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Abstract
The graphics processing unit (GPU) has evolved from a single-

purpose graphics accelerator to a tool that can greatly accelerate the
performance of high-performance computing (HPC) applications. Pre-
vious work evaluated the energy efficiency of discrete GPUs for compute-
intensive scientific computing and found them to be energy efficient but
very high power. In fact, a compute-capable discrete GPU can draw
more than 200 watts by itself, which can be as much as an entire com-
pute node (without a GPU). This massive power draw presents a se-
rious roadblock to the adoption of GPUs in low-power environments,
such as embedded systems. Even when being considered for data cen-
ters, the power draw of a GPU presents a problem as it increases the
demand placed on support infrastructure such as cooling and available
supplies of power, driving up cost. With the advent of compute-capable
integrated GPUs with power consumption in the tens of watts, we be-
lieve it is time to re-evaluate the notion of GPUs being power-hungry.

In this paper, we present the first evaluation of the energy effi-
ciency of integrated GPUs for green HPC. We make use of four spe-
cific workloads, each representative of a different computational dwarf,
and evaluate them across three different platforms: a multicore system,
a high-performance discrete GPU, and a low-power integrated GPU.
We find that the integrated GPU delivers superior energy savings and a
comparable energy-delay product (EDP) when compared to its discrete
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counterpart, and it can still outperform the CPUs of a multicore system
at a fraction of the power.
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1 Introduction

Through the mid-2000s, performance improvements for the
general-purpose processor, also known as the CPU, were
driven by increasing clock frequencies (f ) that had to be
supported by correspondingly higher supply voltages to the
processor (V ). However, because the thermal design power
(TDP) of such processors is directly proportional to the clock
frequency f and the square of the supply voltage V , these
higher frequencies and voltages led to increasingly higher
TDPs, as exemplified by the ItaniumTMprocessor at 130 watts.
This excessive power density led many to “brag” about the
fact that it approached the power density of a nuclear reactor,
as noted in (Feng et al, 2002; Hsu and Feng, 2005).

Due in large part to the aforementioned power density,
clock frequencies finally stalled around 3 GHz in the mid-
to-late 2000s, and instead, the number of cores started dou-
bling every 24 months. Thus, performance improvements
would no longer come from increased clock frequencies but
rather would come from harnessing the parallelism of multi-
core and many-core processors. Though the stalling of clock
frequencies and advances in process technology (65 nm →
45 nm → 32 nm) have kept the TDP at bay, despite the
doubling of cores every 24 months, the TDP has resumed
its upward march with the dual-core Intel R© XeonTM7130
CPU at 150 watts and emerging graphics processing units
(GPUs) for general-purpose computation such as the 1600-
core AMD/ATI R© RadeonTM5870 at 188 watts, the 240-core
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NVIDIA R© GTX 280 at 236 watts, and the 512-core NVIDIA R©

Fermi at 295 watts.
Despite the arguably voracious power appetite of the

GPU, its popularity continues to grow quite rapidly because
it is a commodity solution that can deliver personal super-
computing to the desktop for everything from a common
desktop operating system (Munshi, 2008) to scientific ap-
plications (Eastman and Pande, 2010; Sandes and de Melo,
2010; Zhang et al, 2010; Tan et al, 2009; Anandakrishnan
et al, 2010; Hardy et al, 2009; Stone et al, 2007). However,
the adoption of the GPU in high-performance embedded
environments has been limited due to the aforementioned
TDPs. In addition, future exascale computing environments
face daunting power consumption issues, as detailed in
(Kogge et al, 2008) — power issues that may be exacerbated
by GPUs.

While the most common and most studied GPUs for
general-purpose computation are large, dedicated, and dis-
crete many-core processors with 240 to 3200 cores, their
TDPs are similarly large. As a consequence, such discrete
many-core GPUs cannot be used in embedded systems.

