
Scalability Analysis and Optimization for

Large-Scale Deep Learning

Sarunya Pumma

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science and Application

Wu-chun Feng, Chair

Ali R. Butt

Dongyoon Lee

B. Aditya Prakash

Pavan Balaji

December 18, 2019

Blacksburg, Virginia

Keywords: Scalable Deep Learning, Data Movement Investigation, Parallel I/O

Optimization, Straggler Processes, Computational Imbalance, Resource Contention

Copyright 2020, Sarunya Pumma

Scalability Analysis and Optimization for

Large-Scale Deep Learning

Sarunya Pumma

(ABSTRACT)

Despite its growing importance, scalable deep learning (DL) remains a difficult challenge.

Scalability of large-scale DL is constrained by many factors, including those deriving from

data movement and data processing. DL frameworks rely on large volumes of data to be

fed to the computation engines for processing. However, current hardware trends showcase

that data movement is already one of the slowest components in modern high performance

computing systems, and this gap is only going to increase in the future. This includes data

movement needed from the filesystem, within the network subsystem, and even within the

node itself, all of which limit the scalability of DL frameworks on large systems. Even after

data is moved to the computational units, managing this data is not easy. Modern DL frame-

works use multiple components—such as graph scheduling, neural network training, gradient

synchronization, and input pipeline processing—to process this data in an asynchronous un-

coordinated manner, which results in straggler processes and consequently computational

imbalance, further limiting scalability. This thesis studies a subset of the large body of data

movement and data processing challenges that exist in modern DL frameworks.

For the first study, we investigate file I/O constraints that limit the scalability of large-scale

DL. We first analyze the Caffe DL framework with Lightning Memory-Mapped Database

(LMDB), one of the most widely used file I/O subsystems in DL frameworks, to understand

the causes of file I/O inefficiencies. Based on our analysis, we propose LMDBIO—an op-

timized I/O plugin for scalable DL that addresses the various shortcomings in existing file

I/O for DL. Our experimental results show that LMDBIO significantly outperforms LMDB

in all cases and improves overall application performance by up to 65-fold on 9,216 CPUs of

the Blues and Bebop supercomputers at Argonne National Laboratory.

Our second study deals with the computational imbalance problem in data processing. For

most DL systems, the simultaneous and asynchronous execution of multiple data-processing

components on shared hardware resources causes these components to contend with one

another, leading to severe computational imbalance and degraded scalability. We propose

various novel optimizations that minimize resource contention and improve performance by

up to 35% for training various neural networks on 24,576 GPUs of the Summit supercom-

puter at Oak Ridge National Laboratory—the world’s largest supercomputer at the time of

writing of this thesis.

Scalability Analysis and Optimization for

Large-Scale Deep Learning

Sarunya Pumma

(GENERAL AUDIENCE ABSTRACT)

Deep learning is a method for computers to automatically extract complex patterns and

trends from large volumes of data. It is a popular methodology that we use every day when

we talk to Apple Siri or Google Assistant, when we use self-driving cars, or even when we

witnessed IBM Watson be crowned as the champion of Jeopardy! While deep learning is

integrated into our everyday life, it is a complex problem that has gotten the attention of

many researchers.

Executing deep learning is a highly computationally intensive problem. On traditional com-

puters, such as a generic laptop or desktop machine, the computation for large deep learning

problems can take years or decades to complete. Consequently, supercomputers, which are

machines with massive computational capability, are leveraged for deep learning workloads.

The world’s fastest supercomputer today, for example, is capable of performing almost 200

quadrillion floating point operations every second. While that is impressive, for large prob-

lems, unfortunately, even the fastest supercomputers today are not fast enough. The problem

is not that they do not have enough computational capability, but that deep learning prob-

lems inherently rely on a lot of data—the entire concept of deep learning centers around the

fact that the computer would study a huge volume of data and draw trends from it. Moving

and processing this data, unfortunately, is much slower than the computation itself and with

the current hardware trends it is not expected to get much faster in the future.

This thesis aims at making deep learning executions on large supercomputers faster. Specifi-

cally, it looks at two pieces associated with managing data: (1) data reading—how to quickly

read large amounts of data from storage, and (2) computational imbalance—how to ensure

that the different processors on the supercomputer are not waiting for each other and thus

wasting time. We first analyze each performance problem to identify the root cause of it.

Then, based on the analysis, we propose several novel techniques to solve the problem. With

our optimizations, we are able to significantly improve the performance of deep learning

execution on a number of supercomputers, including Blues and Bebop at Argonne National

Laboratory, and Summit—the world’s fastest supercomputer—at Oak Ridge National Lab-

oratory.

v

Dedication

To my beloved family, Fizzbuzz, and Foobar.

vi

Acknowledgments

First, I would like to thank my Ph.D. advisor, Dr. Wu-chun Feng, for giving me the one-of-

a-kind opportunity to work and grow under the roof of the Synergy Lab. Throughout the

course of my Ph.D. study, I have learned tremendously from his incredible intellect, horizons

and work ethics. I truly appreciate his constructive criticism, comments, and advice that

have helped me successfully accomplish my Ph.D. journey.

I am incredibly fortunate to have a chance to work under the supervision of Dr. Pavan

Balaji, the most talented and kindest person I have ever met. Not only has he taught me to

do research but also to love and embrace it. I deeply appreciate his constant encouragement

and support that have brought out the potential I never thought I had. Thank you for never

giving up on me and always motivating me to go the extra mile in every aspect of my life.

Without his kind support and guidance, this Ph.D. would not have been possible.

I would like to express my sincere thanks to my advisory committee members, Dr. Ali Butt,

Dr. Dongyoon Lee, and Dr. Aditya Prakash, for their precious time, comments and feedback

on my thesis work. Thank you for being very kind to me.

I would also like to thank my amazing research mentors, Dr. Min Si, Dr. Daniele Buono,

Dr. Fabio Checconi, and Dr. Xinyu Que. Their comments and feedback have been greatly

valuable to my thesis as well as academic papers.

Moreover, I would like to give a big shout out to all my friends and supporters: Dr. Tiranee

Achalakul (my former advisor), my Blacksburg family: Unchalisa, Gade, Panupon and the

Charoenvisals, my lab mates, my room mates and everyone who called to check in, gave me

vii

a pat on the back, and put a smile on my face every now and then. Thank you for filling

my Ph.D. adventure with so much joy.

