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Abstract. The popularity of heterogeneous computing continues to in-
crease rapidly due to the high peak performance, favorable energy e�-
ciency, and comparatively low cost of accelerators. However, heteroge-
neous programming models still lack the flexibility of their CPU-only
counterparts. Accelerated OpenMP models, including OpenMP 4.0 and
OpenACC, ease the migration of code from CPUs to GPUs but lack
much of OpenMP’s flexibility: OpenMP applications can run on any
number of CPUs without extra user e↵ort, but GPU implementations
do not o↵er similar adaptive worksharing across GPUs in a node, nor do
they employ a mix of CPUs and GPUs. To address these shortcomings,
we present CoreTSAR, our library for scheduling cores via a task-size
adapting runtime system by supporting worksharing of loop nests across
arbitrary heterogeneous resources. Beyond scheduling the computational
load across devices, CoreTSAR includes a memory-management system
that operates based on task association, enabling the runtime to dynam-
ically manage memory movement and task granularity. Our evaluation
shows that CoreTSAR can provide nearly linear scaling to four GPUs
and all cores in a node without modifying the code within the parallel
region. Furthermore, CoreTSAR provides portable performance across a
variety of system configurations.

1 Introduction

Heterogeneity is becoming more prevalent in all areas of computing, from super-
computers to cell phones. The increasing prevalence of GPUs and computational
coprocessors has spawned a vast array of tools and programming models over
the past several years, but the majority of codes remain CPU-only. Of these
new models, Accelerated OpenMP holds the promise of increasing adoption,
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especially in high-performance computing (HPC). Accelerated OpenMP mod-
els, including OpenACC [6] and OpenMP 4.0 [5], extend the classic OpenMP
preprocessor directives with the capability to o✏oad data-parallel regions to
accelerators 1.

Assuming the ease of use is su�cient to convince developers to embrace
accelerators, one major issue still remains. Accelerated OpenMP only o✏oads
computation to a single device (e.g., GPU), leaving the CPU cores or other ac-
celerators in the system idle. There are mechanisms that allow users to manually
partition their work across devices but no direct support for cross-device work-
sharing. As a result, users must manually partition their job, manage memory
coherence, and load balance across devices. In the best case, a user may use
a task scheduling library such as OmpSs or StarPU to handle load balancing
and memory transfers. Even then, however, the user must manually divide their
workload into explicit tasks.

Our solution, CoreTSAR (short for Core Task-Size Adapting Runtime), pro-
vides a cross-device worksharing construct for Accelerated OpenMP. The key
extension to make this possible is a memory-management approach that allows
a user to specify the association between their computation and data, that frees
CoreTSAR to handle coherence and task granularity automatically. CoreTSAR
includes a proposed set of extensions to Accelerated OpenMP, the design of a
cross-device memory manager, scheduling policies to support the clauses, and a
real-world implementation of the system. Together, they provide adaptive work-
sharing of parallel loop regions across an arbitrary number of devices with an
arbitrary number of distinct address spaces. In this paper, we make the following
contributions:

– Accelerated OpenMP extensions to adaptively workshare parallel regions
across an arbitrary number of arbitrarily heterogeneous devices

– The design and implementation of a task-associative, memory-management
interface, thus allowing CoreTSAR to adapt task granularity at runtime

– A library and C API implementation of our scheduler and memory manager
– An evaluation demonstrating that CoreTSAR can improve performance over

existing task-management approaches.

The remainder of the paper is composed as follows. Section 2 provides back-
ground and motivation. Section 3 describes the design and implementation of
CoreTSAR, including our task-management concept, scheduling mechanisms,
and memory management. Section 4 presents our evaluation. Finally, we finish
with related work in Section 5 and conclusion in Section 6.

