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ABSTRACT

The use of hardware accelerators in high-performance computing has grown increasingly
prevalent, particularly due to the growth of graphics processing units (GPUs) as general-
purpose (GPGPU) accelerators. Much of this growth has been driven by NVIDIA’s CUDA
ecosystem for developing GPGPU applications on NVIDIA hardware. However, with the
increasing diversity of GPUs (including those from AMD, ARM, and Qualcomm), OpenCL
has emerged as an open and vendor-agnostic environment for programming GPUs as well as
other parallel computing devices such as the CPU (central processing unit), APU (accelerated
processing unit), FPGA (field programmable gate array), and DSP (digital signal processor).

The above, coupled with the broader array of devices supporting OpenCL and the significant
conceptual and syntactic overlap between CUDA and OpenCL, motivated the creation of
a CUDA-to-OpenCL source-to-source translator. However, there exist sufficient differences
that make the translation non-trivial, providing practical limitations to both manual and
automatic translation efforts. In this thesis, the performance, coverage, and reliability of
a prototype CUDA-to-OpenCL source translator are addressed via extensive profiling of a
large body of sample CUDA applications. An analysis of the sample body of applications
is provided, which identifies and characterizes general CUDA source constructs and pro-
gramming practices that obstruct our translation efforts. This characterization then led to
more robust support for the translator, followed by an evaluation that demonstrated the
performance of our automatically-translated OpenCL is on par with the original CUDA for
a subset of sample applications when executed on the same NVIDIA device.

This work was supported in part by NSF I/UCRC IIP-0804155 via the NSF Center for
High-Performance Reconfigurable Computing (CHREC).
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Chapter 1

Introduction

Reminiscent of the days when discrete floating point units remained separate from machines’

central CPUs, in recent years graphics processing units (GPUs) — as well as other discrete

hardware components, such as field programmable gate arrays (FPGAs) — have seen rapid

growth as hardware accelerators for general parallel applications. This growth has been

driven largely by the massive performance gains possible given the intrinsic extreme data-

parallelism afforded by GPUs. However, at the onset of general purpose GPU (GPGPU)

computing, there were no easily-used application programming interfaces (APIs) for de-

veloping computational applications for graphics devices. Rather, key computations were

labor-intensively “force-fit” into traditional graphics shader languages. There were efforts to

provide general-purpose compute languages for GPGPU devices, such as BrookGPU [4], but

adoption was somewhat limited. However, in 2006 NVIDIA released a programming environ-

ment designed to dramatically simplify the development of data-parallel applications for their

graphics hardware, known as the Compute Unified Device Architecture (CUDA) [29]. This

development environment allowed application programmers to write highly-parallel “kernels”

for execution on NVIDIA GPUs alongside standard CPU code via a relatively easy to grasp
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variant of C/C++, known as CUDA C. With access to a more programmable method for

utilizing GPUs as accelerators, developers were able to more easily achieve often multiple

orders of magnitude acceleration over their serial CPU codes, driving a surge in interest.

Apple, however, wanted a similar means of easily writing data parallel applications but

wished for greater flexibility in hardware choices than the proprietary nature of CUDA

afforded. Thus, they began the development of OpenCL, which was later transferred to

the Khronos Group to steward as a vendor-neutral, open standard API for developing data

parallel applications. Notably, it was intended not just for GPUs, but for any other current

or future hardware for which a vendor wished to implement the standard. NVIDIA, as well

as other high-powered and embedded hardware vendors such as AMD, Intel, and IBM played

key roles in the development of the standard, however much of its conceptual foundation

draws heavily upon the CUDA model. Therefore, the two APIs show a remarkable similarity,

despite the obvious difference of CUDA being officially supported solely on NVIDIA hardware

and OpenCL’s potential support on a vast array of hardware from multiple vendors. However,

due to CUDA’s head start as well as its programmability advantage, there remain a significant

number of applications written solely in CUDA. These applications cannot attempt to make

use of the performance afforded by another vendor’s device, without requiring lengthy and

error-prone translation to OpenCL or the vendor’s own proprietary framework. Further,

while there is remarkable similarity between CUDA and OpenCL, the fact remains that the

two languages are not semantically identical, and there are many situations in which there

is no robust mapping between them. Therefore there is a demand for a robust automatic

CUDA-to-OpenCL translator in addition to an improved understanding of the challenges

inherent to achieving such translation.
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1.1 Comparison of CUDA to OpenCL

CUDA and OpenCL share a number of conceptual and linguistic similarities as both have

a basis in GPGPU acceleration. These similarities are one of the primary enabling factors

behind efforts to achieve translation from one specification onto the other. For the purposes

of translating a majority of applications, the most significant similarities lie within their

execution and memory models.

dim3 block (BDIM X, BDIM Y) ;
dim3 gr id (GDIM X / block . x , GDIM Y / block . y ) ;
kerne l<<<gr id , block >>>(. . .) ;

(a) CUDA C

s i z e t [ 3 ] g r oup s i z e = {BDIM X, BDIM Y, 1}
s i z e t [ 3 ] r a n g e s i z e = {GDIM X, GDIM Y, 1}
clEnqueueNDRangeKernel ( command queue , kerne l , 3 , NULL, r ange s i z e , g roup s i z e , . . . ) ;

(b) OpenCL

Figure 1.1: Setting CUDA/OpenCL Execution Configuration

Within CUDA, host- and device-side code share the same source scope, but device functions

are annotated with the global or device attribute on the function declaration and

definition. global functions may be invoked from the host and are known as kernels

whereas device functions may only be invoked by other functions executing on the

device. To invoke a kernel, one of several methods can be employed — discussed further in

Section 3.1.5 — but the most popular takes the form of an expanded function invocation,

specifying the kernel’s execution configuration. Figure 1.1a provides an example of this syntax

in a typical kernel invocation. This allows the programmer to specify a 1- to 3-dimensional

grid of 1- or 2-dimensional blocks of threads, which execute the function in parallel across

one or more streaming multiprocessors (SMs). The conceptual hierarchy of these thread

groupings is demonstrated in Figure 1.2. Additionally, on current NVIDIA architectures,

the threads are executed in lock-step in batches of 32, known as warps.
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Grid/NDRange

Block/Work-Group

Thread/
Work-item

Thread/
Work-item

Thread/
Work-item

Thread/
Work-item

Thread/
Work-item

Thread/
Work-item

Thread/
Work-item

Thread/
Work-item

Thread/
Work-item

Figure 1.2: CUDA and OpenCL Execution Model
(Multiple labels signify first the CUDA terminology, followed by the OpenCL terminology)

OpenCL maintains a similar conceptual execution model with varying terminology and syn-

tax. A key difference is that OpenCL host- and device-side code do not share the same

source scope, as OpenCL kernel code is generally compiled just-in-time from a string. This

string is either stored as a constant in the host application or read from a separate file on

disk at runtime. Thus, device-side accessory functions need no explicit annotation as device

code remains isolated from host, and host-invokable kernels in device code are specified via

the kernel attribute. OpenCL makes use of a significantly more verbose kernel invocation,

discussed in Section 3.1.5, but retains a mechanism of specifying an execution configuration.

This requires the programmer to set a global work size specifying the 1- to 3-dimensional N-

dimensional range of 1- or 2-dimensional work-groups of work-items. These work-items then

execute the kernel function in parallel across one or more compute units (CUs), but with-

out the implicit lock-step execution of CUDA’s warps, an inconsistency addressed further in

Section 4.3.2. The equivalence of these organizational concepts to CUDA is demonstrated
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in Figure 1.2, and an example of a typical OpenCL kernel invocation specifying the global

and local work sizes is shown in Figure 1.1b.

Global Memory

Shared/Local
Memory

Constant Memory

Texture/Image Memory

Local/
Private
Memory

Thread/
Work-item

Block/Work-group

Grid/NDRange

Local/
Private
Memory

Thread/
Work-item

Shared/Local
Memory

Local/
Private
Memory

Thread/
Work-item

Block/Work-group

Local/
Private
Memory

Thread/
Work-item

Shared/Local
Memory

Local/
Private
Memory

Thread/
Work-item

Block/Work-group

Local/
Private
Memory

Thread/
Work-item

Figure 1.3: CUDA and OpenCL Memory Models
(Multiple labels signify first the CUDA terminology, followed by the OpenCL terminology

Likewise, CUDA and OpenCL’s memory models have significant similarities, shown in Fig-

ure 1.3. Both have the notion of a bulk global memory, accessible by all threads running

on the device and declared and initialized by explicit host-side calls. Additionally, both

provide access to a small amount of faster, special purpose memory accessible to only those

threads/work-items that are in the same block/work-group. This is known in CUDA as

shared memory and local memory in OpenCL. Likewise both support another small region

of constant memory that is set by the host or as statically defined device program scope

variables and is read-only for device threads. Both maintain a concept of registers/private
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memory that are accessible only by a single thread. Finally, due to the GPU origins of both

CUDA and OpenCL, they support a region of texture/image memory that provides fast read

and write access through special-purpose functions.

1.2 Related Works

Works most directly related to this thesis lie in the areas of source translation, CUDA,

OpenCL, and general GPGPU and accelerated application development and performance,

and more specifically, translation to or from CUDA/OpenCL. Historically, there have been

a number of efforts to provide source translation and analysis of C and C-like languages.

Over the past several years there has been an explosion in the popularity of GPGPU de-

velopment, largely driven by potential performance gains and the availability of compute

APIs like CUDA and OpenCL. As such there is a vast trove of literature documenting issues

encountered during development of applications for GPU devices as well as addressing their

performance and architecture-specific optimization methods. Further, this popularity has

driven a number of attempts at providing automated translation to or from GPGPU devel-

opment frameworks in order to provide access to the potential performance gains provided

by the devices without requiring time-intensive manual porting of applications.

The C language, and its descendants, including C++, have undergone significant evolution

since their creation, growing in functionality and expressivity based on the demands of their

developer communities. Throughout the histories of these languages, various forces have

created demands for automated analysis, transformation, and translation of their source

code. As both CUDA and OpenCL inherit much from their C/C++ ancestors, many of the

approaches used for source-level interaction could likely be applied to modern translation

efforts. For example, the first implementation of a C++ compiler, CFront, was effectively
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a C++ to C translator [39], which therefore might provide insights into mapping CUDA’s

device-side C++ onto OpenCL’s device-side C99 requirement. Developers utilizing C, C++,

and descendants such as CUDA and OpenCL also frequently make heavy use of the lan-

guages’ separate preprocessing step in order to develop multiple variants of an application

within a single body of source code, which complicates and limits source-level operations.

Fortunately, there has been much work to understand [13] and address problems with source-

level operations introduced by the preprocessing step. As an example, automated source code

refactoring tools must account for preprocessing, particularly in the presence of conditional

compilation directives [17, 37].

The primary goal in automating CUDA-to-OpenCL translation is focused on providing func-

tional portability in order to ensure that codes translated from CUDA provide accurate re-

sults when running OpenCL on any vendor’s device. However, realizing true performance

portability remains the paramount goal to many OpenCL developers. Since CUDA’s birth, a

significant body of literature documenting various optimization strategies for NVIDIA GPUs

has been developed, almost all of which apply to OpenCL codes when executed on NVIDIA

devices [24, 35, 43]. Similarly, optimization techniques for various CPU architectures have

also been well-studied [41, 42]. However, there remains a significant gap in the extensiveness

of published studies of optimization techniques for AMD GPUs. While OpenCL is intended

to provide functional portability across all these, as well as other devices, past work has

shown that code that is optimized for a specific underlying architecture will not necessarily

execute at similar levels of performance when executed on a dissimilar underlying architec-

ture. For example, studies on linear algebra solvers [12], Monte Carlo simulations [40], and

molecular modelling simulations [7], as well as many other problems, such as stencil com-

putations [8] have demonstrated the need for device-specific optimizations to achieve high

performance.
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Given the large interest in CUDA since its development, a number of efforts have attempted

to provide translation to the CUDA framework or from the CUDA framework. Addition-

ally, the rise of OpenCL and interest in non-NVIDIA accelerator architectures has driven

the development of similar translation tools providing accelerated codes portability to de-

vices outside the scope of their original development language. In general, these translation

tools take one of three forms, (1) source translation from one framework onto another, (2)

translation of an intermediate representation (IR) to another, or (3) abstraction of multiple

frameworks into a single high-level interface.

Source-level translation to or from CUDA has been largely driven by a desire to write data

parallel applications through a framework with which one has more familiarity, while retain-

ing the benefits of the target framework, be they performance, portability, or programma-

bility. Attempts to translate to CUDA frequently consist of efforts to write applications in a

previously existing parallel framework, such as OpenMP [23] and make use of an underlying

CUDA accelerator in place of the original underlying hardware. However, as a number of

applications have already been written in CUDA, and many consider it to be a developer-

friendly accelerator framework, there is also interest in translation of CUDA codes to other

platforms. For example, MCUDA implements a translator from CUDA to multi-threaded

CPU applications [38]. There have also been efforts to automatically translate native CUDA

applications to a form amenable for remote execution, such as CU2rCU [32]. Finally, there

have been efforts to translate CUDA source directly to OpenCL in order to allow accelerated

codes to run on devices other than NVIDIA without manual rewrites. Examples of usch ef-

forts include CUDAtoOpenCL [27] and CU2CL [26, 25], upon which the work in this thesis

is based.

Another popular approach to CUDA translation is to directly translate from CUDA’s Parallel

Thread Execution (PTX) IR onto another language or IR. The advantage of this approach
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is that CUDA modules that have already been compiled to PTX need not be recompiled

from source to target a differing underlying architecture. This is the approach taken by

Ocelot [9, 10] and Caracal [11], which translate from PTX to SPU assembly for the Cell

Broadband Engine, LLVM for CPU execution, and AMD’s Compute Abstract Language

(CAL) for execution on AMD GPUs, respectively. However, one downside to this approach

is that a separate back-end must be implemented for each new intermediate representation

one wishes to target. In contrast, translation to OpenCL allows users to instead rely on

vendors to provide the necessary back-end.

A third approach for realizing portability between multiple device types or compute lan-

guage specifications is to abstract multiple underlying frameworks into a single high-level

interface. This is the approach taken by the Swan tool [19], which allows developers to write

applications for both CUDA and OpenCL in a single high-level API, which is then exe-

cuted using CUDA or OpenCL, depending on which version of libswan is linked. CUDACL

takes a similar approach, which provides code generation for CUDA or OpenCL from an

abstract C/Java API, implemented as an Eclipse plugin [20]. Other approaches make use of

source annotation frameworks such as OpenACC [31], and there have been efforts to provide

implementations supporting both CUDA and OpenCL [33]. While seeking a high-level repre-

sentation of parallel software is a laudable goal for easing parallel development, as additional

layers of abstraction are added, it becomes more difficult to access the fine-grained control

of parallel architectures provided by lower-level alternatives like CUDA and OpenCL.

