
10

100

1000

10000

100000

1 2 4 8 16 36 72 144 288 576 1152 2304 4608 9216

T
im

e
(s

)

Number of Processes

LMDB
LMDBIO-LMM
LMDBIO-LMM-DIO
LMDBIO-LMM-DM
LMDBIO-LMM-DIO-PROV
LMDBIO-LMM-DIO-PROV-COAL
LMDBIO-LMM-DIO-PROV-COAL-STAG

I/O Bottleneck Investigation in Deep Learning Systems
Sarunya Pumma ,1,2 Min Si ,2 Wu-chun Feng ,1 and Pavan Balaji2

Motivation

1Virginia Tech, 2Argonne National Laboratory

Deep Learning & Challenges

Robotics
Asimo
(Honda)

Offline & Online Data Analytics
Real Time News Feed
(Facebook)

Facial Recognition
Deep Dense Face Detector
(Yahoo Labs)

Network Size
(width and depth)

B
at

ch
 S

iz
e

(#
 s

am
pl

es
)

I/O Bound

Communication bound

Compute bound

• High-dimensional input data
• Image classification
• Data Science Bowl’s

tumor detection from CT
scans

• Networks with large number of
parameters
• Unsupervised image feature

extraction
• LLNL’s network with 15 billion

parameters

• High volume data
• Sentiment analysis
• Twitter analysis
• Yelp’s review fraud

detection
• Image classification
• ImageNet’s image

classification

Image feature
extraction

Tumor detection from CT scans

In the past decade …

• 10 – 20x improvement in processor speed

• 10 – 20x improvement in network speed

• Only 1.5x improvement in I/O performance

I/O will eventually become a bottleneck for
most computations

Deep Learning Scaling

Overall Training Time
(CIFAR10-Large-AlexNet, 512 iterations)

Training Time Breakdown
(CIFAR10-Large-AlexNet, 512 iterations)

LMDB Inefficiencies (cont.)

Caffe’s I/O Subsystem: LMDB

Problem 1: Mmap’s Interprocess Contention

Underlying I/O in mmap relies on the CFS scheduler to
wake up processes after I/O has been completed
• Processes are put to sleep while waiting for I/O

to complete
• I/O completion interrupt is a bottom-half

interrupt
• The handler does not have knowledge about

the specific process that triggered the I/O
operation

• Every process that is waiting for I/O is marked as
runnable

• Every reader is woken up each time an I/O
interrupt comes in

• This causes a large number of unnecessary
context switches

0

20

40

60

80

100

120

140

160

1 2 4 8 16 32 64 128256512

Co
nt
ex
t	S
w
itc
he

s
M
ill
io
ns

Number	of	Processes

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

1 2 4 8 16 32 64 12
8

25
6

51
2

Re
ad
	T
im

e	
Br
ea
kd
ow

n

Number	of	Processes

User	time Kernel	time Sleep	time

Problem 2: Sequential Data Access Restriction

• LMDB data access is sequential in nature due to the B+-tree
structure

• There is no way to randomly access a data record
• All branch nodes associated with the previous records

must be read before accessing a particular record
• When multiple processes read the data, they read extra

data
• Different processes do different amount of work, causing

skew

D0 D1 D2 D3

Database

P0	reads

P1	reads

P2	reads
P3	reads

P1	seeks

P2	seeks
P3	seeks

LMDB redundant data movement

Our Solution: LMDBIO (cont.)

LMDBIO-LMM-DM (cont.)

D0 D1 D2 D3

Database

P0	seeks

Se
qu

en
tia

l
(in

-m
em

or
y)

P0	sends	cursor	to	P1	

P1	sends	cursor	to	P2	

P2	sends	cursor	to	P3	

P0	reads

P0	accesses P1	seeks

P1	accesses P2	seeks

P2	accesses P3	seeks

P3	accesses

P1	reads
P2	reads

P3	reads

Co
nc
ur
re
nt

…

Part II: Parallel I/O and in-memory sequential seek

Our Solution: LMDBIO

Optimization: Take into account data access pattern of deep
learning and Linux’s I/O scheduling to reduce mmap’s
contentions

Shared	file	system
(shared	between	nodes)

Page	cache
Read

Map

Shared	Memory
mmap buffer	
(Process	0)	

Copy

Process	0 Process	1 Process	2

Access Access Access

• Localized mmap
• Only one process does mmap on each node
• Using MPI shared-memory (MPI-3) to share data

• Even LMDBIO has extra copy (from mmap to shared
memory), Caffe still gains benefit from LMDBIO

LMDBIO-LMMLMDB Inefficiencies

Context Switches Read Time Breakdown

• Uses Lightning Memory-mapped database (LMDB) for accessing the dataset
• B+-tree representation of the data
• Database is mapped to memory using mmap and accessed through direct buffer arithmetic
• Virtual memory allocated for the size of the full file

