
A
a

R
W
a

b

c

d

e

f

a

A
R
R
A

B
M
G
I

1

[
o
a
t
s
g
t
a
p
c

(
(

1
d

Journal of Molecular Graphics and Modelling 28 (2010) 904–910

Contents lists available at ScienceDirect

Journal of Molecular Graphics and Modelling

journa l homepage: www.e lsev ier .com/ locate /JMGM

ccelerating electrostatic surface potential calculation with multi-scale
pproximation on graphics processing units

amu Anandakrishnana,+, Tom R.W. Scoglandb,+, Andrew T. Fenleyc, John C. Gordond,
u-chun Fenge,∗, Alexey V. Onufriev f,∗

Department of Computer Science, Virginia Tech, 2050 Torgersen Hall (0106), Blacksburg, VA 24061, United States
Department of Computer Science, Virginia Tech, 2209 KnowledgeWorks II Building (0902), Blacksburg, VA 24060, United States
Department of Physics, Virginia Tech, 2050 Torgersen Hall (0106), Blacksburg, VA 24061, United States
Microsoft, 1 Microsoft Way, Redmond, WA 98052, United States
Departments of Computer Science and Electrical & Computer Engineering, Virginia Tech, 2209 KnowledgeWorks II Building (0902), Blacksburg, VA 24060, United States
Departments of Computer Science and Physics, Virginia Tech, 2050 Torgersen Hall (0106), Blacksburg, VA 24061, United States

r t i c l e i n f o

rticle history:
eceived 14 November 2009
eceived in revised form 3 April 2010
ccepted 7 April 2010

iomolecular electrostatics
ulti-scale modeling
raphical processing unit (GPU)

a b s t r a c t

Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively
for studying biomolecular function. However, determining the surface potential for large biomolecules
on a typical desktop computer can take days or longer using currently available tools and methods.
Two commonly used techniques to speed-up these types of electrostatic computations are approxima-
tions based on multi-scale coarse-graining and parallelization across multiple processors. This paper
demonstrates that for the computation of electrostatic surface potential, these two techniques can be
combined to deliver significantly greater speed-up than either one separately, something that is in
general not always possible. Specifically, the electrostatic potential computation, using an analytical lin-
mplicit solvent model
earized Poisson–Boltzmann (ALPB) method, is approximated using the hierarchical charge partitioning
(HCP) multi-scale method, and parallelized on an ATI Radeon 4870 graphical processing unit (GPU). The
implementation delivers a combined 934-fold speed-up for a 476,040 atom viral capsid, compared to an
equivalent non-parallel implementation on an Intel E6550 CPU without the approximation. This speed-
up is significantly greater than the 42-fold speed-up for the HCP approximation alone or the 182-fold

ne.
speed-up for the GPU alo

. Introduction

Electrostatic interactions are critical for biomolecular function.
1–12] At the same time, the long-range nature of these interactions
ften makes their estimation a computational bottleneck in current
tomistic molecular modeling [13,14]. Approaches to speed-up
hese computations can generally (though not always cleanly) be
ubdivided into two very broad categories: (1) those that seek to
ain speed by making computationally effective approximations to

he underlying physical model and (2) those that do not affect the
ccuracy of the physical model but strive to accelerate the com-
utation at the software or hardware levels. Examples in the first
ategory include the spherical cut-off method [15,16], the fast mul-

∗ Corresponding authors.
E-mail addresses: ramu@cs.vt.edu (R. Anandakrishnan), tom.scogland@vt.edu

T.R.W. Scogland), afenley@vt.edu (A.T. Fenley), john.gordon@microsoft.com
J.C. Gordon), feng@cs.vt.edu (W.-c. Feng), alexey@cs.vt.edu (A.V. Onufriev).

+ First two authors contributed equally to this work.

093-3263/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
oi:10.1016/j.jmgm.2010.04.001
© 2010 Elsevier Inc. All rights reserved.

tipole approximation [17–19], and the current “industry standard”
for explicit solvent simulations—the particle mesh Ewald (PME)
method [20–23]. Among the most prominent practical approaches
in the second category is parallel computation on multiple pro-
cessing cores. Each of these approaches has its advantages and
limitations [24,25]. For example, the PME method can be very accu-
rate but requires an artificial periodicity to be imposed on the
molecular system. In addition, the method is currently not suit-
able for implicit solvent simulations [26]. Parallel computation on
multiple processing cores may lead to spectacular speed-ups for
certain types of problems [27], but not for others—for example,
specific PME implementations may not scale all that well on large
parallel machines. Furthermore, access to such expensive resources
may be limited.

Within either of the above general categories of approaches,

estimating the long-range electrostatic interactions is still compu-
tationally intensive. Even a single state computation which involves
long-range electrostatics, may require an extraordinary amount
of computational resources for larger structures. For example, a
2006 study of electrostatic properties of viral capsids [28] using

http://www.sciencedirect.com/science/journal/10933263
http://www.elsevier.com/locate/JMGM
mailto:ramu@cs.vt.edu
mailto:tom.scogland@vt.edu
mailto:afenley@vt.edu
mailto:john.gordon@microsoft.com
mailto:feng@cs.vt.edu
mailto:alexey@cs.vt.edu
dx.doi.org/10.1016/j.jmgm.2010.04.001

ular Graphics and Modelling 28 (2010) 904–910 905

t
c
r

w
m

a
c
g
r
h
n
i
p
u

o
H
r
c
t
i
s
e
W
a
s
p
$
m
p
R
a
p
e
t
l
[
p
t
a
p
p
t
a
t

r
p
m
c
s
m
a
i
a
s
o

s

p
t

Fig. 1. Definition of the geometric parameters that enter Eq. (1) used to compute
the electrostatic potential �i due to a single charge located inside an arbitrary
biomolecule (in the absence of mobile ions). Here di is the distance from the source
charge qi to the point of observation where �i needs to be computed. The molec-
ular surface (solid line) separates the low dielectric interior (�in blue region) from
the high dielectric solvent space, �out. We project the molecular surface defined by
pre-computed vertex points a small distance, p, outwards into the solvent space
along the surface normals. The projected surface is shown as the dashed line. The
so-called effective electrostatic size of the molecule, A, characterizes its global shape
and is computed analytically [46]. The distance from the point of observation to the
R. Anandakrishnan et al. / Journal of Molec

he adaptive Poisson–Boltzmann solver [29], required 1000 pro-
essors on the Blue Horizon and Data Star supercomputers for each
un.