Lastly, I am extremely grateful to have unconditional and endless support, encouragement,

and love from my family. Thank you for being there with me throughout every step of the

way. I absolutely could not ask for a better family.

viii

Contents

List of Figures xv

List of Tables xxii

1 Introduction 1

1.1 DL for HPC vs. HPC for DL . 2

1.2 Challenges in Modern DL Frameworks . 4

1.2.1 Data Movement Challenges . 4

1.2.2 Data Processing Challenges . 7

1.3 Thesis Big Picture . 9

1.3.1 Investigation of File I/O . 9

1.3.2 Investigation of Computational Imbalance in Data Processing 11

1.4 Organization of this Thesis . 13

2 Background 14

2.1 Overview of Deep Neural Network Training 14

2.2 Stochastic Gradient Descent via Batch Training 18

2.3 Parallel Batch Training . 20

2.4 Overview of Modern Deep Learning Software 21

ix

2.4.1 Overview of Caffe Deep Learning Framework 22

2.4.2 Overview of Lightning Memory-Mapped Database (LMDB) 24

2.4.3 Overview of TensorFlow Deep Learning Framework 28

2.4.4 Overview of Horovod Communication Plugin 29

3 Intra-node File I/O Optimization 31

3.1 Analysis of Caffe/LMDB Performance and Inefficiencies 32

3.1.1 Experimental Setup for File I/O Experiments 32

3.1.2 Scalability Analysis of Caffe/LMDB 34

3.1.3 Memory-Mapped File I/O (mmap) Interprocess Contention 39

3.2 Design and Implementation of LMDBIO-LMM: Localized Mmap Optimization 42

3.2.1 Detecting Colocated Processes . 43

3.2.2 Inner Workings of LMDBIO-LMM 44

3.3 Shortcomings of LMDBIO-LMM . 45

3.4 LMDBIO-LMM Experiments and Results . 47

3.4.1 Microbenchmark Evaluation and Analysis 47

3.4.2 Evaluation of Caffe Deep Learning Training 51

3.5 Chapter Summary . 56

4 Inter-node File I/O Optimization via

Speculative Parallel I/O 57

x

4.1 Analysis of LMDB Sequential Data Access Restriction 58

4.1.1 Analysis of Amount of Extra Data Fetched 59

4.2 Design and Implementation of LMDBIO-LMM-DM: Distributed Memory File

I/O Optimization . 62

4.2.1 Serializing I/O Using a Portable Cursor Representation 62

4.2.2 Speculative Parallel I/O . 64

4.3 LMDBIO-LMM-DM Experiments and Results 67

4.3.1 Microbenchmark Evaluation and Analysis 68

4.3.2 Evaluation of Caffe Deep Learning Training 69

4.3.3 Evaluation of Speculative Data Reading Accuracy 74

4.4 Chapter Summary . 76

5 Direct File I/O Optimizations 78

5.1 Analysis of LMDB Inefficiencies . 79

5.1.1 Mmap Workflow Overheads . 79

5.1.2 I/O Block Size Management . 80

5.1.3 I/O Randomization . 81

5.2 Design and Implementation of LMDBIO-LMM-DIOs: Series of Direct I/O

Optimizations . 83

5.2.1 LMDBIO-LMM-DIO: Direct I/O Exploitation 83

5.2.2 LMDBIO-LMM-DIO-PROV: Provenance Information Exploitation . . 84

xi

5.2.3 LMDBIO-LMM-DIO-PROV-COAL: I/O Coalescing Optimization . . 89

5.2.4 LMDBIO-LMM-DIO-PROV-COAL-STAG: I/O Staggering Optimiza-

tion . 90

5.3 Direct File I/O Optimization Experiments and Results 92

5.3.1 Microbenchmark Evaluation and Analysis 92

5.3.2 Strong-Scaling Evaluation of Caffe Deep Learning Training 99

5.3.3 Weak-Scaling Performance Evaluation of Caffe Deep Learning Training 106

5.4 Chapter Summary . 109

6 Computational Imbalance Optimizations for Data Processing 110

6.1 Data Processing in Parallel Deep Learning 111

6.2 TensorFlow/Horovod Performance Analysis 113

6.2.1 Experimental Setup for Computational Imbalance Optimization Ex-

periments . 114

6.2.2 Understanding Horovod and its Background Thread 115

6.2.3 Scalability Analysis . 118

6.2.4 Investigating the Horovod Background Thread 120

6.2.5 Resource Contention Analysis . 124

6.3 Design and Implementation of Computational

Imbalance Optimizations . 125

6.3.1 Horovod-GS: Global Sleep Time Optimization 125

xii

6.3.2 Horovod-NBCS: Nonblocking Cache Synchronization 127

6.3.3 Horovod-SCP: Static CPU Resource Partitioning 128

6.3.4 Horovod-TOPO: Graph Topology Exploitation 130

6.4 Computational Imbalance Optimization Experiments and Results 134

6.4.1 Evaluation of Proposed Solutions on ResNet50 Training 134

6.4.2 Horovod-TOPO’s Performance on Other Neural Networks 138

6.5 Chapter Summary . 142

7 Related Work 143

7.1 Deep Learning Frameworks . 143

7.2 File I/O Optimizations . 144

7.2.1 File I/O Subsystems in Deep Learning Frameworks 144

7.2.2 Other File I/O Frameworks . 145

7.2.3 Storage Architecture . 146

7.2.4 Input Pipeline Optimizations . 147

7.3 Communication Optimizations . 148

7.3.1 Gradient Compression . 148

7.3.2 Gradient Synchronization Optimizations 150

7.3.3 Communication Frameworks . 150

7.4 Algorithmic Improvements to Parallel Deep Learning 153

xiii

8 Summary and Discussion 155

8.1 Thesis Summary . 155

8.2 List of Publications . 157

8.3 Discussion . 159

8.3.1 What Would the Ideal Filesystem for Deep Learning Look Like? . . . 159

8.3.2 Rethinking Process/thread Synchronization in DL Communication Sub-

systems . 161

8.3.3 Enhancing Intra-node Parallelism of DL Frameworks via Lightweight

User-Level Threading Libraries . 163

8.3.4 Can We Beat the ImageNet-ResNet50 Training World Record? 166

8.3.5 Compatibility of Our Work to Modern DL Frameworks 170

8.3.6 Tradeoff Between Batch Size, Convergence Period and Accuracy . . . 173

8.4 Future Work: Tradeoffs Between Data Movement and Accuracy 174

8.4.1 Data Reuse Optimization . 175

8.4.2 Topology-Aware Parameter Servers for Asynchronous Training 180

8.4.3 Dynamic Batch Sizing . 185

Bibliography 190

xiv

List of Figures

1.1 Memory hierarchy . 6

1.2 Energy used in data movement [143] . 7

1.3 Data processing components in a multi-GPU multi-node DL system 8

2.1 Training and testing phases of machine learning 14

2.2 Binary classification example . 15

2.3 Complex classification example . 16

2.4 Structure of a neural network . 16

2.5 Stochastic gradient descent . 19

2.6 Parallel DL models: (a) multi-DNN parallelism; (b) data parallelism; (c)

model parallelism; (d) intra-op parallelism 20

2.7 Caffe’s data-parallel workflow . 23

2.8 Workflow of memory-mapped file I/O (mmap) 25