Recently, however, low-power GPUs have materialized
for general-purpose computation as well. Such GPUs have
been designed as part of the chipset of the system mother-
board, i.e., an integrated GPU and system chipset, or here-
after referred to simply as an integrated GPU. This inte-
grated GPU provides full support for general-purpose com-
putational acceleration via CUDATM (NVIDIA, 2010) but at
a TDP that is an order of magnitude better (i.e., less) than
a traditionally large, dedicated, and discrete many-core pro-
cessor such as the NVIDIA GTX 280.

Historically, integrated GPUs have been designed to pro-
vide 2D and 3D rendering within a low power and energy
budget, especially laptops and miniature PCs. Now that these
integrated GPUs also have compute capabilities, can they
deliver the energy efficiency of their larger brethren while
maintaining the low-power characteristics that made them
attractive in portable and embedded systems from the start?
Our results show that integrated GPUs with low TDPs pos-
sess the capacity for higher performance than their power
draw suggests and provide a compelling performance com-
promise between traditional CPUs and full-sized GPUs with
a power draw lower than either.

The main contribution of this paper is a performance
evaluation and demonstration of low-power integrated GPUs
in enhancing performance and energy efficiency for green
high-performance computing (HPC). Specifically, we com-
pare the performance, power consumption, and energy ef-
ficiency for a set of scientific applications across three ac-
celerated architectures: an 8-core CPU system, a 240-core
discrete GPU, and a low-power integrated GPU. Our results
show that the integrated GPU offers a comparable energy-
delay product (EDP) and superior energy savings over a dis-

crete GPU, while still delivering better performance than
multicore CPUs at a fraction of their power consumption.
These properties make compute-capable, integrated GPUs
very promising for green HPC applications.

The remainder of the paper is organized as follows, we
present a background on the NVIDIA GPU architecture and
CUDATMas well as other related work in Section 2 and Sec-
tion 3. Section 4 discusses the methodology we used for this
study, followed by an evaluation of the energy consumption
and performance trade offs of a modern multicore architec-
ture and two popular versions of the GPU architectures in
Section 5. Finally, Section 6 presents our conclusions and
Section 7 our plans for future work.

2 Background

This section provides a brief overview of the CUDA archi-
tecture, programming model, and compute capability.

2.1 CUDA Architecture

The CUDA architecture consists of a set of multiproces-
sors, each of which contains 8 scalar processors. Examples
of such GPU devices include the 240-core NVIDIA GTX
280 or the 16-core NVIDIA IONTMGPU. Meaning that the
NVIDIA GTX 280 has 30 multiprocessors and the
NVIDIA ION GPU only 2.

While each core could execute a sequential thread, the
cores generally execute in what NVIDIA calls single in-
struction, multiple-thread (SIMT) fashion. That is, all cores
in the same group execute the same instruction at the same
time, much like SIMD. Where SIMT differs is in its ability
to transparently handle divergent instructions. In addition,
rather than scheduling at the granularity of a thread (as a
standard CPU would) or at the granularity of 8 threads (as
one might expect from SIMD-like execution), CUDA sched-
ules threads in groups of 32, known as warps, which execute
as a single unit across four time steps on a multiprocessor.

The memory model is similarly different from standard
system memory, but its structure is only tangentially relevant
to the results in this paper. For more information on NVIDIA
GPUs and their architecture in general, see the CUDA pro-
gramming guide (NVIDIA, 2007).

2.2 CUDA Programming Model

Certain extensions are necessary to program the architecture
described above within current programming languages. In
the case of CUDA C was chosen and a set of language exten-
sions have been released along with a compiler and various
examples by NVIDIA.
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The primary concept in CUDA is the kernel, which rep-
resents a set of computations to be run in parallel on the
GPU, and is specified much like a function in C. A kernel
is a grid of blocks arranged in a 1 or 2 dimensional array,
which are each one- or two-dimensional arrays of threads.
Threads in this case, while they are implemented differently,
behave for consistency purposes the same as threads in a
multicore or multiprocessor scenario. The block abstraction
is useful in that all threads in a block are guaranteed to run
on the same multiprocessor at the same time, allowing them
to synchronize with one another and share data. Between
blocks, however, there is no on-chip synchronization that is
natively available.

