
Comput Sci Res Dev
DOI 10.1007/s00450-012-0218-0

S P E C I A L I S S U E PA P E R

GBench: benchmarking methodology for evaluating the energy
efficiency of supercomputers

Balaji Subramaniam · Wu-chun Feng

© Springer-Verlag 2012

Abstract Recent studies point to power consumption be-
coming the major design constraint in exascale computing
systems. Current scientific benchmarks, such as LINPACK,
only evaluate high-performance computing (HPC) systems
when running at full throttle, i.e., 100 % workload, result-
ing in more of a focus on performance than on power and
energy consumption. In contrast, efforts like SPECpower
evaluate the energy efficiency of a server at varying work-
loads. This is analogous to evaluating the fuel efficiency of
an automobile at varying speeds. However, the applicability
of SPECpower to HPC is limited at best.

Given the absence of a scientific benchmark to evalu-
ate the energy efficiency of HPC system at different work-
loads, we propose GBench (short for Green Benchmark),
a methodology to evaluate the energy efficiency of super-
computers and enable a more rigorous study of energy ef-
ficiency in HPC. We use LINPACK as a case study and
demonstrate the efficacy of our methodology by identifying
application parameters impacting performance and provid-
ing a systematic methodology to vary the workload of LIN-
PACK.

Keywords Benchmarking · Green supercomputing ·
Load-varying LINPACK · Energy efficiency · Power

This project was supported in part by the US National Science
Foundation (NSF) via grant CCF-0848670.

B. Subramaniam (�) · W.-c. Feng
Department of Computer Science, Virginia Tech, Blacksburg,
USA
e-mail: balaji@cs.vt.edu

W.-c. Feng
e-mail: feng@cs.vt.edu

1 Introduction

The Top500 [16] maintains a list of the fastest supercomput-
ers in the world by measuring their performance using the
high-performance LINPACK (HPL) benchmark [6]. How-
ever, because power is fast becoming the major constraint
in high-performance computing (HPC),1 a benchmark that
evaluates the energy efficiency of a HPC system is needed.

Since applications rarely execute at maximum perfor-
mance due to the time that is spent waiting for data-transfer
and memory-related operations, we need to analyze and un-
derstand the energy efficiency of a system at varying work-
loads, particularly in light of the observation that the power
profile of a server system is non-linear with respect to the
performance achieved [1]. The SPECpower benchmark [14]
does exactly this by varying the workload of the SPEC Java
Business Benchmark (SPECjbb). This is analogous to eval-
uating the energy efficiency (i.e., fuel efficiency) of an au-
tomobile at varying speeds or loads on the engine (e.g.,
miles per gallon highway versus city). SPECpower’s ap-
plicability to HPC, however, is limited, as shown in Ta-
ble 1.

In contrast, conventional HPC benchmarks adopt a
“pedal to the metal” approach and execute at full throt-
tle, i.e., 100 % workload. Unfortunately, calibrating the pa-
rameters of scientific benchmarks to incorporate load varia-
tion is significantly more difficult than with the SPECpower
benchmark, where the workload is varied by simply control-
ling the rate at which requests arrive for processing. To ad-
dress the aforementioned issues simultaneously, we propose
GBench, short for Green Benchmark, as a benchmarking

1Exascale systems are predicted to consume about 67 megawatts (MW)
of power [2].

mailto:balaji@cs.vt.edu
mailto:feng@cs.vt.edu


B. Subramaniam, W.-c. Feng

methodology to evaluate the energy efficiency of supercom-
puters. To this end, we make the following contributions:

– The identification of benchmark parameters that are crit-
ical in determining performance by using a feature-
selection technique.

– A methodology to vary the workload of the benchmark by
calibrating the parameters identified above, thus enabling
the analysis of the power profile of the HPC system under
varying workload.