2.9 B+ tree data structure . 26

3.1 Caffe/LMDB’s strong scaling using CIFAR10-Large on Bebop: (a) total exe-

cution time; (b) execution time breakdown 35

3.2 Caffe/LMDB’s strong scaling using ImageNet-Large with CaffeNet on Bebop:

(a) total execution time; (b) execution time breakdown 36

xv

3.3 Caffe/LMDB’s strong scaling using ImageNet-Large with ResNet50 on Bebop:

(a) total execution time; (b) execution time breakdown 37

3.4 Caffe/LMDB’s mmap analysis (CIFAR10-Large dataset on Bebop): (a) context

switches; (b) sleep time . 41

3.5 LMDBIO-LMM overview . 44

3.6 LMDBIO-LMM performance analysis: (a) read performance compared with

LMDB; (b) total read time breakdown . 48

3.7 LMDBIO-LMM performance analysis: (a) seek time vs. reader’s rank number;

(b) mmap’s data prefetching and data seeking 49

3.8 LMDBIO-LMM performance analysis: context switches compared with LMDB 50

3.9 Caffe/LMDBIO-LMM strong scaling on Blues using (a) CIFAR10-Large; (b)

ImageNet . 52

3.10 Caffe/LMDBIO-LMM strong scaling on Bebop using CIFAR10-Large: (a)

scaling results; (b) performance breakdown 53

3.11 Caffe/LMDBIO-LMM strong scaling on Bebop using ImageNet-Large: (a)

scaling results; (b) performance breakdown 54

3.12 Caffe/LMDBIO-LMM context switches compared to Caffe/LMDB on Bebop

using (a) CIFAR10-Large; (b) ImageNet-Large 55

4.1 LMDB redundant data movement . 59

4.2 Caffe/LMDBIO-LMM extra bytes read . 60

4.3 LMDBIO-LMM-DM design: sequential I/O and cursor handoff 63

xvi

4.4 LMDBIO-LMM-DM design: speculative parallel I/O and in-memory sequen-

tial seek . 65

4.5 Pages accessed by a reader process using the history-based speculative read

approach: (a) pages accessed if the minimum number of pages are read; (b)

pages accessed if the maximum number of pages are read; (c) pages accessed

in the actual case . 66

4.6 LMDBIO-LMM-DM performance analysis: (a) read performance compared

with LMDB and LMDBIO-LMM; (b) total read time breakdown 68

4.7 Caffe/LMDBIO-LMM-DM strong scaling on Blues using (a) CIFAR10-Large;

(b) ImageNet . 71

4.8 Caffe/LMDBIO-LMM-DM strong scaling on Bebop using CIFAR10-Large:

(a) scaling results; (b) performance breakdown 72

4.9 Caffe/LMDBIO-LMM-DM strong scaling on Bebop using ImageNet-Large:

(a) scaling results; (b) performance breakdown 73

4.10 Caffe/LMDBIO-LMM-DM redundant pages read using (a) CIFAR10-Large;

(b) ImageNet . 75

4.11 Caffe/LMDBIO-LMM-DM missed pages with varying number of cores 76

5.1 I/O block size . 81

5.2 I/O randomization . 82

5.3 LMDBIO-LMM-DIO design: sequential seek 84

5.4 LMDB database creation example . 87

xvii

5.5 LMDBIO-LMM-DIO performance analysis: (a) read performance compared

with LMDB, LMDBIO-LMM, and LMDBIO-LMM-DM; (b) total read time

breakdown . 93

5.6 LMDBIO-LMM-DIO I/O skew analysis . 94

5.7 LMDBIO-LMM-DIO-PROV performance analysis: (a) read performance com-

pared with LMDB, LMDBIO-LMM, LMDBIO-LMM-DIO, and LMDBIO-

LMM-DM; (b) total read time breakdown 95

5.8 LMDBIO-LMM-DIO-PROV-COAL performance analysis: (a) read perfor-

mance compared with LMDB, LMDBIO-LMM, LMDBIO-LMM-DIO, LMDBIO-

LMM-DM, and LMDBIO-LMM-DIO-PROV; (b) total read time breakdown 97

5.9 LMDBIO-LMM-DIO-PROV-COAL-STAG performance analysis: (a) read per-

formance compared with LMDB, LMDBIO-LMM, LMDBIO-LMM-DIO, LMDBIO-

LMM-DM, LMDBIO-LMM-DIO-PROV, and LMDBIO-LMM-DIO-PROV-COAL;

(b) total read time breakdown . 98

5.10 Strong scaling using CIFAR10-Large on Bebop: (a) total execution time; (b)

factor of improvement over Caffe/LMDB . 100

5.11 Execution time breakdown using CIFAR10-Large on Bebop: (a) Caffe/LMDBIO-

LMM-DIO; (b) Caffe/LMDBIO-LMM-DIO-PROV; (c) Caffe/LMDBIO-LMM-

DIO-PROV-COAL; (d) Caffe/LMDBIO-LMM-DIO-PROV-COAL-STAG . . 101

5.12 Strong scaling using ImageNet-Large on Bebop (a) total execution time; (b)

factor of improvement over Caffe/LMDB . 102

xviii

5.13 Execution time breakdown using ImageNet-Large on Bebop: (a) Caffe/LMDBIO-

LMM-DIO; (b) Caffe/LMDBIO-LMM-DIO-PROV; (c) Caffe/LMDBIO-LMM-

DIO-PROV-COAL; (d) Caffe/LMDBIO-LMM-DIO-PROV-COAL-STAG . . 104

5.14 Images per second of Caffe/LMDBIO using (a) CIFAR10-Large; (b) ImageNet-

Large . 105

5.15 Weak scaling using CIFAR10-Large on Bebop: (a) total execution time; (b)

factor of improvement over Caffe/LMDB. 107

5.16 Weak scaling using ImageNet-Large on Bebop: (a) total execution time; (b)

factor of improvement over Caffe/LMDB. 108

6.1 Data-processing components of DL . 112

6.2 Example of a state of the Horovod request queues on two processes 116

6.3 Horovod background thread workflow . 117

6.4 Example of a state of the Horovod request queues and response caches on two

processes . 119

6.5 Weak scaling of TensorFlow/Horovod compared with linear scaling 120

6.6 TensorFlow/Horovod GPU time breakdown. (We note that using XLA dis-

ables any overlap between the computation and communication, as explained

in Chapter 6.2.1) . 121

6.7 TensorFlow/Horovod HorovodAllreduce GPU time breakdown 122

6.8 A perfect synchronization of Horovod background threads 122

6.9 Horovod background thread oversleep problem 123

xix

6.10 Horovod background thread’s CPU usage . 124

6.11 Timeline of Horovod-GS’s background threads 127

6.12 Timeline of Horovod-NBCS’s background threads 128

6.13 Example of TensorFlow computation graph 130

6.14 Example of tensor ordering and tensor fusion 132

6.15 Horovod background thread’s workflow in Horovod-TOPO 133

6.16 Weak-scaling results on ResNet50 on Summit: (a) image-processing rates (im-

ages/second); (b) percentage improvement in performance 135

6.17 GPU time breakdown of ResNet50 training: (a) TensorFlow/Horovod; (b)

TensorFlow/Horovod-TOPO . 136

6.18 Horovod-TOPO background thread’s CPU usage 137

6.19 Strong-scaling results on ResNet50 on Summit: image-processing rates (im-

ages/second) and percentage improvement in performance 138

6.20 Weak-scaling results on various DNNs (image-processing rates and improve-

ment percentage): (a) ResNet18; (b) ResNet34; (c) ResNet101; (d) ResNet152;