2.3 Compute Capability

NVIDIA uses “compute capability” to represent versions of
their hardware and to allow for comparisons between differ-
ent chips which have the same underlying properties. The
compute capability is effectively a version number for the
CUDA features and behavior of compute-capable graphics
cards. This is especially relevant to this evaluation because
our integrated and discrete GPUs have different compute ca-
pabilities, 1.1 and 1.2, respectively. In a nutshell, this means
that the discrete card has more registers per multiprocessor,
allows more warps and threads to be active at a time per
multiprocessor, and has greater support for atomic opera-
tions. In terms of the architecture and general functioning of
the chips, they are still the same.

3 Related Work

Energy efficiency for general-purpose computing on GPUs
remains a largely unexplored space. The most directly rele-
vant previous work (Huang et al, 2009) evaluates the energy
efficiency of a computationally intensive scientific applica-
tion across a GPU and a multicore system with and without
threading. They demonstrate that the GPU has high poten-
tial for energy efficiency for compute-intensive workloads
due to its high performance, but leave the high instantaneous
power of a GPU as an issue yet to be addressed.

In (Rofouei et al, 2008), the authors evaluate the energy
efficiency of GPUs with an emphasis on energy cost and
cost/performance. This paper focuses more on their
LEAP server, which is the tool used to get “real-time” en-
ergy monitoring than on the GPU results themselves. That
said, they do present a good evaluation of the cost/perfor-
mance of GPUs and energy cost of instructions.

The earliest work on GPU power consumption is a tool
called QSilver, a simulator designed for the analysis of per-
formance characteristics of graphics hardware (Sheaffer et al,
2005). QSilver focuses on analyzing the graphics pipeline

by intercepting OpenGL calls. One of the hardware improve-
ments investigated is dynamic voltage and frequency scaling
(DVFS) across multiple clock domains, which achieved an
estimated power reduction of 10%.

Though little work has been done in direct relation to
general-purpose computing on low-power GPUs, a great deal
of effort has been expended on creating low-power embed-
ded GPUs for graphics (Nam et al, 2007). They explore the
use of logarithmic arithmetic for power efficiency and pro-
pose a significant rearrangement of the arithmetic units in
the GPU to produce significant power and space savings.

More generally, high-performance computing (HPC) as
a field has sought ways to lower its energy consumption for
quite some time, especially with methods such as DVFS,
e.g., the power-aware run-time system proposed in (Hsu and
Feng, 2005). They propose an algorithm that monitors the
percentage of the cycles spent on memory operations and
decides when it is appropriate to lower the frequency of the
processor such that the performance degradation, if any, is
tightly bound. While we do not directly analyze DVFS in
this paper, our results suggest that a similar methodology
may be in use on the GPUs we study.

4 Methodology

In order to evaluate the effectiveness of integrated GPUs for
energy-efficient and low-power HPC, we selected a set of
candidate metrics and evaluated them across a diverse set of
applications.

4.1 Energy Efficiency Metrics

Currently, the most commonly used energy-efficiency met-
ric, as adopted by the Green500 List (Feng and Cameron,
2008), is flops/watt, where flops refers to floating-point op-
erations per second. However, the number of floating-point
operations is not applicable to all applications. Also, get-
ting an accurate measure of the floating-point operations per
run on each platform for a large number of applications is
difficult and prohibitively time consuming. Another option
considered was to use available implementations of the LIN-
PACK (Dongarra, 1990) benchmark, but the available GPU
implementations of LINPACK do not support cards with
memory lower than 4GB, such as those we are evaluating.

An alternative metric for measuring energy efficiency is
the energy-delay product (EDP). The EDP is defined as the
amount of energy consumed during the execution of a pro-
gram multiplied by the execution time of the program. It has
been a metric used in previous studies of GPU energy effi-
ciency (Huang et al, 2009; Hamano et al, 2009).

