI. RELATED WORK

A. Power Provisioning

Pelley et al. [21] proposed power routing which assigns
servers to power distribution units (PDUs) using a schedul-
ing (linear programming) algorithm. The organize the PDUs
into a shuffled topology instead of the traditional primary
and secondary PDU organization. Using power routing they
dynamically assign servers to PDUs and balance the power
drawn across different AC phases. Our work focuses on how
local (server-level) power capping can help reduce peak power
consumption thereby allowing us to bear more resource under
a given power budget.

Fan et al. [14] study the improvements to peak power
consumption of a group of servers due to the improvements
in non-peak power efficiency using their power model. They
provide analytical evidence that shows energy-proportional
systems will enable improved power capping at the data-
center level. This paper complements Fan et al. by showing
empirical evidence on the improvement in instantaneous power
consumption of enterprise applications by way of non-peak
power efficiency enhancements.

Govidan et al. [15] have developed provisioning techniques
based on statistics of application power usage. They identify
and exploit statistical properties of power usage for systematic
under-provisioning and over-booking of power. The work also
introduces the notion of short fuses which deals with main-
taining power cap at different hierarchies of power distribution
in a data center. Our work deals server-level power capping
and it effects on performance of latency-sensitive applications.
The effects of such power capping at the data center-level is
an avenue for future research.

B. Energy Proportionality of Enterprise Applications

Wong et al. [27] provide an infrastructure for improving
the energy proportionality using server-level heterogeneity.
They combine a high-power compute node with a low-power
processor essentially creating two different power-performance
operation regions. They save power by redirecting requests
to the low-power processor at low request rates thereby im-
proving energy proportionality. While both of our work looks
at increasing the energy proportionality by improving linear
deviation, this work does not require additional hardware setup
and operates on commodity servers.

In our previous work [26], we have studied the effects of
RAPL power limiting on the performance, energy proportion-
ality and energy efficiency of the SPECpower benchmark. In
this paper, we improve upon our previous work by creating a
runtime system to decrease the energy proportionality gap. To
design this runtime system, we use a load-detection model
and optimization framework which uses statistical models
for capturing the performance of an application under power
limit. We also discuss the effects of subsystem-level power
limiting on the instantaneous power consumption augmenting
our previous work.
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C. Subsystem-level Power Management

Deng et al. [10]–[12] propose the CoScale framework
which dynamically adapts the frequency of the CPU and
memory respecting a certain application performance degra-
dation target. They also take per-core frequency settings into
account. Li et al. [17] study the CPU microarchitectural
adaptation and memory low power states to reduce energy
consumption of applications bounding the performance loss
by using a slack allocation algorithm. Meisner et al. [20]
characterize online data-intensive services (OLDI) to identify
opportunities for power management, design a framework
that predicts the performance of OLDI workloads and in-
vestigate the power and performance trade-offs using their
simulation framework. Our work provides empirical models
for performance (i.e., throughput and response time) of an
application under subsystem-level power limit and evaluates
our framework on a real system. Sarood et al. [24] present an
interpolation scheme to optimally allocate power for CPU and
memory subsystems in an over-provisioned high-performance
computing cluster for scientific workloads. Our work deals
with enterprise applications. Moreover, this paper deals with
improving energy efficiency of the compute nodes across dif-
ferent levels of utilization (and not just at the peak utilization
levels) as data centers running even well-tuned applications
spend a significant fraction of their time below peak utilization
levels [8], [14], [18].

VII. CONCLUSION

Improving non-peak power efficiency has the potential to
significantly enhance the efficiency of a data center and allows
us to host more resources under a given power budget.

In this paper, we use RAPL interfaces to analyze and
model the performance (both throughput and response time) of
SPECpower and SPECweb benchmarks under subsystem-level
power limits. We show that performance under a subsystem-
level power limits can be modeled using simple and well-
studied non-linear models. We then leverage a load prediction
model and an optimization framework to create a runtime
system for power management of enterprise application. Our
study shows that effective subsystem-level power capping
improves the energy proportionality and instantaneous power
characteristics even at low utilization-levels, thereby allowing
us to support more resources under the same power budget.
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