
Edge-Connected Jaccard Similarity
for Graph Link Prediction on FPGA

Paul Sathre∗, Atharva Gondhalekar†, Wu-chun Feng∗†

∗ Dept. of Computer Science
Virginia Tech

Blacksburg, Virginia, USA
{sath6220,feng}@cs.vt.edu

† Dept. of Electrical and Computer Engineering
Virginia Tech

Blacksburg, Virginia, USA
atharva1@vt.edu

Abstract—Graph analysis is a critical task in many fields, such
as social networking, epidemiology, bioinformatics, and fraud de-
tection. In particular, understanding and inferring relationships
between graph elements lies at the core of many graph-based
workloads. Real-world graph workloads and their associated data
structures create irregular computational patterns that compli-
cate the realization of high-performance kernels. Given these
complications, there does not exist a de facto “best” architecture,
language, or algorithmic approach that simultaneously balances
performance, energy efficiency, portability, and productivity.

In this paper, we realize different algorithms of edge-connected
Jaccard similarity for graph link prediction and characterize
their performance across a broad spectrum of graphs on an
Intel Stratix 10 FPGA. By utilizing a high-level synthesis (HLS)-
driven, high-productivity approach (via the C++-based SYCL
language) we rapidly prototype two implementations – a from-
scratch edge-centric version and a faithfully-ported commodity
GPU implementation – which would have been intractable via a
hardware description language. With these implementations, we
further consider the benefit and necessity of four HLS-enabled
optimizations, both in isolation and in concert — totaling seven
distinct synthesized hardware pipelines. Leveraging real-world
graphs of up to 516 million edges, we show empirically-measured
speedups of up to 9.5× over the initial HLS implementations
when all optimizations work in concert.

Index Terms—FPGA, graph, graph analysis, link predic-
tion, Jaccard similarity, heterogeneous computing, performance,
portability, productivity, programming language, high-level syn-
thesis

I. INTRODUCTION

Graphs provide a concise and scalable representation for
a diverse range of interconnected phenomena. Whether mod-
eling protein interaction networks, financial transactions, ar-
tificial intelligence, or social interactions, the fundamental
building blocks of graphs — vertices and edges — provide a
context to reason about relationships between entities and what
those relationships mean. We then use these building blocks to
study problems ranging from thousands of entities to billions
and beyond, resulting in an extreme computing challenge.

Many graph-based applications require link prediction, i.e.,
inferring a new edge between two entities in a network [1].
In this work, we focus on a fundamental component of link
prediction — computing the intersection of two neighbor
lists — which we instantiate using a metric called Jaccard

similarity (JS) [2]. For any two sets A and B, the Jaccard
similarity between A and B, JS(A,B), is defined as their
intersection over their union, as shown in the Equation (1).

JS(A,B) =
|A ∩B|
|A ∪B|

(1)

In the case of graph datasets, we consider the special case
of edge-connected Jaccard similarity (JS): the simultaneous
batch computation of |E| JS calculations for all vertex pairs
that are connected by an edge. So, for any given pair of vertices
connected by an edge, we compute the JS of the pair’s respec-
tive neighbor vertices. That is, for a vertex pair (v1,v2) with
neighborhood sets N(v1) and N(v2), the Jaccard similarity
JS(v1,v2) can be computed as shown in Equation (2) below.

JS(v1,v2) =
|N(v1) ∩N(v2)|

|N(v1)|+ |N(v2)| − |N(v1) ∩N(v2)|
(2)

Figure 1 provides a visual example of the numerical compo-
nents underlying the computation of JS for one of a trivial
graph’s 14 edge-connected pairs.

Jaccard similarity underpins many application domains,
including genome analysis [3], network analysis [4], and
graph clustering [5]. Further, we have seen the rise of GPU-
based graph processing frameworks, e.g., cuGraph [6] and
Gunrock [7], and FPGA frameworks, e.g., Hitgraph [8].
FPGA-based solutions can deliver comparable performance
to a GPU while achieving much better performance per watt
than comparable GPU devices and frameworks [8], a desir-
able property for energy-aware HPC. However, most high-
performance FPGA implementations are developed in register-
transfer level (RTL) hardware description languages (HDL).

HDL-based FPGA development is significantly more diffi-
cult and tedious than typical GPU programming approaches
such as Nvidia CUDA [9] or the OpenCL [10], [11] standard.
As a consequence, high-level synthesis (HLS) approaches for
FPGA programming, including C-based OpenCL, have been
gaining traction due to their higher level of abstraction, which
facilitates higher development productivity. More recently,
SYCL [12], [13] has emerged as an even-higher abstraction,
leveraging modern C++, in particular move/accessor semantics
and lambda expressions. SYCL-based HLS for FPGA is
supported by Intel’s DPC++ [14] compiler and triSYCL’s [15]

HPEC 2022 Waltham, MA

d

e

f

c
i

b g

ha

(a) Graph of nine vertices and fourteen bidirectional edges

Equivalent Compressed Sparse Row (CSR)
Offset= {0,4,7,10,15,17,23,25,26,28}
Index = {1,2,3,5,0,3,6,0,4,5,0,1,5,7,8,2,5,0,2,3,4,6,8,1,5,3,3,5}

(b) Equivalent undirected CSR representation

D

e

F

c
I

B g

HA

Unweighted RowSum(D) = 5

(c) Neighbors of D:
N(D) = {A,B, F,H, I}

D

E

F

C
I

b G

hA

Unweighted RowSum(F) = 6

(d) Neighbors of F :
N(F) = {A,C,D,E,G, I}

D

e

F

c
I

b g

hA

Unweighted Intersection (D,F) = 2

(e) Intersection of D and F :
iD,F = D∩F = {A, I}

Unweighted Union (D,F) = 9

D

E

F

C
I

B G

HA

(f) Union of D and F :
uD,F = D∪F = {A,B,C,
D,E, F,G,H, I}

Fig. 1: Components of the Edge-Connected Jaccard similarity.
Capitalized vertices indicate contribution to each component.

experimental route to Xilinx.
In this work, we evaluate the efficacy of SYCL as an HLS

language, through a case study of edge-connected Jaccard
similarity. We want to consider SYCL’s utility for both (1)
developing new FPGA-minded codes and (2) providing ease-
of-access to FPGAs to GPU- and CPU-native codes (and
their developers). By leveraging SYCL-based HLS, we are
able to quickly and productively explore both angles via two
different algorithmic approaches, and explore seven different
optimization levels of each, which would have otherwise
proven to be intractable to explore via HDL. Through this
case study we provide the following contributions:

• Implementation of a de novo edge-centric, edge-
connected JS kernel for FPGA via SYCL

• Insights into the faithful translation of a commodity edge-
connected JS pipeline from CUDA to SYCL and the
performance effects of moving GPU-native code to FPGA

• A characterization of the efficacy of vendor-specific and
standards-driven compiler-based SYCL optimizations to
improve performance, applied in isolation and in concert

• A SYCL instantiation of a hybrid intersection approach
to exploit algorithmic and device insights for increased

performance and its synergy with other optimizations
• An empirical evaluation of the above contributions on an

Intel Stratix 10 SX FPGA, using real-world graphs of up
to 516 million edges

II. RELATED WORK

Malicevic et al. provide a survey of edge-centric and vertex-
centric approaches to graph processing on multicore CPUs,
along with the impact of preprocessing, data layouts, caching,
and non-uniform memory access (NUMA) [16]. Similarly,
McCune et al. survey vertex-centric graph processing frame-
works [17]. The rest of the section presents work related
to set intersection, triangle counting and listing, and graph
processing on FPGA via high-level synthesis (HLS).