We use HPL, short for High-Performance LINPACK, to
demonstrate the efficacy of our methodology. However, we
stress that the methodology described to create the bench-
mark can be used with benchmarks other than HPL as
well. In this paper, we create Load-Varying LINPACK (LV-
LINPACK), a novel adaptation of LINPACK benchmark that
enables the following contributions:

– Insight into identifying the cause of different power pro-
files by using the “Performance Application Program-
ming Interface” (PAPI) [11] as well as the correlation be-
tween performance-related activities and the power pro-
file of the HPC system under different workloads.

– Demonstration of the strong correlation between the
power profile of an HPC system and data movement
to/from memory.

Because the power consumption of HPC systems is non-
linear under varying workload, an in-depth analysis of LV-
LINPACK can lead us to identify new benchmark metrics
and methodologies for energy-efficient HPC. Furthermore,
the energy efficiency of an HPC system is a function of its
components, which is a single compute node of a super-
computer in our case. We, therefore, start by evaluating our
benchmark methodology on a pair of single compute nodes
to analyze its efficacy. Then, we execute the benchmark on
an HPC system to demonstrate its scalability and its ability
to address the limitations of SPECpower in scientific com-
puting, as previously noted in Table 1.

The rest of the paper is organized as follows. Sec-
tion 2 identifies the parameters that affect performance us-
ing a feature-selection technique. Section 3 presents the LV-
LINPACK benchmark and the methodologies that we use

Table 1 SPECpower vs. HPC benchmarks

Features SPECpower HPC Benchmarks

Workload Transaction-based, i.e.,
SPECjbb

Scientific computing,
e.g., HPL

Metric ssj_ops (i.e., server-side
Java operations
per second)

FLOPS (i.e., floating
point operations
per second)

Cluster
execution?

No Yes

to create it. Section 4 describes the experimental setup used
for evaluating the benchmark. Section 5 presents our re-
sults and the analysis of the power profiles for executing the
LV-LINPACK benchmark. Section 6 presents related work
while Sect. 7 concludes the paper.

2 Identifying critical parameters in HPL

The SPECpower benchmark realizes different workloads by
directly controlling the arrival rate of the request. For exam-
ple, if the maximum throughput achieved by a server sys-
tem is 1000 ssj_ops, then to achieve a workload of 20 %
throughput requires 200 ssj_ops. This can be achieved by ei-
ther controlling the arrival rate of request to be 400 ssj_ops
at the start of one second and not submitting any request to
be processed for the next second or submitting 200 ssj_ops
every second. Currently, the SPECpower benchmark uses a
negative exponential distribution for controlling the rate of
arrival of work requests [14].

In contrast, the HPL scientific benchmark possesses 18
different parameters that can determine the performance
of HPL [6, 15] and eight parameters have predefined val-
ues that are independent of the problem size used. Iden-
tifying the important parameters of HPL is not easy, as
even a change in a single parameter can cause a signifi-
cant variation in performance. Hence, identifying the param-
eters that affect HPL performance is a challenging multi-
variable problem. In this section, we determine the corre-
lation between HPL parameters and performance to under-
stand which parameters actually affect performance.

2.1 Feature selection

Feature selection is applied as a preprocessing technique
to machine-learning algorithms and data-mining techniques
such as neural networks. It is applied to optimally reduce
the number of features that are used, based on criteria such
as redundancy and degree of relevance to the class. In our
case, the features are the HPL parameters and the class is its
performance.

In this paper, we use a feature-selection technique called
fast correlation-based filter solution (FCBF) [17]. This tech-
nique uses symmetrical uncertainty (SU) [12] to determine
whether a feature is relevant. SU is used for evaluating the
goodness of a feature for classification. It is based on the
concept of information gain theory. Information gain is a
measure of decrease in uncertainty of a random variable af-
ter observing another variable. IG(X|Y), given by Eq. (1), is
the information gained on X due to Y , where H(X), given
by Eq. (2), is the entropy or measure of uncertainty of a ran-
dom variable X, H(X|Y), given by Eq. (3) is the entropy of



GBench: benchmarking methodology for evaluating the energy efficiency of supercomputers

X after observing Y and P(X) and P(X|Y) are the proba-
bility of X and probability of X given Y , respectively.