Computational requirements for modern molecular dynamics,
hich may require millions of such single state estimates, are even
ore demanding. [30–34].
In the past, in addition to algorithmic advances, scientists could

lso rely on Moore’s Law [35] to continually accelerate these
omputations.1 The rapid hardware advances from Moore’s Law
ave software a “free ride” to better performance, but this free
ide is now over. With clock speeds stalling out and computational
orsepower instead increasing due to the rapid doubling of the
umber of cores per processor, serial computing is now moribund

n many areas of natural science, and the vision for parallel com-
uting, which started over 40 years ago, is a revolution that is now
pon us.

The traditional approach to parallel computing has made use
f large-scale supercomputers, oftentimes referred to as big iron.
owever, such supercomputers present significant challenges with

espect to ease of access and use, and cost, e.g., the fastest super-
omputer in the world in 2009 cost $133M to build [36]. In contrast,
he growing proliferation of many-core processors, like the graph-
cs processing unit (GPU) on a video card, promises to deliver
upercomputing horsepower to the desktop while simultaneously
nhancing ease of access as well as dramatically reducing cost.
ith the peak floating-point performance of a GPU now at a ter-

flop (1012 floating-point operations per second), the GPU delivers
upercomputing in a small and economical package. For exam-
le, a high-end server with the latest GPU card costs a mere
1,500, resulting in an astounding performance-price ratio of 667
egaflops per dollar and performance–space ratio of 500 teraflops

er square foot. In contrast, the world’s fastest supercomputer,
oadrunner, has a peak of 1457 teraflops at a cost of $133M for
mere performance-price ratio of 11 megaflops per dollar and

erformance–space ratio of 243 teraflops per square foot. How-
ver, the current programming model for GPUs is only amenable
o highly data-parallel applications; efficient GPU mappings for
ess data-parallel applications are extraordinarily difficult to realize
37]. Unlike supercomputer clusters consisting of general-purpose
rocessors and direct support for interprocessor communication,
he GPU has limited interprocessor communication capabilities
nd limited data cache. Therefore the GPU is most effective when
erforming stream processing, i.e., performing a similar set of com-
utations against a large set of data. This paper discusses the
echniques used to address limitations of the GPU while taking
dvantage of its multiprocessing capabilities in the context of elec-
rostatic computations.

A number of different biomolecular modeling applications have
ecently been implemented on GPUs [38–40], including the com-
utation of long-range electrostatic potential in the context of
olecular dynamics [41–44]. Our implementation focuses on the

omputation of electrostatic surface potential, using a realistic
olvation model, in order to demonstrate that multi-scale approxi-
ation schemes, such as the hierarchical charge partitioning (HCP)

lgorithm [25], can be combined with the GPU to achieve signif-
cantly greater speed-up than the HCP approximation or the GPU
lone. Specifically, we algorithmically map and transform electro-

tatic potential calculation [45] along with the HCP approximation
nto the GPU.

The remainder of this paper is organized as follows. In the next
ection, we briefly describe the specific application considered here

1 Moore’s Law states that the number of transistors that can be inexpensively
laced on an integrated circuit doubles every 24 months. This doubling in transistors
ypically translated into a corresponding performance improvement.
“center” is then defined as r = A + p.(For interpretation of the references to color in
this figure legend, the reader is referred to the web version of the article.).

(i.e., computation of molecular surface potential), the HCP, and the
GPU implementation. Then we examine the speed and accuracy of
this implementation for a set of representative biomolecular struc-
tures. In conclusion, we summarize our findings and discuss the
future potential for the approach presented here.

2. Methods

This section describes the specific methods used to compute
long-range interactions and an implementation of the entire com-
putational process on the GPU. Specifically, we investigate the
extent to which the speed-up resulting from approximating the
electrostatic potential via a multi-scale approach (HCP, described
below) can be combined with the speed-up resulting from mapping
and transforming the electrostatic potential calculation described
below, onto the GPU.

The implementation of GEM with one level of HCP for the
CPU, with full graphics functionality, can be downloaded from
http://people.cs.vt.edu/∼onufriev/software. The platform-specific
computational core for running GEM with one level of HCP on the
GPU, as described below, is available from the authors upon request.

2.1. Computation of biomolecular electrostatic potential

All of the electrostatic calculations presented in this paper
were done using the analytic, linearized Poisson–Boltzmann (ALPB)
model [45–47] as implemented in the GEM package. The functional
form of the ALPB electrostatic potential �i varies depending on the
region of space where the potential is computed; two of the regions
– the interior of the molecule and the solvent space – are depicted
in Fig. 1 as the two dielectrics. The specific functional forms of �i

for all the regions are given in Gordon et al. [45]. Eq. (1) is the
simplest solution for the calculation of physically admissible �i any-

where in the solvent, including the molecular surface, see Fig. 1.
The constant ˛ = 0.580127, in Eq. (1) minimizes the error in the
solvation energy of a random charge distribution inside a sphere
[48]. Adding the effects of salt in the Debye-Hückel (linear) limit is
outlined in Gordon et al. [45]. The potential at any single point in

http://people.cs.vt.edu/~onufriev/software

906 R. Anandakrishnan et al. / Journal of Molecular G

Fig. 2. Illustration of the hierarchical charge partitioning (HCP) approximation. In
this illustration a biomolecular structure is partitioned into its constituent groups,
each of which consists of multiple atoms. The charge distribution of each group is
a
a
a

s
p
t
c
d
e
b

�

H
i
s
f
i

2

e
s
e
o
m
c
a
s
s
m
w
a
p
s
i
s
t
e
t

pproximated by a single charge. The threshold distance determines when to use the
pproximate charge distribution in electrostatic computations, instead of individual
tomic charges.