1.2.1 CU2CL Translator Prototype

The vast majority of the work presented in this thesis is either enabled by, or directly in

support of, a prototype CUDA to OpenCL translator, known as CU2CL. The first imple-
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mentation of this tool was created at Virginia Tech as part of a previous student’s thesis [26].

As such, it is critical to address a number of its key features to provide context for the work

presented here.

CU2CL was developed as a plugin to the Clang compiler framework [1], based on LLVM [22].

While a number of other frameworks were considered, Clang was settled upon due to its

extensibility as well as its vibrant development community, rapid growth, and growing built-

in support for compiling CUDA source code [26, 25]. Clang and LLVM provide lexing,

parsing, semantic analysis, abstract syntax tree (AST) generation, rewriting, and many

additional capabilities of use to a source-to-source translator.

The CU2CL plugin is implemented as an AST consumer, relying on the AST generated

by Clang for identifying and recursively iterating over CUDA components of interest to be

translated. However, in contrast to other efforts at source translation, modifications are not

performed on the AST itself, to later be reconstituted into source code. Instead, by using

Clang’s Lex and Rewrite libraries, transformations are applied directly to CUDA source

code, a technique known as AST-driven, string-based rewriting [26, 25]. This permits all

non-CUDA specific structures in the original source code to be passed through unchanged,

preserving original meta-content, such as commenting and formatting, therefore easing efforts

to continue development on the translated source.

While the basic CU2CL prototype realizes translation of a significant portion of the CUDA

specification, the vast majority of its work falls under translating either CUDA data types or

CUDA API function calls. As such, a large portion of the translation makes use of common

patterns that at a high level are largely agnostic to the specific API call or data type that is

being converted. This high degree of abstraction allowed the first prototype to be assembled

in under 2000 lines of code, while still providing decent coverage of commonly used CUDA

structures and integrating a number of other notable features. Among these are support
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for recursive expression rewriting as well as automatic translation of #include preprocessor

directives [26, 25]. Several other features and mechanics of the initial prototype are discussed

in greater detail in the thesis sections to which they are relevant.

1.3 Research Approach

A multi-step approach was taken to improve the viability of CU2CL as a production-ready

translator suitable for the general translation of CUDA applications to OpenCL. The end-

goal of the project is to promote their execution and continued development on non-CUDA-

enabled platforms. As discussed in Section 1.2.1, an initial prototype providing the general

framework and most frequently encountered CUDA structures was already developed as a

launching point. To develop an understanding of the prototype’s initial capability, an ex-

tensive study of its reliability was undertaken by attempting to translate nearly 100 CUDA

applications. These applications include many from the CUDA SDK [30] and the Rodinia

benchmark suite [5, 6], as well as three “large applications” in the domains of molecular

modelling, molecular dynamics, and neural networks. By collecting and analyzing both the

translator output as well as source code for these applications, an understanding was formed

of the generalized patterns among CUDA source structures that the initial translator proto-

type was unable to fully handle. These patterns were then reconciled against both the CUDA

and OpenCL documentation to further characterize them based on their theoretical trans-

latability. This study also provided a more complete understanding of the relative frequency

of inadequately-supported CUDA structures in order to help prioritize development efforts.

This knowledge promoted expansion of the prototype’s effective coverage and utility in the

three following ways: (1) by improving its ability to provide at least a best-effort translation

in the presence of difficult or potentially untranslatable structures, (2) by increasing the
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quality and coverage of error reporting, and (3) by adding select features to the translator’s

functionality. After enhancement of the prototype, a repeat translation of the population of

sample applications was performed to gauge the relative increase in effective coverage and

reliability, in addition to collecting data on translator performance.

1.4 Contributions

The primary contributions of this thesis are:

• A characterization of CUDA source structures and programming practices that com-

plicate manual or automatic translation of source code to OpenCL.

• Enhancement of the CU2CL prototype translator’s reliability and verbosity by inte-

gration of knowledge gained by source code characterization and CU2CL-specific error

analysis.

• A demonstration of the improved translator’s reliability, performance, and CUDA

source code coverage.

• A brief study demonstrating that performance of automatically-translated OpenCL

applications as being comparable to the original CUDA when executed on the same

NVIDIA hardware.

1.5 Thesis Organization

The organization of this thesis is as follows. First, this provides background on the area

and problem of study and previous works related to CUDA and OpenCL translation. Fur-
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ther, it details the research approach taken, as well as the primary contributions of the

work. Chapter 2 presents and discusses a study of CUDA applications through the lens

of the original CU2CL translator prototype, in order to identify commonly-occurring struc-

tures in CUDA source that provided practical limitations to automatic translation. It next

presents a study of the effective increase in translator coverage and reliability, analysis of

translator performance, and analysis of the performance of automatically translated applica-

tions. Chapter 3 then provides a detailed discussion of enhancements added to the prototype

translator, which were designed to address several of the issues identified during profiling.

Chapter 4 then transitions to a theoretical discussion on the viability of providing automatic

translation for several of the structures identified during profiling, detailing numerous op-

portunities for future work. Finally, Chapter 5 presents a summary of the work alongside

primary conclusions. An additional appendix is then provided, consisting of the data tables

used to construct the graphs in Chapter 2.



Chapter 2

Characterization of Translator

Capability

To work towards a more complete understanding of the practical difficulties in performing

source-level translation of CUDA to OpenCL, an analysis of a large body of CUDA ap-

plications was performed. This analysis primarily consisted of a search for specific CUDA

constructs and programming practices that present difficulties to the human or machine

translator. The first phase of the analysis was to manually inspect CUDA source code for

syntax and behaviors that could not be represented in OpenCL. The second phase utilized

the CU2CL prototype translator to attempt translation of a subset of sample applications.

This provided volumes of information on the diversity and relative frequencies of difficult

CUDA source structures and programming practices. This information was then used to form

generalizations of the structures, reason about their theoretical translatability (discussed in

Chapter 4), and prioritize development to enhance the effective reach of the translator pro-

totype (discussed in Chapter 3). After enhancement, a third phase of analysis using the

upgraded prototype was conducted to provide more direct observation of the gains in the

14
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tool’s utility. This chapter presents an analysis of the primary metrics used to analyze the

translator’s capability: translator performance, translator reliability, translator coverage,

and the performance of translated applications.

2.1 Test Applications

The population of sample CUDA applications used for analysis came from a number of

sources, including both industrial/commercial affiliates and academics. The mix of applica-

tion sources was chosen to ensure a high diversity of programming styles, coverage of CUDA

language features, and range of application areas on complexities. Application areas present

in the population include molecular modelling, bioinformatics, neural networks, finance, and

several others.

2.1.1 CUDA SDK

By far the largest singular source of applications is a selection of 79 samples from version 3.2

of the CUDA SDK [30]. These samples are provided to demonstrate the use of a range of

CUDA functionalities and programming styles. Combined, they demonstrate a multitude of

difficult-to-translate features, including precompiled CUDA libraries, OpenGL interoperabil-

ity, device-side C++, texture, shared, and constant memories, and special purpose on-device

functions. Further, they range in complexity from single-file math demonstrations to sig-

nificantly larger-scale particle simulations, demonstrating GPGPU approaches to a range of

application areas, such as linear algebra, finance, N-Body simulation, image processing, and

quasirandom number generation.
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2.1.2 Rodinia

The next most significant source of samples is the 17 CUDA applications that made up ver-

sion 2.0.1 of the Rodinia Benchmark suite [5, 6], which have been selected as representative

of small-scale academic application development. They are developed to be largely stan-

dalone, and possess far fewer of the “SDK-isms” frequently present in the applications taken

from the CUDA SDK, such as the use of cutils and shrUtils. These provide additional

convenience wrappers and functions that are not part of the canonical CUDA specification.

Additionally, they have been developed by a number of different authors of differing levels

of CUDA/C experience, which increases the overall variance in programming style in the

sample population.

2.1.3 Other Large Applications

In addition to the 96 “small” applications with source lines of code (SLOC) numbering in the

hundreds to few thousands, the analysis includes three “large” CUDA applications to gauge

the tool’s effectiveness on more production-ready codes. All of these applications consist of

several thousand lines of CUDA and C/C++ code, and together demonstrate use of several

features of the C/C++/CUDA C languages that complicate the translation process.

GEM

The first large-scale application profiled for CUDA constructs was a molecular modelling

application for computing the electrostatic surface potential of biomolecules, known as

GEM [2, 14]. While analysis of its translation time as well as code coverage have been

previously published [25], it is included here for completeness as well as its potential to offer

insights during the code examination phases of profiling. Additionally, the methodology
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used for determining code coverage differs slightly from that used in previous works in its

improved analysis of device-side code coverage via NVIDIA’s OpenCL kernel compiler.

Fen Zi

The second large-scale application profiled is a molecular dynamics simulation for modelling

membrane-bound protein receptors, known as Fen Zi [3, 15, 16]. Fen Zi implements a version

of the Particle Mesh Ewald method specifically designed for GPU execution, switching from

a traditional charge-centric algorithm to a more GPU-amenable lattice-centric form. A

particular facet of the method that is of direct interest to this work is its dependence on

a Fast Fourier Transform (FFT), internally utilizing the closed-source CUFFT library of

CUDA-accelerated FFT kernels. The use of this library represents a distinct challenge for a

source-level translator, reducing effective translator coverage of the application’s source code,

an issue discussed further in Chapter 4. Fen Zi was developed by the Global Computing Lab

at the University of Delaware.

IZ PS

The third production CUDA application profiled was a spiking neural network simulation

implementing the Parker-Sochacki numerical integration method applied to the Izhikevich

neuron model [44]. Of particular interest to translation efforts is their use of CUDA’s shared

and texture memory spaces for improved performance, as well as use of the CUDA Data

Parallel Primitives (CUDPP) Library. Additionally, the source code makes heavy use of

often-nested preprocessor macros, which complicate translation significantly (discussed fur-

ther in Section 4.5.1).



18

2.2 Test Environment

For performance analysis of both the translator prototype as well as automatically-translated

applications, a consistent test platform was used. This platform consisted of a commodity

desktop running 64-bit Ubuntu 12.04 with Linux kernel 3.2.0-35-generic. The CPU used

was an AMD Phenom II X6 (six-cores at 3.2 GHz) equipped with 16 GB RAM, and the

GPU used was a NVIDIA GeForce GTX 480 running NVIDIA driver version 310.32 with

CUDA Runtime version 5.0.

2.3 Translator Performance

The main emphasis of a translation effort is likely to translate an existing application from

CUDA to OpenCL, and then continue development in OpenCL. However, it is likely that

some developers may opt to continue their primary development in CUDA, either for reasons

of personal familiarity with the language, or due to the generally-accepted increased ease of

developing that CUDA provides. Therefore, a reasonable emphasis is placed on the transla-

tor’s performance to support users who opt for frequent retranslations from their canonical

CUDA source as part of building the application. For one-off translations a rapid transla-

tion time is likely unnecessary, as the speed of automatic translation will almost certainly

surpass that of manual efforts. Fortunately, as previously demonstrated on a small number

of codes [25, 26] the average time of translation is low, usually less than a second. However,

as a number of features were added to the translator and a large and diverse population

of sample applications was available, an expanded analysis of CU2CL’s performance was

conducted.

Tables A.1, A.2, A.3, and A.4 provide translator performance measurements on samples from
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Figure 2.1: Translator Performance vs. Source Lines of Code

the Rodinia benchmark suite [5, 6], CUDA SDK [30], and large applications. Figures 2.1a

and 2.1b show the full time of translation and the subset of time taken by the CU2CL

portion of the translator, respectively, with respect to the number of CUDA SLOCs in the

application. Reported times represent the average time of 10 translations using the most

current development build of CU2CL, modified December 9, 2012, based on the Clang/LLVM

3.2 development tree, revision 159674. As can be seen in Figure 2.1a, although even the

largest applications can be translated in a few seconds or less, there is no clear correlation

between total time of translation and SLOCs. This can be explained by variations in the
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time required by Clang to generate an AST, potentially caused by the presence of template

functions and deeply-nested included header files. In contrast, Figure 2.1b demonstrates

a relatively strong correlation between SLOCs and the time taken by the CU2CL portion

of translation. This is attributed to the one-time walk of the AST that CU2CL performs

during translation; as the number of SLOCs grows, so does the AST.

2.4 Translator Reliability

E
nh

an
ce

d

C
U

2C
L

O
rig

in
al

C
U

2C
L

C
U

D
A

S
D

K
R

od
in

ia
C

U
D

A
S

D
K

R
od

in
ia

0% 25% 50% 75% 100%

Complete Failed Partial

Figure 2.2: Reliability of the CU2CL Translator before and after enhancement when trans-
lating CUDA SDK and Rodinia sample applications.

Profiling a large selection of diverse applications provided a demonstration of the first proto-

type’s effective limitations. Throughout testing it was discovered that a rather large portion

of applications produced either only a partial translation or resulted in unidentified fail-

ures within the translator itself, producing no OpenCL output whatsoever. Therefore, it
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was critical that the underlying causes of these failures were identified, in order to direct

improvement of the translator’s robustness. Figure 2.2 shows a visual comparison of the

current prototype’s reliability to the original’s when translating samples from the CUDA

SDK and Rodinia. The colors represent CU2CL’s ability to provide at least a partial trans-

lation for every CUDA source file in an application. The green ”Complete” bars signify that

OpenCL is output for every CUDA source file in the application, the yellow ”Partial” bars

signify that OpenCL is output for at least one CUDA source file from the application, but

not all, and the red ”Failed” bars mean the translator was unable to produce OpenCL out-

put for any CUDA source files in the application. As shown, the translator’s reliability has

dramatically improved, translating an additional 77% and 41% of CUDA SDK and Rodinia

samples, respectively. Tables A.5, A.6, and A.7 provide more depth on the translation sta-

tus of individual applications both before and after enhancement of the prototype. Further,

for each partial or failed translation, the tables show additions to the translator, discussed

further in Chapter 3, that removed the underlying failures and enabled the production of

a more complete translation of the application. However, despite the numerous additions

designed to improve robustness, two applications from the CUDA SDK samples — Interval

and MonteCarloCURAND — still fail to provide complete translation, due to a limitation of

Clang’s ability to simultaneously parse C++0x and CUDA syntax elements. Additionally,

one Rodinia sample, MummerGPU, contained an implicit cast that was invalid on 64-bit

platforms, and prevented Clang from reaching the CU2CL plugin to perform translation.