IG(X–Y) = H(X) − H(X|Y) (1)

H(X) =
n∑

i=1

P(xi) log
(
P(xi)

)
(2)

H(X–Y) =
n∑

i=1

P(yi)

n∑

j=1

P(xi |yi) log
(
P(xi |yi)

)
(3)

IG(X|Y) is biased towards features that have more values
in the analysis. Moreover, we need a metric that normalizes
the output so that a fair comparison can be made between the
features even though the values of the features lie in different
ranges.

SU, given by Eq. (4), eliminates the bias due to using
more values for one feature when compared to other fea-
tures. Moreover, SU normalizes the relevance of the param-
eters in the range of [0,1] with 1 indicating that the feature
completely predicts the class (in our case, performance) and
0 indicating that there is no relevance between the feature
and the class. By using the FCBF algorithm, we find the
HPL parameters that are not only relevant to performance
but also the parameters which are not redundant. In other
words, FCBF finds the HPL parameters that predict perfor-
mance and that do not have a high enough correlation with
other parameters so that the parameter cannot be predicted
by another relevant parameter.

SU(X,Y ) = 2
IG(X|Y)

H(X) + H(Y)
(4)

We use FCBF software [4] to apply feature selection on
the HPL parameters. The software identifies the features
(i.e., HPL input parameters) that are relevant to the out-
put (i.e., performance achieved) and list them in order of
their SU. Table 2 shows the data set that we used. As noted
earlier, we start by evaluating our methodology on individ-
ual compute nodes. The compute nodes used to collect the
data set required to perform FCBF are called Armor and Ice
and are described in Sect. 4. Table 3 shows the parameters
and their corresponding SU.

NB, Q and N were chosen as important parameters on
both the compute nodes. N is the least significant parame-
ter. Therefore, N is used as a secondary parameter to vary
the workload. NB is used as one of primary parameters as it
is has the most significance. Q is used as the other primary
parameter. However, Q cannot be varied independent of P

since P and Q are the rows and columns of the MPI process
grid, respectively, in the HPL benchmark. Moreover, P is
eliminated by FCBF because of the correlation with Q (re-
call that FCBF reports only the significant parameters that
do not have a high enough correlation with other parameters)
and not because of its insignificance. As a result, we chose
to use both P and Q simultaneously to run the benchmark

Table 2 Data set used for feature selection

HPL parameter Data set considered

P × Q Values of P × Q ∀P ∗ Q ≤ number of cores

N 5,10, 15 and 20 percent of memory

NB 16, 32, 64, 96, 128

PFACT 0, 1, 2

NBMIN 2, 4

NDIV 2, 4

RFACT 0, 1, 2

Depth 0, 1, 2

Table 3 Result of FCBF on HPL parameters

System name HPL parameter Symmetrical
uncertainty

Armor NB 0.233

Q 0.144

N 0.018

Ice Q 0.229

NB 0.123

N 0.090

Note: All the other parameters had SU less than 0.01

using different MPI process configuration. We use NB, Q

and P as the primary parameters to create the LV-LINPACK
below.

3 LV-LINPACK

In previous section, we identified the parameters that are im-
portant for determining the performance of HPL using the
FCBF algorithm. Based on this identification, we propose
two methodologies to vary the workload of HPL. The first
methodology fixes the P × Q configuration and varies the
parameter NB while the second methodology fixes the pa-
rameter NB and varies the P ×Q configuration. We present
an algorithm used for executing the LV-LINPACK at differ-
ent workloads in this section.

The LV-LINPACK benchmark executes a series of HPL
runs with different input configurations to achieve different
workloads. As discussed earlier, the different workloads are
achieved by calibrating the parameters of HPL. The system
dissipates some power even when it is not executing any
workload which we call idle power. While executing sub-
sequent HPL for different workload, it is important that we
make sure that the system cools down to its idle power af-
ter the end of one HPL execution and before the start of the
other execution. For achieving these conditions we use an al-
gorithm similar to that used in SPECpower benchmark [14].