This EDP metric, and more generally, EDn, where n

is an integer, is commonly used in circuit design. However,
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as noted in (Hsu et al, 2005), the EDn product emphasizes
performance over energy, particularly as n increases.

A metric of increasing interest is the amount of computa-
tional work completed per joule. The question here becomes
“What constitutes work?” In (Kapasi et al, 2003), work com-
pleted per joule is defined as operations per joule. In con-
trast, SPECPower (Lange, 2009) defines work per joule as
“server-side Java operations per joule.” However, our set of
applications do not use that unit of work, nor do they share a
common unit of work other than instructions, and those are
debatable since different instructions may be chosen by the
compilers for each platform. As such, we decided to treat a
complete run of a given application as a single unit of work
and report the total energy consumed per application run.

4.2 Power Measurement

With the purpose of this study centered around the power
consumption and energy efficiency of GPUs, we seek to in-
vestigate the static power vs. the dynamic power of GPUs
and the EDP of the computing platforms under different
application workloads, respectively. However, directly mea-
suring the power consumption or energy efficiency of the
GPU alone is extraordinarily difficult. For example, the ION
GPU is not physically separable from the rest of the system,
not to mention that it includes more than just the processing
element within itself. Another issue is that for the GPU, the
static power of just the GPU is not necessarily useful since
other components are necessary for the GPUs to function.
As such, we measure the idle and loaded power of the en-
tire system rather than the static and dynamic power of the
GPU, respectively. The idle power is the power of the whole
system when running but not loaded. The loaded power is
the same as the idle power except with a computational load
running on the system in question.

4.3 Applications

This study aims to evaluate the performance and energy ef-
ficiency of integrated GPUs for high-performance scientific
applications. To this end, we run four benchmark applica-
tions on multicore and CUDA-accelerated GPU systems.
We chose these four applications, each representing a Berke-
ley computational dwarf (Asanovic et al, 2006), in order to
cover a range of common scientific application signatures
— compute intensive, synchronization intensive, communi-
cation intensive, and fine-grained parallelism.

For our compute-intensive benchmark, we use GEM (Fen-
ley et al, 2008; Gordon et al, 2008), a molecular dynamics
application that calculates the electrostatic potential along
the surface of a macromolecule. The other three applications
are from the open-source Rodinia Benchmark Suite (Che

et al, 2009). We describe these test applications in detail be-
low.

4.3.1 GEM

GEM is a molecular dynamics application that visualizes the
electrostatic potential along the surface of a macromolecule.
We developed accelerated versions of the application in con-
junction with our byiophysics colleagues and have CUDA
and pthreads versions along with the original serial version.
GEM represents the n-body dwarf (Asanovic et al, 2006),
but while most n-body applications are all-pair computa-
tions over a single set of particles, GEM performs all-pair
computations between two different sets. The input of GEM
consists of a list of all atoms in the structure, and a list of
surface points for which the potential is of interest. As such,
the computational complexity is O(n ∗ m) where n is the
number of atoms and m is the number of surface points.
Like most n-body applications, approximations can be ap-
plied to reduce the computational complexity. However, we
eschew such approximations in favor of accuracy for the im-
plementation used in our experiments. Since different pair-
wise computations are independent, GEM requires no syn-
chronization between different threads and thus can scale al-
most linearly across a large number of compute units given
enough input. In addition, it is capable of coalescing almost
every memory access. As a result, GEM can efficiently uti-
lize GPU resources to deliver high-performance speedups
over CPU.

4.3.2 Speckle Reducing Anisotropic Diffusion (SRAD)

SRAD (Wilson and Gallant, 1998) is a smoothing algorithm
designed to clean-up speckles on an image without materi-
ally altering the important features. It is primarily used in
sonic and radar imagery applications where image noise is a
common issue. Its application signature represents the struc-
tured grid computational dwarf. Inputs and parameters are
the same reference images as used for the runs in the original
Rodinia paper (Che et al, 2009). SRAD executes a number
of iterations, each of which involves two kernel launches,
and between which memory is copied to and from the GPU.
When the program is set to iterate enough times to take over
a second, the minimum for an accurate power measure on
our equipment, the performance depends greatly on kernel
launch time.