• Specific physical pages dynamically loaded by the OS on-demand

Pros: makes it easy to manipulate complex Cons: OS has very little knowledge of the
data structures (e.g., B+ trees) since LMDB access model and parallelism making it hard
can think of it as fully in-memory to optimize

Part II: Speculative Parallel I/O

• We use a history-based training for our estimation
• We correct our estimate in each iteration depending

on the actual data read in all of the previous iterations
• The general ideal of out correction is that we attempt

to expand the speculative boundaries to reduce the
number of missed pages

• Initial iterations might be slightly inaccurate, but we
converge fairly quickly (1-2 iterations)

• Each process estimates pages that it will need and
speculatively fetches pages to memory in parallel

• Then each process sequentially seeks the location
for another processes and sends the cursor to the
next higher rank process
• The expectation is that the seek can be done

entirely in memory
• Once the sequential seek is done, each reader can

perform actual data access
• This adds a small amount of extra data reading, but

allows parallel I/O

• The estimation of number of pages to fetch is based
on the first record’s data size
• I.e., CIFAR10-Large record’s size is 3 KB, which is

~1 page. To read n records, it needs to fetch n
pages

• The estimation of the read offset is performed in the
same fashion

• Estimation of the “approximate” start and end
location for each process is important
• If the estimate is completely wrong, we will end up

reading up to 2x the dataset size (still better than
the LMDB)

Estimation of Speculative I/O

Estimation of Speculative I/O (cont.)

Results
Sarunya Pumma, Min Si, Wu-chun Feng and Pavan Balaji. Towards Scalable Deep Learning via I/O Analysis and Optimization. IEEE International Conference on High
Performance Computing and Communications (HPCC). Dec. 18-20, 2017, Bangkok, Thailand.

1

10

100

1000

10000

100000

1 2 4 8 16 36 72 14
4

28
8

57
6

11
52

23
04

46
08

92
16

Ti
m
e	
(s
)

Number	of	Processes

Caffe/LMDB

Ideal

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	

100%	

1 2 4 8 16 36 72 14
4

28
8

57
6

11
52

23
04

46
08

92
16

Ex
ec
ut
io
n	
Ti
m
e	
Br
ea
kd
ow

n

Number	of	Processes

Param	update	time

Param	calculation	
time
Param	sync	time

Wait	time	before	
param	sync
Total	backward	time

Total	forward	time

Transform	time

Read	time

660x	worse	
than	ideal

Platform: Argonne’s Blues Dataset: CIFAR10-Large
• InfiniBand Qlogic QDR Network: AlexNet
• 110 TB GPFS storage MPI: MVAPICH-2.2
• Each node
• 2 Sandy Bridge 2.6 GHz

Pentium Xeon (16 cores,
hyperthreading disabled)

• 64 GB memory
• 15 GB RAM disk

Problem 3: Mmap’s Workflow Overheads

• Since mmap performs implicit I/O, the user has no
control over when an I/O operation is issued.

• To showcase this overhead, we developed a
microbenchmark to read a 256 GB file using a single
reader on a single machine
• Mmap benchmark uses memcpy on a mmap buffer
• POSIX I/O benchmark uses pread

• mmap’s read bandwidth is approximately 2.5x lower
than that of POSIX I/O

Problem 4: I/O Block Size Management

0
0.5
1

1.5
2

2.5
3

4	
K

16
	K

64
	K

25
6	
K

1	
M

4	
M

16
	M

64
	M

25
6	
M

10
24
	MRe

ad
	B
an
dw

id
th
	(G

B/
s)

I/O	Request	Size	(bytes)

mmap

POSIX	I/O

• As the number of processes
increases, subbatch is smaller

• POSIX I/O benefits from larger
block size, while mmap does not

• Migrating LMDB to use direct
I/O and larger block size can
give a significant performance
improvement

Problem 5: I/O Randomization

• I/O requests are typically out of order in parallel I/O

• A large number of processes need to divide a large file
into smaller pieces and each process needs to access
a part of it

• Each process issues an I/O request at the same time

• I/O requests do not arrive at the I/O server processes
in any specific order as each process is independent

• This causes the server processes to access the file in a
nondeterministic fashion

Server	1

1 3 5 7

Request	queue

Client	8

All	requests	are	issued	at	the	same	time

File

5

3

7

1

Client	7Client	6Client	5Client	4Client	3Client	2Client	1

Server	2

2 4 6 8

2

6

8

4

Request	queue

File

Library Optimization Reducing Interprocess
Contention

Explicit
I/O

Eliminating
Sequential Seek

Managing I/O
Size

Reducing I/O
Randomization

LMDB -

LMDBIO LMM ✔

LMM-DM ✔ (partial)

LMM-DIO ✔ ✔

LMM-DIO-PROV ✔ ✔ ✔

LMM-DIO-PROV-COAL ✔ ✔ ✔ ✔

LMM-DIO-PROV-COAL-STAG ✔ ✔ ✔ ✔ ✔

Summary of LMDBIO Optimizations

LMDBIO-LMM-DM
Optimization: coordinate between reader processes to improve parallelism