B. Subramaniam, W.-c. Feng

The algorithm to execute LV-LINPACK can be summarized
as follows:

1. Ready the system for power measurement
2. Record the idle power
3. Iterate for all workloads:

– Calibrate the HPL parameters to achieve next incre-
mental workload

– Wait for the system to dissipate only idle power
– Record the initial energy value
– Execute the benchmark
– Record the final energy value
– Record the performance achieved

4. End

4 Experimental setup

Armor is a dual quad-core Intel Xeon E5405 processor at
2 GHz with 4 GB of 667-MHz DDR2 SDRAM. Each pro-
cessor has 12 MB of L2 cache shared between 4 cores and
32 KB L1 cache for each core. Ice is a dual dual-core AMD
Opteron 2218 running at 2.6 GHz. It has 4 GB of DRAM.

Fig. 1 Experimental setup

Each core has 1-MB L2 cache and 64-KB L1 cache. We
chose Ice to evaluate the behavior of our benchmark on
NUMA architectures. Finally, we evaluate the scalability of
the proposed benchmark using a mid-sized cluster named
SystemG. The cluster consists of 324 Mac Pros, each with
dual quad-core 2.8-GHz Intel Xeon 5462 processors and 8-
GB of RAM. The nodes are connected over a QDR Infini-
Band interconnect technology. We use 64 nodes for a total
of 512 cores from SystemG. We use a “Watts Up? PRO ES”
power meter to measure the energy consumption, as shown
in Fig. 1. All the power values reported in this paper are av-
erage power.

5 Experimental evaluation

In this section, we evaluate the methodologies described in
earlier sections to vary the workload of HPL. Section 5.1
describes the LV-LINPACK with fixed P × Q, Sect. 5.2 de-
scribes the LV-LINPACK with fixed NB, and finally we dis-
cuss the execution of LV-LINPACK with fixed P ×Q on our
SystemG supercomputer in Sect. 5.3.

5.1 LV-LINPACK with Fixed P × Q

In this section, we discuss about changing the workload of
HPL by fixing P × Q and varying N & NB. To isolate and
show how each of the identified parameters affect the perfor-
mance and power of the system, we execute HPL for three
different block sizes (NB = 16, 32 & 48) for three different
problem sizes by using 10 different configuration of P × Q

for Armor and 8 different P ×Q configurations for Ice. Such

Fig. 2 LV-LINPACK with fixed P × Q on Armor, (A) Configurations 1 × 4 and 2 × 2 (B) Configurations 1 × 6 and 2 × 3



GBench: benchmarking methodology for evaluating the energy efficiency of supercomputers

Fig. 3 LV-LINPACK with fixed P × Q on Ice, (A) Configurations 1 × 2 and 2 × 1 (B) Configurations 1 × 4 and 2 × 2

a detailed profiling will give us insight into how the power
profile of the system behaves in certain range of workload.
In Fig. 2A and 2B, the LV-LINPACK with fixed P ×Q con-
figurations of 1 × 4, 2 × 2, 1 × 6 and 2 × 3 for Armor is
shown. For each line graph in a plot, P × Q and N are kept
constant and only NB is varied. The Y -axis shows the power
dissipated and X-axis shows the % of Workload (i.e. % of
maximum HPL performance achieved). The power profile
of runs with various N in each graph is different. Higher
N gives more or less same performance with slightly lesser
power consumption. However its effects are negligible as the
effects of power lies in the range of approximately 8 watts
for same P × Q and NB configurations. It is also notice-
able from the graph that configurations 2 × 2 consumes less
power for all Ns while executing at more or less the same
performance as configuration 1 × 4 even though they use
the same number of processes. In Fig. 2B, similar configu-
ration such as 1 × 6 and 2 × 3 execute at same performance
but with slightly different power consumption for even same
N and NB sizes. There is also degradation of performance
of configuration 1 × 6 for certain block sizes. For example
consider the graphs for P ×Q configuration 1×6 and 2×3,
the performance of 1 × 6 for N = 30 % of memory has high
workload variations when compared to 2×3 configurations.
This is due to the effect of panel factorization on the over-
all execution time as described for configurations 2 × 2 and
1 × 4.