pace, for example a vertex point on the molecular surface, is com-
uted as a sum of contributions from individual atomic charges in
he solute. Such a calculation can be done without the need to also
ompute the potential at any other point(s) – a computational free-
om that the numerical Poisson–Boltzmann solvers are missing. An
xtensive analysis of the accuracy of the ALPB model in computing
iomolecular electrostatic potential is presented elsewhere [45].

solvent
i = qi

�out

1
(1 + ˛(�in/�out))

[
(1 + ˛)

di
− ˛(1 − (�in/�out))

r

]
(1)

To assess the speed-up resulting from the combination of the
CP and the GPU, we selected the GEM software package [45]. GEM

s an open-source implementation of the ALPB model. GEM was
elected as a platform for experimentation, in this case, due to the
acile nature of the algorithm and the flexibility of the platform for
nnovation and modification to rapidly generate prototypes.

.2. The hierarchical charge partitioning (HCP) approximation

The hierarchical charge partitioning (HCP) approximation [25]
xploits the natural partitioning of biomolecules into constituent
tructural components in order to speed-up the computation of
lectrostatic interactions with limited and controllable impact
n accuracy. Biomolecules can be systematically partitioned into
ultiple molecular complexes, which consist of multiple polymer

hains or subunits, which in turn are made up of multiple amino
cid or nucleotide groups. These components form a hierarchical
et with, for example, complexes consisting of multiple subunits,
ubunits consisting of multiple groups, and groups consisting of
ultiple atoms. Atoms represent the lowest level in the hierarchy
hile the highest level depends on the problem. Briefly, HCP works

s follows. As illustrated in Fig. 2, the charge distribution of com-
onents, other than at the atomic level, is approximated by a small
et of point charges. The electrostatic effect of distant components

s calculated using the smaller set of point charges, while the full
et of atomic charges is used for computing electrostatic interac-
ions within nearby components. The distribution of charges for
ach component used in the computation varies depending on dis-
ance from the point in question: the farther away the component,
raphics and Modelling 28 (2010) 904–910

the fewer charges are used to represent the component. The actual
speed-up from using HCP depends on the specific hierarchical orga-
nization of the biomolecular structure under consideration. Under
conditions consistent with the hierarchical organization of realis-
tic biomolecular structures, the HCP algorithm scales as O(N log N),
where N is the number of atoms in the structure. For large struc-
tures, the HCP can be several orders of magnitude faster than the
exact O(N2) all-atom computation. A detailed description of the
HCP algorithm can be found in Anandakrishnan and Onufriev [25].
For the purpose of the analysis presented in this work, we use the
1-charge approximation, where the charge distribution of compo-
nents is approximated by a single charge. Increasing the number
of charges used in the approximation would increase accuracy and
computational cost. The HCP can also use multiple hierarchical lev-
els of partitioning of biomolecular structures, as described above.
However, in the current work we use the first level of partitioning
for the HCP algorithms. Increasing the number of levels used by the
HCP algorithm reduces the computational cost further.

2.3. Mapping GEM and HCP onto the GPU

The initial exploration of mapping GEM and HCP to the GPU was
conducted using the ATI Stream Software Development Kit (SDK)
from AMD. The SDK provides a high-level programming language
called ATI Brook+ [49] to ease the development of applications for
the GPU, and it includes a compiler and run-time layer that handles
the low-level details necessary to run computations on the GPU.

Brook+ is based on the Brook stream computing language from
Stanford [50], which in turn is an extension of standard ANSI C.
Brook+ is specifically optimized to compile and run on ATI stream-
capable GPUs through the AMD/ATI Compute Abstraction Layer
(CAL). Whereas CAL presents a low-level programming interface,
Brook+ provides a high-level programming interface, thus easing
the development of GPU applications.

The calculation of electrostatic potential via the analytical for-
mula implemented in GEM, mentioned above, can be decomposed
as a data-parallel computation across all points on the surface, or
vertices, at which the electrostatic potential is calculated. In addi-
tion, the potential at each vertex can be computed as a reduction
(or more specifically, a sum) of a set of independent calculations on
each atom, thus allowing for multiple dimensions of parallelism.

The basic mapping of GEM to the GPU treated the calculation
of potential at each vertex as an individual unit of execution, and
thus, computed one vertex per GPU thread. In the initial version,
the electrostatic surface potential at all the vertices was computed
with a single kernel launch, which is equivalent to an offloaded
function call to the GPU device.

We found that while this approach worked, it did not scale.
That is, as the number of threads increased beyond a certain point
(in this case, beyond 25,000–30,000 threads), so did the over-
head of scheduling them, which in turn, degraded performance.
Specifically, our tests showed that less than 25,000 was a reason-
able number for the ATI Radeon 4870 card; anything more than
30,000 was materially slower despite the reduced number of ker-
nel launches. In light of this, subsequent versions only ran at most
25,000 threads per kernel launch.