4.3.3 K-Means

K-Means (Kaufman and Rousseeuw, 2005) is a popular clus-
tering algorithm that identifies correlated observations by
grouping them into clusters by their locations. Its applica-
tion signature conforms to the dense linear algebra com-
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Kernel launches Explicit synchronization between launches Per launch data transfer
GEM 78 No None
K-Means 37 Yes Large
SRAD 4000 Yes Small
NW 255 No None

Table 1 Application properties factored into our decision to use these applications.

putational dwarf. The algorithm picks a set of starting cen-
troids for the clusters, finds all observations for which a
given centroid is the nearest, and then computes a new cen-
troid based on the location of those observations. K-Means
is a communication-intensive algorithm, moving data to and
from the GPU between kernel launches and explicitly syn-
chronizing the GPU with the CPU after every kernel. This
iterative process continues until convergence is achieved.

4.3.4 Needleman-Wunsch (NW)

Needleman-Wunch (NW) (Needleman and Wunsch, 1970)
is one of a set of alignment algorithms commonly used in
DNA sequence analysis. It is based on the dynamic pro-
gramming dwarf. All potential pairings of characters in the
two input sequences are organized in a 2-D matrix, which
is filled with scores representing the quality of the match
ending at that location. Once the matrix is filled, a trace-
back is performed to find not only the highest score of the
matches but also the match itself, with insertions and dele-
tions included. Needleman-Wunsch was initially chosen to
fill the role which SRAD ended up taking, but the implemen-
tation in the Rodinia suite is made coarse-grained by block-
ing of the matrix into chunks, reducing the number of kernel
launches necessary to complete the matrix filling process.
Even so, NW still requires a significant number of kernel
launches to synchronize between computation of the afore-
mentioned chunks, not to mention a significant amount of
intra-block synchronization in the kernel itself.

4.4 Application Characteristics

Table 1 shows three characteristics — kernel launches, ex-
plicit synchronizations between launches, and per-launch
data transfer — that capture the diversity of the above appli-
cations when executing on GPUs. The first characteristic in-
dicates the number of kernel launches during a single run of
the application. The second characteristic refers to whether
an explicit barrier synchronization is called on the CPU side
between launches of consecutive kernels. While this explicit
synchronization prevents the overlapping of loading the next
kernel to be run with execution of the previous kernel and
increases the synchronization time, it is necessary to ensure
safe data-transfer to and from the CPU card between kernel

launches for applications such as K-Means and SRAD. Fi-
nally, the third characteristic gives a coarse-grained charac-
terization of the amount of data transferred between kernel
launches. As shown in Section 5, these characteristics will
measurably impact the performance, power and energy effi-
ciency of different applications on different platforms.

5 Evaluation

To evaluate the performance and energy efficiency of inte-
grated GPUs for parallel computing, we conduct a compar-
ative study between three systems: (1) an integrated GPU
system, (2) a modern multicore system and (3) a discrete-
GPU-accelerated desktop supercomputer.

5.1 Experimental Setup

To conduct our experimental tests, we used two commod-
ity desktop computers that are commonly available in to-
day’s market. The first desktop computer is built for the pur-
pose of high-performance computing (HPC). It consists of
two 2.0-GHz Intel Xeon E5405 quad-core CPUs and 4GB
of RAM. Graphics and compute acceleration are provided
by an NVIDIA GTX 280 GPU, which has 1GB of graph-
ics memory and 30 multiprocessors (240 stream cores) at
compute capability 1.2 and a clock rate of 1.3 GHz. This
configuration is similar to a Colfax CXT personal supercom-
puter (Colfax, 2010). The second computer is a Zotac minia-
ture desktop PC with a 1.6-GHz Intel Atom 230 dual-core
CPU, 3GB of RAM, and an NVIDIA MCP79 chipset. The
MCP79, better known as a GeForce 9400, contains an inte-
grated ION graphics chip with 256MB of graphics memory,
2 multiprocessors (16 stream cores) at compute capability
1.1 and a clock rate of 1.1 GHz.