In Fig. 3A and 3B, the LV-LINPACK with fixed P × Q

for Ice is shown. We observe different workload being
achieved by similar configuration such as 1 × 4 & 2 × 2
than Armor. Such effects can be explained by the fact that
each core in Ice executes at a faster rate. When block size

is increased there is more data to be fetched to perform the
panel factorization and thus functional units wait more for
data since the operating frequency is higher. This creates the
increase in the range of workloads achieved by fixing P ×Q

and N and just changing NB. Even though we can vary the
workload within in certain range with fixed P × Q, it will
not serve as a good benchmark to profile the system at dif-
ferent workloads. Nevertheless, it provides clear insight into
how the variation of NB can have effects on performance
and power consumption of the HPL benchmark even with
N and P × Q fixed.

5.2 LV-LINPACK with fixed NB

We describe about the workload variations achieved while
using fixed NB and changing P × Q in this section. If we
change the P × Q configuration, we will be able to achieve
greater variation in the workload of HPL. So this benchmark
can be actually viewed as connecting the graphs that were
shown for LV-LINPACK with Fixed P × Q. These power
profiles will provide insight into how similar P ×Q configu-
ration can have different workloads for the same N and NB.

Figure 4 shows the variation in workload on Armor for
a problem size of 30 % of memory while changing P × Q

and keeping the block size fixed. The variation in workload
for similar configurations grows with an increase in NB size.
The worst effect can be seen for 1 × 8 and 2 × 4 configura-
tion with block size 48. Although there is a huge variation
in performance, 1 × 8 consumes more power than 2 × 4 in
the same example. We would expect the power consumption
of 1 × 8 configuration to be less as the 1 × 8 configuration
achieves less performance even while using same number of



B. Subramaniam, W.-c. Feng

F
ig

.4
LV

-L
IN

PA
C

K
w

ith
fix

ed
N

B
on

A
rm

or

processes which means the functional units idle more wait-
ing for data and thus consuming less power on average.

The LV-LINPACK with fixed NB for Ice is shown in
Fig. 5. The worst effect on performance can be seen with
NB = 48. In all, the graphs shown 1 × Y always performs
worse than Y × 1. This is due to the way the data is dis-
tributed to each process in HPL algorithm. By using config-
uration 1 × Y , a panel from the original coefficient matrix
is factorized by a single process but in case of Y × 1 the
factorization is divided between Y processes. As observed
even in these plots, though identical configurations of P ×Q

achieve different performance, they consume more or less
the same power which should not be the case. Then, why do
we observe such effects on power? To investigate and iden-
tify the cause for such behavior, we use PAPI to relate this
power consumption to performance-related activities.

To investigate these power profiles, we profiled the
benchmark for data-cache misses as they can be directly
correlated to the performance loss. Figures 6 and 7 show
the L2 data-cache misses for the power profiles of the LV-
LINPACK with fixed NB shown earlier. We expect that the
configuration that achieves less performance consumes less
power on average as they use same number of processes.
When compared with the 2 × 4 configuration, the 1 × 8 con-
figuration should dissipate less power on average as more
time by the functional units is spent idling, but the data
movement caused due to the large number of L2 data cache
misses results in higher average power consumption. The L2
data-cache misses, and thus, the memory access due to these
misses consume power (power consumption due to the data
movement) and degrades the performance of that execution.