While the above mapping was effective, it still retained many
features of the original code that do not translate favorably into
GPU performance. Below we describe additional modifications to
improve the execution of GEM on the GPU.
2.3.1. Data structures
While Brook+ version 1.4 supports structures, it does not sup-

port referencing structure members in an array of structures. As a
result, all the arrays of structures in GEM had to be flattened into
arrays of primitives in order to get the GEM code to even run on

ular G

t
t
f
c
w
f
i

2

d
f
i
d
i
a
t
t
i
s
c
d
G
t

u
p
t
r
t
fi
r
s

s
n
i
m

t
a
t
#
t
c
d

a
u
a
o
p
c
t
v
o

2

m
w
t
i
m
w
m

R. Anandakrishnan et al. / Journal of Molec

he GPU. As much as this change was necessary to enable GEM
o run on the GPU, the change also made sense to do from a per-
ormance standpoint as it aligns the data structures to allow for
oalesced memory accesses. We intend to investigate this further
hen the support for structures in Brook+ improves sufficiently

or us to implement the code with the original structure of the data
ntact.

.3.2. Conditional performance
Conditional statements, particularly conditionals that cause

ivergence (or divergent branches), are a common cause of per-
ormance degradation in GPU programs, as has been documented
n previous work, including the AMD Stream User Guide [51]. Non-
ivergent branching, on the other hand, is generally not mentioned

n connection with performance issues. However, they too can incur
high cost; in the case of GEM, 30% performance degradation on

he GPU and 15% on the CPU. Thus, minimizing conditionals in high
raffic areas of code is long-standing conventional wisdom, which
s often forgotten when working with modern CPUs. (Programmers
ometimes rely on the branch prediction or speculative execution
apabilities of CPUs to deal with potentially excessive use of con-
itionals.) For GPUs, the impact of branching is more severe since
PUs lack branch prediction and speculative execution, and other

echnologies that reduce the cost of branching, as on modern CPUs.
In GEM’s original computational core, most conditionals were

sed to keep the code maintainable, e.g., selecting between code
aths even though they were predetermined by the parameters to
he program. Specifically, there are two input parameters: (1) the
egion in which the potential is computed and (2) the type of poten-
ial to be computed, which determine the execution path through
ve conditionals. For example, two of the conditionals select the
egion being computed, such as the interior of the molecule or the
olvent space shown in Fig. 1.

To remove these conditionals, we created several different ver-
ions of the GEM function and Brook+ kernel, 15 total, each of which
ow contains only the conditionals that must be evaluated on every

nput item individually, cutting the total number of branches in
ost kernels to zero and at the most three.
The specific kernel to execute is now selected by a set of condi-

ionals outside the function/kernel being run and the conditionals
re only invoked once. A total of 2–5 conditionals are in stark con-
rast to what was originally required. The initial version required
atoms × #vertices × #conditionals conditional statements, or for

he viral capsid, 476, 040 × 593, 615 × 5 = 1, 412, 922, 423, 000
onditionals! Thus, we reduced almost one and a half trillion con-
itionals down to five.

Hereafter, we refer to the version of the code with condition-
ls moved outside the kernel as the split version of the code. The
nsplit version uses conditionals in the computational loop so as to
void code replication. While this may be good practice in terms
f readability and maintainability of the code, it adversely impacts
erformance. Compiler techniques or source-to-source translation
ould be used to make this solution more maintainable, but such
echniques are outside the scope of this paper. All CPU and GPU
ersions used in the results section have the conditionals moved
utside the main computational loop, as described above.

.3.3. Hierarchical charge partitioning
To further accelerate the computation and to test the perfor-

ance of GPU-based computation with a multi-scale algorithm,
e incorporated the HCP method described in the previous sec-
ion. The incorporation of the HCP into the GPU-based computation
ntroduced several new issues that had to be addressed. First, the

ulti-scale charge partitioning introduced additional branching
hen the HCP threshold distance was less than the diameter of the
olecule. As a consequence, some amount of divergent branching
raphics and Modelling 28 (2010) 904–910 907

could not be avoided in order to efficiently implementing HCP on
the GPU. It also added several fields of data, and thus arguments,
that did not exist in the non-HCP versions. Due to a limitation in
the number of bytes passable as arguments (i.e., 1024 bytes) using
the current version of Brook+ (i.e., 1.4), we moved the calculation
of many of the arguments from the CPU to the GPU in order to save
space in the argument list.

3. Results and discussion

Wall times from four different implementations of GEM, i.e., the
computation of electrostatic surface potential, were collected: (1)
GEM without HCP, running on a single CPU; (2) GEM with HCP,
running on a single CPU; (3) GEM without HCP but running on the
GPU, and (4) GEM with HCP but running on the GPU. Times were
measured using time-checking calls within the main function in
each implementation, which remained unchanged between ver-
sions. Only the computational kernel was measured, excluding the
file I/O necessary to read and write the data files.

3.1. Experimental set-up

All results were measured on a system with an Intel Core 2
Duo E6550 processor, which contains two computing cores, 2 GB
of DDR2-800 memory, and an ATI Radeon HD 4870 GPU on a PCI-E
x16 interface running 32-bit Ubuntu Linux version 8.10. The GPU
experiments were run with a single CPU process along with a kernel
offloaded to the HD 4870. The CPU experiments were run in a sin-
gle process on one core of the E6550 processor. All times reported
in this section are averages of five runs. The execution times for
the runs proved to be quite consistent, with variances in execu-
tion time at less than 1%. Our base CPU version of GEM represents
the performance attainable by an experienced programmer in C,
short of inserting inline assembly code. SSE acceleration is applied
via compiler optimizations in GCC 4.24, and using arrays of prim-
itives, as discussed earlier. Both of these CPU optimizations keep
the baseline as similar to the GPU implementation as possible. The
GCC compiler-applied SSE optimizations improved performance by
approximately two-fold. All computations were performed with
single-precision floating-point arithmetic, both on the CPU and
GPU. A representative set of six atom-level molecular structures
was used for testing. The structures were selected to span a large
range of sizes. The six structures, their protein databank (PDB) IDs
[52], and sizes are as follows:

(1) H helix of myoglobin, 1MBO, 382 atoms
(2) chain A of calcium binding protein S100B, 1UWO, 1,441 atoms,
(3) chain A of cytochrome CD1 nitrite reductase, 1QKS, 8,542

atoms,
(4) nucleosome core particle, 1KX5, 25,086 atoms,
(5) chaperonin GroEL, 2EU1, 109,802 atoms, and
(6) tobacco ringspot virus capsid, 1A6C, 476,040 atoms.