(e) AlexNet; (f) GoogLeNet; (g) Inception-v3; (h) VGG16. Note: the scale of

the image-processing rate axis varies among graphs 140

8.1 Example of oversubscription of OS-level threads 164

8.2 Example of using lightweight user-level threading library in DL 165

8.3 Our ImageNet training performance vs. the world record (the graph is showing

strong scaling—the state-of-art top-1 accuracy is maintained) 167

xx

8.4 Six-month growth scores of DL frameworks in 2019 [59]: the growth scores are

calculated based on six criteria, i.e., Google search interest, GitHub activity,

Quora followers, Medium articles, ArXiv articles, and online job listings . . . 171

8.5 Intra-process subbatch shuffling . 177

8.6 Inter-process subbatch shuffling . 178

8.7 Connection to parameter servers (fat-tree topology) 181

8.8 On-node non-uniform memory access (NUMA) topology with proxies 182

8.9 Parameter servers with proxies . 183

8.10 Batch size vs. inference accuracy (CIFAR10-AlexNet training) 186

8.11 Inference accuracy vs. iteration count for the batch size of 64 186

xxi

List of Tables

6.1 Computation graph characteristics and Horovod-TOPO’s graph traversal over-

head . 139

8.1 LMDBIO optimization summary . 156

8.2 Computation imbalance optimization summary 157

8.3 Batch size vs. convergence period (a total number of epochs to reach the target

inference accuracy) of the CIFAR10-AlexNet training. The target inference

accuracy is 0.85 and the maximum training epochs is 2000. 174

8.4 Tradeoff between reuse distance and data movement 176

xxii

List of Abbreviations

CPU Central Processing Unit

DL Deep Learning

DNN Deep Neural Network

GPU Graphics Processing Unit

HPC High Performance Computing

I/O Input/Output

LMDB Lightning Memory-Mapped Database

Mmap Memory-Mapped File I/O

MPI Message Passing Interface

OS Operating System

xxiii

Chapter 1

Introduction

Deep learning (DL) [91] is an emerging technology that is gaining prominence in a multitude

of domains [18, 28, 45, 48, 64, 71, 93, 139, 154, 165] because of its ability to process unstruc-

tured input and to predict trends. Training of deep neural networks (DNNs) [60], a process

where large volumes of input data are mined to find patterns and trends, usually involves

high computational and memory complexity. These high resource requirements are growing

rapidly as researchers are developing many DNNs [62, 69, 84, 90, 101, 145, 152, 153], with

larger and more complex structures, to accurately process larger and more sophisticated

data. To meet these complex resource demands, we note three broad trends in the commu-

nity. First, researchers have targeted scalable high-performance computing as a mechanism

to process data in parallel across multiple processors [25, 38, 46, 96, 117, 174]. Second, there

has been a large influx of commercial hardware that is either tuned for or dedicated to DL sys-

tems. This hardware includes processors (e.g., NVIDIA GPUs [61, 119], Intel Xeon Phi [47],

Google TPUs [53], Cerebras Systems Wafer Scale Engine—world’s largest computer chip for

artificial intelligence tasks [5]), high-speed networks (e.g., Mellanox InfiniBand [43, 116], Intel

OmniPath [178]), and memory & storage technologies (e.g., Non-Volatile Memory Express

or NVMe [175], Intel Optane memory [172]). Third, researchers have developed numerous

algorithms to make DL more computationally efficient by allowing them to realize more al-

gorithmic parallelism without losing inference accuracy. One of the very first breakthroughs

in this area of research was shown in [181, 183] where the authors demonstrated parallelism

1

2 Chapter 1. Introduction

across 32,768 data samples (i.e., batch size) within each iteration with negligible loss in

inference accuracy for ImageNet training. This area is evolving very rapidly. In fact, only

about a year later, Osawa et al. [122] demonstrated using batch sizes of 131,072 for ImageNet

training without losing accuracy. These batch size numbers are expected to go up dramati-

cally in the next few years. Moreover, many parallel DL frameworks have been proposed in

the past decade that incorporate the cited trends in usable software instantiations, including

Caffe [3, 15, 68, 92], TensorFlow [6, 166], Theano [105, 161], Caffe2 [148], PyTorch [79],

Microsoft Cognitive Toolkit [135], Apache MXNet [21], and Chainer [164]. Nevertheless,

scalable DL remains a difficult problem to solve.

1.1 DL for HPC vs. HPC for DL

Large-scale DL is heavily intertwined with high performance computing (HPC), with each of

them making substantial contributions in improving the other. DL has been utilized to sup-

port research and development in several domains including HPC. Similarly, breakthroughs

in HPC are among the main contributors to the rapid growth of DL techniques. In light

of this close relationship between DL and HPC, it is imperative that we distinguish two

aspects of this relationship (i.e., using DL to improve HPC vs. using HPC to improve DL)

and clarify which aspect this thesis focuses on.

DL for HPC: Enhancing the performance of a HPC system/application is nontrivial as the

process usually involves high-dimensional performance metrics. Moreover, the relationship

between these performance metrics cannot typically be represented using a simple mathe-

matical model but would rather need a high-order polynomial or sometimes even a nonpoly-

nomial function. Thus, DL is an appealing method for realizing the complex representation

of the HPC system/application’s performance metrics. DL has been used largely in three

1.1. DL for HPC vs. HPC for DL 3

broad areas in HPC. The first area is DL for automating performance tuning of the HPC sys-

tems/applications (or “autotuning”), for example, GPU parameter tuning [31, 49, 107], MPI

runtime parameter tuning [127], and parallel application performance tuning [29, 44, 163].

With DL, the user of an HPC system/application can heuristically explore a large search

space of performance-related parameters and derive close-to-optimal sets of parameters in a

finite amount of time. The second area is DL for modeling complex HPC system/application

performance, for example, parallel application performance prediction [146, 162], and HPC

system’s health prediction [36]. The third area is DL for HPC task scheduling [94, 120] or

workload partitioning [57]. This is closely related to the second area in that DL is adopted

to model the task scheduling/partitioning algorithm.

While using DL to enhance HPC workloads is an active and interesting area of research by

itself, it is not within the scope of this thesis.

HPC for DL: Due to the rapid growth of data, complex DL methods and DNNs continue

to be created to support fast and accurate data processing. This makes DL workloads prime

candidates for running on HPC platforms where their complex resource demands can be

easily satisfied. Scaling DL workloads to large HPC systems, however, remains a complex

problem where one can experience significant performance loss if the massive computation

resources are not carefully utilized and managed. Therefore, a significant amount of research

has attempted to invent/improve/apply HPC techniques to allow DL workloads to perform

well on large-scale HPC systems. Most of these efforts addressed network I/O optimiza-

tions [13, 180, 188]. Some recent research has also investigated other aspects of large-scale

DL, such as data movement in file I/O [23, 77, 86, 88, 177, 180, 191] and between proces-

sors [22, 42, 124], and tradeoffs between performance and accuracy [55, 122, 181], some of

which we have studied in this thesis.