2.5 Translator Coverage

Profiling tests on the sample applications identified many instances of unsupported, incom-

plete, or malformed translations. While this is not unexpected for an academic prototype
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undergoing active development, it is critical to develop an understanding of the translator’s

scope, both to be honest in advertisement of its capability, as well as to drive future de-

velopment efforts. The methodology used to analyze application coverage consisted of the

following stages:

1. Perform manual preprocessing of the CUDA application to remove “SDK-isms” such

as the usage of CUDA’s cutils or shrUtils. These lines changed are not counted as

part of characterization score as they apply to both the original CUDA as well as the

OpenCL, and are only to remove non-canonical convenience wrappers, which are not

intended to be translated. Otherwise they do not result in a net change of application

semantics. The most frequent changes in this category are replacement of shrLog calls

with standard printf calls, as well as removal of the cutilSafeCall wrapper function.

2. Translate all source files of the application that require either the nvcc compiler or

inclusion of one of the standard CUDA header files (cuda.h, cuda runtime api.h, or

cuda runtime.h, for example) using default compiler definition arguments required for

GPU execution.

3. Attempt compilation of both host and device OpenCL code using the same compiler

definitions used during translation. This expands on earlier works that only charac-

terized changes required in the host-side code, neglecting to address the potential for

device-side code to also require post-translational repair.

4. Then either

(a) Correct all errors identified during attempted compilation until compiled code

runs to completion giving functionally-equivalent output to the original CUDA
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when run on the same NVIDIA hardware1. This was the approach taken to

analyze coverage on the five Rodinia samples, seven CUDA SDK samples, and

GEM.

OR

(b) Selectively flag erroneous source code in a manner that preserves compilation

semantics2. This ensures that lines that would need to be manually modified are

accounted for without spending inordinate amounts of time performing one-off

translations of simple applications. This approach was used to analyze coverage

of the other two large applications, Fen Zi and IZ PS.

5. After code compiles without errors or translation-induced warnings3 perform a minimal

diff of the modified OpenCL with the original output of the translator, counting the

number of lines changed, excluding whitespace.

6. Count the number of SLOCs in the original CUDA files before translation, subtract

the number obtained in step 5 from this value, and then divide that by the CUDA

SLOCs to count the percentage of lines correctly translated.

As the process of analyzing code coverage requires investment of significant developer time to

actively perform extensive modifications on poorly-translated source files, only a subset of the

applications have been profiled. While sample applications that would require substantive

changes to execution patterns have been omitted from coverage analysis — such as those

1“Functionally equivalent output”, means production of the exact data set produced by the original
CUDA, within acceptable range of floating point round-off variance.

2In this case flagging implies the manual removal and replacement of source structures that cause failures
during compliation with NVIDIA’s OpenCL kernel compiler. In general this implies commenting of untrans-
lated CUDA expressions, and the replacement of select function values and initializations with appropriate
dummy values.

3For example, warnings about dangling attributes left behind in output OpenCL code due to incomplete
removal during the translation process.
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Percent
CUDA Lines Automatically

Source Application Lines Changed Translated

CUDA SDK

asyncAPI 135 5 96.3
bandwidthTest 891 5 98.9
BlackScholes 347 14 96.0
fastWalshTransform 327 30 90.8
matrixMul 351 9 97.4
scalarProd 251 18 92.8
vectorAdd 147 0 100.0

Rodinia

Back Propagation 313 24 92.3
Breadth-First Search 306 35 88.6
Gaussian 390 26 93.3
Hotspot 328 2 99.4
Needleman-Wunsch 430 3 99.3

[15, 16, 3] Fen Zi 17768 1786 89.9
[2] GEM 524 15 97.1
[44] IZ PS 8402 166 98.0

Table 2.1: Coverage of CU2CL Translation

with device-side template usage, discussed further in Chapters 3 and 4 — a number include

frequent use of CUDA structures that the translator currently has no support for, such as

textures. Table 2.1 demonstrates that for even the largest applications, CU2CL provides a

relatively high degree of coverage, significantly reducing the percentage of applications which

remains to be translated by hand.

2.6 Translated Application Performance

Of high concern for those considering translating their code is ensuring they will not pay sig-

nificant performance penalties for moving from CUDA to OpenCL. While earlier work showed

that NVIDIA’s earliest implementations of OpenCL occasionally provided performance well

below that of CUDA [25, 26] their modern implementations have largely removed this con-
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cern. The performance of applications that were repaired to give functionally equivalent as

defined in Section 2.5 was compared to the performance of the original CUDA to show that

performance is preserved when translated codes are executed on the same NVIDIA hardware.

Tests were run on the platform detailed in Section 2.2. Whole application performance was

measured using the Unix time command and the average of ten trials is reported. As can be

seen in Table 2.2, in all applications there are only minor differences between the OpenCL

and CUDA run times, with many examples of the automatically-translated OpenCL out-

performing the original CUDA. Given that both source codes are near-identical other than

API calls, it is unclear what underlies these performance differences. However, for fairness

this analysis is restricted to solely executing automatically-translated OpenCL on NVIDIA

devices. Due to different underlying devices requiring different optimization strategies, it is

not necessarily true that functional portability via OpenCL will guarantee a similar level of

performance on devices from other vendors.

CUDA OpenCL Percent
Application Runtime (s) Runtime (s) Change

asyncAPI 0.58 0.55 -6.6
bandwidthTest 0.94 0.86 -8.5
BlackScholes 1.98 1.75 -11.5
FastWalshTransform 2.00 2.03 +1.3
matrixMul 0.47 0.47 -1.6
scalarProd 0.51 0.51 -0.2
vectorAdd 0.47 0.46 -0.8

Backprop 0.87 0.87 +0.4
BFS 2.09 2.17 +4.1
Gaussian 0.48 0.46 -2.8
Hotspot 0.81 0.79 -1.9
Needleman-Wunsch 0.57 0.52 -9.2

GEM 0.51 0.49 -2.9

Table 2.2: Run Times of CUDA Applications and OpenCL Ports on an NVIDIA GTX 480



Chapter 3

Improved Robustness

One of the primary contributions of this thesis is an effort to move the CU2CL source to

source translator from academic prototype towards being a robust production tool. Before

fully-automated CUDA-to-OpenCL translation can be realized, there remains much work to

be done, both to extend coverage of the translator and to expand the capabilities of OpenCL.

A substantial effort has been given to improving the translator prototype’s robustness in

hopes that it might soon be released to the community for continued expansion. Several

additional functionalities have been integrated into the enhanced prototype since the initial

versions were published [26, 25], which are intended to address a number of issues identified

during the first profiling runs discussed in Chapter 2. These additions fall loosely into three

categories: Features Added, Mistranslations Repaired, and Bugs Quarantined. This chapter

first discusses those features that are newly added, then repairs made to certain infrequently-

used code paths for select translations, and finally the methods used to prevent the translator

from failing when encountering irregularities in the incoming source code.

26
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3.1 Features Added

As part of the effort to expand the translator, support was added for a number of new

features, either to improve effective coverage of CUDA structures, or to improve the utility

to the end user of the translator and translated source code. In some cases addition of

functionality simply required filling in a scaffold already present in the early prototype, but

the majority required addition of new code. Additionally, in a few cases implementation of

a new feature is incomplete, but a significant portion of the scaffold has been constructed

from which to finalize support at a later date.

3.1.1 Inline Error Reporting

A key update to the usefulness of CU2CL is a more robust error and warning reporting

mechanism. In the original prototype, translator output messages were dumped directly to

a console error stream, and were rather simplistic, containing only a brief message hinting at

the underlying problem. While this has some utility to a CU2CL developer who has access

to the source code, and can readily identify the CUDA source structures causing the error by

examining the Clang structures used in that region of CU2CL, it has rather low utility for

the end user. Additionally, the vast majority of encountered errors were accompanied by no

explicit message whatsoever. Therefore, to more significantly assist the end user in resolving

the issue, a generic error reporting facility was added. This facility allows highly-specific

error notifications to be emitted to the standard error stream alongside pointers into the

original source, similar to a traditional compiler. However, as the output OpenCL source

code will also likely need modification, this idea is expanded on by utilizing Clang’s rewriting

functionality to emit similar error notifications directly into the output OpenCL source files

as comments, including standardized tags that are easily searched by the developer.
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To this end a standardized interface was created for all translation-time messages to be sent

to the user. Each such message takes a “severity level” that determines the output tag

prepended to the message in the output stream. Currently, the tool uses four such levels.

The first, “CU2CL Error” is for exotic source code that the translator doesn’t know how to

handle. The second, “CU2CL Untranslated” is for CUDA structures that are identified but

not actively translated and are thus emitted unmodified into the output OpenCL source.

The third, “CU2CL Unsupported” is for similar cases in which CU2CL has identified a

CUDA structure that can be translated but is not currently implemented. Finally, “CU2CL

Notes” and “CU2CL Warnings” are akin to standard compiler warnings, in that they advise

the user that the translator has had to make assumptions or perform some non-standard

translation. These notes and warnings are generally emitted in areas where there is high

confidence in translation accuracy, but it was achieved via atypical methods, as a courtesy

to the end user to draw attention that there could be a flaw. Currently, this error interface

is implemented as a hand-built feature of the CU2CL plugin to Clang; implementing similar

handling through Clang’s unified diagnostic subsystem remains for future work.

Note: due to an implicit ordering constraint in Clang’s Rewrite library, all comments destined

to be inserted directly into output source code are necessarily buffered until the end of

translation, while their counterparts destined for the error stream are emitted at detection

time.

3.1.2 Update to Clang 3.2

As an effort to simplify the installation and development process for CU2CL, as well as to

ensure forward compatibility, the entire CU2CL plugin source was updated to make use of the

LLVM/Clang 3.2 API, specifically revision 159674. This required a number of minor source
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changes throughout the plugin to adapt to a slightly modified API and tweaked behaviors

of a number of functions. Of particular relevance were changes to the API components

allowing access to SourceLocations referring to macro pointers. Additionally, this update

removed the need to manually apply patches to the LLVM and Clang source trees, as their

support for CUDA parsing within the main development branches has significantly improved

since version 2.9 upon which CU2CL was originally based. This update also contributed to

the translation of a large number of the sample applications that previously encountered a

known error with Clang 2.9’s support for the 4.6 version of GNU Standard C++ Library [34].

In this revision, there remains an issue with support for simultaneous parsing of C++0x and

CUDA.

3.1.3 Device-side Builtin Math Functions

As noted elsewhere, CUDA and OpenCL share a remarkable similarity in the capabilities of

their device languages. One area in which there is a near perfect overlap is builtin support

for many commonly used math functions. However, there is a slight discrepancy in the

naming convention used by these functions, in particular their single-precision floating point

versions. In CUDA these all take the form “sinf ” with the “f ” denoting that the single-

precision version should be used. However, in OpenCL all variants of these math functions,

including vector versions, make use of the same entry-point function, requiring only that

all operands and return values share the same, possibly explicitly-cast, supported type.

Therefore, several versions of the CUDA kernel math builtin functions must be converted

in order to provide valid OpenCL kernel code. While the initial CU2CL prototype only

provided a sparse scaffold demonstrating the translation of a select few of these functions —

fabsf, sqrtf, expf, logf, log2f, and powf— support has been expanded to include

all such functions for which a direct OpenCL equivalent exists. However, translation of the
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versions of these functions that provide explicit control of internal rounding modes are not

yet supported and remain for future work.

3.1.4 Partial Support for cudaSetDevice

One of the most frequently observed “optional” CUDA calls witnessed throughout profiling

was cudaSetDevice, which takes a simple integer argument specifying a CUDA-capable

device in a system, and requests that the CUDA context for the program be switched to

refer to that device. It was observed that in many cases, the call simply requests a default

device, which is redundant as CUDA already initializes a default at the occurrence of the first

CUDA call in a program. However, in a few select cases the call is used to iterate over all or a

subset of the devices present in a system. Therefore for compatibility, an equivalent method

for explicitly setting the OpenCL context to refer to a specific device must be implemented,

without interfering with the more common automatic initialization of a device.

To avoid interfering with the pre-existing code that implements the automatic initialization

behavior required of CUDA codes which do not make use of the cudaSetDevice call, a sep-

arate utility function was developed. This handler, cu2clSetDevice, assumes an OpenCL

context has already been created for some device. It begins by executing the necessary

OpenCL calls to release the context associated with the default device1. However, one key

difference between how CUDA and OpenCL refer to devices is that CUDA uses simple inte-

gers, whereas OpenCL uses the cl device opaque type. Therefore the handler also makes

use of a helper method that, if and only if cudaSetDevice is detected, performs a one-time

scan of all OpenCL devices across all OpenCL platforms present in the system, and provides

an array of the devices that can be dereferenced by a simple integer. This array is then

1This behavior is inconsistent with CUDA, but is implemented as a simple precursor to later be replaced
by a proper mechanism for preserving and switching between multiple active contexts.
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used by the cu2clSetDevice method to initialize a context for the device specified by the

integer argument supplied2.

However, currently the handler lacks support for recompiling the OpenCL kernels for the

new context, which is known to result in silent errors when attempting to execute said

kernels after a translated cudaSetDevice. Addition of this functionality should not require

significant development effort as code already present in CU2CL for iterating over all kernels

for compilation could likely be repurposed with slight modification. In addition, it was

observed that cudaSetDevice calls are usually paired with a matching cudaThreadExit

call, which, when translated, results in attempts to release the OpenCL context multiple

times, causing segmentation faults in the translated OpenCL application. A mechanism will

need to be devised for detecting such paired calls, in order to either inhibit the addition

of a redundant clReleaseContext call associated with the default automatically-initialized

context or provide another adequate handler in the form of a cu2clThreadExit method.

3.1.5 Partial Support for Literal Parameter Values to Kernels

The semantics of invoking a parallel device kernel differ significantly between CUDA and

OpenCL. While CUDA provides three such mechanisms, shown in Figure 3.1, the first (3.1a),

in the form of an annotated function call is by far the most common. OpenCL only provides

one such mechanism that is similar to both lower-level CUDA invocations in specifying

parameters using pass-by-reference semantics (Figures 3.1b and 3.1c). However, this conflicts

with CUDA C’s high level invocation, which uses pass-by-value semantics for parameters.