Consumption of greater power for configurations that
achieve less performance can be directly correlated to L2
data-cache misses. For example, consider data points be-
tween 55 to 70 % workload for NB = 48 in Fig. 4. All of
these executions consume greater power than the 2 × 4 con-
figuration which achieves 100 % workload and the power
consumption can be directly correlated to the difference in
L2 data-cache misses (Fig. 6) which is about a order of
magnitude. Such behavior can also be seen with Ice. Con-
sider the LV-LINPACK with NB = 32 in Fig. 5, there is a
difference in the power consumed between configurations
1 × 3 and 3 × 1 even though 1 × 3 achieves far less perfor-
mance. Like Armor, there is a order of magnitude difference
in the L2 data-cache misses (Fig. 7) for these configurations.
Clearly the behavior of the power profile has a strong corre-
lation with the data movement from memory due to L2 data
cache misses which suggests that power consumption due
to data movement can have significant effect on the power
profile of the system at different workloads.

Another interesting observation from the graphs is that
the systems are more power efficient at higher workloads.
For example consider the graph with NB = 16 from Fig. 4,



GBench: benchmarking methodology for evaluating the energy efficiency of supercomputers

F
ig

.5
LV

-L
IN

PA
C

K
w

ith
fix

ed
N

B
on

Ic
e

the difference in power consumption for workloads from
75 % to 100 % is about 10 watts whereas the difference
in power consumption for workloads from 12 % to 40 % is
greater than 20 watts. The dynamic power range of Armor is
about 70 watts, so the increase in system power consumption
is 1/7 of the dynamic power to go from 75 % to 100 % but
2/7 of the dynamic power to move from 12 % to 40 %. This
indicates that these systems are not energy proportional with
respect to percentage of workload achieved (i.e., the power
consumed at different workloads does not increase perfectly
linearly with respect to performance achieved). These obser-
vations stress on the need for energy proportional design of
system [1]. Such insight into the power profile of the system
cannot be derived from a benchmark which executes only at
100 % workload.

The LV-LINPACK with fixed NB serves as a good bench-
mark as we are able to achieve various workloads between
0–100 %. We will be able to achieve our primary goal, i.e.
to identify the power efficient system at different workloads,
with this benchmark.

5.3 LV-LINPACK on SystemG

In this section, we present the results for executing the
LV-LINPACK with fixed P × Q on 64 compute nodes of
SystemG. The is done in order to evaluate the scalability
of our benchmark. Figure 8 shows the results for execut-
ing LV-LINPACK with fixed P × Q. All the results shown
use 512 cores in the system i.e. P ∗ Q = 512. The results
show anomalies in power consumption similar to Ice and Ar-
mor. We are particularly interested in the power consumed
while executing at performances less than the achieved high-
est performance. We used performance counters to identify
whether there is any correlation between power consumed
and performance related activities and the results are shown
in Fig. 9.

PCC =
∑n

i=1(Xi − X̄)(Yi − Ȳ )

(n − 1)SXSX

(5)

There is a strong correlation between L2 data cache
misses and the power consumed at certain workload. We
used the Pearson Correlation Coefficient (PCC) to further
quantify the statistical significance of this correlation. PCC
is commonly used to understand the degree of dependence
(correlation) between two variables. The value of correlation
coefficient lie between −1 and +1 where − and + imply
the negative and positive correlation of the variables respec-
tively. PCC can be calculated by using Eq. (5) where Xi &
Yi are the data samples, X̄ & Ȳ are the respective means,
SX & SY are the standard deviations and n is the number
of samples. Our analysis shows that the PCC for power con-
sumed and number of L2 data cache misses are high. The
PCC for executing LV-LINPACK with N = 10 % of mem-
ory and NB as 16 & 48 are 0.94 and 0.97 respectively and



B. Subramaniam, W.-c. Feng

for executing LV-LINPACK with N = 20 % of memory and
NB as 16 & 48 are 0.95 and 0.93 respectively. PCC being
above 0.9 in all cases indicates a strong correlation. These
results motivate the need for optimizing data movement in
a scientific applications as a mechanism to conserve energy.
It is also observed that the correlation between the power
consumed and L2 data cache misses decreases as we move
towards 100 % workload. This is expected as more compu-
tation results in higher dynamic dissipation from the CPU
and thus CPU contributes relatively more to the power dis-
sipation than data movement.