2 Background and Motivation

Models for heterogeneous computing generally fall into three categories: o✏oad
models; block and grid models; and task block models. Domain specific lan-
guages are also available, but we focus on general purpose options. Each of the
1 Since our evaluation is based on GPU accelerators, the terms “accelerator” and
“GPU” are used interchangeably throughout.
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void kmeans_it(int *m, float *fo, float *fc,
size_t no , size_t nco , size_t ncl) {

// OpenMP
#pragma omp parallel for
// Accelerated OpenMP
#pragma acc parallel for copyout(m[0:no]) \

copyin(fc[0: nco*ncl],fo[0:no*nco])
// Accelerated OpenMP + extension
#pragma acc parallel for pcopy(m[1:no])\

copyin(fc[0: nco*ncl]) copyin(fo[no*nco])\
hetero(1, all , adaptive , default , 10)

for (i=0; i<no; i++) {
m[i] = findc(no,ncl ,nco ,fo,fc,i);

}
}

__global__ void
void it_gpu(int *m, float *fo , float *fc ,

size_t no , size_t nco , size_t ncl ,
size_t start , size_t end) {

uint i = blockIdx.x * blockDim.x + threadIdx.x;
if(i < end -start) {

m[i] = findcu(no,ncl ,nco ,fo,fc,i+start );
}

}
void kmeans_it(int *m, float *fo, float *fc,

size_t no , size_t nco , size_t ncl ,
size_t start , size_t end) {

dim3 dB , dG;
dB.x = 64;
dB.y = dB.z = 1;
dG.x = ((end -start )/dB.x)+1;
dG.y = dG.z = 1;
cudaMalloc (&cm , no);
cudaMalloc (&cfo , no*nco);
cudaMalloc (&cfc , no*ncl);
cudaMemcpy(cm, m, no ,cudaMemcpyHostToDevice );
cudaMemcpy(cfo ,fo,no*nco ,cudaMemcpyHostToDevice );
cudaMemcpy(cfc ,fc,no*ncl ,cudaMemcpyHostToDevice );
it_gpu <<<dG ,dB >>>(

cm, cfo , cfc , no, nco , ncl , 0, no);
cudaMemcpy(m,cm,no ,cudaMemcpyDeviceToHost );

}

#pragma omp target device(smp ,cuda)
void it_helper(int *m, float *fo, float *fc,

size_t no, size_t nco , size_t ncl ,
size_t start , size_t end);

#pragma omp target device(cuda)
__global__ void
void it_gpu(int *m, float *fo , float *fc ,

size_t no, size_t nco , size_t ncl ,
size_t start , size_t end);

/* implementation same as CUDA , see left */

#pragma omp target device(smp)
#pragma omp task input([no*nco]fo, [ncl*nco]fc)\

inout([end -start]m)
void it_helper(int *m, float *fo, float *fc,

size_t no, size_t nco , size_t ncl ,
size_t start , size_t end){

for (int i=0; i<end -start; i++) {
m[i] = findc(no,ncl ,nco ,fo,fc,i+start );

}
}

#pragma omp target device(cuda) copy_deps\
implements(it_helper)

#pragma omp task input([no*nco]fo, [ncl*nco]fc)\
inout([end -start]m)

void it_cuhelper(int *m, float *fo , float *fc ,
size_t no, size_t nco , size_t ncl ,
size_t start , size_t end) {

dim3 dB, dG; dB.x = 64; dB.y = dB.z = 1;
dG.x = ((end -start )/dB.x)+1; dG.y = dG.z = 1;
it_gpu <<<dG,dB >>>(cm,cfo ,cfc ,no,nco ,ncl ,start ,end);

}

void kmeans_it(int *m, float *fo, float *fc,
size_t no, size_t nco , size_t ncl) {

const int BS = 1000;
for (i=0; i<no-BS; i+=BS) {

it_helper (&(m[i]), fo , fc , no, nco , ncl , i, i+BS);
}
it_helper (&(m[i]), fo, fc , no , nco , ncl , i, no);

#pragma omp taskwait
}

Fig. 1: A basic kmeans kernel as implemented in OpenMP variants (top left),
CUDA (bottom left) and OmpSs (right)

approaches has strengths and weaknesses in terms of programmability, perfor-
mance, and flexibility, which we will discuss here in terms of the three example
implementations of the kmeans clustering algorithm presented in Figure 1.

O✏oad models execute annotated parallel regions on a GPU. Examples in-
clude Accelerated OpenMP (OpenMP 4.0 [12], OpenACC [6], Intel OpenMP for
MIC and Cray’s accelerated OpenMP [5]) and C++ AMP. Generally they re-
quire the least change from the original serial code. The upper left of Figure 1,
despite its size, actually contains four di↵erent versions. If none of the pragmas
are honored, then the loop executes in serial. If the OpenMP pragma on line
4 is honored, the loop is work-shared across CPU cores. To target a GPU, the
OpenACC directive on lines 6 and 7 copies both the fc and fo arrays to the
GPU and m to and from it. This directive moves the loop from the CPU to
a GPU: when the parallel for directive is applied, no CPU cores (or other
GPUs) participate in the loop. One must manually split the loop and data to
target multiple devices.