The atomic coordinates for these structures were obtained from
the protein databank and atomic charges assigned using the H++
system (http://www.cs.vt.edu/biophysics/H++) [53], which uses
the standard continuum solvent methodology [54] to compute pro-
tonation states of ionizable groups. The surface vertex points at
which electrostatic potential is calculated for these structures were

obtained using the program MSMS [55]. MSMS was run with a
probe radius of 1.5 Å and a triangulation density of 3.0 vertices
per Å2 for all structures except the virus capsid, for which, due
to limitations of the MSMS software a probe radius of 3.0 Å and a
triangulation density of 1.0 vertices per Å2 is used.

http://www.cs.vt.edu/biophysics/H++

908 R. Anandakrishnan et al. / Journal of Molecular Graphics and Modelling 28 (2010) 904–910

Table 1
Times, speed-ups, root mean square (RMS) error and relative RMS error of the surface potential calculations performed on the virus capsid structure, averaged over five runs
of each version. Speed-up and error are calculated relative to the CPU version. Relative RMS error is calculated as RMS error divided by average absolute potential.

Version Average time (s) Speed-up over CPU RMS error (kcal/mol/|e|) Relative RMS error

CPU 80690.2 1.00 0 0
CPU with HCP 1442.2 41.68 0.1680 0.0153
GPU 219.2 182.80
GPU with HCP 35.0 933.59

Fig. 3. Acceleration of the electrostatic potential computations resulting from vari-
ous HCP/GPU combinations considered in this work. The red line with triangle data
points shows the speed-up of the potential computation resulting from the use of
the multi-scale approximation HCP alone. The dark blue line with circle data points
corresponds to the same potential computed on the GPU alone, and the light blue
line with square data points represents the combined speed-up of both the HCP and
t
t
s

3

p
n
i
c
4
w
o
s
s
t
s
G
a
g
t
u
b

o
e
C
S
m

s
d

he GPU. The shaded region visually emphasizes the range of structure sizes where
he combined speed-up is greater than either the HCP or GPU speed-up by itself. All
peed-ups are measured relative to the CPU serial version.

.2. Experimental results

We have three main versions of the code which merit com-
arison, see Fig. 3. Each version is compared with the reference
on-HCP serial CPU version of the code. The use of the HCP approx-

mation alone, the red line with triangle data points, speeds up the
alculation from about 2× on the smallest structures to roughly
2× on the viral capsid, relative to the reference. The dark blue line
ith circle data points represents the Brook+ GPU version with all

ptimizations except the HCP applied, and is found to yield sub-
tantially higher speed-up than the HCP alone2, especially for larger
tructures. The light blue line with square data points corresponds
o the use of GPU in combination with the HCP (GPU-HCP). For small
tructures, the stand alone GPU version performs better than the
PU-HCP version. However, beyond structures of the order of 104

toms, the GPU-HCP version is the clear winner in performance
ains. For example, for the largest structure with 476,040 atoms,
he speed-up using the GPU only, without HCP, is 182×, the speed-
p without the GPU, using HCP only, is 42×, and the speed-up using
oth the GPU and HCP is 934× as can be seen in Table 1.

In the same table we present the RMS error as a measure
f accuracy for each implementation. It is worth noting that the

rror introduced by switching from running single precision on the
PU to single precision on the GPU is almost immeasurably small.
ince most computers are multi-core these days, including the test
achine, it is also worth noting that the algorithm scales well across

2 In this work, we consider only the lowest level-1 HCP. Higher levels of “multi-
cale” are achievable within the HCP, see Anandakrishnan and Onufriev [25] for
etails.
0.0001 0.00001
0.1680 0.0153

multiple cores, but since the potential combination of GPU accel-
eration and HCP is the goal of this paper we chose not to include
direct results for multi-core CPUs. It is safe to say however that the
speed-up is near but not exceeding direct speed-up, 1× per core,
or roughly 2× on the test machine, and scaling to as many cores as
there may be in a system.

The combined speed-up using both the GPU and HCP is not fully
multiplicative due to the following two additional branches in the
HCP algorithm. One, for the 1-charge 1-level HCP approximation
implemented here, if the distance to a component is beyond a spec-
ified threshold distance the HCP algorithm treats the component as
a single point-charge, otherwise all atoms within the component
are used in the computation. Two, if the net charge of a component
is zero, no further computations are performed for that component.
However, on the GPU, all threads must execute the same instruc-
tion in each cycle. Therefore, even if a component in a given thread
is beyond the threshold distance or has a zero net charge, and can
complete its computations much faster, the thread can not proceed
until other threads have completed.

The accuracy of the computations was also evaluated. For the
single-point computation considered here the error introduced by
the single precision GPU is much smaller than the error due to the
HCP approximation alone [25].

For example, for the nucleosome the RMS error due to the use
of single precision compared to double precision (both on the CPU
version) was 0.002916 kcal/mol/|e| and and the error introduced
by the GPU compared to the single precision CPU version was
0.000119 kcal/mol/|e|, whereas the error due to the HCP approx-
imation alone was 0.277960 kcal/mol/|e|.

However, this small error could accumulate and grow in appli-
cations involving large numbers of cumulative computations, such
as molecular dynamics simulations. Further analysis would be
required to determine the affect of GPU and HCP errors on such
applications.