The first computer is used for collecting results for both
the multicore and the discrete-GPU experiments, and the
GPU is removed for the multicore and serial CPU exper-
iments. The integrated-GPU results are collected from the
second computer.

In all experiments, we use a WattsUp? PRO ES power
meter, in-line with the system under test and connected to a
separate measurement-logging PC. We configure the power
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meter to collect measurements at the finest granularity sup-
ported by the power meter, i.e., one second. Basic DVFS
mechanisms, i.e., cpufreq’s ondemand governor were avail-
able, but ineffective for the CPU as this model does not sup-
port Intel’s Enhanced Speedstep interface. The GPU on the
other hand does have some working DVFS in the form of
NVIDIA’s built-in PowerMizer.

All experiments are repeated five times, and the aver-
age numbers are reported for performance, power, and en-
ergy results. The experimental results for GPU measure the
main computational kernel of each application, including
the memory allocations and transfers to and from the GPU.
For a fair comparison, the CPU results include only the com-
putational kernel as well. In other words all operations out-
side the computational kernel, including disk I/O, are ex-
cluded in both CPU and GPU versions. For brevity, we use
Xeon serial,1 Xeon SMP, ION, and GTX 280 to refer the the
CPU serial, CPU multicore, integrated GPU, and discrete
GPU results, respectively.

5.2 Performance

Discrete GPUs have become recognized for their high per-
formance when running general-purpose applications. Inte-
grated GPUs, on the other hand, are traditionally designed
for low-demand graphics processing in business worksta-
tions and servers or for low-power environments such as
laptops and miniature desktops. Newer models of integrated
GPUs have begun to more substantially increase in perfor-
mance and gained the capabilities necessary to run general-
purpose applications. However, their computational capabil-
ities for HPC have not been studied.

Figure 1 shows the performance of running four bench-
mark applications on the test platforms. In order to make
the results more visually comparable, the figure shows the
speedup over the Xeon serial version, which is almost uni-
versally the slowest. Table 2 shows the same results in raw
seconds for comparisons within an application. One impor-
tant observation from Figure 1 is that the ION chip can clearly
accelerate the performance of the test applications — ex-
cept for K-means, where ION performs slightly worse than
Xeon serial. In particular, ION delivers 30-fold and 13-fold

1 In the Xeon serial case, the tests are performed on the multicore
system with all but one core, i.e., the active core, being idle. Though
ideally we would like to report the power numbers consumed by a sin-
gle CPU core for the Xeon serial results, such power numbers are dif-
ficult to measure given that four CPU cores are tightly integrated on a
single CPU processor. Note: Running our tests with the second CPU
physically removed would reduce the power consumption consistently
by 17 watts (W), i.e., 118.6 W vs. 135.7 W at idle with similar dif-
ferences when at load. We chose not to use this latter configuration as
typical end users would not normally remove a CPU from their sys-
tems.

speedups over Xeon serial for the GEM and NW applica-
tions, respectively. For these two applications, ION also out-
performs Xeon SMP, a modern multicore system. The slightly
worse performance of K-means on ION is due to the large
amounts of memory transfers between CPU and GPU at
each kernel launch. This is also indicated by the relatively
lower speedup of K-means on the GTX 280 as compared
to the other applications. It is worth noting that the host-
device memory bandwidth is much higher on GTX 280 than
on ION despite the host and device sharing physical memory
in the case of ION.
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Fig. 1 Speedup of each version over Xeon serial

Time GEM K-Means SRAD NW
(seconds) (capsid)
Xeon serial 63,029.5 7.9 788.5 377.0
Xeon SMP 7,878.7 1.7 179.0 210.5
GTX 280 82.9 1.7 59.8 6.9
ION 1,998.5 9.7 254.9 29.5

Table 2 Run time in seconds for all platforms and applications

Nonetheless, GTX 280 significantly outperforms ION
for all the applications, suggesting the obvious performance
advantage of discrete GPUs over the current generation of
integrated GPUs. Specifically, GTX 280 is 4 to 25 times
faster than ION for the test applications.