Block and grid models represent data-parallel kernels as a grid of blocks of
threads, where synchronization in a kernel is only possible within the blocks.
OpenCL [11] and NVIDIA’s CUDA both fall into this group. They are some of
the most e�cient and most used GPU programming models, o↵ering low-level
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control at the cost of verbosity. The bottom left code block in Figure 1 presents
a basic CUDA port of the OpenMP kmeans code. Even with the larger number
of management lines, the CUDA version does not free the GPU memory, check
error codes, or perform GPU selection and initialization (so the conservative
default queue is used). As with the OpenMP version, this code only uses one
GPU.

Task block models do not actually specify a programming model for accel-
erators but rather provide task scheduling across heterogeneous resources. This
group includes StarPU [2] and OmpSs [9]. The right side of Figure 1 presents an
OmpSs implementation of the kmeans loop. The first four pragmas specify that
the it_helper function is an OmpSs task that depends on fo, fc and a slice of m.
The implements clause on line 20 informs OmpSs that it_cudahelper, which
uses the CUDA implementation at the bottom left minus the memory move-
ment, is the CUDA implementation of it_helper. In kmeans_it() the tasks
are enqueued by calling the helper function with appropriately o↵set pointers.
OmpSs automatically distributes this work across all CPU cores and GPUs. This
flexibility provides performance portability, at a cost. The user must partition
their work into tasks appropriate for either an entire GPU or a single CPU core
simultaneously.

These models are all useful under the right circumstances. Optimally we
would have the fine-grained control of block and grid models, the simplicity and
programmability of o✏oad models and the runtime flexibility and performance
portability of task block models. We propose syntax and o↵er a runtime imple-
mentation of CoreTSAR(Task-Size Adapting Runtime), a system that can be
used to add flexibility to o✏oad and block and grid models, and also to extend
task-block models with adaptive task granularity.

3 Design and Implementation

Our primary goal with CoreTSAR is to create a runtime to support workshar-
ing across devices for use with Accelerated OpenMP. This goal imposes certain
design constraints. Most importantly, it must not require any changes, even for
memory movement, to the loop body beyond those for Accelerated OpenMP.
For example, no pragmas or API calls may be inserted into the loop, nor mem-
ory access patterns be changed, as task scheduling systems often require. All
information necessary for CoreTSAR to provide the correct data for any range
of iterations to any device’s memory space must be provided in the directive
outside the loop. Further, we must preserve data consistency outside the region:
main memory must hold the same values when the loop exits as it would have
with Accelerated OpenMP.

Figure 2 depicts the syntax of our extension. The hetero() clause specifies
how to treat the region. Specifically, whether to schedule it, which scheduler to
use, which devices to schedule it across and, if desired, initial values for the work-
split ratio. The pcopy() clause specifies the association between iterations and
data. It is similar to a copy clause in OpenACC, except that it only applies to
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loop directives and only copies the specific memory elements that are associated
with the range of iterations assigned to a given device. We support current
OpenACC copyin and alloc data clauses in order to replicate the entire input
or allocation, copyout is unsupported. The third pragma in the top left block
of Figure 1 uses our extension to divide the loop across all devices using the
adaptive scheduler, copying all of fc and fo as input, but only the necessary
elements of m as output.

//items in {} are optional
#pragma acc parallel for hetero(<condition >{,<devices >{,<scheduler >{,<ratio >{,<div >}}}})\

pcopy{in/out}(<var >[<cond >:<num >{:<boundary >}]) persist(<var >)
#pragma acc depersist(<var >)

Fig. 2: Our proposed extension

The remainder of this section discusses the design and implementation of a
runtime system to support the proposed extension. Our design has two main
components: the scheduling and task inference portion; and the memory speci-
fication and management portion.