4. Conclusions

Electrostatic potential can be an important indicator of
biomolecular function and activity, thus the ability to com-
pute and visualize potential can be a valuable tool for studying
biomolecules. However, for large structures, the estimation of the
surface potential can be computationally demanding, making such
computations inaccessible to desktop PCs and even to large clusters.
One can reduce these computational costs by using coarse-grain
(multi-scale) approximations or by parallelization across multiple
processors, however it is not in general obvious that the two tech-
niques can be successfully combined. We demonstrate here that
for the computation of electrostatic surface potential combining
a multi-scale approximation with parallelization on the GPU can
deliver significantly greater speed-up than either approach sep-

arately. The electrostatic surface potential is computed using the
analytical linearized Poisson–Boltzmann (ALPB) model, which use
a set of simple formulae within the implicit solvent framework,
to compute potential. The hierarchical charge partitioning (HCP)
method is used to speed-up the calculation by using a multi-scale

ular G

a
b
t
m
b

b
a
e
o
u
t
s
b
s
l
u
s
c
g
s
i
t
t

w
G
w
t
c
s
m
d
a
i
b
t
s

t
t
“
a
o
c
m
n
r

o
i
b
w
t
t
i
B
a
c
t
c
s
b
s
s
s

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[
level computational identification of ligand migration pathways between sol-
vent and binding site in myoglobin, Proc. Natl. Acad. Sci. U.S.A. 105 (27) (2008)
R. Anandakrishnan et al. / Journal of Molec

pproximation for the potential, and further speed-up is achieved
y executing the computation on an ATI Radeon 4870 GPU. We find
hat the errors introduced by the use of single precision GPU imple-

entation are negligible for the purpose of computing single-point
iomolecular potential.

We also show that, for large biomolecular structures, com-
ining the power of the GPU with the HCP approximation can
chieve a combined speed-up of up to 934× over the refer-
nce computation based on a single processor without the use
f the HCP. This combined speed-up is larger than the individ-
al speed-ups for structures larger than about 10,000 atoms. For
he largest structure tested (half a million atoms) the combined
peedup of 934× is many times larger than what was achieved
y the GPU (182×) or HCP (42×) alone. However, for structures
maller than about 10,000 atoms the combined performance is
ess than that of the GPU-based computation alone because of
nequal processing times across multiple threads such that the
peed-up is constrained by the slowest thread. One particular
hallenge to achieving this speed-up was the presence of diver-
ent branching due to the multi-scale threshold in HCP, which
everely limited the performance gain. This optimization helped
mprove speed-up for large structures (> 10, 000 atoms) but
he associated overhead reduced performance for smaller struc-
ures.

Although this implementation produced impressive speed-ups,
e do not believe it represents the full potential of the HCP-
PU approach. For example, only one level of HCP approximation
as implemented here. We speculate that implementing addi-

ional levels of HCP, despite the additional branching involved,
an conservatively result in an additional order of magnitude
peed-up. The computation of electrostatic potential as imple-
ented here, involves three steps — computing HCP group charges,

etermining charges to use in potential computation and the
ctual potential computation. Only the last of these three steps
s executed on the GPU. Additional speed-up may be possible
y also executing the first two steps on the GPU. These addi-
ional performance improvements will be explored in a future
tudy.

The combined HCP–GPU implementation presented here raises
he possibility of making various biomolecular modeling applica-
ions accessible to researchers using desktop computers, and in
real time”. Examples of applications that can benefit immedi-
tely from the methods presented in this work include calculations
f surface potential around large structures. Exploration of the
hanges in the computed potential due to changes in the environ-
ent and/or structures, such as changes in pH or mutations, can

ow be computed virtually immediately, thus greatly facilitating
esearch.

In the longer term, we hope that the main conceptual result
f this work – that acceleration of the computation of long-range
nteractions based on multi-scale ideas can be combined with GPU-
ased speed-ups – will impact a broad spectrum of applications
here the speed of such computations is critical. For example, vir-

ual screening for drug discovery involves screening hundreds of
housands to millions of potential candidate ligands, using “dock-
ng” simulations, to identify likely leads for further analysis [56].
oth the ligand and drug target can have multiple conformations
nd relative orientations resulting in hundreds to thousands of
ombined degrees of freedom [57]. It may be possible to apply
he HCP–GPU approach to accelerate the virtual screening pro-
ess. Similarly, the all-atom molecular dynamics simulation of even
mall to medium sized molecular systems (< 100, 000 atoms), for
iologically meaningful time scales (�s), requires the latest mas-

ively parallel supercomputers. It may be possible to make such
imulations more accessible using the HCP–GPU approach pre-
ented here.

[

raphics and Modelling 28 (2010) 904–910 909

Acknowledgments

This work was supported in part by NIH R01 grant GM076121
and by NSF I/UCRC grant IIP-0804155 with support from AMD.

References

[1] M. Perutz, Electrostatic effects in proteins, Science 201 (1978) 1187–1191.
[2] J.D. Madura, M.E. Davis, M.K. Gilson, R.C. Wade, B.A. Luty, J. Andrew,

McCammon, Biological applications of electrostatic calculations and Brownian
dynamics, Rev. Comp. Chem. 5 (1994) 229–267.

[3] B.H.A. Nicholls, Classical electrostatics in biology and chemistry, Science 268
(1995) 1144–1149.

[4] M.E. Davis, J. Andrew McCammon, Electrostatics in biomolecular structure and
dynamics, Chem. Rev. 90 (1990) 509–521.

[5] N.A. Baker, J.A. McCammon, Electrostaic Interactions In Structural Bioinformat-
ics, John Wiley & Sons, Inc, New York, 2002.

[6] A. Warshel, J. Åqvist, Electrostatic energy and macromolecular function, Ann.
Rev. Biophys. Biophys. Chem. 20 (1991) 267–298.