The initial version of CU2CL easily handles any case in which the passed parameter is simply

a referenceable variable, by prepending the ‘&’ reference operator to the variable name.

2This is not guaranteed to provide the same device as the same integer in a CUDA program, but relying
on OpenCL’s functional portability, will provide a compatible device without otherwise breaking application
code.
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dim3 block (BDIM X, BDIM Y) ;
dim3 gr id (GDIM X / block . x , GDIM Y / block . y ) ;
kerne l<<<gr id , block>>>(in1 , in2 , out ) ;

(a) CUDA C

dim3 block (BDIM X, BDIM Y) ;
dim3 gr id (GDIM X / block . x , GDIM Y / block . y ) ;
cudaConf igureCal l ( gr id , block , 0 , 0 ) ;
cudaSetupArgument ( in1 , 0 ) ;
cudaSetupArgument ( in2 , 4 ) ;
cudaSetupArgument ( out , 8 ) ;
cudaLaunch ( ” ke rne l ” ) ;

(b) CUDA Runtime API

cuFuncSetBlockShape ( kerne l , BDIM X, BDIM Y, 1 ) ;
cuParamSeti ( kerne l , 0 , in1 ) ;
cuParamSeti ( kerne l , 4 , in2 ) ;
cuParamSeti ( kerne l , 8 , out ) ;
cuParamSetSize ( kerne l , 1 2 ) ;
cuLaunchGrid ( kerne l ,GDIM X/BDIM X, GDIM Y/BDIM Y) ;

(c) CUDA Driver API

Figure 3.1: Comparison of CUDA Kernel Launch Syntaxes

However, it did not provide any special handling for those cases in which the parameter

being passed by value could not be reduced to a single memory address. For example

any numerical or #defined constant would result in a malformed reference expression, as

would the result of other complex expressions, such as simple math and the substitution of

function-like macros. Figure 3.2a demonstrates a kernel call with several literal parameters,

and Figure 3.2b demonstrates how they were handled by the original prototype.

Fortunately, a simple solution to these cases is rather easily achieved, by detecting such

expressions, storing the result in a locally-scoped temporary variable, and then providing

a reference to said temporary variable to the necessary clSetKernelArg call, in place of

the malformed expression reference. This functionality is successfully implemented for all

the above-mentioned cases, save that of function-like macros. As CU2CL examines the

source code at the AST level, it is limited in its ability to correctly rewrite macros. It

currently successfully uses macro names, but does not yet achieve reliable identification of
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#de f i n e MIN(a , b) ( ( a < b) ? a : b)
#de f i n e PI F 3 .14 f
. . .
f l o a t foo1 = 0 .0 f , foo2 =1.0 f ;
dim3 block (BDIM X, BDIM Y) ;
dim3 gr id (GDIM X / block . x , GDIM Y / block . y ) ;
kerne l<<<gr id , block>>>(in1 , in2 , 256 , foo1 ∗ 2 , PI F , MIN( foo1 , foo2 ) ) ;

(a) CUDA C

#de f i n e MIN(a , b) ( ( a < b) ? a : b)
#de f i n e PI F 3 .14 f
. . .
s i z e t b lock [ 3 ] = {BDIM X, BDIM Y, 1} ;
s i z e t g r id [ 3 ] ={GDIM X / block . x , GDIM Y / block . y , 1} ;
c lSetKerne lArg ( cu2 c l Ke rn e l k e r n e l , 0 , s i z e o f ( cl mem ) , &in1 ) ;
c lSetKerne lArg ( cu2 c l Ke rn e l k e r n e l , 1 , s i z e o f ( cl mem ) , &in2 ) ;
c lSetKerne lArg ( cu2 c l Ke rn e l k e r n e l , 2 , s i z e o f ( i n t ) , &256);
c lSetKerne lArg ( cu2 c l Ke rn e l k e r n e l , 3 , s i z e o f ( f l o a t ) , &foo1 ∗ 2 ) ;
c lSetKerne lArg ( cu2 c l Ke rn e l k e r n e l , 4 , s i z e o f ( f l o a t ) , &PI F ) ;
c lSetKerne lArg ( cu2 c l Ke rn e l k e r n e l , 5 , s i z e o f ( f l o a t ) , &MIN) ;
loca lWorkSize [ 0 ] = block [ 0 ] ;
loca lWorkSize [ 1 ] = block [ 1 ] ;
loca lWorkSize [ 2 ] = block [ 2 ] ;
g lobalWorkSize [ 0 ] = gr id [ 0 ] ∗ l oca lWorkSize [ 0 ] ;
g lobalWorkSize [ 1 ] = gr id [ 1 ] ∗ l oca lWorkSize [ 1 ] ;
g lobalWorkSize [ 2 ] = gr id [ 2 ] ∗ l oca lWorkSize [ 2 ] ;
clEnqueueNDRangeKernel ( cu2cl CommandQueue , c u 2 c l Ke rn e l k e r n e l , 3 , NULL,

globalWorkSize , localWorkSize , 0 , NULL, NULL) ;

(b) Original CU2CL Prototype

#de f i n e MIN(a , b) ( ( a < b) ? a : b)
#de f i n e PI F 3 .14 f
. . .
s i z e t b lock [ 3 ] = {BDIM X, BDIM Y, 1} ;
s i z e t g r id [ 3 ] ={GDIM X / block . x , GDIM Y / block . y , 1} ;
c lSetKerne lArg ( cu2 c l Ke rn e l k e r n e l , 0 , s i z e o f ( cl mem ) , &in1 ) ;
c lSetKerne lArg ( cu2 c l Ke rn e l k e r n e l , 1 , s i z e o f ( cl mem ) , &in2 ) ;
i n t c u 2 c l K e r n e l k e r n e l a r g 2 = 256 ;
c lSetKerne lArg ( cu2 c l Ke rn e l k e r n e l , 2 , s i z e o f ( i n t ) , & cu 2 c l K e r n e l k e r n e l a r g 2 ) ;
f l o a t c u 2 c l K e r n e l k e r n e l a r g 3 = foo1 ∗ 2 ;
c lSetKerne lArg ( cu2 c l Ke rn e l k e r n e l , 2 , s i z e o f ( f l o a t ) , & cu 2 c l K e r n e l k e r n e l a r g 3 ) ;
f l o a t c u 2 c l K e r n e l k e r n e l a r g 4 = PI F ;
c lSetKerne lArg ( cu2 c l Ke rn e l k e r n e l , 2 , s i z e o f ( f l o a t ) , & cu 2 c l K e r n e l k e r n e l a r g 4 ) ;
f l o a t c u 2 c l K e r n e l k e r n e l a r g 5 = MIN;
c lSetKerne lArg ( cu2 c l Ke rn e l k e r n e l , 2 , s i z e o f ( f l o a t ) , & cu 2 c l K e r n e l k e r n e l a r g 5 ) ;
loca lWorkSize [ 0 ] = block [ 0 ] ;
. . .
g lobalWorkSize [ 2 ] = gr id [ 2 ] ∗ l oca lWorkSize [ 2 ] ;
clEnqueueNDRangeKernel ( cu2cl CommandQueue , c u 2 c l Ke rn e l k e r n e l , 3 , NULL,

globalWorkSize , localWorkSize , 0 , NULL, NULL) ;

(c) Current CU2CL Prototype

Figure 3.2: Comparison of Literal Parameter Handling
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the parenthetical portion of a function-like macro instantiation, which remains for future

work. This is demonstrated in Figure 3.2c by the lack of the parenthetical portion of the MIN

macro — (foo1, foo2) — during the assignment of the temporary variable for argument

5.

3.1.6 Scaffolding for Struct Alignment Attribute Handling

s t r u c t a l i g n (8 ) foo
{

i n t f 1 ;
f l o a t f 2 ;

}

(a) CUDA

s t r u c t a t t r i b u t e ( ( a l i gned ( 8 ) ) ) foo
{

i n t f 1 ;
f l o a t f 2 ;

}

(b) OpenCL

Figure 3.3: Comparison of CUDA/OpenCL Alignment Attributes

In either CUDA or OpenCL, when transferring memory that uses structural organization

more complicated than simple contiguous arrays between host and device, it often becomes

necessary to explicitly set the alignment of these structs, in order to ensure memory offsets

are interpreted identically on both host and device. Both languages provide an attribute

that can be applied either to entire struct declarations or the members themselves to request

the memory be aligned to a certain byte-width. However, there exists a slight difference

between the user-facing version of the attribute in both languages. OpenCL uses the stan-

dard attribute ((aligned(n ))) form whereas CUDA uses a macro wrapper for this

statement to allow the simpler align (n ) form. While a translator could simply copy the

simplifying macro from the CUDA headers, this would result in a departure from “canonical”

OpenCL. Therefore it would be preferable to properly translate the simplified CUDA form

into the expanded OpenCL form.

This appears to be a relatively simple task, simply extracting the n alignment expression

from the attribute and rewrapping it. However, as CU2CL operates on the AST generated
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by Clang, access to such preprocessor directives is limited, as discussed elsewhere. Fortu-

nately, as explicit alignments are integral to compilation, information from them is retained.

However, for alignments that are not dependant on a class or function template, only the

precise alignment in bits is preserved, not the full expression. As an interim, one could

simply extract this bit value, convert it to a byte-width, and use it in the translated output,

but this ignores situations in which this value is intended to be non-constant, such as when

the n expression is conditionally #defined. Therefore fully replicating the original expres-

sion, on the chance that it might contain such a macro is critical. The scaffold necessary to

locate such alignment attributes was developed, but implementation of the parsing behavior

required for extracting the relevant unpreprocessed expression for non-dependent alignments

remains as future work.

3.1.7 Re-enabling Timing

The original CU2CL prototypes did not contain explicit timing code, as performance was

measured for the entire time of translation. However, in efforts to more completely profile

the translation time taken by both the Clang driver and the CU2CL plugin, the original

authors created a branch that integrated timers for the CU2CL portion of the translation

time. These timers measure the time required to walk the AST, perform all rewrites, and

write output to disk. Thus, by also timing the duration of the entire translation process,

they were able to infer the relative portion taken by Clang to perform preprocessing, parsing,

and AST generation, based on the time CU2CL took to perform the actual translation. As

a minor addition, this fork has been integrated into the CU2CL trunk, to ensure it is readily

available to future users and developers. As this modification is largely a remnant of prior

development, it is included here only for completeness and documentation purposes.
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3.2 Mistranslations Repaired

Atypical use of source components is a potential pitfall that is almost certain to appear

during efforts to automate source-to-source translation. These atypical variations manage to

either fall through the cracks of translation entirely due to being unrecognised, or result in

malformed structures after translation due to being improperly handled. CUDA-to-OpenCL

translation is no different, in part because of the sheer number of ways of accomplishing

certain behaviors provided by CUDA. Consequently, as the initial CU2CL prototype made

an effort to achieve translation of only the most commonly-encountered structures, along with

providing a scaffold for implementation of less frequent variants, a number of corner cases

were identified in which CU2CL’s basic assumptions resulted in malformed or incomplete

translations. While there undoubtedly remain many more that have yet to be encountered,

handling has been repaired for a number of those encountered during profiling, particularly

in cases where a mistranslation resulted in a loss of information, potentially exacerbating

the difficulty of a manual repair.

3.2.1 Support for Device Buffers as Members of Host-side Struc-

tures

While OpenCL does not support C++ constructs on the device side, there are no formal con-

straints on using OpenCL seamlessly with host-side C++. As previously mentioned, CUDA

supports C++ on both host and device. As such several cases were observed where applica-

tion developers found it most prudent to create a host-side C++ class that contains one or

more device-side buffers as members. Additionally, the related technique in which host-side

C structs are used to wrap one or more device side buffers appeared in several applications

as well. The initial CU2CL prototype correctly supported conversion of cudaMalloc calls
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typede f s t r u c t bu f f
{

f l o a t ∗ d bu f f ;
i n t b u f f s i z e ;

} bu f f ;

bu f f f oo ;
. . .
cudaMalloc (

( void ∗∗)& foo . d buf f ,
f oo . b u f f s i z e

∗ s i z e o f ( f l o a t ) ) ;

(a) CUDA

typede f s t r u c t bu f f
{

f l o a t ∗ d bu f f ;
i n t b u f f s i z e ;

} bu f f ;

cl mem foo ;
. . .
∗( void ∗∗)& foo . d bu f f =

c lCr ea t eBu f f e r (
cu2c l Context ,

CL MEM READWRITE,
foo . b u f f s i z e

∗ s i z e o f ( f l o a t ) ,
NULL, NULL) ;

(b) Initial CU2CL Prototype

typede f s t r u c t bu f f
{

cl mem d bu f f ;
i n t b u f f s i z e ;

} bu f f ;

bu f f f oo ;
. . .
∗( void ∗∗)& foo . d bu f f =

c lCr ea t eBu f f e r (
cu2c l Context ,

CL MEM READWRITE,
foo . b u f f s i z e

∗ s i z e o f ( f l o a t ) ,
NULL, NULL) ;

(c) Current CU2CL Prototype

Figure 3.4: Device Buffers as Struct Members

that referred to a device buffer declared as a singleton (either as a program global variable,

a local scope variable, or a function parameter). However, when the buffer was a structure

member, it would incorrectly convert the struct variable’s declaration to a cl mem rather

than the internal struct member declaration. This behavior, as well as the corrected trans-

lation, are shown in Figure 3.4. CU2CL’s handling of the cudaMalloc call has been slightly

modified to appropriately handle these instances. However, no special protections have been

implemented to ensure that the wrapping structure is not itself a device buffer, which is not

currently supported by OpenCL. Implementing such checks remains for future work.

3.2.2 Handling of cudaMemcpyToSymbol

A minor mistranslation that is adjusted in the current version of CU2CL is the handling

of the cudaMemcpyToSymbol call, designed to copy a buffer from the host into constant

device memory. Originally, the call was simply removed, with no translation performed or

error emitted, breaking semantics of the output program and destroying evidence of the

untranslated call. Understandably, it would be preferable to fully support the translation

of constant memory from CUDA to OpenCL, but this would require substantial changes
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in other regions of the translator, not just this singular method call. These difficulties

are address further in Section 4.2.1. For the time being, the silent removal behavior has

been replaced with a “CU2CL Untranslated” error identifying that the original CUDA call

is emitted untranslated into the OpenCL code. This provides a translation-time warning

including the location of the call, an inline comment tagging the call to make it easily

searchable for manual repair, and finally the less-elegant fallback of an OpenCL compilation

error since the call will remain undefined without inclusion of the CUDA header files.