3.1 Scheduling and Tasks

As our previous work in heterogeneous task scheduling showed [16], adaptive
worksharing by predicting performance, rather than employing work-queues or
discrete tasks, can significantly reduce overhead in heterogeneous scheduling.
Overhead is reduced by assigning work statically within a region, and re-balancing
on the next entry into the region, thus reducing the number of tasks to manage
and launch. The significant downside to our previous approach however was that
the model only supported the modeling of performance across two devices, pre-
venting it from targeting systems with higher levels of heterogeneity. That work
also proposed a solution as future work, using an integer-based optimization
approach.

I = total iterations available

ij = iterations for compute unit j

fj = fraction of work for compute unit j

pj = average time/iter. for compute unit j (1)

n = number of compute devices

t+/�
j = time over (or under) equal

min(
n�1X

j=1

t+j + t�j ) (2)

nX

j=0

fj = 1 (3)

f2 ⇤ p2 � f1 ⇤ p1 = t+1 � t�1 (4)

f3 ⇤ p3 � f1 ⇤ p1 = t+2 � t�2 (5)

...

fn ⇤ pn � f1 ⇤ p1 = t+n�1 � t�n�1 (6)

Fig. 3: Linear program variables, objective and constraints

The original integer-based optimization directly computed the number of
iterations to assign to each device, but incurs too much overhead to be used for
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runtime scheduling, on the order of seconds for less than ten devices. Figure 3
presents an alternative approach designed for CoreTSAR, optimized for use at
runtime. Our new linear optimization minimizes the total deviation between
the predicted runtimes for all devices to run their assigned work, and expresses
output as the fraction of total iterations that should be assigned to a given
device. Switching to fractional output removes the costly refinement to integer
output and increases numerical stability. The downside is that fractional output
allows up to n iterations to go unassigned, any iterations left-over this way are
assigned in round-robin fashion to devices in descending order of performance.

This design assumes that trading one CPU core to control a GPU will im-
prove performance. However, some applications benefit more from the CPU core.
Thus, CoreTSAR also includes a heuristic allowing it to convert a GPU control-
ling thread back to a CPU thread in such cases. After each pass the time per
iteration (TPI) of each GPU is compared against that of the slowest CPU core.
If a GPU’s TPI falls below that value for two consecutive iterations, the GPU
thread releases the GPU and continues as a CPU thread.

3.2 Static Scheduling

On the first entry into a region, our static schedule uses the linear program to
assign iterations, then reuses that result for all subsequent passes. To increase
portability, we compute default relative times per iteration at runtime rather
than using a precomputed static value (the user can also specify a value). Our
default assumes that one instruction cycle on a GPU core, or SIMD lane on a
multiprocessor, takes the same time as one cycle on a single SIMD lane of a
CPU core. We thus compute the time per iteration for each GPU as pg = 1

m/s

and for CPU cores as 1� pg (where m is the number of cores on the GPU and
s the SIMD width of a CPU core; in the case of multiple GPUs, all devices are
normalized to the largest). For applications that are not dominated by floating-
point computation, we have considered models that include several other factors,
including memory bandwidth and integer performance, but leave these for future
work.

3.3 Adaptive Scheduling

Our adaptive schedules (Adaptive, Split and Quick) use the static schedule for
the first pass. We then use the time that each device takes to complete its iter-
ations in the preceding pass, kept as a weighted average over up to five passes,
as input to our linear program for the next pass. All recurring overheads re-
quired to execute an iteration on a particular device are included in that time
(but not one-time overheads such as the copying of persistent data). Thus, we
incorporate data-movement and launch overheads into the cost of each itera-
tion and naturally account for them. The Adaptive schedule trains on the first
instance of the region and then each subsequent instance. The Split schedule
breaks each region into several evenly split sub-regions based on the div input.
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Each sub-region is then treated individually and scheduled as Adaptive would a
full region, providing faster load balancing at the cost of increased overhead. The
Quick schedule balances between the Split and Adaptive schedules by executing
a small sub-region for its first training phase, similar to the way Split starts. It
then immediately schedules all remaining iterations of the first region instance
and uses the Adaptive schedule for any subsequent instances. This schedule suits
applications that cannot tolerate a full instance using the static schedule or the
overhead of extra scheduling steps in every pass.