Fig. 6 L2 data cache misses for Armor

6 Related work

To the best of our knowledge, the only load-varying bench-
mark currently in use is the SPECpower benchmark [14].
The SPECpower benchmark provides a methodology to pro-
file the power of a single server at varying workload. How-
ever, as discussed earlier, the workload used in the bench-
mark is a Java-based transaction workload which is not a
good representative of a typical scientific applications and
has very limited relevance to the HPC. In this paper we pro-
pose a load-varying benchmark for scientific computing.

Fig. 7 L2 Data cache misses for Ice

Fig. 8 LV-LINPACK with fixed P × Q on SystemG



GBench: benchmarking methodology for evaluating the energy efficiency of supercomputers

Fig. 9 L2 data cache misses on SystemG

In [15], several data mining approaches such as linear
regression, M5P, multilayer perceptron and support vector
machine have been applied to tune the performance of HPL.
In this paper, we use feature selection to identify the param-
eters which has high impact on the performance of HPL.
We then use these parameters to create the LV-LINPACK
benchmark. In [3], a detailed study of the power and energy
profiles of the NAS parallel benchmarks (NPB) [10] is pre-
sented. In another work [13], a functional and component-
level study of the HPCC benchmarks [7] by using Power-
Pack [5] software is provided which indicates a correlation
between the memory access rate and the power consumption
of the system. The power consumption of large-scale HPC
systems for executing benchmarks such as HPL and NPB
is reported in [9]. In this paper we focus on power profile
of the system at different workload to understand its trends
which is not addressed in [3, 9]. In [13], the focus is on ana-
lyzing energy and power profiles of the HPCC benchmarks.
[8] present a study of existing benchmark metrics for evalu-
ating energy-efficiency. Metrics like Energy Delay Product
(EDP) and Performance/Power ratio are analyzed for suit-
ability. In this paper, we focus on creating a new benchmark
to evaluate the energy efficiency in HPC.

7 Conclusion

In this paper, we proposed GBench and created a load-
varying benchmark from HPL to demonstrate the efficacy
of our methodology. We first identified the parameters
that influence the performance of HPL and presented LV-
LINPACK via a calibration of parameters such as P × Q

and NB. We found that there is a correlation between power
and performance related activity such as L2 data cache miss
at a certain workload and proposed the relation between data
movement and the power profiles of the system. Finally, we
showed the scalability of our benchmark on SystemG and
verified the statistical significance of correlation between
the L2 data cache misses and the power profile of the sys-
tem.

References

1. Barroso LA, Hölzle U (2007) The case for energy-proportional
computing. Computer 40(12):33–37

2. Bergman K, Borkar S, Campbell D, Carlson W, Dally W, Denneau
M, Franzon P, Harrod W, Hill K, Hiller J, Karp S, Keckler S, Klein
D, Lucas R, Richards M, Scarpelli A, Scott S, Snavely A, Sterling
T, Williams RS, Yelick K, Kogge P (2008) Exascale computing
study: technology challenges in achieving exascale systems

3. Feng X, Ge R, Cameron KW (2005) Power and energy profiling
of scientific applications on distributed systems. In: IEEE IPDPS.
doi:10.1109/IPDPS.2005.346

4. Fast Correlation-Based Filter (FCBF) Solution Software
(2003) Available at http://www.public.asu.edu/~huanliu/FCBF/
FCBFsoftware.html

5. Ge R, Feng X, Song S, Chang H, Li D, Cameron KW (2010)
PowerPack: energy profiling and analysis of High-Performance
systems and applications. IEEE Trans Parallel Distrib Syst 99(2).
doi:10.1109/TPDS.2009.76