The Needleman-Wunsch (NW) results are aberrant in
that the 8-core run of NW shows little improvement over
the serial version. Our chosen implementation of the CPU
version, from the Rodinia suite, appears to scale poorly. In
fact, it only keeps up to four of the eight cores utilized dur-
ing a run, resulting in only a slight performance speedup,
as shown in Figure 1. In the future, we intend to investigate
more optimized CPU versions of the NW application.
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5.3 Power

As noted in Section 4.2, we evaluate the idle and loaded
power of our test systems rather than the static and dynamic
of the GPU, respectively.

5.3.1 Idle Power

We first measure the idle power for the three test systems,
as shown in Table 3. Most noticeably, the ION system con-
sumes significantly less power at idle than the other two sys-
tems. The idle power of ION is a mere 20 watts, less than 1/6
of the power of the Xeon SMP system and 1/9 of a GTX 280
accelerated system. The difference between the idle power
of Xeon SMP and GTX 280 implies that the static power
of a GTX 280 GPU card alone is 51 watts. Recall that the
GTX 280 system idle power also includes the Xeon multi-
core CPU because we cannot remove it from the tested sys-
tem.

Idle Power (Watts)
Xeon SMP 135.7
GTX 280 186.4
ION 20.1

Table 3 Static power for the three test platforms.

5.3.2 Loaded Power

While traditional discrete GPUs can deliver much higher
performance than CPUs, it comes at the cost of significantly
higher power consumption. For example, a top-of-the-line
discrete NVIDIA GPU e.g., GTX 280, is rated with a ther-
mal design power (TDP) of 236 watts, not to mention the
other components necessary to drive it. The next generation
of NVIDIA R© discrete GPUs, known as Fermi, is reported
to have a TDP of 295 watts. To put this into perspective,
the TDP for the Intel quad-core Xeon E5405 is only rated
at 80 watts while the ION GPU has a rated TDP of only
12 watts. Of course, these are only reported dissipation mea-
sures and represent only the compute device itself; thus, in
this section, we present real-world power results for each
device.

Figure 2 plots the average wattage across a complete run
of the computational kernel of each benchmark on the tested
platforms. Overall, the power consumption of the ION ver-
sion is significantly lower than the others. Specifically, the
loaded power of the ION system is 8.8 to 10.0 times lower
than the Xeon SMP version for all tested applications. The
power gap between the ION system and the GTX 280 sys-
tem is even larger, with a 9.9 to 12.7-fold difference, de-
pending on the application. The larger variance in power
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Fig. 2 Power results for the four benchmarks for all platforms.

consumption for the GTX 280 system is likely caused by
the GPU DVFS policy (i.e., NVIDIA’s PowerMizer in this
case) reacting differently to various application signatures.

To further characterize the dynamic power behavior, Fig-
ure 3(a) shows the difference between the lowest and the
highest loaded power relative to the idle power for each plat-
form. The lowest power refers the power drawn by the appli-
cation which draws the least power out of those tested, and
the highest power is similarly defined. The loaded power
range of the ION system is an order of magnitude smaller
than the other two systems. That is, the increase from the
idle power to the highest loaded power on ION is 7.1 watts,
while this increase is 157.7 watts and 136.3 watts on the
GTX 280 and Xeon SMP, respectively. Figure 3(b) plots the
dynamic power increase in percentage of the peak power
drawn from each platform. The idle power is 74% of the
peak power on the ION system, whereas this percentage is
about 50% for the others.

5.4 Energy Efficiency

As previous work has shown (Huang et al, 2009), despite
their high power requirements, GPUs can be energy efficient
for highly parallel codes due to the massive speedups they
can achieve. Even so, we have found that low power con-
sumption is also desirable for many of the environments in
which energy efficiency is desirable. As a result, we evalu-
ate whether the high energy efficiency that we observed on
discrete GPUs is also applicable to the compute-capable in-
tegrated GPUs.