3.4 Memory Management

E�cient and minimal data movement is essential to the performance of hetero-
geneous codes. To handle memory movement without explicit tasks, we allow the
user to specify the association between a loop range and its input and output
pattern. Our interface takes a pointer, optionally the size of each element and
for each dimension whether to associate that dimension with the iterator, the
length, and the number of boundary values required. If a dimension is marked
as an iterator dimension, then all values in that dimension corresponding to as-
signed iterations are copied. For example, Figure 4 shows the data associations
for two simple cases. On top, the pcopy(mat[false:10][true:10]) clause spec-
ifies that a 10⇥ 10 matrix is to be managed and the iterator will select the col-
umn, since the column dimension’s condition is true. The second example uses
pcopy(mat[true:10:1][false:10]) instead, which has a drastic e↵ect on the
result. Now, the rows are associated with the iterator rather than the columns,
since the association value is true for the row dimension rather than the col-
umn dimension. Further, this example is designed for a stencil-type code which
requires boundary values as input, but not as output, so the boundary size in
the row dimension has been set to one to copy one row above and one below as
input.

Our design handles reductions by doing partial reductions on each device,
and a finalizing pass on the CPU into the final target variable. The high-level
interface has no extension for this, OpenMP syntax is already su�cient, but
our library API provides a mechanism similar to that of user-defined reductions
to manually construct more complex reductions. While this interface does not
support fully general input and output, we believe it to be a worthwhile first
step in that direction, one we intend to pursue further in future work.

4 Results and Evaluation

To evaluate our prototype, we have ported six applications to OpenACC direc-
tives and extended them with CoreTSAR scheduling. We evaluate these applica-
tions across a range of systems, schedulers, and configurations. We also provide
a performance comparison of three of the applications with OmpSs and StarPU.
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Main Memory GPU-0 GPU-1

#pragma acc region hetero(TRUE) \
pcopy(mat[false:10][true:10])

#pragma acc region hetero(TRUE) \
pcopy(mat[true:10:1][false:10]

Associate this matrix to the following 
outer loop iterator by row:

Associate this matrix to the following 
outer loop iterator by column, with one 
boundary cell required for input only on 

either side:

Memory not used on this device Input and outputInput only Output only

Fig. 4: Example memory associations, assuming a pass in which two iterations
are assigned to the CPU device, and four each to two GPUs.

4.1 Benchmarks

Our six benchmarks exhibit a range of characteristics that reflect possible use
cases. Minimal changes were made to port the original serial or OpenMP version
of each benchmark to OpenACC and subsequently CoreTSAR.

The values in Table 1 characterize the benchmarks. The number of passes,
relative pass length, number of iterations per pass and ratio particularly impact
CoreTSAR operation. We derive the CPU/GPU ratio, the relative performance
of the CPU cores of our test system as compared to one of its GPUs, from the
best found through brute-force testing. A score of 1.0 allocates all iterations to
the CPU cores, a score of 0 allocates all iterations to the GPU.

Benchmark Passes Iterations/ Time/pass GPU Resulting
pass (CPU) runtime CPU/GPU Ratio

CG 1900 75,000 0.02 273.04 0.85
CORR 10* 2,048 6.36 70.97 0.01
GEM 1 258,800 1098.10 107.43 0.06
GEMM 10* 2,048 1.262 3.04 0.01
Helmholtz 100 4,000 0.08 73.64 1.00
kmeans 7 1,210,000 1.14 4.79 0.41

Table 1: Benchmark characteristics, times in seconds (* polybench suite bench-
marks can have a variable number of passes, we use 10 for our tests)

First, CG is the conjugate gradient benchmark from the NAS parallel bench-
marks OMP version 3.3. The o✏oaded portion runs many (1,900) short passes
and contains a high percentage of indirect array accesses. This version of CG
is relatively unsuitable for GPUs with a ratio of 0.85, implying that a GPU
is only 20% faster than one CPU core. CORR and GEMM are both from the
PolyBench/GPU [10] suite. CORR is an upper triangular matrix solver with a
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completely unbalanced workload. Iteration i computes n � i output values so
no two iterations, or ranges of iterations, are the same. GEMM is a general
matrix multiplication that we schedule row-wise, it is highly suitable to GPU
computation but is sensitive to memory contention and NUMA e↵ects. GEM is
a molecular modeling visualization application that computes the electrostatic
potential along the surface of a macromolecule. While GEM is extremely well
suited to GPU computation, as we have shown in our previous work [1, 7], it
only runs a single pass by default. Helmholtz implements the Helmholtz equa-
tion using the Jacobi method. Our implementation is based on a CPU OpenMP
implementation that is not well suited to GPUs due to its memory access pattern
and conditional nature. Kmeans implements the kmeans clustering algorithm,
and is near an even ratio (0.5): running on a GPU takes the same amount of
time as on the CPU cores. It also has many iterations per pass, which allows
CoreTSAR to make very fine grained adjustments to each device’s workload.