This thesis focuses on HPC for DL where we seek to leverage supercomputers and HPC

4 Chapter 1. Introduction

techniques to accelerate DL workloads. We note that we have not modified the parallel

DL algorithm. In this work, we focus on improving the scalability [17] of large-scale DL

executions, i.e., their ability to handle a growing amount of data and/or resources. While

there are dozens of factors that affect scalability, this thesis drills down into two significant

aspects impacting the scalability of large-scale DL: data movement and data processing.

Although improving a DL model’s inference accuracy—the ability to correctly predict the

output of an unseen input—is also important, it is not the main emphasis of this thesis. As

such, we leverage well-known accuracy-improvement techniques showcased in [181, 183] in

our work.

1.2 Challenges in Modern DL Frameworks

In this section, we present some of the challenges related to data movement and data pro-

cessing in large-scale DL.

1.2.1 Data Movement Challenges

Here, we first describe three observations that motivate the data movement challenges in

parallel DL.

First, contrary to popular belief, it is not true that all large-scale DL is compute bound.

The specific challenges that a training model faces depend on the characteristics of each

individual DL problem. We demonstrate the different challenges in large-scale DL through

the following three real-world DL examples:

1. Extreme weather detection [89]: a semi-supervised bounding box prediction prob-

lem has two primary characteristics: (1) large batch sizes can be used in each training

1.2. Challenges in Modern DL Frameworks 5

iteration making the amount of data read in each iteration large; and (2) the computa-

tion is sparse on the data as the neural network is made up of sparse parameter layers.

These two characteristics make this problem file I/O intensive.

2. Lawrence Livermore National Laboratory’s unsupervised image feature ex-

traction [118]: feature extraction is generally a highly complex problem that requires

a complex neural network that consists of a large number of trainable parameters (15

billion parameters in this case) that can handle a variety of different features that each

input image might have. Such characteristic makes the computation, and the amount

of data read in each iteration, insignificant compared with the amount of communica-

tion needed in the parameter update step. Therefore, this kind of training is usually

bound by network I/O.

3. Data Science Bowl’s tumor detection from CT scans [76]: the size of the

neural network, which is generally determined by a number of neurons, contributes to

the amount of computation in the training. We note that the resolution of the input

data and output data govern the number of neurons in the first layer and the last layer,

respectively, while the number of neurons in the hidden layers is typically arbitrary.

Thus, the input and output sizes have an impact on the size of the neural network

to some degree. Therefore, the training that requires high-dimensional input data is

generally bound by computation. CT scans would fall under this category.

The main takeaway from these examples is that DL problems vary widely. Some are compute

bound while others are bound by data movement, which can be in the form of file I/O or

network I/O or even data movement within the processor-memory subsystem.

Second, the technology trends today are more favorable to computation than they are to

data movement. This enables compute-bound problems to take advantage of the increasing

6 Chapter 1. Introduction

processing speeds (through increasing core counts)—something that the other two classes of

problems lack. For instance, processor speeds have improved by approximately 10-fold every

ten years in the past few decades [137]. However, the same trend does not emerge in the

filesystem and network I/O technologies.

Third, not all data movement is the same. The cost of data movement, with respect to

access time and energy consumption, varies dramatically based on the distance that the

data is moved. Moving data from main memory to registers takes significantly longer than

performing a floating point operation, and this difference is only increasing with newer

processors. Moreover, the lower a piece of data is in the memory hierarchy (Figure 1.1), the

slower the data movement.

CPU

Registers

Level	1	Cache

Level	2	Cache

DRAM

Disk

Tape

Figure 1.1: Memory hierarchy

Similar to access time, the energy cost to move data from memory to register is twice as

much as the energy cost of a double-precision floating point computation [78]. The amount of

energy required increases with the distance of data movement as demonstrated in Figure 1.2.

The farther the data is moved, the more the energy used [104, 123, 143].

To summarize these observations: (1) data movement is already a problem in DL; (2) this

problem is getting worse with time as the technology trends are biased towards computation;

and (3) not all data movement is the same—the farther the data movement the heavier the

1.2. Challenges in Modern DL Frameworks 7

 Exascale Computing Technology Challenges 3

Fig. 2. Energy cost of data movement relative to the cost of a flop for current and 2018 systems
(the 2018 estimate is conservative and doesn’t account for the development of an advanced
memory part). The biggest change in energy cost is moving data off-chip. Therefore, future
programming environments must support the ability of algorithms and applications to exploit
locality which will, in turn, be necessary to achieve performance and energy efficiency.

In an ideal world, we would design systems that would never subject applications
to any performance constraints. However, component costs and power usage force
system architects to consider difficult trade-offs that balance the actual cost of system
components against their effect on application performance. For example, if doubling
floating point execution rate nets a 10% gain in overall application performance, but
only increases system costs by 5%, then it is a net benefit despite degrading system
balance. It is important to have an open dialog to fully understand the cost impacts of
key design choices so that they can be evaluated against their benefit to the applica-
tion space.

Cost Functions

The Cost of Power: Even with the least expensive power available in the US, the cost
of electricity to power supercomputing systems is a substantial part of the Total Cost
of Ownership (TCO). When burdened with cooling and power distribution over-
heads, even the least expensive power in the U.S. (< 5cents/KWH) ultimately costs
$1M per Megawatt per year to operate a system. To keep the TCO manageable
DOE’s Exascale Initiative Steering Committee adopted 20MW as the upper limit for a
reasonable system design [1,2]. This limit is movable, but at great cost and design
risk.

The Cost of a FLOP: Floating point used to be the most costly component of a sys-
tem both in terms of design cost and power. However, today, FPUs consume a very
small fraction of the area of a modern chip design and a much smaller fraction of the

Figure 1.2: Energy used in data movement [143]

cost, both with respect to time and energy.

1.2.2 Data Processing Challenges

Together with data movement, data processing is an equally challenging facet of DL compu-

tation. The parallel DL ecosystem comprises multiple data-processing components, which

typically run simultaneously and asynchronously on different computing devices in order to

allow for high resource utilization and high computation throughput. There are two key

challenges in data processing. First, we have to ensure that each individual data-processing

component works at its full capability. Second, we have to make sure that all components

work collaboratively and efficiently as a whole. Poor coordination between these components

can cause high hardware resource contention, which leads to computational imbalance

and prevents DNN training from achieving high scalability on large-scale systems.

Because of the graph-based computational model used in modern DL frameworks, such

computational imbalance occurs only in portions of the graph where the resource demand is

higher than the available hardware resources. This computational imbalance then propagates

the resource contention into future iterations of the computation, thus further slowing down

8 Chapter 1. Introduction

the overall computation. Due to the subtlety of this problem, the DL community continues

to overlook this scalability limitation in DL frameworks.