A. Set Intersection
Ding et al. [18] provide a survey of serial k-way set

intersection approaches. The main computational cost of our
edge-connected JS implementations consist of a batch of
|E| separate 2-way intersections. An alternative approach to
compute JS is to express it as a sparse matrix operation [19]
and leverage independent thread scheduling on a GPU.

With respect to FPGA, set intersection has been realized
for (1) network processing via a sorted set merge and bitwise
AND on fixed-width IDs and a parallel tree of processing ele-
ments in RTL [20], (2) itemset mining via a sorted set merge of
a matrix of elements and a hash table in RTL [21], (3) packet
classification via a systolic array that compares rules between
two sets with a tree architecture for aggregating intersections
between additional sets in RTL [22], and (4) graph processing
via merge and binary search-based intersections for sorted
sets [23], where performance is evaluated on a cycle-level
simulator called Sniper [24], resulting in moderate speedups.

B. Triangle Counting and Listing
Triangle counting (TC) and triangle listing (TL) globally

count or list, respectively, all the triangles (i.e., sets of three
mutually-connected vertices) contained in a graph. Edge-
connected JS is isomorphic to TL. Rather than record each
triangle, instead each triangle contributes to the numerators
(neighbor intersections) of the three edge-connected pairs it
consists of; the third vertex is necessarily a member of both
endpoints’ neighbor lists. For a summary of the distinction
between TC and TL, we direct the reader to [25].

Exact TC makes up part of the Static Graph Challenge:
Subgraph Isomorphism [26]. Huang et al. [27] provide an
FPGA implementation of TC, which showcases superior
performance-per-watt versus an existing GPU solution [28].
However, though TC can be solved using an intersection
kernel — essentially computing the TL and summarizing —
as detailed in [25], it is also commonly solved by cheaper
techniques such as matrix formulations that are incompatible
with the local context required by edge-connected JS/TL.
Green et al. [29] and Pearson et al. [30] implement TC for
Intel Knights Landing and GPU, respectively, both using a
combination of sorted set merge- and binary search-based
intersections, which inspire one of our optimizations.

HPEC 2022 Waltham, MA

C. HLS-based FPGA Graph Processing

Huang et al. [27] uses Vivado HLS for C-based synthesis.
Castellana et al. [31] and Minutoli et al. [32] leverage an HLS
approach called Bambu [33], showcasing support for task-level
parallelism and synthesis of OpenMP annotated TC to a Xilinx
Virtex-7, respectively.

III. EDGE-CENTRIC JACCARD SIMILARITY

A typical graph processing workload requires traver-
sal/inspection of one or more vertices. This can be imple-
mented in two ways: edge-centric (EC) or vertex-centric (VC).
Edge-connected JS requires knowledge of both source and
destination vertices. A VC approach would require an irregular
access to identify the neighbor(s) of the source vertex – the
approach taken by the hierarchically-parallel cuGraph imple-
mentation discussed in Section IV. Prior work shows that such
irregular accesses are inefficiently handled by conventional
FPGA memory controllers [34]. In comparison, EC approach
eliminates this access by using edge arrays to provide O(1)
lookup of the vertex pairs that form the edges [35], [8]. EC
methods have been explored across diverse architectures such
as multicore CPUs [35], [16], GPUs [36], [37], [38], and FP-
GAs [8], [39]. Jia et al. [38] show that EC achieves better load
balance and throughput than VC on Nvidia GPUs, but at the
cost of more memory accesses. Zhou et al. [8] present an EC
framework for FPGA-based graph processing, which delivers
up to 5.3× and 1.8× throughput improvement, respectively,
for sparse matrix-vector multiplication and PageRank versus
other irregular state-of-the-art FPGA frameworks.

Given these inspirations, we sought to create an EC imple-
mentation of edge-Connected JS, resulting in Algorithm 1.
Our wrapping mini-application utilizes the standard sorted
compressed sparse row (CSR) format to represent the graph,
which provides source-major sorting of the edge-list to support
an inline binary search for intersections (Algorithm 2). Bi-
nary search bounds the worst-case performance on real-world
graphs with extremely-connected vertices, such as the five used
in Section VI with degree ranges from 11.5k to nearly 1.3M .
The EC algorithm takes “src” and “dest” vectors as inputs; the
destination vector is identical to the CSR “index” vector, and
the source vector is trivially constructed offline on the FPGA.

IV. CUGRAPH JACCARD SIMILARITY

To evaluate our de novo FPGA-minded EC implementation,
we compare it to the standard cuGraph [6] implementation
from the RAPIDS GPU data science framework [40]. For
consistency, we developed a common command-line interface,
and incorporated both sets of kernels in the same hardware
design. We first describe the the cuGraph edge-connected JS
pipeline and then briefly outline the steps necessary to use the
kernels outside the RAPIDS environment and translate them
faithfully1 to SYCL.

1Faithful translation — i.e. without “de-GPU-ifying” kernels or thread
configurations — was chosen to capture any stumbling points that might
lurk for others who, enticed by increased programmability and availability
of FPGAs, seek to port other GPU-native codes via SYCL.

Algorithm 1: Edge-Centric Jaccard Similarity
Input : graph G(V, E) in sorted CSR+edge-list format:

source(|E|), dest(|E|), sourceOffsets(|V |)
Output: JaccardWeights(|E|)
Data: |E|

1 foreach edge e from E do // Par. in 0th-dim
2 s = source[e], d = dest[e]

// Count neighbors
3 ns = sourceOffsets[s+1]- sourceOffsets[s]
4 nd = sourceOffsets[d+1]- sourceOffsets[d]
5 if ns < nd then // Smaller ref vertex
6 ref = s, cur = d
7 else
8 ref = d, cur = s
9 foreach dest i from ref do // Intra-Thread

10 refCol = dest[i]
11 match = BinSearch(sourceOffsets, dest, cur)
12 if match == true then
13 JaccardWeights[e] += 1
14 JaccardWeights[e] = JaccardWeights[e] / ((ns + nd) -

JaccardWeights[e]);

Algorithm 2: BinSearch (inlined in practice)
Input : graph G(V, E) in CSR format:

offsets(|V |), indices(|E|), ‘cur’: integer vertex ID
Output: ‘match’: boolean indicating presence of ‘cur‘

1 left = offsets[cur], right = offsets[cur+1]-1
2 while left < right do
3 middle = (left + right) / 2
4 curCol = indices[middle]
5 if curCol > refCol then
6 right = middle -1
7 else if curCol < refCol then
8 left = middle +1
9 else

10 match = middle
11 break

A. RAPIDS cuGraph Implementation

RAPIDS contains a number of different GPU-accelerated
libraries to support heterogeneous data science. We refer the
reader to the RAPIDS website [40] for a detailed listing of
capability and focus on the JS kernel pipeline. The JS kernels
are written with a Python frontend, middle layers in templated
C++ for generality, and low-level kernels in CUDA C++.

The JS implementation is based on [41] and decomposes
the operation into a pipeline of three kernels that, like ours,
operate on an entire graph at once. The graph is provided to
the kernels as a bidirectional CSR matrix with sorted neighbor
lists. Optional support for weighted vertices and ”pair-list” JS
is elided for brevity; we focus on the default unweighted, edge-
connected JS, which matches our EC implementation.