Overall, the benchmarks exhibit a wide range in each category. Pass counts
for example range from one to 1,900; iterations per pass from 2,048 to 1,210,000;
and ratios from 0.01 to 1.0.

4.2 Experimental Setup

CoreTSAR has been implemented in full as a C library, with a source-to-source
translator implementing the pragma syntax based on python and libclang, on
top of PGI OpenMP and OpenACC. To solve our linear optimization problem,
we use the lp solve library[4], an optimized linear program solver, in a mode that
allows it to incrementally refine the solved tableau on each pass. We evaluate all
five systems listed in Table 2. However, unless otherwise specified, we run tests
on escaflowne. Each machine has the same OS configuration (Debian Squeeze).

CPU CPU CPU CPU GPU GPU GPU GPU
System name Model Cores/die Dies RAM Model Cards Cores RAM
amdlow3 E3300 2 1 2,012MB Tesla C2050 1 448 3GB
armor1 E5405 4 2 3,964MB GeForce GT 520 1 48 1GB
dna2 i5-2400 4 1 7,923MB GeForce GTX 280 1 240 1GB
escaflowne X5550 4 2 24,154MB Tesla C2070 4 448 6GB

Table 2: Hardware composition of each test platform, Intel CPUs and NVIDIA
GPUs throughout

Unless otherwise noted, all benchmarks are implemented with OpenACC
directives and compiled with the PGI compiler version 12.9. OmpSs tests are
compiled with mnvcc version 1.3.5.8, using the performance configuration of
the NANOS++ libraries and the versioning-stack scheduler. OmpSs options for
prefetching and asynchronous transfers are used only on helmholtz, the other two
benchmarks incur a slowdown when they are used. The modified CoreTSAR and
StarPU versions compared with OmpSs are compiled with nvcc and linked with
GNUOpenMP (gomp). The StarPU implementations used the “dmda” scheduler
with the history based performance model, trained on ten plus runs before results
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were collected. CUDA toolkit version 4.1 is used in all tests. All threads are
bound to cores at the beginning of execution, before memory allocation and
initialization.

All reported performance measurements time the core phase of the bench-
mark only. All marshaling, staging, copying, or other preparation necessary to
use an implementation is also included. We exclude only identical application
parts such as file IO and result verification.

4.3 CoreTSAR Performance

Figure 5 presents the performance impact of CoreTSAR. The graph represents
speedup over a statically scheduled eight core CPU run, with a black bar marking
the baseline in each sub-plot. Without CoreTSAR unmodified code would be
either at that baseline, or the GPU mark with one GPU. All others, including
static and GPU for a GPU count greater than one, use CoreTSAR’s facilities.
Of the six benchmarks, four scale nearly linearly from one to four GPUs given
the right scheduler. As expected, Helmholtz and CG do not.
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Fig. 5: Performance of CoreTSAR enabled benchmarks on escaflowne normalized
to eight core OpenMP

Both CORR and GEMM display high GPU suitability, each approaching
an overall speedup of 250⇥ on four GPUs. We obtain the best performance for
GEMM on escaflowne by statically scheduling the computation; the quick sched-
uler is almost as good. CORR is less predictable. Its heterogeneous workload per
iteration causes the adaptive, split, and quick schedulers all to make incorrect
early decisions about how to assign work. While overall the static schedule fares
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best, the split schedule overtakes it for four GPUs because the linear model stops
assigning work to the CPU cores and adaptively schedules work across the four
GPUs. It is worth noting that both the adaptive and quick schedulers converge
on e�cient assignments after the first few passes, but the cost of the early mis-
predictions overtake that benefit. Using the ratios from a previous run produces
even more favorable results, we intend to investigate this further in future work.