3.2.3 File Overwrites Due to Naming Convention

foo-cl 

 .cl

foo-cl 

 .cpp

+ "-cl.cl"

+ "-cl.cpp"

"foo"

foo.cu 

foo.cpp

foo-cl 

 .cpp

foo-cl 

 .cl- ".cpp"

- ".cu"

"foo"

+ "-cl.cpp"

+ "-cl.cl"

(a) Initial CU2CL Prototype

foo.cu 

foo.cpp

foo.cu

 -cl.cpp

foo.cu  

 -cl.cl

"foo.cu"

+ "-cl.cpp"

+ "-cl.cl"

foo.cpp 

 -cl.cpp

foo.cpp 

 -cl.cl

"foo.cpp"

+ "-cl.cpp"

+ "-cl.cl"

(b) Current CU2CL Prototype

Figure 3.5: OpenCL Output Naming Conventions

Another small, but potent issue that has been repaired is the naming convention CU2CL

uses for its translated output files. The original prototype would take the original CUDA

filename, “foo.cu” for example, strip off the extension, and append “-cl.cpp”, “-cl.h”, or

“-cl.cl” depending on whether the output was a primary host, included host, or device code

source file, resulting in the form “foo-cl.cpp”. However, a number of applications were no-

ticed that make use of multiple source files needing translation which share a filename, other

than the extension. (In particular, identically-named “.cu” and “.cpp” files were frequently

seen, which contain the device and host code, respectively. In these cases, the “.cpp” file

must be translated as it contains all CUDA API calls, such as device memory declarations



39

and initializations.) Therefore, as CU2CL would simply trim the file extension during con-

struction of the output files, these cases would result in a silent overwrite of the output files

from whichever source file was translated first, as shown by the overlapped red and grey files

in Figure 3.5a. To reliably ensure that no such overwrites could occur, the behavior of the

output writing routines was modified to no longer remove the original file extension, but still

confer the same new extension, as shown in Figure 3.5b. (For example “foo.cu” and “foo.cpp”

would result in output of the form “foo.cu-cl.cpp”, “foo.cu-cl.cl”, and “foo.cpp-cl.cpp”.) The

behavior of CU2CL’s automatic #include rewriting was also modified to reflect this change.

3.2.4 Handling of Device-Side Kernel Parameter Rewrites

g l o b a l void Kernel ( f l o a t ∗ foo1 ,
f l o a t 3 ∗ foo2 , f l o a t 3 ∗ foo3 ,
f l o a t 3 ∗ fooKernVar4 ) ;

(a) CUDA

k e r n e l void Kernel ( g l o b a l f l o a t ∗ foo1 ,
g l o b a l f l o a t 4 g l o b a l f l o a t 4

g l o b a l f l oa t4Var4 ) ;

(b) Initial CU2CL Prototype3

k e r n e l void Kernel ( g l o b a l f l o a t ∗ foo1 ,
g l o b a l f l o a t 4 ∗ foo2 , g l o b a l f l o a t 4 ∗ foo3 ,
g l o b a l f l o a t 4 ∗ fooKernVar4 ) ;

(c) Current CU2CL Prototype

Figure 3.6: Demonstration of Kernel Parameter Rewrites

When translating CUDA kernel declarations to OpenCL, a key facet of the process is the

translation of kernel parameter declarations. While in most cases this simply requires

prepending the global attribute to pointers to device buffers transferred from the host, a

select set of buffer types require an additional translation phase to convert the actual variable

3The loss of formatting and critical syntax here is intentional and matches the original prototype’s output
from the CUDA code in Figure 3.6a.
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type to one supported by OpenCL. One such example is the float3 vector type, which must

be converted to the float4 type in order to support OpenCL 1.0, as 3-member vector types

were not supported until OpenCL 1.1. The original translator prototype provided functional

code for performing both translation steps, which performed correctly in isolation. How-

ever, when both stages were performed together, there was a slight unforeseen consequence

to the type translation that occurred after the insertion of the global attribute, due to

the internal (intentional) behavior of the Clang Rewrite mechanism which does not modify

SourceLocations to account for inserted text. This resulted in malformed translation of the

variable’s type, as the source range modified was expanded by 9 characters, accounting for

the 8 characters of the global attribute as well as the addition of a space. In many cases

this caused errant overwrites of portions of the variable’s identifier, as well as instances of

deleting a portion of the next parameter declaration or the closing parenthesis of the function

parameter listing. Figures 3.6a and 3.6b show an example of a CUDA kernel declaration

with vector parameters, and demonstrate the original malformed OpenCL output. To avoid

this behavior, CU2CL’s generic wrapper method for type rewrites has been modified to in-

clude an adjustable offset, in order to manually adjust the size of source ranges to account

for expansions or contractions resulting from previous rewrites. This results in the correct

translation, demonstrated in Figure 3.6c.

3.2.5 Removal of Functions Lacking Explicitly-Declared Return

Type

The original CU2CL prototype largely assumed C-like CUDA source with very little use

of CUDA’s C++ support. As such, its handling of classes had notable deficiencies in some

areas. While OpenCL provides no real barriers to usage of C++ on the host-side, it explicitly

disallows any C++ code present in source files compiled for the device. As CU2CL creates



41

host- and device-specific files by selective editing and removal of code from duplicates of the

original source file, this presents the case of having to remove valid host-side C++ structures

from an output device source file. Originally, the prototype was built with the assumption

that all methods that might be removed would either have an explicit return type declaration

or function attributes, such as CUDA’s global attribute for kernels. However, this

ignored special C++ functions such as constructors and deconstructors, whose return type

is implicit. Thus, the translator was incapable of correctly removing these functions from

device code. CU2CL’s function removal method has been expanded to now correctly support

the removal of all functions without an explicit type declaration or attributes.

3.2.6 Inhibited Translation of Implicitly-Defined Functions

Another side effect of CUDA’s support for C++ is the potential presence of implicitly-defined

functions such as default copy and assignment operators for classes. As these are implicitly

defined, there exists no actual source code to be removed from the device output source file

for these functions. However, such implicitly defined functions are nonetheless present in

the AST generated by Clang. In the first prototype this created a situation in which the

translator encountered such an implicitly-defined host-side function on the AST, and thus

concluded it needed to be removed from device code, despite the fact that no explicit source

was present. Additionally, it would attempt to recurse into the function to examine it for

necessary rewrites before being emitted into the host-side source. The translator’s function

declaration handling code has been upgraded to explicitly detect such implicit functions in

the AST and skip over them, emitting a courtesy notification in the process. This prevents

errors caused by the translator’s attempts to remove or modify non-existent code.
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3.2.7 Host-side Arrays of Device Buffers

A number of sample applications made use of the common programming pratice of storing

device buffers that are associated with the same task in an array on the host side. This

practice is of particular utility to applications that perform multiple device iterations that

need to update input or output values between iterations in an asynchronous fashion, a

practice commonly known as multiple buffering. However, the possibility of a host-side

array of pointers to device memory was not adequately supported in the original CU2CL

prototype. It appropriately translated array references when translating a cudaMalloc call,

but when translating the original type of a statically-sized array to a cl mem pointer it lost

the array size declaration, resulting in only a single cl mem variable declaration. This results

in a number of possible post-translation compilation errors with little to no indication as to

the cause, without direct comparison to the original CUDA declarations and device memory

allocations. Thus, the mechanism that provides cl mem translation has been adapted to to

appropriately handle such statically-allocated host-side arrays of device pointers.

3.3 Bugs Quarantined

A major detriment to the utility of any tool to accomplish its stated purpose is the prevalence

of high-profile errors, such as segmentation faults, and other large-scale failures. The origi-

nal CU2CL prototype’s “survivability” in the presence of unanticipated structures in input

CUDA source was somewhat deficient. As shown in Figure 2.2 and Tables A.5, A.6, and A.7,

a large number of the sample applications failed to produce even a partial translation due to

a range of different failures, which often compounded on one another, as demonstrated by the

numerous applications with multiple related repairs. Although many of these cases represent

source structures that are unlikely to be automatically translated in the immediate future,
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or possibly ever if no mapping becomes available, each of these applications still contains

a significant quantity of translatable CUDA structures. Therefore, to eliminate complete

failure cases, the tool had to be upgraded to provide automated detection and avoidance

of the source structures causing failure. By detecting these structures, CU2CL can emit

intelligent notifications to the user in order to facilitate manual translation efforts. Further,

by avoiding affected regions of code, it is able to continue producing a best-effort translation

of the remaining source. Thus, by effectively quarantining these failure cases, the effective

utility of the tool has dramatically increased.

3.3.1 Template Handling

As the OpenCL standard does not support any form of device-side C++ code, supporting

translation of C++ templates when they are present in CUDA code — as allowed by the

CUDA standard — is difficult, particularly when they occur within device code. Many in-

stances were observed of template-dependent kernels being used to execute similar code on

varying data structures via template specializations. While it is theoretically plausible that

individual OpenCL kernels could be generated for each individual template specialization

used by a program, such support would require large-scale additions to the translator. These

would take the form of specialized code for handling detection of all possible kernel template

specializations, development of a standardized naming convention for generated specialized

kernels, as well as addition of a significant amount of host-side handling code for converting

templated kernel entry points into wrappers which correctly select the device side kernel

invocation required by the specialization. The OpenCL standard has advanced rapidly and

there have been demands for simplified C++ support more similar to CUDA, which has

resulted in improvements like OpenCL’s host-side C++ bindings [21]. Thus, it is also plau-

sible that a new OpenCL standard supporting device-side C++ might be released before
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adequate translation support can be added to CU2CL. As such, attempting translation of

templates has been deferred in favor of targeting more readily-reachable gains in effective

coverage.

However, the original translator often encountered inelegant translation failures in CUDA

codes that made use of templates, due in part to attempted multiple removals of individ-

ual specializations of CUDA kernels when rewriting host code. Specialized code has been

added to detect instances of template usage, both in host and device code, and to inhibit

any attempts at translation of individual specializations. The code eliminates these failures

and instead produces various error notifications through our standard error reporting mech-

anism. The exact notification returned is dependent on which CU2CL module encountered

the template-dependent structure. This allows the translator to continue to work on the

remainder of the CUDA application that is not dependent on template specialization, in-

cluding portions of kernel functions unrelated to the template type, producing a best-effort

partial translation. It also helps to direct programmer attention to the affected regions to

support their manual translation.

3.3.2 Launching a Kernel Function Pointer

As a fortunate side effect of how CUDA kernels and their invocations are handled by the nvcc

CUDA compiler, it is rather easy to make use of function pointers to these kernels directly

in invocations, with or without a dereference, using the standard execution configuration

syntax shown in Figures 3.7a and 3.7b. This practice was observed in only two of the

sample applications — transpose from the CUDA SDK and Fen Zi— and intended to make

use of varying accelerated kernels depending on runtime configuration parameters, much

like the use of traditional host-side function pointers. However, CU2CL performs kernel
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void (∗ kerne lPt r )()= &ke rne l ;
dim3 block (BDIM X, BDIM Y) ;
dim3 gr id (GDIM X / block . x , GDIM Y / block . y ) ;
(∗ kerne lPt r)<<<gr id , block>>>();

(a) Dereferenced CUDA Kernel Pointer Launch

void (∗ kerne lPt r )()= &ke rne l ;
dim3 block (BDIM X, BDIM Y) ;
dim3 gr id (GDIM X / block . x , GDIM Y / block . y ) ;
kerne lPtr<<<gr id , block>>>);

(b) Direct CUDA Kernel Pointer Launch

c l k e r n e l c u 2 c l K e r n e l k e r n e l = c lCreateKerne l ( . . . ) ;
. . .
void (∗ kerne lPt r )()= &ke rne l ;

s i z e t b lock [ 3 ] = {BDIM X, BDIM Y, 1} ;
s i z e t g r id [ 3 ] ={GDIM X / block . x , GDIM Y / block . y , 1} ;
l oca lWorkSize [ 0 ] = block [ 0 ] ;
loca lWorkSize [ 1 ] = block [ 1 ] ;
loca lWorkSize [ 2 ] = block [ 2 ] ;
g lobalWorkSize [ 0 ] = gr id [ 0 ] ∗ l oca lWorkSize [ 0 ] ;
g lobalWorkSize [ 1 ] = gr id [ 1 ] ∗ l oca lWorkSize [ 1 ] ;
g lobalWorkSize [ 2 ] = gr id [ 2 ] ∗ l oca lWorkSize [ 2 ] ;

clEnqueueNDRangeKernel ( cu2cl CommandQueue , cu2 c l Ke rn e l k e rn e lP t r , 3 , NULL,
globalWorkSize , localWorkSize , 0 , NULL, NULL) ;

(c) Incorrect CU2CL Kernel Pointer Translation

c l k e r n e l c u 2 c l K e r n e l k e r n e l = c lCreateKerne l ( . . . ) ;
. . .
c l k e r n e l ke rne lPt r= cu2 c l K e r n e l k e r n e l ;

s i z e t b lock [ 3 ] = {BDIM X, BDIM Y, 1} ;
s i z e t g r id [ 3 ] ={GDIM X / block . x , GDIM Y / block . y , 1} ;
l oca lWorkSize [ 0 ] = block [ 0 ] ;
loca lWorkSize [ 1 ] = block [ 1 ] ;
loca lWorkSize [ 2 ] = block [ 2 ] ;
g lobalWorkSize [ 0 ] = gr id [ 0 ] ∗ l oca lWorkSize [ 0 ] ;
g lobalWorkSize [ 1 ] = gr id [ 1 ] ∗ l oca lWorkSize [ 1 ] ;
g lobalWorkSize [ 2 ] = gr id [ 2 ] ∗ l oca lWorkSize [ 2 ] ;

clEnqueueNDRangeKernel ( cu2cl CommandQueue , kerne lPtr , 3 , NULL,
globalWorkSize , localWorkSize , 0 , NULL, NULL) ;

(d) Ideal CU2CL Kernel Pointer Translation

Figure 3.7: Kernel Function Pointer Launches

translation in two separate stages. The first translates the device-side kernel declaration

and definition, and creates a cl kernel object based on prefixing cu2cl Kernel to the

function’s name. The second translates the host-side kernel invocation by adding an identical
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prefix to the name of the invoked kernel. An issue arose when this prefix was applied to

a direct invocation of a kernel function pointer, resulting in a reference to a non-existent

cl kernel object, as demonstrated by Figure 3.7c. This results in inelegant post-translation

compilation failure without readily observable cause, as the translated kernel call is otherwise

correctly formatted. OpenCL would theoretically support the emulation of these function

pointers, via conversion to the cl kernel opaque type, in a form similar to Figure 3.7d.