The first RowSum kernel counts the (weighted) neighbors
of each vertex, i.e., Equation (3),

nv = |N(v)| : ∀v ∈ V (3)
and stores them in the NeighborSum buffer.2 Next, the In-

2Absent vertex weights, this value could be computed in situ by the
subsequent Intersection kernel, but we evaluate the existing solution “as is”

HPEC 2022 Waltham, MA

tersectionWeight buffer is zero-filled3 to prepare for atomic
accumulations in the next intersection kernel,4 which computes
the intersection size of all edge-connected pairs in Equation (4)

iv1,v2 = |N(v1)∩N(v2)| : ∀(v1, v2) ∈ E (4)
using a 3D thread block and is reproduced as pseudocode in
Algorithm 3 for reference. The primary distinctions between
Algorithm 1 and Algorithm 3 are:

• Lines 1-2: the hierarchically-parallel mapping of source
and destination vertices onto the Z and Y thread IDs

• Lines 10-18: the collaborative X-dimension intersection
with necessary atomic intersection increment

• Lines 9 & 12-14: accommodations for weighted vertices 5

• Line 9: storing nv1 + nv2 in global memory for the final
union+JS kernel

The final embarrassingly-parallel 1D kernel then computes the
UnionWeight denominator in Equation (5) and final JS score
in Equation (6).

uv1,v2 = nv1 + nv2 − iv1,v2 : ∀(v1, v2) ∈ E (5)

jsv1,v2 =
iv1,v2
uv1,v2

: ∀(v1, v2) ∈ E (6)

Algorithm 3: Vertex-Centric Intersection
Input : graph G(V, E) in CSR format:

offsets(|V |), indices(|E|),
vWeights(|E|) // Optional vertexWeights

Output: IntersectionWeights(|E|), SumWeight(|E|)
Data: |E|

1 foreach source vertex s ∈ V do // Par. in 0th-dim
2 foreach dest d from s do // Par. in 1st-dim
3 ns = offsets[s+1]- offsets[s]
4 nd = offsets[d+1]- offsets[d]
5 if ns < nd then // Smaller ref vertex
6 ref = s, cur = d
7 else
8 ref = d, cur = s
9 SumWeight[s,d]=NeighborSum[s]+NeighborSum[d]

10 foreach dest i from ref do // Par. in 2nd-dim
11 refCol = indices[i]
12 if weighted then // removed constexpr
13 refVal = vWeights[refCol]
14 else
15 refVal = 1
16 match = BinSearch(offsets, indices, cur)
17 if match == true then // Atomic update
18 atomicAdd(IntersectionWeights[d], refVal)

B. Out-of-Tree Modifications

While RAPIDS is invaluable for data science, the size and
complexity of the framework would have been intractable
to wholly port to FPGA. As such, we modified the core
CUDA functionality to function out-of-tree and interface with

3using a trivial Thrust [42] kernel
4As of the 2022.1 oneAPI Add-on for FPGA [43] used in this work, Intel

supports 32-bit atomic add via SYCL only for integers, so to preserve the
floating point weights used in the original CUDA, floating point atomic add
was emulated via a typical “type cast with compare-and-exchange” loop

5we use a C++17 constexpr, to compile 12-14 out, whereas the original
CUDA does not

TABLE I: Analogous API elements from CUDA to SYCL
encountered in the Jaccard Similarity host and device code.

CUDA SYCL
Host (CPU) Code

Device pointer Buffer
cudaMalloc Buffer constructor
cudaMemcpy copy command group

Device Buffer [] operator Buffer accessor
Execution Configuration Queue submission lambda(<<<...>>>) kernel launch

Device (FPGA/GPU) Code
__global__ Function Lambda expression or Functor Class

grid / block nd range / work group
slowest-varying dimension

2D: Y, 3D: Z 2D: 0, 3D: 0
fastest-varying dimension

2D: X, 3D: X 2D: 1, 3D: 2

our command-line mini-application. Technical details of the
extraction are outside the scope of this work, but in particular,
we isolated the “legacy” GraphCSRView storage class, which
is reused by our EC implementation, and eliminated dependen-
cies on Thrust [42] and the RAPIDS Memory Manager. The
out-of-tree pipeline was used to establish the “Gold” output
of all datasets to ensure numerical consistency of the de novo
SYCL EC and ported SYCL cuGraph implementations.

C. SYCL Translation for HLS on Intel FPGA

Fundamentally, SYCL’s model is asynchronous heteroge-
neous offload, much like CUDA or OpenCL, in which device
kernels are explicitly enqueued on one or more offload devices
(FPGA, GPU, CPU, etc.) and coordinated by the host CPU.
The original SYCL [12] standard shared substantial conceptual
overlap with the lower-level OpenCL [10], [11] standard
(which in turn overlapped significantly with CUDA [9]); how-
ever, the SYCL 2020 specification [13] has diverged from the
more restrictive OpenCL model. Further, its basis in modern
C++ standards makes for an easier transition from the “C with
objects” style of typical CUDA C++ applications compared to
OpenCL’s C99-based device language.

Beginning from the out-of-tree cuGraph pipeline, the ker-
nels, data structures, and mini-app were manually ported to
the semantically-equivalent SYCL. Further, as the FPGA has
limited silicon area and must be offline-compiled, templates
were explicitly-specialized to only utilize 32-bit data types to
avoid combinatorial template explosion.

In this work, we target the Intel Stratix 10 Programmable
Acceleration Card [44] and thus utilize Intel’s Data Parallel
C++ [14] SYCL compiler from the oneAPI [45] environment.
As both CUDA and SYCL are single-source C++, much of
the host (CPU) and device (GPU/FPGA) code overlapped;
we needed only to replace the unique CUDA syntax, data
types, and runtime functions, the most important of which are
summarized in Table I.

1) Host (CPU) Code: We translate CUDA’s device pointers
and explicit transfers to SYCL “buffers” and allow the SYCL
runtime’s implicit dependency graph to manage data migration
to/from the device. We consider only kernel runtime, which

HPEC 2022 Waltham, MA

is queryable from the SYCL profiling API without the need
to manually synchronize and separate transfer overheads from
kernel execution. Kernel launches are converted to SYCL’s
lambda-based queue submissions, replacing CUDA grid/block
specification with the corresponding SYCL “nd range” using
the same number and organization of threads, and using buffer
accessors to provide arguments to the kernel and to inform the
SYCL runtime what data must be resident on the device and
quiescent before launch.

2) Device Code: SYCL kernels may be written as either
C++ lambda expressions or functor classes, which function
similarly. We utilized functors to retain the existing code
structure, modularity, and clarity. The majority of both CUDA
and SYCL kernels are standard C elements which remain
unmodified, but thread identifiers and device API functions
are mapped to analogous functions. The CUDA kernels use
a mix of 1D, 2D, and 3D invocations, a potential perfor-
mance tripping-point. When converting to SYCL, the order of
these dimensions (fastest- vs slowest-varying) is intentionally
inverted from CUDA/OpenCL norms, as noted in Table I
for consistency with modern C++’s multi-dimensional array
syntax. To emphasize, other than the emulated floating-point
atomic add and compiled-out if statement mentioned in
Section IV-A, the resulting SYCL kernels are semantically
identical to their CUDA counterparts.

V. OPTIMIZATIONS

Optimizing algorithms for the FPGA is a notoriously tricky
process, and existing literature largely performs it at the RTL
level. RTL provides the finest-grained control over synthesized
hardware, but requires a monumental development investment
for even a single iteration of a complex algorithm. Fortunately,
with HLS approaches frequently come “simple” optimization
techniques in the form of attributes, pragmas, language exten-
sions, and compiler flags with which to better steer synthesis.
Further, HLS’s ease of use returns development time to be
spent on “complex” algorithmic refactoring and innovation.

In this work we evaluate the mapping of JS to the Intel
Stratix 10 FPGA, and thus follow the Intel FPGA pro-
gramming Guide’s [46] recommended standard and vendor-
extension “simple” optimizations. To our baseline implementa-
tion we add variants with three such optimizations in isolation
and a fourth variant with “complex” refactored intersection
calculation, enabled by the HLS approach.