Node	1Node	0

DNN	Training

Gradient	Sync

Load	Data

GP
U	
da
ta
	q
ue
ue GPU

Input	pipeline

Pr
ef
et
ch

CPU	data	queue

Graph	
Scheduling

DNN	training	

Load	Data

GP
U	
da
ta
	q
ue
ueGPU

Input	pipeline

Pr
ef
et
ch

CPU	data	queue

CPUs
Graph	

Scheduling
Gradient	Sync	
Progress	Engine

Gradient	Sync	
Progress	Engine

CPUs

Gradient	Sync

Figure 1.3: Data processing components in a multi-GPU multi-node DL system

At the present time, DL is typically executed on multiple GPUs across multiple nodes via a

multilevel parallel DL model (i.e., with data parallelism across GPUs and model parallelism

within each GPU). Figure 1.3 shows the data-processing components of the data-parallel

environment on a distributed GPU cluster. In the figure, we show only one GPU per node

for simplicity, although multiple GPUs can be used on each node in the real system. The

modern parallel DL model on the GPU cluster mainly comprises four data-processing com-

ponents: graph scheduling (on the CPUs), neural network training (on the GPUs), gradient

synchronization (on both the CPUs and GPUs), and input pipeline processing (on the CPUs).

Here, components that share the same resource can potentially contend with each other.

For instance, the gradient synchronization progress engine, the graph scheduling, and the

input pipeline can compete with each other for CPU resources. The gradient synchronization

(the Allreduce operation) can contend with the host-to-device input batch transfer (which

is a part of the input pipeline) for the direct memory access (DMA) engine. The Allreduce

1.3. Thesis Big Picture 9

operation can compete with the neural network training for GPU resources.

Together with the direct contention within each hardware resource, the effects of such con-

tention can also be transferred across hardware devices. For example, any delay in graph

scheduling (on the CPUs) can slow down the neural network training (on the GPUs). The

gradient synchronization progress engine’s delay (on the CPUs) can affect the underlying

tensor transfer (on the GPUs).

It is important to note here that the GPUs are the main computing units in the distributed

GPU cluster. Thus, any slowdown in the GPU computation can significantly affect the

overall execution performance. In parallel DL, GPUs are periodically synchronized with

each other (e.g., through an Allreduce operation). At the synchronization point, if some

GPUs are delayed due to the direct and/or transferred computational imbalance mentioned

above, the others GPUs in the system have to wait, i.e., be idle. This can cause significant

performance degradation in terms of scalability and computation throughput.

1.3 Thesis Big Picture

Based on the challenges presented in the previous sections, this thesis draws on sample

problems from each challenge and studies them in detail: (1) data movement from the

filesystem (i.e., file I/O)—presented in Chapters 3, 4, and 5, and (2) computational imbalance

in data processing—presented in Chapter 6.

1.3.1 Investigation of File I/O

Most file I/O subsystems for DL at the present are similar to one another. In other words,

they mostly suffer from the same shortcomings, for example, the use of mmap for partial

10 Chapter 1. Introduction

database access, the sequential database access limitation, and the lack of the true parallel

data reading. We further compare and contrast the existing file I/O subsystems for DL to

point out that our work can also be generalized for other systems in Chapter 7.2.1.

In our investigation of file I/O challenges in large-scale DL, we adopt Caffe, the most well-

known first generation DL framework, with Lightning Memory-Mapped Database (LMDB) [27],

the most widely used file I/O subsystem in DL frameworks to demonstrate the parallel data

reading challenges. We perform an in-depth analysis on Caffe with LMDB to establish a clear

understanding of the I/O problems in DL. Based on our analysis, we present many short-

comings in LMDB that are caused mainly by its usage of implicit I/O through mmap [103],

its reliance on a tree-based structure for storing data that limits the database access to only

sequentially, and its inefficiency in I/O management in the context of parallel computing.

Some of these problems exist as the fundamental problems in other well-known file I/O

frameworks, e.g., NumPy, TFRecord, RocksDB, and HDF5, as well. Our analysis shows

that LMDB achieves less than 10% of the practically achievable performance of the I/O

subsystem because of these shortcomings. Next, we propose “LMDBIO,” an optimized I/O

subsystem for scalable DL. LMDBIO includes a series of six sophisticated optimizations that

address the shortcomings identified in our analysis.

According to the areas of the problems found in the analysis, we divide our optimization

techniques into three main categories as follows:

• Intra-node file I/O optimization reduces high interprocess contention caused by

mmap on a single node.

• Speculative distributed file I/O optimization coordinates between multiple reader

processes to overcome the sequential database access limitation.

• Direct file I/O optimization is a collection of four techniques that adopt direct I/O

1.3. Thesis Big Picture 11

for data reading instead of the implicit I/O to improve data reading performance.

We showcase our file I/O optimizations on two large HPC clusters, namely Blues1 and

Bebop2 at Argonne National Laboratory. Together, LMDBIO optimizations can significantly

improve the performance of parallel data reading resulting in up to 65-fold improvement on

DNN training on 9,216 CPU cores. In fact, on our system, these optimizations can saturate

the system’s available I/O bandwidth in DL frameworks.

We note here that the central focus of this study is on scaling DL on large supercomputing

systems rather than on commodity clusters or cloud platforms. Most large supercomputers

do not have a local disk on each node; thus, I/O typically is performed over the shared

filesystem. In some cases, on-node storage might be present in the form of nonvolatile

storage. Such storage is not persistent across the lifetime of the machine, however, and

typically is wiped clean when a new job is assigned to a node. Thus, data I/O still has

to be performed from the global filesystem. Even on systems that utilize on-node storage

technologies in the form of burst buffers, staging data on to these burst buffers requires prior

knowledge as to which node would need what segment of the data. Such information is,

unfortunately, not readily available in modern DL systems.

1.3.2 Investigation of Computational Imbalance in Data Process-

ing

The parallel data-processing architecture of modern DL frameworks are similar as presented

in Chapter 1.2.2. Our study is applicable to all DL frameworks that allow asynchronous

execution (or pipelining) of multiple data-processing components, for example, TensorFlow,

1http://www.lcrc.anl.gov/systems/resources/blues
2http://www.lcrc.anl.gov/systems/resources/bebop

http://www.lcrc.anl.gov/systems/resources/blues
http://www.lcrc.anl.gov/systems/resources/bebop

12 Chapter 1. Introduction

PyTorch, and MXNet. We further discuss in Chapter 8.3.5 on how to apply our work in the

other modern DL frameworks.

In our investigation of the computational imbalance challenges in large-scale DL, we show-

case our study via TensorFlow, the most popular DL framework today, and Horovod [142],

a well-known communication plugin for DL frameworks. We analyze the root cause of the

scalability limitation and identify that it is not caused by the native performance of the hard-

ware or software ecosystem itself but, instead, is an artifact of subtle resource contention

issues that lead to straggler processes or imbalance in the amount of time spent on computing

by the different processes. The parallel DL ecosystem comprises multiple data-processing

components, which typically run simultaneously and asynchronously. Without proper coor-

dination, these components can compete for resources leading to computational imbalance

and limiting the DL training scalability.

Based on our analysis, we realize that Horovod, which is a part of the gradient synchroniza-

tion component, is the main origin of computational imbalance. Therefore, we propose, de-

sign, and implement four optimizations that are incorporated into Horovod to allow multiple

data-processing components to share the available computational resources more effectively

in TensorFlow with Horovod. The following are brief descriptions of our proposed solutions:

• Global sleep time optimization solves the computational imbalance problem that

is caused by nonuniform sleep time across processes by using a global sleep time.