Portable Cursor Representation

• LMDB calls the position indicator for a record within B+
tree a “cursor”
• Not a simple offset from the start of file
• It contains the complete path of the record’s parent

branch nodes (multiple pointers), a pointer to the
page header, and access flags

• It is not trivial to port pointers across processes as
virtual address spaces are different

• Serialize data reading and coordinate between
processes

• Each process reads its data and sends the higher rank
process the location to start fetching its data from

• This allows NO extra data reading: number of bytes
read is EXACT… but I/O is done sequentially

Part I: Serializing I/O

D0 D1 D2 D3

Database

P0	reads

Se
qu

en
tia

l P0	sends	cursor	to	P1	

P1	sends	cursor	to	P2	P1	reads

P2	reads

P3	reads …

Part I: Sequential I/O and cursor handoff

P2	sends	cursor	to	P3	

Portable Cursor Representation (cont.)

• Our solution: symmetric address space
• Every process memory-maps the database file to

the same memory location
• Allowing the pointers within the B+ tree to be

portable across processes

LMDBIO-LMM-DIO

read	data	to	shared	buffer	(POSIX	I/O)

read	data	to	shared	buffer	(POSIX	I/O)

read	data	to	shared	buffer	(POSIX	I/O)seek	(mmap)

scatter	offsets

Timeline

P0

P1

P2
wait	

wait

…
…

…

Optimization: Replace mmapwith POSIX I/O
• To use direct I/O, we need to know the position of each data

record
• The root process gets offsets of all data samples by

seeking the database using mmap
• Sequential seek is unavoidable because the offsets are not

deterministic
• Other reader processes receive their offsets from root and

perform data reading using POSIX I/O
• Readers share data using MPI shared buffer as same as LMM

LMDBIO-LMM-DIO-PROV
Optimization: Utilize provenance information to entirely
replace mmapwith POSIX I/O
• Making a case for storing data provenance information for

deep learning (how the data was created)
• LMDB’s database layout can be deterministic only if the

information of how it is created is provided
• We can compute exactly where the data pages are located
• Sequential seek can be completely eliminated
• All I/O operations can be done via direct I/O (mmap is

completely removed)

• Provenance information is not stored in the original
LMDB format
• This is an extension that we are proposing

• We use a separate auxiliary file to store this information
• This file can be created while the database is being

generated or later using a one-time read of the
database

• It is much smaller than the dataset itself (a few
hundred bytes)

Important Notes

LMDBIO-LMM-DIO-PROV-COAL

Sarunya Pumma, Min Si, Wu-chun Feng and Pavan Balaji. Parallel I/O Optimizations for Scalable Deep Learning. IEEE International Conference on Parallel and
Distributed Systems (ICPADS). Dec. 15-17, 2017, Shenzhen, China.

Optimization: Coalesce multiple batches of data to be read
at once to allow direct I/O to benefit from large I/O size

• We read a larger chunk of data to enlarge I/O time to
eliminate the skew in I/O
• A constant amount of memory is kept aside for data

reading
• We read multiple batches of data at once

LMDBIO-LMM-DIO-PROV-COAL-STAG
Optimization: Adopt I/O staggering to reduce I/O
randomization

• I/O staggering technique orders the requests
• Readers are divided into multiple groups with the same

number of members
• Only one group can perform data reading at a time

• MPI_Send and MPI_Recv are used in the implementation

• Caffe/LMDB is 660x worse than ideal for 9216 processes
• Read time takes up 90% of the total training time for 9216 processes
• I/O bottleneck is caused by five major problems

1. Interprocess contention -- results in excessive number of context switches
2. Implicit I/O inefficiency -- OS fully controls I/O
3. Sequential data access restriction -- arbitrary database access is not allowed in LMDB
4. Inefficient I/O block size -- I/O request size is too small to be efficient
5. I/O randomization -- abundant readers participating in I/O at the same time

• We proposed 6 optimizations that address 5 problems in state of the art I/O subsystem of deep learning

Experiment Information
Dataset: CIFAR10-Large
Network: AlexNet
Batch size: 18,432
Training iterations: 512
Framework: Caffe
Testbed: LCRC Bebop
(Each node: 36 cores Intel Broadwell,
128 GB memory)

1.0 1.0 1.1 1.2 1.7 4.6 3.5 2.7 3.6 4.6 7.7
15.5

36.9

64.4

0

10

20

30

40

50

60

70

Fa
ct

or
 o

f I
m

pr
ov

m
en

t
ov

er

LM
D

B

Number of Processes

LMDBIO-LMM
LMDBIO-LMM-DIO
LMDBIO-LMM-DM
LMDBIO-LMM-DIO-PROV
LMDBIO-LMM-DIO-PROV-COAL
LMDBIO-LMM-DIO-PROV-COAL-STAG

Factor of Improvement over LMDB

Total Execution Time