Specifically, we utilize the following optimizations in both
EC and cuGraph implementations (summarized in Table II):

• Restrict: Intel extension to inform the synthesis tools that
all buffers used by a kernel occupy disjoint memory

• GroupSize: Standard SYCL kernel attribute to inform the
synthesis tools the guaranteed number of threads in each
dimension of a collaborative thread work group.

• Unroll4: The standard C unroll pragma, to transform
loop iterations into chunks of sequential code. We set it
to 4, as a middle ground between the sparsest graphs,
which rarely need more iterations, and the densest ones
which might benefit from more unrolling.

TABLE II: Abbreviated optimizations used in Figures 2 and 3.

Abbreviation Description

Baseline Functionally correct with
-Xsclock=145MHz -Xsrounding=ieee

+Restrict Baseline+ [[intel::kernel_args
_restrict]] on all kernels

+GroupSize Baseline+ hardcoded [[cl::reqd_work
_group_size(...)]] on all kernels

+Unroll4 Baseline+ #pragma unroll 4 on intersection loop

+AllSimple Baseline+Restrict+GroupSize+Unroll4

+HybridIsect Baseline+ per-thread asymptotic cost
decision between BinSearch and SortedSetMerge

+AllOpts Baseline+AllSimple+HybridIsect

A. Hybrid Intersection

The |E| batched intersections of vertex pairs is the dominant
cost to computing edge-connected JS. Each pair’s cost scales
relative to the size of the neighbor lists (nref and ncur),
which cannot be known a priori. We address a broad range
of graph complexities (see Sec. VI-A), and thus must balance
between highly-connected worst-case performance and the
FPGA device’s preferred algorithmic strategy.

Initially, both EC and cuGraph implementations utilized a
looped binary search (Algorithm 2) which performs a series
of log(|Ncur|) searches for the less-connected (ref) vertex’s
neighbors among the more-connected (cur) vertex’s. The
logarithmic term provides a tight upper bound when |Ncur| is
large relative to |Nref |. Our EC implementation evaluates one
vertex pair per thread, and cuGraph parallelizes the search over
p = 8 threads, with costs in Equations (7) and (8), respectively.

Θ(|Nref |×log(|Ncur|)) (7)

Θ(
|Nref |

p
×log(|Ncur|)) (8)

This approach provides decent algorithmic complexity but
is effectively random access. Both FPGA and GPU rely
on wide memory buses and overlapped communication to
hide load/store latency, and random access inhibits effective
automatic prefetching, inducing stalls.

As such, we implement Algorithm 4, an alternative with
a guaranteed sequential access pattern, based on sorted set
merge, similar to [27]. Two pointers traverse ref and cur’s
neighbor lists, advancing the lesser on mismatch, and advanc-
ing both on a match. If either list runs out, the algorithm
terminates, as nothing matches the empty set. This algorithm
has upper and lower bounds, noted in Equations (9) and (10)

O(|Nref |+ |Ncur|) (9)

Ω(min(|Nref |, |Ncur|)) (10)

When nref and ncur are similar in size, clearly sorted set
merge is cheaper than binary search. Further, strict sequential
access can support prefetch and more efficient use of the wide
memory bus. However, without the strongly-bounded worst-
case performance of binary search, the Sorted Set Merge could
not cope with the high-degree-range real-world data we use

HPEC 2022 Waltham, MA

for evaluation.6 Rather than partitioning the kernels like [29],
we mirror the approach of [30] and embed the cost calculation
directly into the kernel, creating a hybrid intersection.

Algorithm 4: Sorted Set Merge (inlined in practice)
Input : graph G(V, E) in CSR format:

offsets(|V |), indices(|E|), ‘cur’: integer vertex ID
Output: integer match count

1 match = 0
2 ref idx = offsets[ref], ref end = offsets[ref + 1] - 1
3 cur idx = offsets[cur], cur end = offsets[cur + 1] - 1
4 while (ref idx ≤ ref end && cur idx ≤ cur end do
5 cur col = csrInd[cur idx], ref col = csrInd[ref idx]
6 if ref col == cur col then
7 match += 1
8 cur idx++, ref idx++
9 else if cur col > ref col then

10 ref idx++
11 else
12 cur idx++

VI. ANALYSIS

HLS provides a more productive route to programming
FPGAs, but current environments rely heavily on annotations
to bridge the RTL performance gap. Though SYCL’s modern
syntax and advanced runtime model have promise, current
toolchains require similar annotation, for which we sought to
quantify the importance. Further, SYCL-based HLS allowed
us to rapidly generate seven different hardware designs to
empirically measure the effect of the optimizations from
Sec. V, both in isolation and in concert.

A. Datasets

We evaluate the baseline and six optimized EC and cuGraph
implementations with real world graphs from the SuiteSparse
matrix collection [47], [48]. Summary statistics are provided
in Table III, but briefly they span:

• Vertices: 416K to 171M
• Bidirectional Edges: 3.08M to 516M
• Average Degree: 2.11 to 161
• Degree Range: 8 to 1.29M
• Standard Deviation of Degree: 0.48 to 1357
• Gini Inequality Index: 0.055 to 0.759

To the best of our knowledge, these are some of the largest
and most-varied graphs to date for which edge-connected JS
has been empirically evaluated on a single FPGA hardware
device. Unfortunately we cannot fairly compare our data center
FPGA to the nearest related efforts, as [27] 7 uses a low power
system-on-a-chip and [23] 8 utilizes a simulated architecture.

To prepare data, the MatrixMarket-formatted inputs are
converted to unweighted sorted CSR offline as follows:

• Drop any edge weights

6Anecdotally edge-centric wikipedia-20070206 sustained a roughly 5×
performance loss vs. Baseline, and the cuGraph port which typically takes
minutes was terminated after > 24 hours.

7Triangle counting that shares the PA and CA road networks
8JS on graphs of < 100K edges, and k-clique on shared soc-orkut

TABLE III: Graph datasets used to evaluate our JS approaches,
sorted by average degree with minima and maxima in bold.

Bidirect- Degree
Graph ional Std. Gini
Name Vertices Edges Avg. Range Dev. Index
kmer A2a 171M 361M 2.11 39 0.56 0.055
europe osm 50.9M 108M 2.12 12 0.48 0.085
road-road USA 23.9M 57.7M 2.41 8 0.93 0.211
road-roadnet-CA 1.96M 5.52M 2.82 11 0.99 0.185
road-roadnet-PA 1.09M 3.08M 2.83 8 1.02 0.188
delaunay n24 16.8M 101M 6.00 23 1.34 0.122

circuit5M 5.56M 54.0M 9.71 1.29M 1357 0.577
soc-LiveJournal1 4.85M 85.7M 17.7 20.3K 52.0 0.711
wikipedia- 3.57M 84.8M 23.8 188K 255 0.75920070206
GL7d19 1.96M 74.6M 38.2 134 6.73 0.088
dielFilterV2real 1.16M 47.4M 40.9 104 16.1 0.201
sc-ldoor 952K 41.5M 43.6 76 14.8 0.183

stokes 11.4M 516M 45.1 1728 61.8 0.392
sc-msdoor 416K 18.8M 45.1 76 13.7 0.166
ca-coauthors-dblp 540K 30.5M 56.4 3298 66.2 0.544
soc-orkut 3.00M 213M 71.0 27.5K 140 0.558
hollywood-2009 1.14M 113M 98.9 11.5K 272 0.750
HV15R 2.02M 325M 161 491 47.8 0.155

• Remove any unconnected vertices, without ID relabeling
• Remove any self-edges
• Generate reverse edges to create bidirectional edge pairs,

deduplicating any repeats from directed inputs.
• Primarily sort edges by increasing source vertex ID
• Secondarily, for each source vertex, sort adjacency list by

increasing destination vertex ID

As noted in Section III, the additional source edge list for
the EC implementation is constructed in situ on the FPGA
from the sorted CSR’s destination edge list. Neither format
conversion is included in performance measurements.