Both GEM and kmeans also scale near linearly to four GPUs, but with
slightly di↵erent characteristics. GEM benefits most from the default static split
across CPUs and GPUs. Its natural ratio is so close to the default split that,
while the dynamic schedulers can improve on it, the overhead of synchronization
and additional assignments increases the overall execution time. On the other
hand, kmeans does best with the adaptive schedules. The optimal choice shifts
between quick and adaptive depending on the number of GPUs, but they remain
within 5% of each other regardless. Unlike GEM, kmeans is more CPU suitable,
and the GPU or static schedules underutilize those resources.

CG is not GPU averse, since it can benefit from the use of a GPU, but
it does not scale to more than one GPU. When we allow use of more than
one GPU, the increased memory transfer overhead causes a slowdown. This
example demonstrates that some applications can benefit from GPUs, but may
still need to back o↵ of their use. Helmholtz, on the other hand, gains no benefit.
It does however stay within 20% of the CPU performance given a scheduler that
can quickly deactivate GPUs. When allowed to use cross-run historical data,
Helmholtz consistently matches the CPU performance.

Overall, our results demonstrate that CoreTSAR adapts well to di↵erent
workloads. We attain good scaling for applications that are amenable to GPU
computing or coscheduling. Alternatively, CoreTSAR backs o↵ appropriately for
those that are not.

4.4 Adaptation Across Machines

We have shown that CoreTSAR can provide e�cient worksharing across a varied
number of GPUs in one system. We now evaluate its performance portability
across a range of systems, those listed earlier in Table 2. Of these systems,
escaflowne, used for our primary evaluation, is the largest and the only multi-gpu
system. Representing CPU-centric systems, armor1 contains two capable quad-
core Intel Xeon CPUs with a low-power consumer desktop GPU. Conversely
amdlow3 contains a dual-core Celeron CPU and a powerful Tesla C2050 GPU.
Lastly dna2 represents a more typical workstation with a mid-range quad core
CPU and previous-generation consumer GPU.

Figure 6a presents results for the three benchmarks that benefit from coschedul-
ing. Helmholtz is CPU-suited on all machines, and corr and gemm are GPU-
suited on all machines, so we elide their results for space. Each result is normal-
ized to the best performing configuration for that benchmark on that system
with the best time at 1.0 and lower being worse. First, while CG gains min-
imally in performance on escaflowne, and not at all on armor1 and dna2, it
attains a 2⇥ speedup over the CPU result on amdlow3. Second, we find that



12 Authors Suppressed Due to Excessive Length

appropriate adaptive schedulers tend to hold across di↵erent systems. For both
CG and kmeans the quick scheduler performs best across all tested machines,
regardless of their composition. GEM is a bit di↵erent, in that on some systems
the quick or split schedulers are slightly beneficial, but on escaflowne they are
slightly worse than the static split. Run in production, where a user will invoke
the visualization routine repeatedly, the quick scheduler is fastest everywhere.
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Fig. 6: Cross-system performance and assignment results. The black bar in (a)
represents OpenMP CPU performance across all cores in that system.

Even though the appropriate scheduler remains the same across machines,
the workload distribution across resources shifts significantly, as Figure 6b shows.
Each bar represents the total amount of work run during the course of a given
benchmark, each CPU cell represents the work in iterations completed by a par-
ticular CPU core, and each GPU cell the work completed by a particular GPU.
Each benchmark’s distribution shifts across machines based on the machine’s
suitability. The most striking of these is CG, which uses the GPU for very little
on three of the four systems, but almost exclusively on amdlow3.

4.5 Comparison with State of the Art

Our evaluation has demonstrated that CoreTSAR achieves good and portable
performance. We now compare its performance to that of two state-of-the-art
heterogeneous task schedulers, OmpSs and StarPU. In order to compare all three
fairly, we ported three of our benchmarks (kmeans, Helmholtz and GEMM) from
OpenACC to CUDA/C and extended that version with each scheduler. The
CoreTSAR code evaluated here uses the exact same CUDA/C implementations
as OmpSs and StarPU, in fact linked from the same binary. Additionally, we con-
figure all three schedulers to use the same initial granularity for each benchmark,
amounting to approximately 2000 tasks per pass.