We first show the energy consumption of each of the
four tested applications across different platforms in Fig-
ure 4 with raw joules listed in Table 4. As the energy con-
sumption is largely different for each experiment, for a cross-
experiment comparison, we report the relative energy con-
sumption ratios with regard to the energy consumed by run-
ning the serial version of the application on the Xeon ma-
chine. Specifically, suppose the power consumption of the
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Fig. 3 Power results for all platforms, both absolute and percentage representations

serial version on the Xeon machine is Es, and the energy
consumption of the parallelized version of the application
on one of the platforms is Ep, Figure 4 plots Es/Ep on a
log scale. In other words, energy “speedup” numbers are re-
ported. Higher “speedup” means lower energy use.
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Fig. 4 Energy results for all applications

Energy GEM K-Means SRAD NW
(joules) (capsid)
Xeon serial 11,301,185.4 1,167.4 118,124.2 58,328.1
Xeon SMP 1,743,552.9 322.7 32,648.9 34,904.2
GTX 280 28,544.7 417.4 15,671.5 1,809.6
ION 18,973.9 2,394.52 6,779.9 692.2

Table 4 Energy in joules for all platforms and applications

The ION platform consumes the least energy for all ap-
plications except GEM on the GTX 280. On the other hand,
the ION platform consumes 30 times less energy than the
multicore platform for GEM.

ION also exhibits a significant advantage in energy con-
sumption for the NW application when compared to running
on Xeon SMP. As mentioned earlier, the OpenMP version of

NW on the CPU does not appear to scale well, which may
be the primary cause.

In summary, the above observations suggest that the in-
tegrated GPU demonstrates great promise for green HPC,
especially when power consumption is a major concern. The
results also show that while the discrete GPU consumes more
power, it is more energy efficient than its integrated counter-
part for highly compute-intensive applications.

Figure 5 presents the energy efficiency of each platform
by plotting the “speedups” calculated with respect to EDP.
The higher the value, the more energy efficient. The GTX 280
GPU is the best in all cases but K-Means, where the 8-core
Xeon SMP performs slightly better than the GTX 280. This
is due to the fact that the EDP metric favors high perfor-
mance over lower energy consumption. Even so, the ION
platform stays competitive by outperforming the Xeon SMP
platform for all but K-Means. The reason why the EDP value
is not as good on GPUs, as discussed in Section 4.3, is that
the K-Means application requires a large amount of data
transfer to and from the GPU device repeatedly during a run.
Such data transfers prevent the GPU processing power from
being fully utilized.
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Fig. 5 Improvement in EDP over Xeon serial
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6 Concluding Remarks

The new generation of compute-capable integrated GPUs
shows great promise for green high-performance computing
(HPC). We have demonstrated that when both energy effi-
ciency and low power consumption are important, an inte-
grated GPU can be an attractive option as much as a discrete
GPU can be for energy-efficient computing without power
constraints. In fact, for the sample of applications we tested,
the integrated GPU used the least energy for all tested appli-
cations. We believe this is a new opportunity for compute ac-
celeration in clusters and other deployments, where energy
efficiency is desirable and discrete GPUs are impractical or
impossible to use because of power constraints. We also re-
inforce the results presented in (Huang et al, 2009) by con-
cluding once again that discrete GPUs can be exceptionally
energy efficient, especially with regard to the performance-
per-watt metric.

7 Future Work

In the future, we intend to evaluate a larger number of plat-
forms in this space as well as provide comparisons with
other types of accelerators for embedded HPC. For exam-
ple, we seek to investigate the effectiveness of embeddable
GPUs like ION for jobs that usually employ FPGAs. Be-
yond that, we will also examine new offerings from AMD
such as the ATI Radeon 5450 to get a better sampling of the
low-power GPU space.

As part of the above process, we will also explore using
OpenCL for fair comparisons between CPUs and GPUs. In
addition to further testing, we also hope to investigate the
clustering potential using these low-power accelerators in
support of greener large-scale HPC solutions.
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