Upgrading the translator to handle detection or conversion of kernel pointer declarations

remains as future work. However, as a precursor to adding this functionality, CU2CL’s

handling of kernel invocations has been upgraded to include explicit detection of direct

invocation of kernel function pointers. As CU2CL does not yet provide a robust translation

of these pointers, this explicit detection code skips translation of these invocations, and emits

a standardized error to direct manual post-translation code repair efforts.

3.3.3 Failure When Main Method is not Present

It is well known that standard OpenCL requires extensive explicit initialization code for

setting up portions of an execution environment like creating a device context and com-

mand queue and compiling device kernels. Fortunately, assuming one wishes to emulate

CUDA’s automatic device initialization code, much of this initialization code, referred to as

boilerplate, is almost completely identical between programs. Therefore the original CU2CL

prototype provided automatic insertion of this code, as well as associated cleanup OpenCL

calls into the main method of the translated application. However, this was based on the

assumption of rather simple single-source-file CUDA programs, when in practice applications

frequently make use of many source files, often mixing between CUDA, C++, C, and occa-

sionally other languages such as FORTRAN within a single application. While the original

work noted the need for explicit support of separate compilation [26, 25], the assumptions
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inherent in the original prototype prevented even partial translation of source files that did

not bear a main method. Due to a lack of verification that a main method was present when

attempting to insert boilerplate, the prototype would always encounter a segmentation fault

when attempting to translate a file that did not contain a main method.

While the newest version of the translator still does not provide the hooks necessary for full

support of separate compilation, the assumption underlying these segmentation faults was

addressed by adding an explicit check for the existence of a main method. This check then

inserts the required boilerplate as usual if such a method is found, or emits a notification

to the user via the standardized error reporting mechanism if no such method is found.

Regardless of whether a method is found, translation of the remainder of the application is

preserved. Thus, even if the necessary boilerplate for a non-main-bearing source file must

be developed and added by hand, the newest version of CU2CL survives to provide a partial

translation. This still significantly reduces the amount of hand translation required compared

to the first prototype. However, the avoidance mechanism could be further expanded to

automatically dump suggested boilerplate into a comment region at the beginning of the

source file, to further aid manual efforts as an interim effort until full support is added.

3.3.4 Handling of Separately Declared and Defined Kernels

A rather significant issue that is removed in the current CU2CL release was an inherent

assumption that a CUDA kernel would solely have a definition, not a forward declaration

as well as a definition. CU2CL detects CUDA kernel declarations/definitions based on

presence of the global or device attribute in order to replace them with the OpenCL

equivalents. This resulted in a number of cases in which the translator would attempt to

remove all code between declaration and definition when rewriting the host-side OpenCL
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by basing a removal off the SourceLocation of the wrong attribute. Were this to occur

with source structures early in the source file, this behavior cascaded into additional further

obfuscated errors due to the resulting extreme malformation of the partially-rewritten host

code. However, a method for checking if both a declaration and definition were present,

based on the presence of a duplicate of either of these attributes was sufficient to eliminate

this errant behavior and prevent the translation failure. While the kernel definition is now

appropriately removed from host-side OpenCL output, removal of the corresponding forward

declaration is yet to be implemented.

3.3.5 Handling for #defined Functions

During investigation of several applications that make use of OpenGL interoperability, an ad-

ditional failure was discovered when the translator attempted to recurse into certain OpenGL

function calls. This was due to the translator being unable to identify a direct callee for the

expression. An explicit catch was inserted to eliminate segmentation faults associated with

this situation by inhibiting translation and emitting a notification, much like the other fail-

ures in this section. However, beyond identifying a chain of typedef and #define statements

that collectively assemble these functions’ declarations, a more formal understanding of the

underlying cause and need/potential for translation has yet to be constructed.



Chapter 4

Characterization of Translator

Limitations

Information gained from profiling the sample applications both before and after enhance-

ment of the translator was used to develop a characterization of structures that pose current

and future limitations to translation. This characterization is provided to help prioritize de-

velopment and reason about the theoretical translatability of difficult structures. Table 4.1

demonstrates the percentage of applications from both the CUDA SDK samples and Ro-

dinia samples that make use of a number of these structures. By aggregating information

on untranslated structures across these applications a more adequate estimate of their rel-

ative popularity in the wider population of CUDA applications was developed. Further, by

studying multiple disjoint instances of these CUDA structures, more complete characteri-

zations of potential difficulties in realizing their translation were developed. Based on this

characterization, each of the identified issues that remain to be translated have been further

classified based on their potential for translation. Alongside the theoretical discussion of

identified issues, possible avenues to realizing their partial or complete translation are pre-

49
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CUDA SDK Rodinia
Challenge Frequency (%) Frequency (%)

Separate Compilation 54.4 29.4
CUDA Libraries 10.1 0.0
Kernel Templates 21.5 0.0
cudaSetDevice 54.4 29.4
Textures 27.8 23.5
Graphics Interoperability 24.1 11.8
CUDA Driver API 8.9 5.9
Literal Parameters 19.0 17.6
Aligned Types 6.3 5.9
Constant Memory 17.7 29.4
Shared Memory 46.8 70.6

Table 4.1: Frequency of Translation Challenges in Sample Applications

sented. A portion of this work is presented in [36]. Exploring the issues presented in this

chapter further and implementing automatic translations for those that are possible provide

ample opportunities for future work.

4.1 Partially Supported 1-to-1 Mappings

4.1.1 Device Buffer cl mem Propagation

As mentioned in previous works and earlier sections in this thesis, when translating buffers of

on-device memory from CUDA to OpenCL, one must translate the buffer’s standard pointer

type from CUDA into OpenCL’s opaque cl mem type. This type must be used in translated

memory allocations, memory transfers, and kernel invocations, which often reside in separate

scopes. Currently, CU2CL supports translation of the variable’s nearest declaration that

shares the scope of the translated cudaMalloc call, either as a global variable, function

parameter, or local variable. Further, during conversion of kernel functions, it can infer that
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any pointer argument to a kernel function must be translated to an OpenCL cl mem type

within the host-side invocation. However, when these two translated structures do not occur

within the same scope, and the device variable is instead passed as a parameter to one or

more additional function calls, it is likely that the cl mem type rewrite will require additional

propagation throughout each of these additional function calls, as noted in [27].

As CU2CL currently provides rather localized translation for device buffers — often requiring

post-translation manual intervention to perform the necessary modifications to accessory

functions in the call stack — it is critical to begin devising ways of reducing or removing the

necessity of manual intervention in favor of more complete automation. One such method

might be to simply wrap all outbound and inbound cl mem references with an explicit cast

to the original type before they are propagated up and down the stack. This method would

be a relatively “quick fix”. However it could cause potentially grievous issues if accessory

methods attempt to naively access the cast cl mem pointers as if they were pointers to

host-side buffers, as the change in actual type would not be apparent to those methods.

Fortunately, dereferencing of a device buffer that is not allocated on the host and page-

locked — i.e. allocated with a traditional cudaMalloc and not one of the host-side variants

— is also invalid in CUDA, so the prevalence of such attempts to access device memory from

the host should be reduced.

Another approach would be to integrate within CU2CL a form of control flow analysis to

deduce functions requiring rewrites of parameters to the cl mem type. This would obviate

the noted problems with the explicit cast technique, ensuring translation propagation within

explicitly-included source files. However, a potential issue could still be reached within the

case of separate compilation as necessary changes for an already-translated portion of the

source may not be immediately visible to the translator while work is being performed on

other source files. As separate compilation necessitates the use of header files that are shared
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between separately compiled source files, a potential solution might be to add functionality

that searches for partially-translated header files from previous translation passes.By exam-

ining these partially-translated header files CU2CL could infer a list of translations from

other sources that must be propagated into the current source file undergoing translation.

However, this does not address the possibility of cyclical dependencies between source files

that share a header, requiring additional propagation of rewrites from a later-translated

file into an earlier-translated one. This potential may require that the translator perform

analysis on all program source files simultaneously, or perform a possibly-variable number

of translation passes.

4.2 Unsupported 1-to-1 Mappings

4.2.1 Constant Memory

As noted in Section 3.2.2, the CU2CL translator is yet to support the translation of constant

memory regions, despite there being an effective 1-to-1 mapping of functional usage within

the device kernels. The current lack of support is largely due to variations on the scope for

declarations and initializations of such memory regions. In CUDA, constant variables

declared at program scope can be initialized via cudaMemcpyToSymbol as long as declaration

and initialization reside in the same source file [28]. However, in OpenCL constantmemory

can either have device program scope, or device function scope. The program scope variant

cannot easily be set at runtime via an analog of cudaMemcpyToSymbol — it would require

detailed modification of the string containing the OpenCL kernel source code at runtime

before invoking clCreateProgramWithSource — but the function scope variant can, as to

the host it appears as a cl mem type, just like any other device side buffer. However, this
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comes with the restriction of needing to be explicitly defined as a parameter to kernels

that reference the constant memory region. Thus, in order to effect a full translation of

constant memory, the translator must both convert the host-side reference to a cl mem, as

well as dynamically insert the reference into both the host- and device-side parameter list

for kernels that reference the region. In order to avoid over-zealously appending all declared

constant memory to parameter lists for all kernels, the translator will need to be extended

to actively identify access to variables by a kernel that utilize the constant address space.

4.2.2 Shared Memory

// host code
dim3 block (BDIM X, BDIM Y) ;
dim3 gr id (GDIM X / block . x , GDIM Y / block . y ) ;
s i z e t s mem = GDIM X ∗ GDIM Y ∗ s i z e o f ( f l o a t ) ;
kerne l<<<gr id , block , s mem>>>(. . .) ;

// dev i c e code
g l o b a l void ke rne l ( . . . ) {

extern s h a r e d f l o a t foo [ ] ;
. . . }

(a) CUDA C

// host code
s i z e t [ 3 ] g r oup s i z e = {BDIM X, BDIM Y, 1}
s i z e t [ 3 ] r a n g e s i z e = {GDIM X, GDIM Y, 1}
s i z e t s mem = GDIM X ∗ GDIM Y ∗ s i z e o f ( f l o a t ) ;
c lSetKerne lArg ( cu2 c l Ke rn e l k e r n e l , 0 , s mem , NULL) ;
clEnqueueNDRangeKernel ( . . . ) ;

// dev i c e code
k e r n e l void ke rne l ( l o c a l f l o a t ∗ cu2cl SharedMem , . . . ) {

l o c a l f l o a t ∗ f oo = cu2cl SharedMem ;
. . . }

(b) OpenCL

Figure 4.1: Dynamically allocated shared memory

There is also an effective mapping of CUDA’s shared memory space onto OpenCL’s

local memory space. The initial CU2CL prototype already handled conversion of kernel

shared memory declarations to local memory declarations, which provides support
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for statically allocated regions of this type. However, there is a distinct difference between

the semantics of dynamically allocating external shared memory for a kernel at runtime. In

CUDA, such memory is declared to be external with the addition of the extern keyword, and

the total memory allocated for all such external shared memory declarations within a given

kernel is specified as an additional argument to the kernel launch execution configuration.

Figure 4.1a provides an example of this behavior, with ”s mem” being used to declared the

size of the shared region on the host, and ”foo” being a pointer into this region. Therefore

if multiple dynamically allocated shared variables are used, they all point to the same

buffer and index offsets must be manually managed by the programmer.

In contrast, OpenCL’s dynamically allocated local variables are specified as additional

formal parameters to the kernel, and the amount of space allocated for each such variable is

specified by a separate call to clSetKernelArg. Thus, not only must the size of the allocation

be extracted from the CUDA execution configuration statement, but additional local

parameters must be added to the OpenCL kernel at translation time. Further, a mechanism

must be added to ensure that offset indices referring to the memory region remain valid

after translation. The direct approach is to emulate CUDA’s behavior by allocating a single

shared local memory region, and converting all external declarations to initializations

that point to this buffer. Figure 4.1b demonstrates the OpenCL this translation mechanism

would produce.

4.2.3 Texture to Image Translation

Translation of CUDA textures and surfaces to OpenCL cl images is another high-frequency

translation that is yet to be supported. Both standards provide for read and write access

to the device texture memory, organized in various multi-dimensional configurations. How-
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ever, while the two types are conceptually similar, the semantics for utilizing them have a

number of notable differences that complicate the translation process. For example, when

mapping onto OpenCL 1.0, there is no direct equivalent for CUDA’s 1-dimensional texture

type, so a translator would have to provide a mechanism for translating the one-dimensional

indices used by CUDA into a two-dimensional form for use with an OpenCL cl image. Fur-

ther, CUDA provides both scalar and vector access to texture memory, whereas OpenCL

exclusively provides four-member vector access. Additionally, texture access with OpenCL

requires use of both a cl image and a cl sampler specifying the addressing, filter, and nor-

malized coordinate settings used to access the image, whereas CUDA includes these settings

directly in the texture reference type. Due largely to the number of variations on texture ac-

cess, much work remains to fully conceptualize the additions necessary to provide automatic

translation to OpenCL.

4.3 Functionally Emulatable Mappings

As mentioned in other sections, there exist a number of situations in which CUDA and

OpenCL both provide equivalent functionality, but utilize different semantics for achieving

it. In most cases this is simply a matter of converting a single CUDA function call or im-

plicit behavior into a collection of various OpenCL structures and API calls. However, two

situations were identified that require a more nuanced translation effort to ensure functional

correctness once converted to OpenCL . The first of these is an emulation of CUDA’s high

level mechanism for invoking pointers to kernel functions directly via the execution configu-

ration syntax. This requires intelligent identification of such invoked pointers and conversion

to the more verbose OpenCL kernel invocation semantics. The second such case of potential

emulation addresses the potential for codes to rely on the implicit synchronization guaran-
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teed within warps by virtue of current NVIDIA hardware platforms. Guaranteeing functional

portability of codes that make use of this behavior is particularly difficult, as the underlying

OpenCL devices may or may not provide similar implicit synchronization behavior.