B. System Configuration

We utilize an Intel Stratix 10 SX FPGA mounted on
their consumer PCIe Programmable Acceleration Card [44]
with 32GB DDR4. Hardware synthesis is performed using
DPC++ [14] from the 2022.1.0 oneAPI FPGA Toolkit add-
on [43], which also provides the board support package to
support SYCL and OpenCL workflows. The host machine has
dual Intel Xeon Gold 5217 CPUs and 384GB RAM.

C. Performance

Our absolute performance metric is vertex pairs processed
per second (PPS): the measured throughput of the entire batch
of |E| pair-wise JS computations for a given graph input.
This is computed as PPS = BidirectionalEdgeCount

2×totalKernelRuntime , using
edge counts from Table III and the sum of kernel execution
times for all pipeline stages (1 for EC, 4 for cuGraph)—
data transfers and graph preprocessing are not included. Ab-
solute performance for all 18×7 graph/optimization-variant
combinations discussed in Sec. V are provided in Figure 2.
Clearly our EC implementation drastically outperforms the
ported cuGraph in all but a few circumstances, which is

HPEC 2022 Waltham, MA

stokes sc-msdoor ca-coauthors-dblp soc-orkut hollywood-2009 HV15R

circuit5M soc-LiveJournal1 wikipedia-20070206 GL7d19 dielFilterV2real sc-ldoor

kmer_A2a europe_osm road_usa road-roadNet-CA road-roadNet-PA delaunay_n24

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4
+

A
llS

im
pl

e
+

H
yb

rid
Is

ec
t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4
+

A
llS

im
pl

e
+

H
yb

rid
Is

ec
t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4
+

A
llS

im
pl

e
+

H
yb

rid
Is

ec
t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4
+

A
llS

im
pl

e
+

H
yb

rid
Is

ec
t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4
+

A
llS

im
pl

e
+

H
yb

rid
Is

ec
t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4
+

A
llS

im
pl

e
+

H
yb

rid
Is

ec
t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4
+

A
llS

im
pl

e
+

H
yb

rid
Is

ec
t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4
+

A
llS

im
pl

e
+

H
yb

rid
Is

ec
t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4
+

A
llS

im
pl

e
+

H
yb

rid
Is

ec
t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4
+

A
llS

im
pl

e
+

H
yb

rid
Is

ec
t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4
+

A
llS

im
pl

e
+

H
yb

rid
Is

ec
t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4
+

A
llS

im
pl

e
+

H
yb

rid
Is

ec
t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4
+

A
llS

im
pl

e
+

H
yb

rid
Is

ec
t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4
+

A
llS

im
pl

e
+

H
yb

rid
Is

ec
t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4
+

A
llS

im
pl

e
+

H
yb

rid
Is

ec
t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4
+

A
llS

im
pl

e
+

H
yb

rid
Is

ec
t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4
+

A
llS

im
pl

e
+

H
yb

rid
Is

ec
t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4
+

A
llS

im
pl

e
+

H
yb

rid
Is

ec
t

+
A

llO
pt

s

Simple AllOpts

0.0
2.5
5.0
7.5

10.0
12.5

0.0
0.5
1.0
1.5
2.0
2.5

0.0
0.1
0.2
0.3
0.4

0
10
20
30
40

0.0
0.5
1.0
1.5
2.0

0.00
0.02
0.04
0.06
0.08

0
10
20
30
40

0.0
0.5
1.0
1.5
2.0
2.5

0.0
0.1
0.2
0.3

0
10
20

0.0
0.1
0.2
0.3
0.4

0.0
0.2
0.4

0
5

10
15
20
25

0.0
0.2
0.4
0.6

0
1
2

0
5

10
15
20

0.0
0.5
1.0
1.5
2.0

0.0

0.2

0.4

M
ill

io
n

P
ai

rs
 P

ro
ce

ss
ed

 p
er

 S
ec

on
d

(M
P

P
S

)
V

ersion
E

C
cuG

raph

 Absolute Performance

Fig. 2: Absolute performance in terms of Millions of vertex pairs processed per second (MPPS) of Edge-Centric (EC) and
cuGraph Edge-connected JS on Intel Stratix 10 SX FPGA hardware, with optimizations applied in isolation and in concert.
Sorted by increasing graph average degree.

stokes sc-msdoor ca-coauthors-dblp soc-orkut hollywood-2009 HV15R

circuit5M soc-LiveJournal1 wikipedia-20070206 GL7d19 dielFilterV2real sc-ldoor

kmer_A2a europe_osm road_usa road-roadNet-CA road-roadNet-PA delaunay_n24

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4

+
A

llS
im

pl
e

+
H

yb
rid

Is
ec

t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4

+
A

llS
im

pl
e

+
H

yb
rid

Is
ec

t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4

+
A

llS
im

pl
e

+
H

yb
rid

Is
ec

t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4

+
A

llS
im

pl
e

+
H

yb
rid

Is
ec

t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4

+
A

llS
im

pl
e

+
H

yb
rid

Is
ec

t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4

+
A

llS
im

pl
e

+
H

yb
rid

Is
ec

t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4

+
A

llS
im

pl
e

+
H

yb
rid

Is
ec

t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4

+
A

llS
im

pl
e

+
H

yb
rid

Is
ec

t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4

+
A

llS
im

pl
e

+
H

yb
rid

Is
ec

t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4

+
A

llS
im

pl
e

+
H

yb
rid

Is
ec

t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4

+
A

llS
im

pl
e

+
H

yb
rid

Is
ec

t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4

+
A

llS
im

pl
e

+
H

yb
rid

Is
ec

t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4

+
A

llS
im

pl
e

+
H

yb
rid

Is
ec

t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4

+
A

llS
im

pl
e

+
H

yb
rid

Is
ec

t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4

+
A

llS
im

pl
e

+
H

yb
rid

Is
ec

t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4

+
A

llS
im

pl
e

+
H

yb
rid

Is
ec

t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4

+
A

llS
im

pl
e

+
H

yb
rid

Is
ec

t

+
A

llO
pt

s

Simple AllOpts

B
as

el
in

e

+
R

es
tr

ic
t

+
G

ro
up

S
iz

e

+
U

nr
ol

l4

+
A

llS
im

pl
e

+
H

yb
rid

Is
ec

t

+
A

llO
pt

s

Simple AllOpts

0
1
2
3
4

0
2
4
6
8

0
2
4
6

0
2
4
6

0
2
4
6

0
2
4
6

0
2
4

0
2
4
6
8

0
2
4

0
1
2
3

0
2
4
6

0
2
4
6

0.0
0.5
1.0
1.5
2.0

0
2
4

0.0
2.5
5.0
7.5

0.0
0.5
1.0
1.5
2.0

0
2
4
6

0

2

4

S
pe

ed
up

 o
ve

r
B

as
el

in
e

V
ersion

E
C

cuG
raph

Fig. 3: Speedup relative to “Baseline” implementation of Edge-Centric (EC) and cuGraph Edge-connected JS on Intel Stratix
10 SX FPGA hardware, with various optimizations applied in isolation and in concert.

attributable to the underwhelming mapping of the single-
instruction, multiple-thread (SIMT) GPU paradigm onto the
heavily-pipelined FPGA architecture. This represents a per-
formance pitfall that may, despite improved programmability,
still discourage FPGA adoption by GPU-native developers,
if insufficient care is taken to both translate and refactor
existing GPU-native codebases. However, more important is
the clear effect of the optimizations across all sizes, sparsities,
and inequalities, confirming their importance regardless of
workload.