• Nonblocking cache synchronization leverages a nonblocking approach to perform

synchronization between processes during Horovod’s cache synchronization to avoid re-

source contention (details of cache synchronization will be explained in Chapter 6.2.2).

• Static CPU resource partitioning avoids resource contention between data-processing

components by using a simple static partitioning of the CPU cores.

1.4. Organization of this Thesis 13

• Graph topology exploitation makes use of the available graph topology information

in order to prevent Horovod from competing for resources with other data-processing

components.

We demonstrate the performance improvement achieved by our optimizations on the world’s

fastest supercomputer—Summit3 [66] at Oak Ridge National Laboratory. Our optimizations

can achieve up to 35% improvement in training various real-world DNNs using 24,576 GPUs

of Summit.

1.4 Organization of this Thesis

The rest of the thesis is organized as follows. Chapter 2 presents background knowledge that

is necessary to understand our work. Chapter 3 presents a detailed analysis of inter-process

contention in LMDB on a single node and the design and implementation of our intra-node

file I/O optimization. Chapter 4 elaborates on the analysis of LMDB’s sequential database

access restriction and the design and implementation of our inter-node file I/O optimization.

Chapter 5 describes implicit I/O inefficiencies in LMDB and the design and implementation

of four direct I/O techniques. Chapter 6 describes the resource contention problem that is

caused by Horovod and the design and implementation of our solutions to the computational

imbalance issue for DL data processing. Chapter 7 presents other literature related to our

work and compares and contrasts our work with them. Chapter 8 summarizes the work done

in this thesis and presents discussions on how to further improve the scalability of large-scale

DL systems in several aspects.

3Ranked one on the Top500 list as of June 2019 (https://www.top500.org/lists/2019/06/)

https://www.top500.org/lists/2019/06/

Chapter 2

Background

This chapter provides brief background information that is necessary for understanding our

analysis and the core design of our work.

2.1 Overview of Deep Neural Network Training

DL is one form of machine learning that uses high-order methods to recognize complex

data and trends similar to the human brain. Machine learning is one approach to artificial

intelligence (AI) which investigates ways for computers to learn from a set of data. Machine

learning consists of two phases (as shown in Figure 2.1): (1) training phase: automatic

complex pattern recognition based on given empirical data, and (2) testing phase: output

prediction based on a given input using the model obtained from the training phase.

Training	phase

Machine	
learning

Empirical	data	
(e.g.	tuples	
with	labels)

Prediction
Model

Input Output

Prediction
Model

Input	data	
(e.g.	a	tuple)

Predicted	
output

Input Output

Testing	phase

Figure 2.1: Training and testing phases of machine learning

DL can be viewed as a complex curve fitting problem. Although below we explain DL through

classification examples, DL applications are not limited to only classification problems. One

such simple curve fitting example is a binary classification where the input can be categorized

14

2.1. Overview of Deep Neural Network Training 15

into two classes. Figure 2.2 shows the binary classification example that input data is a set

of x and y pairs where x is the feature and y is the output which has two values, 0 and 1 in

this case. These two values of y represent the two classes that data can be classified into. A

simple way to classify the input is to use a linear line, y = (ax+ b >= 0). The goal is to find

the optimal equation coefficients a and b that would allow the linear equation to classify the

given input into two classes correctly. In the training phase, a simple method, such as linear

regression, can be used to compute the optimal values for a and b. In the testing phase, the

linear equation obtained in the training phase is a classification model that can be used to

predict the class of an unseen input by simply plugging in the x value of the input into the

linear equation.

y	=	(ax +	b	>=	0)
y	=	1

y	=	0

Goal: find	a	and	b

parameters
feature

x and	y pairs

Unseen	data

Figure 2.2: Binary classification example

For complex input data, a simple model typically fails to correctly classify data. Therefore,

a more complex classification model is required. Figure 2.3 shows complex classification

examples where high-order polynomial models are used to represent the classes of data.

These models can be derived by using complex classification approaches [60], such as k-

Nearest Neighbors (k-NN), Support Vector Machine (SVM), decision tree, random forest, as

well as neural network.

Neural network (NN) is one of the well-known models for handling high-dimensional data.

A neural network is made up of nodes and edges. Each node is called a “unit”. Units are

contained within layers. There are three types of layers in a NN (as shown in Figure 2.4):

16 Chapter 2. Background

Figure 2.3: Complex classification examplea: classification decision boundaries are shown in
different colors

aCourtesy of https://scikit-learn.org/stable/auto examples/classification/plot classifier comparison.html

Input	layer Hidden	layer	1 Hidden	layer	2 Output	layer

w1a

x1

x2

xn

… …

Oc

ObOa
wab

wbc

x	=	the	input	unit,	O	=	the	output	unit,	w	=	weight

Figure 2.4: Structure of a neural network

2.1. Overview of Deep Neural Network Training 17

1. Input layer: There is only one input layer in each NN. It is the first layer of the NN.

All units within the input layer pass inputs simultaneously to units in the second layer.

2. Hidden layers: Each NN comprises one or more hidden layers. Units in this layer,

called neurons, apply certain functions, called activation functions, to the weighted

input (this will be explained later in this section). The last hidden layer passes the

output to the output layer.

3. Output layer: There is only one output layer in each NN. It is the last layer of the

NN. Units in this layer are called neurodes. This layer does the same thing as the

hidden layer. Its product is the output of the NN.

On each edge, there is a weight that is a parameter (similar to a coefficient in a linear equation

described above) of the NN model. It is used for adjusting the importance of the input value

to the output by multiplying the weight value to the input value (e.g., if a weight is zero, the

input is not important and will not be used in the calculation of the output value). For this

reason, the configuration of the weight values is very crucial to the NN’s output prediction

ability.

To train a NN, a learning algorithm, such as stochastic gradient descent (which will be

explained in the next section), iteratively adjusts parameters by minimizing an error between

the predicted output and the actual output based on the input training data. The ultimate

goal of the NN training is to obtain the optimal set of parameters that allows the NN model

to achieve high testing (or inference) accuracy—which means that the NN model has high

confidence in predicting the output of an unseen input data correctly. While high training

accuracy means the NN model is highly capable to accurately estimate the output of the

trained input data, it does not guarantee that the inference accuracy is also high. In the

case that the training accuracy is high but the inference accuracy is low, it is an indicator

18 Chapter 2. Background

of an overfitting problem (i.e., the model is too specific to the training data).

Deep neural networks are modern neural networks that consist of larger number of hidden

layers, i.e., deeper, and more recent activation functions compared to the traditional neural

networks. Although the ultimate goal of the DNN training is as same as the traditional

NN training, the complexity of the DNN training is much higher due to the more complex

computation resource demand that is caused by an increase in the volume of training data,

the more complex neural network structure and the more sophisticated training algorithms.

2.2 Stochastic Gradient Descent via Batch Training

In this section, we provide the overview of the stochastic gradient descent [52] (SGD) algo-

rithm via the batch training approach. We omit mathematical explanations related to SGD

as they are not used in the core of this work, however, they can be found in [115].