Figure 7 presents our results for these benchmarks on escaflowne for all sched-
ulers targeting all eight CPU cores and four GPUs. The result for GEMM is
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rather unexpected, with OmpSs and StarPU both about 2⇥ slower than the
CoreTSAR version. We initially suspected that this was the result of extra data
transfers, or even an error in our implementation of the memory movement in
OmpSS and StarPU, but manually minimizing the data transfers did not ma-
terially change the result. Rather, overhead from creation, management and
scheduling of individual tasks is to blame for the di↵erence. CoreTSAR has the
advantage of automatically altering the granularity of tasks, rather than running
user-defined chunks. In the adaptive scheduler for example, a single kernel is run
on each GPU, whereas in OmpSs hundreds to thousands may be run. No matter
how e�cient the runtime, there is a cost for such fine-grained management.
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Fig. 7: Speedup comparison between CoreTSAR, OmpSs and StarPU

Helmholtz is of interest for a di↵erent reason. The CUDA and serial C version
gets materially faster by running on four GPUs, especially with the CoreTSAR
adaptive or quick schedules with a nearly 75% improvement. The reason it per-
forms so di↵erently from the version evaluated above is that the nvcc compiler
produces significantly slower CPU code than the PGI compiler used elsewhere,
allowing the GPUs to outperform the CPUs. This result reinforces the idea
that allowing automatic coscheduling, even in cases where it does benefit some
machines or configurations, can be beneficial. OmpSs also improves on the CPU-
only performance by about 5%, and StarPU almost 2⇥ slower. Our evaluation
found that this is due to underutilizing the CPU cores in favor of the GPUs, as
well as the same overheads that plague GEMM.

Finally the kmeans results show OmpSs and StarPU scaling to a respectable
3.5⇥, but still trailing the CoreTSAR adaptive schedulers. For cases where the
application launches and immediately waits for a range of related tasks, CoreT-
SAR consistently performs well. OmpSs and StarPU on the other hand perform
well with many asynchronously launched tasks which wait rarely, and su↵er
when the full synchronization is more frequent. We believe these are complimen-
tary designs, and will investigate granularity adaptation for general task graph
scheduling systems as future work.
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5 Related Work

Task scheduling as a mechanism for easing parallel programming has a long
history. Traditional applications of the approach include dynamic loop paral-
lelization in OpenMP [8] and Intel’s TBB [15]. These mechanisms tend to o↵er
simplified syntax for shared memory parallelism, but little to no support for
heterogeneous architectures or distributed memory. Scheduling policies for these
mechanisms have also been the focus of significant research. Work by Ayguadé
et al. [3], directly influenced the design of CoreTSAR. They investigated the
removal or extension of OpenMP schedule clauses by calculating the distribu-
tion of work in future passes through a region based on times seen for each core
in previous ones. Their results showed the method was not always optimal, but
that the solution was e�cient and stable. Our ratio-based design works similarly,
although with a di↵erent mechanism to determine the split between devices.

Task block models, such as StarPU [2] and OmpSs [9], began to tackle the
problem of scheduling tasks across heterogeneous resources based on a directed
acyclic graph. These models provide a powerful platform for scheduling on het-
erogeneous systems, but require the user to determine task granularity manually.
We believe these designs to be complementary to our own, combining the abil-
ity to adaptively adjust task granularity with task-block style arbitrary graph
execution could yield powerful results.

Ravi et al. [13] presented a scheduling framework for multicore systems with
a single GPU that builds on their generalized reduction framework and code
generator [14]. While we avoid the chunk scheduling scheme and its additional
transfer overheads, they present an approach that uses chunk-based scheduling
while mitigating the overhead through runtime techniques.

6 Conclusion

We present four major contributions: the design of our task-size adapting runtime
for adaptive worksharing across heterogeneous devices; the design of a task-
associative memory model; an implementation of the designs; and our evaluation
across six codes, and four systems. Our system yields linear speedups on up to
four GPUs for amenable benchmarks, and show a high degree of performance
portability across a set of highly disparate system configurations. These results
clearly motivate the addition of a co-scheduling interface, such as the hetero()
clause that we propose, to Accelerated OpenMP; the results also highlight the
benefits of automatically adapting task granularity at runtime.

The memory management interface that we present is the first step towards
a general interface for declaring the relationship between tasks and the portions
of inputs and outputs that they require. Given that information many sched-
ulers, including ours, could automatically manage input and output, providing
significant value especially as computers become more complex. We intend to
investigate this expanded interface as future work.
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