[7] A.R. Fersht, J.P. Shi, J. Knill-Jones, D.M. Lowe, A.J. Wilkinson, D.M. Blow, P. Brick,
P. Carter, M.M. Waye, G. Winter, Hydrogen bonding and biological specificity
analysed by protein engineering, Nature 314 (1985) 235–238.

[8] G. Szabo, G. Eisenman, S.G.A. McLaughlin, S. Krasne, Ionic probes of membrane
structures, Ann. N. Y. Acad. Sci. 195 (1972) 273–290, Membrane Structure and
Its Biological Applications.

[9] F.B. Sheinerman, R. Norel, B. Honig, Electrostatic aspects of protein-protein
interactions, Curr. Opin. Struct. Biol 10 (2) (2000) 153–159.

10] A. Onufriev, A. Smondyrev, D. Bashford, Proton affinity changes during unidi-
rectional proton transport in the bacteriorhodopsin photocycle, J. Mol. Biol. 332
(2003) 1183–1193.

11] A.-S. Yang, B. Honig, Electrostatic effects on protein stability, Curr. Opin. Struct.
Biol. 2 (1992) 40–45.

12] S. Whitten, B. Garcia-Moreno, pH dependence of stability of staphyococcal
nuclease: evidence of substantial electrostatic interactions in denatured state,
Biochemistry 39 (2000) 14292–14304.

13] P. Koehl, Electrostatics calculations: latest methodological advances, Curr.
Opin. Struct. Biol. 16 (6) (2006) 142–151, March.

14] A. Robertson, E. Luttmann, V.S. Pande, Effects of long-range electrostatic forces
on simulated protein folding kinetics, J. Comput. Chem. 29 (5) (2007) 694–700.

15] D.A.C. Beck, R.S. Armen, V. Daggett, Cutoff size need not strongly influence
molecular dynamics results for solvated polypeptides, Biochemistry 44 (2)
(2005) 609–616, January.

16] A.M. Ruvinsky, I.A. Vakser, Interaction cutoff effect on ruggedness of
protein–protein energy landscape, Proteins: Struct., Funct. Bioinform. 70 (4)
(2008) 1498–1505.

17] J. Carrier, L. Greengard, V. Rokhlin, A fast adaptive multipole algorithm for
particle simulations, SIAM J. Sci. Stat. Comput. 9 (4) (1988) 669–686.

18] W. Cai, S. Deng, D. Jacobs, Extending the fast multipole method to charges inside
or outside a dielectric sphere, J. Comput. Phys. 223 (May (2)) (2007) 846–864.

19] C.G. Lambert, T.A. Darden, J.A. Board Jr., A multipole-based algorithm for effi-
cient calculation of forces and potentials in macroscopic periodic assemblies
of particles, J. Comput. Phys. 126 (July (2)) (1996) 274–285.

20] T. Darden, D. York, L. Pedersen, Particle mesh Ewald: An N. log(N) method for
Ewald sums in large systems, J. Chem. Phys. 98 (12) (1993) 10089–10092.

21] U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, A smooth
particle mesh Ewald method, J. Chem. Phys. 103 (19) (1995) 8577–8593.

22] A.Y. Toukmaji, J.A. Board, Ewald summation techniques in perspective: a sur-
vey, Comp. Phys. Commun. 95 (June (2–3)) (1996) 73–92.

23] D. York, W. Yang, The fast fourier Poisson method for calculating Ewald sums,
J. Chem. Phys. 101 (4) (1994) 3298–3300.

24] T. Schlick, Molecular Modeling and Simulation, An Interdisciplinary Guide,
Springer-Verlag, New York, 2002.

25] R. Anandakrishnan, A.V. Onufriev, An n log n approximation based on the natu-
ral organization of biomolecules for speeding up the computation of long range
interactions, J. Comput. Chem. 31 (4) (2010) 691–706.

26] A. Onufriev, Implicit solvent models in molecular dynamics simulations, Annu.
Rep. Comput. Chem. 4 (2008) 125–137.

27] Los Alamos National Laboratory. mpiBLAST. http://mpiblast.lanl.gov/.
28] R. Konecny, J. Trylska, F. Tama, D. Zhang, N.A. Baker, C.L. Brooks, J.A. McCammon,

Electrostatic properties of cowpea chlorotic mottle virus and cucumber mosaic
virus capsids, Biopolymers 82 (June (2)) (2006) 106–120.

29] N.A. Baker, D. Sept, S. Joseph, M.J. Holst, J.A. McCammon, Electrostatics of
nanosystems: application to microtubules and the ribosome, Proc. Natl. Acad.
Sci. U.S.A. 98 (August (18)) (2001) 10037–10041.

30] J.L. Klepeis, K. Lindorff-Larsen, R.O. Dror, D.E. Shaw, Long-timescale molecular
dynamics simulations of protein structure and function, Curr. Opin. Struct. Biol.
19 (April (2)) (2009) 120–127.

31] J.Z. Ruscio, D. Kumar, M. Shukla, M.G. Prisant, T.M. Murali, A.V. Onufriev, Atomic
9204–9209.
32] S. Kumar, C. Huang, G. Zheng, E. Bohm, A. Bhatele, J.C. Phillips, H. Yu, L.V. Kalé,

Scalable molecular dynamics with NAMD on the IBM Blue Gene/L system, IBM
J. Res. Dev. 52 (1/2) (2008) 177–187.

http://mpiblast.lanl.gov/

9 ular G

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[
[

[

[

[
compute molecular surfaces, Biopolymers 38 (3) (1996) 305–320.

[56] R. Abagyan, High-throughput docking for lead generation, Curr. Opin. Chem.
10 R. Anandakrishnan et al. / Journal of Molec

33] D.E. Shaw, M.M. Deneroff, R.O. Dror, J.S. Kuskin, R.H. Larson, J.K. Salmon, C.
Young, B. Batson, K.J. Bowers, J.C. Chao, M.P. Eastwood, J. Gagliardo, J.P. Gross-
man, R.C. Ho, D.J. Ierardi, I. Kolossváry, J.L. Klepeis, T. Layman, C. Mcleavey, M.A.
Moraes, R. Mueller, E.C. Priest, Y. Shan, J. Spengler, M. Theobald, B. Towles, S.C.
Wang, Anton a special-purpose machine for molecular dynamics simulation,
Commun. ACM 51 (7) (2008) 91–97.