However, the optimizations are clearly not equally benefi-
cial, neither relative to each other nor across the varied inputs.
To explore further, we examine their speedup over baseline
(Speedup = BaselineMPPS

OptimizedMPPS), presented in Figure 3. Not all
optimizations were helpful in isolation, a mix of ten EC and

cuGraph trials from the sparse end of the input spectrum had
a more than 5% slowdown, mostly due to excessive unrolling
or the added complexity of the Hybrid Intersection. Fifty-nine
trials, covering the full range of densities from kmer A2a to
HV15R had marginal change between ±5%. Restrict, Unroll,
and Hybrid Intersection make up the remaining seventy-five
isolated trials with greater than 5% speedup, with greater
effects as both density and size of the input graph increase.
Hybrid Intersection on EC was the only optimization to
contribute more than 2× speedup in isolation, and did so on
eleven trials, maxing out at 3.55× on HV15R.

D. Synergistic Effects of Optimization

In search of further speedup, we sought to understand how
the optimizations performed in concert, similar to earlier GPU
studies undertaken by [49], [50]. These results are also present

HPEC 2022 Waltham, MA

GL7d19 dielFilterV2real sc-ldoor stokes sc-msdoor ca-coauthors-dblp soc-orkut hollywood-2009 HV15R

kmer_A2a europe_osm road_usa road-roadNet-CA road-roadNet-PA delaunay_n24 circuit5M soc-LiveJournal1 wikipedia-20070206
+

A
llS

im
pl

e

+
A

llO
pt

s

+
A

llS
im

pl
e

+
A

llO
pt

s

Projected Actual

+
A

llS
im

pl
e

+
A

llO
pt

s

+
A

llS
im

pl
e

+
A

llO
pt

s

Projected Actual

+
A

llS
im

pl
e

+
A

llO
pt

s

+
A

llS
im

pl
e

+
A

llO
pt

s

Projected Actual

+
A

llS
im

pl
e

+
A

llO
pt

s

+
A

llS
im

pl
e

+
A

llO
pt

s

Projected Actual

+
A

llS
im

pl
e

+
A

llO
pt

s

+
A

llS
im

pl
e

+
A

llO
pt

s

Projected Actual

+
A

llS
im

pl
e

+
A

llO
pt

s

+
A

llS
im

pl
e

+
A

llO
pt

s

Projected Actual

+
A

llS
im

pl
e

+
A

llO
pt

s

+
A

llS
im

pl
e

+
A

llO
pt

s

Projected Actual

+
A

llS
im

pl
e

+
A

llO
pt

s

+
A

llS
im

pl
e

+
A

llO
pt

s

Projected Actual

+
A

llS
im

pl
e

+
A

llO
pt

s

+
A

llS
im

pl
e

+
A

llO
pt

s

Projected Actual

+
A

llS
im

pl
e

+
A

llO
pt

s

+
A

llS
im

pl
e

+
A

llO
pt

s

Projected Actual
+

A
llS

im
pl

e

+
A

llO
pt

s

+
A

llS
im

pl
e

+
A

llO
pt

s

Projected Actual

+
A

llS
im

pl
e

+
A

llO
pt

s

+
A

llS
im

pl
e

+
A

llO
pt

s

Projected Actual

+
A

llS
im

pl
e

+
A

llO
pt

s

+
A

llS
im

pl
e

+
A

llO
pt

s

Projected Actual

+
A

llS
im

pl
e

+
A

llO
pt

s

+
A

llS
im

pl
e

+
A

llO
pt

s

Projected Actual

+
A

llS
im

pl
e

+
A

llO
pt

s

+
A

llS
im

pl
e

+
A

llO
pt

s

Projected Actual

+
A

llS
im

pl
e

+
A

llO
pt

s

+
A

llS
im

pl
e

+
A

llO
pt

s

Projected Actual

+
A

llS
im

pl
e

+
A

llO
pt

s

+
A

llS
im

pl
e

+
A

llO
pt

s

Projected Actual

+
A

llS
im

pl
e

+
A

llO
pt

s

+
A

llS
im

pl
e

+
A

llO
pt

s

Projected Actual

0

2

4

6

0
2
4
6

0

2

4

0

2

4

6

0

2

4

6

0

2

4

0
1
2
3
4

0

2

4

6

0

2

4

6

0.0
2.5
5.0
7.5

0

2

4

0

2

4

0
1
2
3

0
2
4
6
8

0.0
0.5
1.0
1.5
2.0

0

2

4

6

0.0
0.5
1.0
1.5
2.0

0
2
4
6
8

S
pe

ed
up

 o
ve

r
B

as
el

in
e

V
ersion

E
C

cuG
raph

Speedup of Combined Optimizations: Projected vs Actual

Fig. 4: Projected (multiplicative) speedup of optimizations in concert versus empirically-measured combined speedup.

in Figures 2 and 3, as the +AllSimple and +AllOpts bars.
Conceptually, +Restrict and +GroupSize should simplify hard-
ware, by obviating some memory- and thread-safety circuitry,
respectively. Conversely, +Unroll4 and +HybridIsect utilize
increased area and complexity to improve pipeline depth and
reduce asymptotic costs. When combined they could either:

• (worst case) undermine each other’s performance gains,
resulting in reduced speedup or slowdown

• (acceptable) improve performance, but by less than the
product of their individual speedups

• (best case) synergize to exceed their product
To differentiate outcomes, we began by projecting the

expected maximum “acceptable” speedup by multiplying the
speedups from each of the optimizations that compose the two
combined variants. These are plotted against the empirically-
measured results for the 18 input graphs in Figure 4. Our
EC code was able to strictly outperform the projected
speedup in all cases, encouraging an “all of the above”
approach to HLS optimization. The observed speedups of the
cuGraph port were muddier9; some outperformed and some
underperformed, but only three trials actually lost a marginal
amount of speedup.10 For all four optimizations in concert, the
minimum combined speedups are: EC kmer A2a at 2.32× and
cuGraph delaunay n24 at 1.23×; the maximums are: EC sc-
msdoor at 9.50× and cuGraph GL7d19 at 2.87×.

VII. FUTURE WORK

The increasing use of FPGAs as general-purpose accelerator
devices, combined with the growth of vendor and research
HLS environments present an exciting opportunity to apply
modern software development techniques to the design of flex-
ible and power-efficient hardware platforms. Specific to edge-
connected JS, opportunities for extension include (1) man-
ual vectorization and/or compute unit replication to improve

9AllOpts cuGraph datapoints for stokes and HV15R are omitted due to
spurious over- or under-counting of the intersection term for one direction of
≤ 10 out of the 100Ms of bidirectional edges. Neither different synthesis
seed values nor alternate Stratix 10s on the Intel Devcloud eliminated the
nondeterminism, which remains for future study.

10sc-msdoor (+AllOpt=1.27× vs +Restrict=1.30×), delau-
nay n24 (+AllSimple=1.15× vs +Restrict=1.22×), and kmer A2a
(+AllSimple=1.69× vs +Restrict=1.70×)

parallelism, (2) task-parallel approaches similar to [32], (3)
”binning” JS pairs to separate concurrent hardware pipelines,
inspired by [29], (4) caching techniques to improve pipeline
performance, (5) fixed-precision/integer-based refactoring, and
(6) incorporating alternative 2-way intersection algorithms.
To contribute to the HLS-based graph processing space, we
can implement TC and k-truss search to compete in the
Static Graph Challenge [26], including possibly translating
and contrasting implementations from cuGraph. Finally, SYCL
provides software portability to GPU and CPU, promoting
multi-device performance portability studies.