4.3.1 Kernel Function Pointer Invocation

As addressed in Section 3.3.2, CUDA provides a mechanism by which a kernel function

pointer may be directly invoked from the host without a dereference, as if the pointer were

itself an actual device kernel. Fortunately, use of this feature even within CUDA’s own

samples is not widespread, only observed within the SDK sample transpose, and the Fen

Zi application. While OpenCL provides no similar method of kernel invocation to that of

CUDA’s high-level execution configuration syntax, this does not inhibit its potential ability

to emulate function pointers. This is due to the fact that by default, when translating

a CUDA kernel invocation using the execution configuration syntax, the translator must

necessarily convert the kernel function to OpenCL’s cl kernel type, in conjunction with

other additions in the boilerplate region to force compilation of the kernel and initialization of

the corresponding cl kernel object. Fortunately, this cl kernel is itself an opaque pointer

type. Therefore, it is possible that a translator could actively convert CUDA function pointer

variables into additional cl kernel variables, that would then point to the appropriate

OpenCL kernels, and be seamlessly used in kernel invocations, just like their non-pointer-

based analogues. Figure 3.7d gave an example of how this translation would appear in

OpenCL. Addition of this functionality would require a modification of CU2CL’s host-side

translation code to actively search for kernel pointer declaration and assignment expressions,

in order to drive conversion of the pointer types to cl kernel variables.
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4.3.2 Warp-level Synchronization

. . .
//work−group s i z e 32

l o c a l r v a l s [ 3 2 ] ;
r v a l s [ t i d & 31 ] = some var [ t i d ] ;
b a r r i e r (CLK LOCALMEM FENCE

| CLKGLOBALMEMFENCE) ;
i f ( ( t i d & 31)< 16)

r v a l s [ t i d & 31 ] +=
r v a l s [ ( t i d + 16) & 3 1 ] ;

// imp l i c i t warp sync
i f ( ( t i d & 31)< 8)

r v a l s [ t i d & 31 ] +=
r v a l s [ ( t i d + 8) & 3 1 ] ;

// imp l i c i t warp sync
i f ( ( t i d & 31)< 4)

r v a l s [ t i d & 31 ] +=
r v a l s [ ( t i d + 4) & 3 1 ] ;

// imp l i c i t warp sync
i f ( ( t i d & 31)< 2)

r v a l s [ t i d & 31 ] +=
r v a l s [ ( t i d + 2) & 3 1 ] ;

// imp l i c i t warp sync
i f ( ( t i d & 31) == 0)

r v a l s [ 0 ] += r v a l s [ 1 ] ;

(a) OpenCL kernel reduction with
warp-level synchronization

. . .
//work−group s i z e 32

l o c a l r v a l s [ 3 2 ] ;
r v a l s [ t i d & 31 ] = some var [ t i d ] ;
b a r r i e r (CLK LOCALMEM FENCE

| CLKGLOBALMEMFENCE) ;
i f ( ( t i d & 31)< 16)

r v a l s [ t i d & 31 ] +=
r v a l s [ ( t i d + 16) & 3 1 ] ;

b a r r i e r (CLK LOCALMEM FENCE
| CLKGLOBALMEMFENCE) ;

i f ( ( t i d & 31)< 8)
r v a l s [ t i d & 31 ] +=

r v a l s [ ( t i d + 8) & 3 1 ] ;
b a r r i e r (CLK LOCALMEM FENCE

| CLKGLOBALMEMFENCE) ;
i f ( ( t i d & 31)< 4)

r v a l s [ t i d & 31 ] +=
r v a l s [ ( t i d + 4) & 3 1 ] ;

b a r r i e r (CLK LOCALMEM FENCE
| CLKGLOBALMEMFENCE) ;

i f ( ( t i d & 31)< 2)
r v a l s [ t i d & 31 ] +=

r v a l s [ ( t i d + 2) & 3 1 ] ;
b a r r i e r (CLK LOCALMEM FENCE

| CLKGLOBALMEMFENCE) ;
i f ( ( t i d & 31) == 0)

r v a l s [ 0 ] += r v a l s [ 1 ] ;
b a r r i e r (CLK LOCALMEM FENCE

| CLKGLOBALMEMFENCE) ;

(b) OpenCL kernel reduction with ex-
plicit synchronization

Figure 4.2: Warp-level synchronization in reduce

Implicit synchronization is one area in which porting code targeted specifically towards

NVIDIA GPUs to a myriad of OpenCL devices can potentially result in functionally incorrect

results. By virtue of current NVIDIA device architectures, CUDA programs can rely on

warps of 32 sequentially-indexed threads being executed in complete lock-step, obviating the

need for explicit synchronizations between expressions in certain algorithms. In contrast,

while these NVIDIA devices retain a warp size of 32 when executing OpenCL kernels, AMD

GPUs have an effective warp size, or wavefront of 64, CPUs may have an effective warp size

of either 1 or their SIMD width, and other devices may similarly provide all or none of this

implicit synchronization behavior. Therefore, when translated to OpenCL, CUDA codes that
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rely on this behavior may show correct execution profiles on NVIDIA devices, and in lucky

cases on AMD GPUs, but will almost certainly result in nondeterministic loss of correctness

when executed on CPUs due to the relaxation of inherent underlying synchronization. For

example, a typical OpenCL reduce operation in a work-group of 32 threads is demonstrated

in Figure 4.2. The code in Figure 4.2a lacks explicit synchronization in favor of warp-level

synchronization, and will only guarantee a correct result on hardware platforms with a

warp size of at least 32. However, the code in Figure 4.2b includes the necessary explicit

synchronization to reach a correct answer on any OpenCL device. This directly inhibits the

goal of functional correctness and is exacerbated by a translator’s relative inability to detect

usage of such synchronization at the source level due to the lack of an explicit synchronization

syntax. However, there have been efforts to automatically analyze code for the possible use

of warp-level synchronization intrinsics in the context of GPU to CPU translation using

dependence analysis [18]. Thus, it is possible that a similar functionality could be integrated

into the tool to either automatically augment OpenCL device code with additional explicit

synchronization, or at the very least emit a warning to the user that implicit synchronization

has likely been detected. Thus, manual efforts could be more readily directed to handle the

loss of correctness likely observed when such code was executed on a non-NVIDIA platform.

4.3.3 OpenGL Interoperability

Both CUDA and OpenCL provide conceptually-similar mechanisms for interoperating be-

tween the compute context and OpenGL graphical context. This allows the sharing of buffers

between contexts such that in situ visualization may occur between computation steps, with-

out the need for additional GPUs or transfer of buffer data back to the host. While there

exist several 1-to-1 mappings between API calls, such as cudaGraphicsMap/UnmapResources

to clEnqueueAcquire/ReleaseGLObjects, other portions of interoperability modules have
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more complex mappings, such as the previously mentioned texture to image translation.

Work remains to conceptualize a complete functionally-equivalent mapping of this portion

of the specifications and integrate it into the translator prototype, but has been deferred in

favor of addressing other more critical translation issues.

4.4 Device Language Expressivity Limitations

A key restriction of source translation efforts is the difficulty in attempting to map a more

expressive language onto another with reduced expressivity. In the case of CUDA-to-OpenCL

translation, this reduction of expressivity takes a number of forms, some of which may be

more readily resolved than others. The first of these concerns the core device language

specifications of the two APIs, as CUDA’s nearly complete support for on-device C++

results in a number of potential source structures that cannot be concisely represented in

OpenCL’s more limited variant of C99. Additionally, CUDA provides functions that give

access to special purpose features of their hardware, which are not present in the OpenCL

standard due to its intention to support devices from a myriad of vendors.

4.4.1 Mapping C++ to C

One of the main areas in which OpenCL’s device language provides less expressivity than

CUDA’s is the disparity between CUDA supporting essentially the full C++ standard on

device, whereas OpenCL only supports a variant of C99. Thus, there are a number of C++

programming practices and constructs that have no immediately-realizable representation

in OpenCL’s device language. One such feature that has already been given substantial

attention in Section 3.3.1 is the use of templates. These could potentially be emulated via
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extensive additions designed to generate all necessary kernel specializations in C. Another

such issue is support for classes. While these see significantly less usage on-device, they

remain a potential roadblock. In the majority of cases they could be largely replaced by

C structs, however a method for automatically realizing this translation has not yet been

devised, and will likely require a CFront-like approach of “compiling” C++ down to C.

4.4.2 Threadfence and Other Intrinsic Device Functions

Additionally, CUDA provides access to several on-device operations for which OpenCL pro-

vides no direct or emulatable equivalence. One such operation is threadfence(), which

waits until all outstanding global or shared memory accesses by the calling thread are

visible to threads in the same block for shared memory accesses or threads in the same

device for global accesses [28]. Similarly, the system() variant of threadfence that sup-

ports coherency with page-locked host memory also has no equivalent mapping. However,

threadfence block() does accurately map onto OpenCL’s mem fence() device function

with both CLK LOCAL MEM FENCE and CLK GLOBAL MEM FENCE flags set. The syncthreads()

command also maps to OpenCL’s barrier() operation with both CLK LOCAL MEM FENCE and

CLK GLOBAL MEM FENCE flags. However, there is no mapping for CUDA’s count(), and(),

and or() variants of synchthreads. Additionally, CUDA provides support for the “Warp

Vote Functions” all(), any(), and ballot() that are not represented in OpenCL.

There remain several other functions in this category, added as additional functionality be-

came available on newer devices, a trend that is likely to continue. In these cases, until the

function can be formally translated in an OpenCL specification, the most viable option is to

emit a notification to the user, to advise them of the limitation so that they might manually

refactor their algorithm to remove reliance on the unsupported function.
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4.5 Inherited Limitations

During the course of profiling, it became apparent that complete source-level CUDA-to-

OpenCL translation was significantly inhibited by CUDA’s basis as a C++ variant. By

its construction, C and its descendant languages, such as CUDA, allow for a number of

programmatic techniques and code structures that lie largely outside the reach of source

translation. Three such structures have been identified that reduce CU2CL’s effective code

coverage in the sample applications. They are the use of preprocessor macros, multiple source

file applications that are separately compiled and linked, and the integration of non-source

precompiled modules.

4.5.1 Preprocessor Macros

Source translation of heavily-preprocessed languages is known to be a difficult problem [37].

As CUDA is effectively an extension to C++, any preprocessor construct that is valid in

C++ could be encountered in a CUDA program. Should the translator implement its own

preprocessor and parser, it is possible that it might be able to handle these directives in

stride, without any significant limitations on its effective reach. More frequently, source

translators make use of an extant parser, likely from a modular compiler, as has been done

with CU2CL [26, 25]. Many translators perform their transformations by walking the AST

and directly modifying the AST, from which output source code is then regenerated by

walking the modified tree. However, CU2CL instead uses the original AST assembled by

Clang merely as a guide for identifying constructs demanding translation that are then

rewritten by modification of the original source pointed to by the various AST nodes. In both

cases, this raises a problem when dealing with preprocessor macros of all varieties, as they

are inadequately represented on the AST and translation occurs long after preprocessing.
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CU2CL is able to infer from data fields on the AST nodes whether a given SourceLocation

represents a macro, but there are limited tools for performing accurate string manipulations

on located macros without manually implementing portions of parsing and preprocessing

behavior. Extending Clang/LLVM to provide more information in these nodes would simplify

rewriting of function-like macros and #defined constants. However, preprocessing causes

an additional issue with translation in the presence of conditional compilation macros. As

these are evaluated at preprocessing time, the compiler/translator only ever even “sees” one

version of the program, with possibly widely varying function signatures, global state, and

execution behavior between multiple versions. Currently, in order to achieve full translation

of such a source file, one would have to manually perform multiple translation passes with

varying combinations of conditional compilation arguments, in order to reach all possible

code paths, and then manually merge the translated output files from all passes. A more

automatic solution to this problem has not been fully constructed, but might take the form

of generating multiple ASTs with varying conditional compilation definitions. It is possible

that the Clang preprocessor could also be modified to allow the simultaneous parsing of

incompatible conditional branches, similar to the method used in [17].

4.5.2 Separate Compilation

The separate compilation and linking stages of building applications in C and its descendants

introduce an additional layer of complexity when translating multiple-file applications. In the

case of CUDA-to-OpenCL translation, this is only exacerbated by the presence of a largely-

implicit global state in CUDA applications, which must be made completely explicit within

OpenCL applications. This implicit global state consists of the device context, compiled

kernels, device queues, and other associated CUDA mechanisms that function behind the

scenes to provide a unified runtime state across application components, which may reside
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in separate source files. In contrast, as mentioned elsewhere, OpenCL requires each of

these components to be explicitly managed, and thus such management must be moved into

application source. However, during translation this creates the complication of requiring

access and modification of the explicit global state by code components that quite likely

reside in separate source files, and are translated as distinct entities. Thus, complete source

translation must provide a mechanism for ensuring cross-file global state modifications are

accurately integrated in the output application, while preserving the separate compilation

and linking semantics of the original CUDA. As mentioned in Section 3.3.3, a potentially

viable solution would be to make use of the header files that are already shared between

linked binary modules. This would require a mechanism for supporting the inspection of any

partially-translated OpenCL equivalents created from a previous translation of another file,

and potentially multiple translation passes or simultaneous analysis of all program source

files.

4.5.3 Precompiled Modules

One area in which a source-level translation effort is necessarily inhibited is in the transla-

tion of applications that make use of non-source components. This commonly takes the form

of precompiled libraries, such as the many developed to provide high-performance CUDA

implementations of commonly used operations. These modules see common use due to the

convenience provided to programmers by removing the need to hand-develop and tune ap-

plication components, the desire to allow programmers to make use of such libraries without

the need to release proprietary source code, and the libraries’ high performance. Therefore,

a source translator must be mindful of the possibility of encountering API calls for such

libraries. However, without access to library source, only library headers will be translated,

and the output OpenCL will not be able to utilize the CUDA library. Further, portions of
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CUDA applications can be implemented in NVIDIA’s PTX IR, which cannot currently be

converted to high-level OpenCL, but must be accounted for nonetheless.

Fortunately, there remain possible approaches to providing functionally portable translation

in many cases despite the prevalence of these non-source components. For example, in the

case of closed-source libraries for accelerated device code, there is a growing drive to provide

similar or equivalent OpenCL libraries. Thus, for select cases, it is plausible that a source

translator could recognize closed-source CUDA library calls for which there exist OpenCL

equivalents, and translate the application to instead make use of the OpenCL libraries.

Further, for the case of translating codes that make use of PTX, translation might take a

hybrid approach. Translation of high-level CUDA source could be performed by a tool like

CU2CL, with PTX translation to other architectures performed separately, via tools like

Ocelot [9, 10] and Caracal [11].