34] R. Zhou, M. Eleftheriou, C.C. Hon, R.S. Germain, A.K. Royyuru, B.J. Berne, Mas-
sively parallel molecular dynamics simulations of lysozyme unfolding, IBM J.
Res. Dev. 52 (1/2) (2008) 19.

35] G. Moore, Cramming more components onto integrated circuits, Electron. Mag.
(April) (1965).

36] Swaminarayan. Sriram, Kadau. Kai, C.Germann. Timothy, C. Gordon, Fossum
369 tflop/s molecular dynamics simulations on the roadrunner general-
purpose heterogeneous supercomputer, in: SC’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, IEEE Press, Piscataway, NJ, USA,
2008, pp. 1–10.

37] J. Archuleta, Y. Cao, W. Feng, T. Scogland, Multi-dimensional characterization
of temporal data mining on graphics processors, in: 23rd IEEE International
Parallel and Distributed Processing Symposium, May, 2009.

38] D. Dynerman, E. Butzlaff, J.C. Mitchell, CUSA and CUDE: GPU-accelerated meth-
ods for estimating solvent accessible surface area and desolvation, J. Comput.
Biol. 16 (4) (2009) 523–537.

39] T. Narumi, K. Yasuoka, M. Taiji, S. Höfinger, Current performance gains from uti-
lizing the GPU or the ASIC MDGRAPE-3 within an enhanced Poisson Boltzmann
approach, J. Comput. Chem. 30 (14) (2009) 2351–2357.

40] I.S. Ufimtsev, T.J. Martinez, Quantum chemistry on graphical processing units.
1. Strategies for two-electron integral evaluation, J. Chem. Theory Comput. 4
(February (2)) (2008) 222–231.

41] J.A. Anderson, C.D. Lorenz, A. Travesset, General purpose molecular dynamics
simulations fully implemented on graphics processing units, J. Comput. Phys.
227 (10) (2008) 5342–5359.
42] M.S. Friedrichs, P. Eastman, V. Vaidyanathan, M. Houston, S. Legrand, A.L.
Beberg, D.L. Ensign, C.M. Bruns, V.S. Pande, Accelerating molecular dynamic
simulation on graphics processing units, J. Comput. Chem. 30 (6) (2009)
864–872.

43] D.J. Hardy, J.E. Stone, K. Schulten, Multilevel summation of electrostatic poten-
tials using graphics processing units, Parallel Comput. 35 (3) (2009) 164–177.

[

raphics and Modelling 28 (2010) 904–910

44] J.E. Stone, J.C. Phillips, P.L. Freddolino, D.J. Hardy, L.G. Trabuco, K. Schulten,
Accelerating molecular modeling applications with graphics processors, J.
Comput. Chem. 28 (16) (2007) 2618–2640.

45] J.C. Gordon, A.T. Fenley, A. Onufriev, An analytical approach to computing
biomolecular electrostatic potential. II. Validation and applications, J. Chem.
Phys. 129 (7) (2008) 075102.

46] G. Sigalov, A. Fenley, A. Onufriev, Analytical linearized Poisson-Boltzmann
approach: Beyond the generalized Born approximation, J. Chem. Phys. 124
(2006) 124902.

47] A.T. Fenley, J.C. Gordon, A. Onufriev, An analytical approach to computing
biomolecular electrostatic potential. I. Derivation and analysis, J. Chem. Phys.
129 (7) (2008) 075101.

48] G. Sigalov, P. Scheffel, A. Onufriev, Incorporating variable dielectric environ-
ments into the generalized born model, J. Chem. Phys. 122 (Mar (9)) (2005)
094511–194511.

49] AMD/ATI Brook+. http://sourceforge.net/projects/brookplus/. 2000.
50] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, P. Hanrahan,

Brook for GPUs: stream computing on graphics hardware, ACM Trans. Graph.
23 (3) (2004) 777–786.

51] Advanced Micro Devices ATI Stream Computing User Guide, March 2009.
52] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N.

Shindyalov, P.E. Bourne, The protein data bank, Nucleic Acids Res. 28 (2000)
235–242.

53] J.C. Gordon, J.B. Myers, T. Folta, V. Shoja, L.S. Heath, A.L. Onufriev, H++: a server
for estimating pKa’s and adding missing hydrogens to macromolecules, Nucleic
Acids Res. 33 (2005) 68–71.

54] D. Bashford, K. Gerwert, Electrostatic calculations of the pKa values of ionizable
groups in bacteriorhodopsin, J. Mol. Biol. 224 (1992) 473–486.

55] M.F. Sanner, A.J. Olson, J. Claude, Spehner, Reduced surface: an efficient way to
Biol. 5 (August (4)) (2001) 375–382.
57] M.L. Teodoro, G.N. Phillips, L.E. Kavraki Jr., Molecular docking: a problem with

thousands of degrees of freedom, in: In IEEE International Conference on
Robotics and Automation, 2001, pp. 960–966.

http://sourceforge.net/projects/brookplus/

	Accelerating electrostatic surface potential calculation with multi-scale approximation on graphics processing units
	Introduction
	Methods
	Computation of biomolecular electrostatic potential
	The hierarchical charge partitioning (HCP) approximation
	Mapping GEM and HCP onto the GPU
	Data structures
	Conditional performance
	Hierarchical charge partitioning

	Results and discussion
	Experimental set-up
	Experimental results

	Conclusions
	Acknowledgments
	References