VIII. CONCLUSION

In this work, we characterize the effectiveness of a SYCL-
based HLS workflow for FPGA computing via the study of
two implementations of edge-connected Jaccard similarity:
a de novo edge-centric parallelization and a hand-translated
GPU-centric pipeline. HLS-based approaches complement tra-
ditional RTL-based workflows by accelerating software design.
Single-source SYCL leverages modern C++ to simplify the
HLS experience versus prior OpenCL-based solutions.

The development efficiency of SYCL promoted rapid ex-
ploration of the optimization space. Seven variants of the two
implementations are synthesized and evaluated on Intel Stratix
10 FPGA hardware, to explore the effect of four optimizations,
both in isolation and in concert. We have demonstrated greater
than multiplicative speedups of up to 9.5× when multiple op-
timizations are combined. This effect is consistently observed
for our de novo edge-centric implementation on eighteen
graphs of up to 516 million edges, across an extreme range
of graph densities and irregularities.

ACKNOWLEDGEMENTS

The work detailed herein has been supported in part by NSF
I/UCRC CNS-1822080 via the NSF Center for Space, High-
performance, and Resilient Computing (SHREC). The authors
are grateful for access to the Intel Devcloud’s Stratix 10s for
cross-examination of some results.

HPEC 2022 Waltham, MA

REFERENCES

[1] M. Zhang and Y. Chen, “Link prediction based on graph neural
networks,” in Proceedings of the 32nd International Conference on
Neural Information Processing Systems, ser. NIPS’18. Red Hook, NY,
USA: Curran Associates Inc., 2018, p. 5171–5181. [Online]. Available:
https://proceedings.neurips.cc/paper/2018/file/53f0d7c537d99b3824f0f9
9d62ea2428-Paper.pdf

[2] P. Jaccard, “The distribution of the flora in the alpine zone.1,” New
Phytologist, vol. 11, no. 2, pp. 37–50, 1912. [Online]. Available:
https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1912.t
b05611.x

[3] M. Besta, R. Kanakagiri, H. Mustafa, M. Karasikov, G. Rätsch, T. Hoe-
fler, and E. Solomonik, “Communication-efficient jaccard similarity
for high-performance distributed genome comparisons,” in 2020 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2020, pp. 1122–1132.

[4] E. Valari and A. N. Papadopoulos, “Continuous similarity computation
over streaming graphs,” in Machine Learning and Knowledge Discovery
in Databases, H. Blockeel, K. Kersting, S. Nijssen, and F. Železný, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 638–653.

[5] S. E. Schaeffer, “Graph clustering,” Computer Science Review,
vol. 1, no. 1, pp. 27–64, 2007. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1574013707000020

[6] cugraph - rapids graph analytics library. GitHub. [Online]. Available:
https://github.com/rapidsai/cugraph

[7] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: A high-performance graph processing library on the gpu,”
in Proceedings of the 21st ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, ser. PPoPP ’16, vol. 51, no. 8.
New York, NY, USA: Association for Computing Machinery, nov 2016,
pp. 1–12. [Online]. Available: https://doi.org/10.1145/2851141.2851145

[8] S. Zhou, R. Kannan, V. K. Prasanna, G. Seetharaman, and Q. Wu,
“Hitgraph: High-throughput graph processing framework on fpga,” IEEE
Transactions on Parallel and Distributed Systems, vol. 30, no. 10, pp.
2249–2264, 2019.

[9] Cuda toolkit. Nvidia. [Online]. Available: https://developer.nvidia.com
/cuda-toolkit

[10] Khronos OpenCL Working Group, The OpenCL Specification, Khronos
Group Std., Rev. 3.0.11. [Online]. Available: https://registry.khronos.o
rg/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf

[11] ——, The OpenCL C Specification, Khronos Group Std., Rev. 3.0.11.
[Online]. Available: https://registry.khronos.org/OpenCL/specs/3.0-unif
ied/pdf/OpenCL C.pdf

[12] The Khronos SYCL Working Group, SYCL Specification, Khronos
Group Std., Rev. Version 1.2.1 Revision: 7, Apr. 2020. [Online].
Available: https://registry.khronos.org/SYCL/specs/sycl-1.2.1.pdf

[13] ——, SYCL 2020 Specification (revision 5), Khronos Group Std.
[Online]. Available: https://registry.khronos.org/SYCL/specs/sycl-2020/
pdf/sycl-2020.pdf

[14] Intel oneapi dpc++/c++ compiler. Intel. [Online]. Available: https://www.
intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html

[15] (2022) triSYCL. [Online]. Available: https://github.com/triSYCL/triSY
CL

[16] J. Malicevic, B. Lepers, and W. Zwaenepoel, “Everything you always
wanted to know about multicore graph processing but were afraid to
ask,” in 2017 USENIX Annual Technical Conference (USENIX ATC
17). Santa Clara, CA: USENIX Association, Jul. 2017, pp. 631–643.
[Online]. Available: https://www.usenix.org/conference/atc17/technical-
sessions/presentation/malicevic

[17] R. R. McCune, T. Weninger, and G. Madey, “Thinking like a vertex:
A survey of vertex-centric frameworks for large-scale distributed graph
processing,” ACM Comput. Surv., vol. 48, no. 2, oct 2015. [Online].
Available: https://doi-org.ezproxy.lib.vt.edu/10.1145/2818185

[18] B. Ding and A. C. König, “Fast set intersection in memory,” Proc.
VLDB Endow., vol. 4, no. 4, p. 255–266, jan 2011. [Online]. Available:
https://doi-org.ezproxy.lib.vt.edu/10.14778/1938545.1938550

[19] H. Anzt and J. Dongarra, “A jaccard weights kernel leveraging indepen-
dent thread scheduling on gpus,” in 2018 30th International Symposium
on Computer Architecture and High Performance Computing (SBAC-
PAD), 2018, pp. 229–232.

[20] Y. R. Qu and V. K. Prasanna, “Fast online set intersection for network
processing on fpga,” IEEE Transactions on Parallel and Distributed
Systems, vol. 27, no. 11, pp. 3214–3225, Nov 2016.

[21] S. Shi, Y. Qi, and Q. Wang, “Accelerating intersection computation in
frequent itemset mining with fpga,” in 2013 IEEE 10th International
Conference on High Performance Computing and Communications &
2013 IEEE International Conference on Embedded and Ubiquitous
Computing, Nov 2013, pp. 659–665.

[22] L. Sun, H. Le, and V. K. Prasanna, “Optimizing decomposition-based
packet classification implementation on fpgas,” in 2011 International
Conference on Reconfigurable Computing and FPGAs, Nov 2011, pp.
170–175.

[23] M. Besta, R. Kanakagiri, G. Kwasniewski, R. Ausavarungnirun,
J. Beránek, K. Kanellopoulos, K. Janda, Z. Vonarburg-Shmaria,
L. Gianinazzi, I. Stefan, J. G. Luna, J. Golinowski, M. Copik, L. Kapp-
Schwoerer, S. Di Girolamo, N. Blach, M. Konieczny, O. Mutlu, and
T. Hoefler, “Sisa: Set-centric instruction set architecture for graph
mining on processing-in-memory systems,” in MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO
’21. New York, NY, USA: Association for Computing Machinery,
2021, p. 282–297. [Online]. Available: https://doi-org.ezproxy.lib.vt.e
du/10.1145/3466752.3480133

[24] Heirman, Wim and Carlson, Trevor and Eeckhout, Lieven, “Sniper:
scalable and accurate parallel multi-core simulation,” in 8th International
Summer School on Advanced Computer Architecture and Compilation
for High-Performance and Embedded Systems, Abstracts. Fiuggi,
Italy: High-Performance and Embedded Architecture and Compilation
Network of Excellence (HiPEAC), 2012, pp. 91–94.