4.6 Engineering Limitations

Many limitations of the current CU2CL translator prototype do not represent limitations

of the CUDA and OpenCL languages themselves, nor do they represent limitations of auto-

matic translation approaches. Rather, they represent situations where there is a well-defined

mapping of CUDA to OpenCL and the translation has simply not yet been implemented.

Each of these has already received some discussion within Chapter 3, and they are briefly

presented here so that this chapter can serve as a summary of opportunities for future work

on the CU2CL translator. Notable features of the translator that need implementation or

modification include:

• Support for explicit rounding modes of all builtin kernel math functions (Section 3.1.3)
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• Emulation of the CUDA Runtime’s background context saving in the cu2cl setDevice

handler for cudaSetDevice (Section 3.1.4)

• Compilation of OpenCL kernels for the new device and context in the cu2cl setDevice

handler for cudaSetDevice (Section 3.1.4)

• Support for checking if an OpenCL context has been previously released due to trans-

lation of a cudaThreadExit (Section 3.1.4)

• Support for parsing and rewriting the parenthetical portion of function-like preproces-

sor macros (Section 3.1.5)

• Complete the scaffold for handling of CUDA’s align attribute (Section 3.1.6)

• Support for removal of forward declarations of CUDA kernels from OpenCL host code

(Section 3.3.4)



Chapter 5

Conclusion

Accelerator-based heterogeneous computing has seen significant growth and interest in re-

cent years, and there exist a number of approaches to providing programmatic access to

accelerator devices. Some approaches take the form of a proprietary framework, like CUDA,

providing ease of development on a single family of devices, whereas others take a more open

approach, attempting to provide a single interface for programming a multitude of underly-

ing device families, like OpenCL. When developing an accelerated application, performance

and programmability are key considerations that often sway the decision of which accelera-

tor framework is chosen. However, portability is also a significant consideration, to provide

a wider user-base for accelerated software and to reduce the development cost required to

access alternative or future devices that may afford increased performance. An expansive

range of applications have been developed in CUDA that are currently vendor-locked to

NVIDIA platforms barring time-intensive manual translation to another framework, such as

OpenCL. Therefore, there is a demand for automated translation from CUDA to OpenCL.

This thesis consists primarily of work to support automatic translation efforts, in particular

the CU2CL prototype CUDA-to-OpenCL source-to-source translator.
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Chapter 2 of this thesis discussed efforts to provide quantitative measurement of several

facets of the CU2CL prototype translator. This work was performed in the context of a large

population of sample applications, consisting of 79 samples from the CUDA SDK [30], 17

samples from the Rodinia benchmark suite [5, 6], and three large applications, GEM [2, 14],

Fen Zi [3, 15, 16], and IZ PS [44]. Two notable conclusions were reached through this

analysis of the translator prototype. First, automatic translation dramatically reduces the

cost of porting an application from CUDA to OpenCL. Translations that used to take days,

weeks, or months when performed by hand can now be achieved in mere seconds or less,

even for relatively large applications. The second major conclusion coming from analysis

of the translator prototype is that when executing on the same NVIDIA platform with a

modern driver and CUDA runtime, developers pay no major runtime performance penalty

for porting CUDA applications to OpenCL.

Chapter 3 provided a detailed discussion of specific changes made to the translator that

underlie the dramatic improvement in its reliability and utility. By actively identifying

syntax elements from the sample population that provide challenges to the translator, a

number of bugs observed in the original prototype were effectively removed. Additionally,

by examining the translations of the sample applications produced by the original prototype,

handling for special variants of a number of CUDA structures was significantly improved.

Finally, several new features were added to the translator, including a robust error reporting

mechanism, designed to improve the tool’s ability to actively guide manual translation of

unsupported CUDA structures.

Finally, Chapter 4 identifies a number of current limitations to providing automatic CUDA-

to-OpenCL translation. Many limitations addressed there are somewhat specific to the

CU2CL prototype, and describe portions of the CUDA specification for which there exist

valid OpenCL equivalences, but for which automatic translation has not yet been imple-
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mented. This chapter also discussed a number of limitations that are not necessarily specific

to the CU2CL translator, but rather are specific to deficiencies in mapping CUDA onto

OpenCL. By identifying and addressing these limitations, a more complete understanding of

the difficulty in providing functional portability for CUDA codes via translation to OpenCL

was constructed. In spite of these limitations, this thesis has demonstrated the automatic

translation from CUDA to OpenCL is largely achievable, dramatically reducing the cost of

providing CUDA programs access to new accelerator devices and users.



Appendix

Total CU2CL
CUDA Translation Time

Application Lines Time (s) (µs)

Back Propagation 313 0.14 174
Breadth-First Search 306 0.14 200
CFD 2371 1.07 1230
Gaussian 390 0.14 210
Heartwall 2018 0.17 532
Hotspot 328 0.14 204
Kmeans 494 0.14 241
LavaMD 240 0.14 192
Leukocyte 624 0.28 386
LU Decomposition 332 0.28 277
MummerGPU 3786 0.18 655
Nearest Neighbor 278 0.17 170
Needleman-Wunsch 430 0.14 191
Particle Filter 1517 0.31 582
Path Finder 235 0.14 186
SRADv1 541 0.15 366
Stream Cluster 443 0.26 211

Table A.1: Rodinia Sample Translation Times
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Total CU2CL
CUDA Translation Time

Application Lines Time (s) (µs)

alignedTypes 316 0.16 239
asyncAPI 135 0.14 163
bandwidthTest 891 0.28 289
bicubicTexture 1251 0.78 482
bilateralFilter 864 0.89 415
binomialOptions 443 0.64 328
BlackScholes 347 0.27 200
boxFilter 980 0.74 339
clock 162 0.15 149
concurrentKernels 177 0.27 177
conjugateGradient 196 0.06 170
convolutionFFT2D 1175 0.65 488
convolutionSeparable 363 0.75 288
convolutionTexture 368 0.63 295
cppIntegration 247 0.73 261
dct8x8 1715 0.29 539
deviceQuery 165 0.57 160
deviceQueryDrv 150 0.58 150
dwtHaar1D 598 0.16 281
dxtc 886 0.43 472
eigenvalues 3109 0.48 1116
fastWalshTransform 327 0.15 208
FDTD3d 870 0.99 405
fluidsGL 811 0.28 330
FunctionPointers 1004 0.76 449
histogram 545 0.90 436
imageDenoising 1305 0.75 512
lineOfSight 337 0.17 228
Mandelbrot 2528 0.93 922
marchingCubes 1571 0.80 540
matrixMul 351 0.14 211
matrixMulDrv 525 0.72 378
matrixMulDynlinkJIT 301 0.46 158
mergeSort 954 0.65 412
MersenneTwister 310 0.27 193
MonteCarlo 1014 0.79 726
MonteCarlo Multi GPU 994 0.79 743
nbody 2088 1.54 824
oceanFFT 1037 0.76 452

Table A.2: CUDA SDK Sample Translation Times
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Total CU2CL
CUDA Translation Time

Application Lines Time (s) (µs)

particles 1184 2.41 1001
postProcessGL 1291 0.88 489
ptxjit 132 0.58 120
quasirandomGenerator 510 0.90 504
radixSort 2387 1.37 1103
randomFog 888 1.34 345
recursiveGaussian 883 0.77 417
reduction 1063 0.78 583
scalarProd 251 0.16 226
scan 495 0.75 322
simpleAtomicIntrinsics 197 0.15 155
simpleCUBLAS 244 0.10 149
simpleCUFFT 249 0.15 173
simpleGL 603 0.73 350
simpleMPI 208 0.84 274
simpleMultiCopy 351 0.27 254
simpleMultiGPU 226 0.47 202
simplePitchLinearTexture 274 0.15 180
simplePrintf 1066 0.43 893
simpleStreams 243 0.15 193
simpleSurfaceWrite 207 0.15 201
simpleTemplates 458 0.16 248
simpleTexture 239 0.15 186
simpleTexture3D 506 0.78 305
simpleTextureDrv 392 0.72 379
simpleVoteIntrinsics 341 0.15 218
simpleZeroCopy 149 0.15 147
smokeParticles 2016 1.21 531
SobelFilter 780 0.75 360
SobolQRNG 10698 1.73 5275
sortingNetworks 657 0.90 487
template 187 0.15 158
threadFenceReduction 791 0.17 483
threadMigration 434 0.72 393
transpose 571 0.27 271
vectorAdd 147 0.14 97
vectorAddDrv 351 0.60 281
volumeRender 884 0.78 393

Table A.3: CUDA SDK Sample Translation Times (cont.)
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Total CU2CL
CUDA Translation Time

Application Lines Time (s) (µs)

GEM 524 0.14 182
Fen Zi 17768 0.35 3491
IZ PS 7103 0.21 1091

Table A.4: Large Application Translation Times

Original Current
CU2CL CU2CL Related

Application Prototype Prototype Repairs

Back Propagation Complete Complete
Breadth-First Search Complete Complete
CFD Failure Complete 3.3.1
Gaussian Failure Complete 3.3.4
Heartwall Complete Complete
Hotspot Complete Complete
Kmeans Complete Complete
LavaMD Partial Complete 3.3.3
Leukocyte Failure Complete 3.3.3
LU Decomposition Partial Complete 3.3.3
MummerGPU Failure Failure 3.3.3
Nearest Neighbor Failure Complete 3.1.2
Needleman-Wunsch Complete Complete
Particle Filter Complete Complete
Path Finder Complete Complete
SRADv1 Complete Complete
Stream Cluster Failure Complete

Table A.5: Rodinia Sample Translation Robustness
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Original Current
CU2CL CU2CL Related

Application Prototype Prototype Repairs

alignedTypes Failure Complete 3.3.1
asyncAPI Complete Complete
bandwidthTest Failure Complete 3.1.2
bicubicTexture Failure Complete 3.3.1, 3.3.3, 3.3.5
bilateralFilter Failure Complete 3.3.3, 3.3.5
binomialOptions Partial Complete 3.3.3
BlackScholes Failure Complete 3.1.2
boxFilter Failure Complete 3.3.3, 3.3.5
clock Complete Complete
concurrentKernels Failure Complete 3.1.2
conjugateGradient Failure Complete 3.1.2
convolutionFFT2D Partial Complete 3.3.3
convolutionSeparable Failure Complete 3.1.2, 3.3.3
convolutionTexture Partial Complete 3.3.1, 3.3.3
cppIntegration Failure Complete 3.1.2, 3.3.3
dct8x8 Failure Complete 3.1.2
deviceQuery Failure Complete 3.1.2
deviceQueryDrv Failure Complete 3.1.2
dwtHaar1D Complete Complete
dxtc Failure Complete 3.1.2, 3.3.1, 3.3.3
eigenvalues Partial Complete 3.3.1, 3.3.3
fastWalshTransform Complete Complete
FDTD3d Failure Complete 3.1.2, 3.3.3
fluidsGL Failure Complete 3.1.2, 3.3.5
FunctionPointers Failure Complete 3.1.2, 3.3.3, 3.3.5
histogram Failure Complete 3.1.2, 3.3.3
imageDenoising Failure Complete 3.1.2, 3.3.3, 3.3.5
Interval Failure Failure 3.1.2
lineOfSight Failure Complete 3.3.4
Mandelbrot Failure Complete 3.1.2, 3.3.1, 3.3.3, 3.3.5
marchingCubes Failure Complete 3.1.2, 3.3.1, 3.3.3, 3.3.5
matrixMul Complete Complete
matrixMulDrv Failure Complete 3.1.2, 3.3.3
matrixMulDynlinkJIT Failure Complete 3.3.5
mergeSort Partial Complete 3.3.1, 3.3.3
MersenneTwister Failure Complete 3.1.2
MonteCarlo Partial Complete 3.3.1, 3.3.3
MonteCarloCURAND Partial Partial 3.1.2
MonteCarloMultiGPU Partial Complete 3.3.1, 3.3.3
nbody Failure Complete 3.1.2, 3.3.1, 3.3.3, 3.3.5
oceanFFT Failure Complete 3.1.2, 3.3.3, 3.3.5

Table A.6: CUDA SDK Sample Translation Robustness
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Original Current
CU2CL CU2CL Related

Application Prototype Prototype Repairs

particles Failure Complete 3.1.2, 3.3.3, 3.3.5
postProcessGL Failure Complete 3.1.2, 3.3.3, 3.3.5
ptxjit Failure Complete 3.1.2
quasirandomGenerator Failure Complete 3.1.2, 3.3.3
radixSort Failure Complete 3.1.2, 3.3.1, 3.3.3
randomFog Failure Complete 3.1.2, 3.3.3
recursiveGaussian Failure Complete 3.1.2, 3.3.3, 3.3.5
reduction Failure Complete 3.1.2, 3.3.1, 3.3.3
scalarProd Complete Complete
scan Failure Complete 3.1.2, 3.3.3
simpleAtomicIntrinsics Complete Complete
simpleCUBLAS Complete Complete
simpleCUFFT Failure Complete 3.3.4
simpleGL Failure Complete 3.1.2, 3.3.3, 3.3.5
simpleMPI Failure Complete 3.1.2, 3.3.3
simpleMultiCopy Failure Complete 3.1.2
simpleMultiGPU Partial Complete 3.3.3
simplePitchLinearTexture Complete Complete
simplePrintf Failure Complete 3.3.1, 3.3.3
simpleStreams Complete Complete
simpleSurfaceWrite Complete Complete
simpleTemplates Failure Complete 3.3.1
simpleTexture Complete Complete
simpleTexture3D Failure Complete 3.1.2, 3.3.3, 3.3.5
simpleTextureDrv Failure Complete 3.1.2, 3.3.3
simpleVoteIntrinsics Complete Complete
simpleZeroCopy Complete Complete
smokeParticles Failure Complete 3.1.2, 3.3.3, 3.3.5
SobelFilter Failure Complete 3.1.2, 3.3.3, 3.3.5
SobolQRNG Failure Complete 3.1.2, 3.3.3
sortingNetworks Failure Complete 3.1.2, 3.3.3
template Complete Complete
threadFenceReduction Failure Complete 3.3.1
threadMigration Failure Complete 3.1.2, 3.3.3
transpose Failure Complete 3.1.2, 3.3.2
vectorAdd Complete Complete
vectorAddDrv Failure Complete 3.1.2, 3.3.3
volumeRender Failure Complete 3.1.2, 3.3.3, 3.3.5

Table A.7: CUDA SDK Sample Translation Robustness (cont.)
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