6. High performance LINPACK (HPL) (2008) Available at http://
www.netlib.org/benchmark/hpl

7. HPC Challenge Benchmarks (2003) Available at http://icl.cs.utk.
edu/hpcc

8. Hsu C, Feng W, Archuleta JS (2005) Towards efficient supercom-
puting: a quest for the right metric. In: IEEE IPDPS HPPAC work-
shop

9. Kamil S, Shalf J, Strohmaier E (2008) Power efficiency in high
performance computing. In: 2008 IEEE international symposium
on parallel and distributed processing, Miami, FL, USA, pp 1–8

http://dx.doi.org/10.1109/IPDPS.2005.346
http://www.public.asu.edu/~huanliu/FCBF/FCBFsoftware.html
http://www.public.asu.edu/~huanliu/FCBF/FCBFsoftware.html
http://dx.doi.org/10.1109/TPDS.2009.76
http://www.netlib.org/benchmark/hpl
http://www.netlib.org/benchmark/hpl
http://icl.cs.utk.edu/hpcc
http://icl.cs.utk.edu/hpcc


B. Subramaniam, W.-c. Feng

10. NAS parallel benchmarks (1992) Available at http://www.nas.
nasa.gov/Resources/Software/npb.html

11. Performance Application Programming Interface (PAPI) (2011)
Available at http://icl.cs.utk.edu/papi

12. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Nu-
merical recipes in C: the art of scientific computing, 2nd edn.
Cambridge University Press, Cambridge

13. Song S, Ge R, Feng X, Cameron KW (2009) Energy profiling and
analysis of the HPC challenge benchmarks. Int J High Perform
Comput Appl 23(3):265–276

14. SPECpower benchmark (2008) Available at http://www.spec.org/
power_ssj2008

15. Tan TZ, Goh RSM, March V, See S (2009) Data mining analysis
to validate performance tuning practices for HPL. In: 2009 IEEE
international conference on cluster computing and workshops

16. The Top500 list (1993) Available at http://top500.org
17. Yu L, Liu H (2003) Feature selection for high-dimensional data:

a fast Correlation-Based filter solution. In: The twentieth interna-
tional conference on machine learning

Balaji Subramaniam is a Ph.D.
student in the Department of Com-
puter Science at Virginia Tech (VT),
where he is a member of the Syn-
ergy Lab. His research interests
include energy-aware computing,
power modeling and prediction,
hardware- and software-controlled
power management, and bench-
marking. He received a B.E. in
Computer Science and Engineering
from Anna University at Chennai in
2009.

Wu-chun Feng became an Asso-
ciate Professor in the Department
of Computer Science and Depart-
ment of Electrical & Computing
Engineering at Virginia Tech (VT)
in January 2006. He leads the Syn-
ergy Lab and serves as site co-
director of the NSF Center for High-
Performance Reconfigurable Com-
puting at VT. He received B.S. de-
grees in Computer Engineering and
Music (Honors) and M.S. degree
in Computer Engineering at Penn
State University in 1988 and 1990,
respectively. He then earned his

Ph.D. in Computer Science at the University of Illinois at Urbana-
Champaign in 1996. His research interests encompass a broad range
of topics in efficient parallel computing, including high-performance
computing and networking, energy-efficient (or green) supercomput-
ing, accelerator-based computing, cloud computing, grid computing,
bioinformatics, and computer science pedagogy for K-12.

http://www.nas.nasa.gov/Resources/Software/npb.html
http://www.nas.nasa.gov/Resources/Software/npb.html
http://icl.cs.utk.edu/papi
http://www.spec.org/power_ssj2008
http://www.spec.org/power_ssj2008
http://top500.org

	GBench: benchmarking methodology for evaluating the energy efficiency of supercomputers
	Abstract
	Introduction
	Identifying critical parameters in HPL
	Feature selection

	LV-LINPACK
	Experimental setup
	Experimental evaluation
	LV-LINPACK with Fixed P xQ
	LV-LINPACK with fixed NB
	LV-LINPACK on SystemG

	Related work
	Conclusion
	References