[25] X. Hu, Y. Tao, and C.-W. Chung, “I/o-efficient algorithms on triangle
listing and counting,” ACM Trans. Database Syst., vol. 39, no. 4, dec
2015. [Online]. Available: https://doi-org.ezproxy.lib.vt.edu/10.1145/2
691190.2691193

[26] S. Samsi, V. Gadepally, M. Hurley, M. Jones, E. Kao, S. Mohindra,
P. Monticciolo, A. Reuther, S. Smith, W. Song, D. Staheli, and J. Kepner,
“Static graph challenge: Subgraph isomorphism,” in 2017 IEEE High
Performance Extreme Computing Conference (HPEC), Sep. 2017, pp.
1–6.

[27] S. Huang, M. El-Hadedy, C. Hao, Q. Li, V. S. Mailthody, K. Date,
J. Xiong, D. Chen, R. Nagi, and W.-m. Hwu, “Triangle counting
and truss decomposition using fpga,” in 2018 IEEE High Performance
extreme Computing Conference (HPEC), Sep. 2018, pp. 1–7.

[28] K. Date, K. Feng, R. Nagi, J. Xiong, N. S. Kim, and W.-M. Hwu,
“Collaborative (cpu + gpu) algorithms for triangle counting and truss
decomposition on the minsky architecture: Static graph challenge:
Subgraph isomorphism,” in 2017 IEEE High Performance Extreme
Computing Conference (HPEC), Sep. 2017, pp. 1–7.

[29] O. Green, J. Fox, A. Watkins, A. Tripathy, K. Gabert, E. Kim, X. An,
K. Aatish, and D. A. Bader, “Logarithmic radix binning and vectorized
triangle counting,” in 2018 IEEE High Performance extreme Computing
Conference (HPEC), Sep. 2018, pp. 1–7.

[30] C. Pearson, M. Almasri, O. Anjum, V. S. Mailthody, Z. Qureshi, R. Nagi,
J. Xiong, and W.-m. Hwu, “Update on triangle counting on gpu,” in 2019
IEEE High Performance Extreme Computing Conference (HPEC), Sep.
2019, pp. 1–7.

[31] V. G. Castellana, M. Minutoli, A. Morari, A. Tumeo, M. Lattuada, and
F. Ferrandi, “High level synthesis of rdf queries for graph analytics,” in
2015 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), Nov 2015, pp. 323–330.

[32] M. Minutoli, V. G. Castellana, N. Saporetti, S. Devecchi, M. Lattuada,
P. Fezzardi, A. Tumeo, and F. Ferrandi, “Svelto: High-level synthesis of
multi-threaded accelerators for graph analytics,” IEEE Transactions on
Computers, vol. 71, no. 3, pp. 520–533, March 2022.

[33] C. Pilato and F. Ferrandi. Bambu: A free framework for thehigh-
level synthesis of complex applications. [Online]. Available: https:
//panda.dei.polimi.it/

[34] G. Weisz, J. Melber, Y. Wang, K. Fleming, E. Nurvitadhi, and J. C. Hoe,
“A study of pointer-chasing performance on shared-memory processor-
fpga systems,” in Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’16. New
York, NY, USA: Association for Computing Machinery, 2016, p.
264–273. [Online]. Available: https://doi.org/10.1145/2847263.2847269

[35] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-
centric graph processing using streaming partitions,” in Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, ser. SOSP ’13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 472–488. [Online]. Available:
https://doi.org/10.1145/2517349.2522740

HPEC 2022 Waltham, MA

[36] K. Meng, J. Li, G. Tan, and N. Sun, “A pattern based algorithmic
autotuner for graph processing on gpus,” in Proceedings of the 24th
Symposium on Principles and Practice of Parallel Programming,
ser. PPoPP ’19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 201–213. [Online]. Available: https://doi.org/10.1
145/3293883.3295716

[37] Y. Wang, Y. Pan, A. Davidson, Y. Wu, C. Yang, L. Wang, M. Osama,
C. Yuan, W. Liu, A. T. Riffel, and J. D. Owens, “Gunrock: Gpu graph
analytics,” ACM Trans. Parallel Comput., vol. 4, no. 1, Aug. 2017.
[Online]. Available: https://doi-org.ezproxy.lib.vt.edu/10.1145/3108140

[38] Y. Jia, V. Lu, J. Hoberock, M. Garland, and J. C. Hart, “Chapter
2 - edge v. node parallelism for graph centrality metrics,” in GPU
Computing Gems Jade Edition, ser. Applications of GPU Computing
Series, W. mei W. Hwu, Ed. Boston: Morgan Kaufmann, 2012, pp.
15–28. [Online]. Available: https://www.sciencedirect.com/science/arti
cle/pii/B9780123859631000022

[39] X. Chen, R. Bajaj, Y. Chen, J. He, B. He, W. Wong, and D. Chen, “On-
The-Fly Parallel Data Shuffling for Graph Processing on OpenCL-Based
FPGAs,” in 2019 29th International Conference on Field Programmable
Logic and Applications (FPL), Sep. 2019, pp. 67–73.

[40] Rapids open gpu data science. Nvidia. [Online]. Available: https:
//rapids.ai/

[41] A. Fender, N. Emad, S. Petiton, J. Eaton, and M. Naumov, “Parallel
jaccard and related graph clustering techniques,” in Proceedings
of the 8th Workshop on Latest Advances in Scalable Algorithms
for Large-Scale Systems, ser. ScalA ’17. New York, NY, USA:
Association for Computing Machinery, 2017. [Online]. Available:
https://doi-org.ezproxy.lib.vt.edu/10.1145/3148226.3148231

[42] N. Bell and J. Hoberock, “Chapter 26 - thrust: A productivity-oriented
library for cuda,” in GPU Computing Gems Jade Edition, ser.
Applications of GPU Computing Series, W. mei W. Hwu, Ed. Boston:

Morgan Kaufmann, 2012, pp. 359–371. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B9780123859631000265

[43] Intel fpga add-on for oneapi base toolkit. Intel. [Online]. Available: https:
//www.intel.com/content/www/us/en/developer/tools/oneapi/fpga.html

[44] Intel programmable acceleration card (pac) with intel stratix 10 sx
fpga. Intel. [Online]. Available: https://www.intel.com/content/dam/su
pport/us/en/programmable/support-resources/bulk-container/pdfs/literat
ure/po/product-brief-pac-with-stratix-10-sx.pdf

[45] oneapi: A new era of heterogeneous computing. Intel. [Online].
Available: https://www.intel.com/content/www/us/en/developer/tools/on
eapi/overview.html

[46] (2022, Apr.) Fpga optimization guide for intel oneapi toolkits. Intel.
[Online]. Available: https://www.intel.com/content/www/us/en/develop/
documentation/oneapi-fpga-optimization-guide/top.html

[47] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, dec 2011.
[Online]. Available: https://doi.org/10.1145/2049662.2049663

[48] S. P. Kolodziej, M. Aznaveh, M. Bullock, J. David, T. A. Davis,
M. Henderson, Y. Hu, and R. Sandstrom, “The suitesparse matrix
collection website interface,” Journal of Open Source Software, vol. 4,
no. 35, p. 1244, 2019. [Online]. Available: https://doi.org/10.21105/jos
s.01244

[49] M. Daga, T. Scogland, and W.-c. Feng, “Architecture-aware mapping
and optimization on a 1600-core gpu,” in 2011 IEEE 17th International
Conference on Parallel and Distributed Systems, Dec 2011, pp. 316–323.

[50] C. del Mundo and W.-c. Feng, “Towards a performance-portable fft
library for heterogeneous computing,” in Proceedings of the 11th ACM
Conference on Computing Frontiers, ser. CF ’14. New York, NY,
USA: Association for Computing Machinery, 2014. [Online]. Available:
https://doi.org/10.1145/2597917.2597943

HPEC 2022 Waltham, MA