SGD is the most well-known algorithm used in DNN training. It is a backpropagation based

method, that is it iteratively and recursively updates weights of the DNN model based on

the prediction error. The traditional SGD algorithm involves a single data input in each

training iteration, i.e., SGD learns only one data point before updating the DNN weights.

Such training is oftentimes called “online training”. However, online training is noisy as the

weights are updated very frequently which can slow down the convergence [189]. Therefore,

in common practice, more than one data samples—or a “batch” of data sample—is used in

each training iteration. We henceforth refer to “batch SGD” as “SGD”.

Figure 2.5 shows the SGD training workflow. The SGD training starts by initializing the

parameters of the DNN. Most training frameworks typically initialize the parameters to

random values, although a growing number of researchers use better initial approximations

2.2. Stochastic Gradient Descent via Batch Training 19

Initialize	environment

Test	DNN
No

Yes

End

No

Yes

Load	Batch	(samples)

Do	backward
(compute	gradients)

Do	forward	
(compute	output)

Update	params

Calculate	error

Is	a	termination	criteria	
satisfied?

Is	a	test	iteration?

Start

Figure 2.5: Stochastic gradient descent

of the parameters based on known properties of the input data. Training is an iterative

process that continues until the parameter set converges to the desired accuracy. Processing

one batch of data samples is referred to as one training iteration. In each training iteration, a

batch of data samples in the database is drawn randomly and used to train the neural network

in the forward pass computation. The forward computation calculates the output of each

layer starting from the first to the last layer. Then the deviation error is measured between

the predicted value from the current DNN parameters (i.e., the output from the forward

pass computation) and the actual value from the dataset. This error is then propagated

back into the DNN in the backward pass and used to calculate parameter adjustments or

gradients. The backpropagation starts from the last layer to the first one. For the batch

training, the gradients of all data batch samples are accumulated and used to update the

weights. Once the training converges, the final set of DNN parameters is used to generate

20 Chapter 2. Background

a function approximation model that can be utilized for highly accurate prediction of new

data samples.

2.3 Parallel Batch Training

As the computations of data samples in each batch is independent from one another, a

parallel batch training is feasible. Most modern DL frameworks allow for parallel DNN

training. There are four main parallel models (as shown in Figure 2.6):

Train	Sub-DNN	A

Batch

Train	Sub-DNN	B

I/O
Pipelining	
possible

Pipelining	
possible

(a)	Multi-DNN	parallelism

(c)	Model	parallelism

Train DNN	A

Batch Batch

Train DNN	B

Update	
params

Update	
params

I/O I/O
Pipelining	
possible

Pipelining	
possible

(b)	Data	parallelism

Train	DNN

Subbatch A Subbatch B

Train	DNN

Update	
params

I/O I/O
Pipelining	
possible

Pipelining	
possible

(d)	Intra-op	parallelism	
(Finer	grain	version	of	model	parallelism)

Parallel	subnet	
training
(e.g.,	on	threads)

Update	
params

Update	
params

Update	
params

Train	Sub-DNN	A

Batch

Train	Sub-DNN	B

I/O
Pipelining	
possible

Update	
params

Update	
params

Figure 2.6: Parallel DL models: (a) multi-DNN parallelism; (b) data parallelism; (c) model
parallelism; (d) intra-op parallelism

1. Multi-DNN parallelism: The different DNN models are trained concurrently across

different processes/threads. The same batch of data is used for all the models. This

kind of training is also referred to as “ensemble training” [92].

2. Data parallelism: This model is the most popular parallel model for DL. The batch

of data samples is partitioned into a smaller chunks of the same or similar sizes, and

2.4. Overview of Modern Deep Learning Software 21

the different chunks are trained on multiple processes/threads simultaneously using

the same copy of the DNN. In the parameter update step, gradients are accumulated

across processes/threads (normally via the Allreduce communication operation) before

updating parameters.

3. Model parallelism: This model is suitable for the cases where the DNN model is too

large to fit in the memory (e.g., main memory or GPU’s memory) or asynchrony in

data parallelism is not sufficient. In this parallel model, the DNN model is partitioned

and executed in parallel. The same batch data is used for training the different replicas

of the DNN. Communication between the DNN replicas occurs based on how the DNN

is partitioned.

4. Intra-op parallelism: This model is a fine-grained version of model parallelism.

Within each DNN, each operation is partitioned and run concurrently on multiple

threads/processes.

For every parallel model, the input component (labeled “I/O” in Figure 2.6) can be pipelined

with the DNN training, for example, the input component is running on the CPUs while the

DNN training is running on the GPUs. These parallel models can be combined together to

maximize parallelism in the DNN training. Moreover, most modern DL frameworks support

all four parallel models.

2.4 Overview of Modern Deep Learning Software

We provide the overview of the DL software adopted in our work. In our file I/O optimiza-

tion, we use the Caffe DL framework with its default file I/O subsystem, LMDB. While

22 Chapter 2. Background

in our computational imbalance optimization, we use TensorFlow and Horovod as our DL

framework and network I/O subsystem, respectively.

2.4.1 Overview of Caffe Deep Learning Framework

Caffe [75] is a one of the very first DL frameworks developed by the Berkeley Vision and

Learning Center. Caffe is a C++ based DL framework with CUDA support. The original

goal of Caffe was to provide an efficient GPU-based framework for convolutional neural

network training [52], but it has been extensively modified by several researchers to support

generic CPU architectures as well.

Caffe adopts the data parallel SGD approach to train DNNs as shown in Figure 2.7. The

overall flow of the training is the same as that of sequential processing except that the data

batch loading, the forward pass, and the backward pass are parallelized on multiple process-

es/threads. Parallel neural network training, however, comes with an additional communica-

tion cost where neural network parameters must be synchronized across processes/threads.

For storing and retrieving data samples, a number of database options are available in the

community for DL systems. The most widely used database option is LMDB, which is the de-

fault database format used by Caffe. As Caffe is the first generation modern DL framework,

it does not support asynchronous execution of the input and the gradient synchronization

components. All data-processing components are executed sequentially as illustrated in Fig-

ure 2.7. In other words, the I/O-computation overlap and the communication-computation

overlap are not provided in Caffe.

2.4. Overview of Modern Deep Learning Software 23

Init environment Init environment

Do	forward and	
backward

Do	forward and	
backward

Sum	gradients

Set	Random	Seed Set	Random	Seed

Start Start

Test	DNN Test	DNN

Allreduce

Terminate?

No No YesYes

Sum	gradients
Allreduce

Load	batch Load	batch
Parallel	I/O

Is	the	test	iteration? Is	the	test	iteration?

Update	params Update	params

No Terminate?

Yes Yes

Sync	accuracy Sync	accuracy

End End

Bcast

No

Figure 2.7: Caffe’s data-parallel workflow

24 Chapter 2. Background

2.4.2 Overview of Lightning Memory-Mapped Database (LMDB)

LMDB involves two concepts. First, it refers to a database format that arranges its content

based on a B+ tree and allows efficient simultaneous read and write access to the database.

Second, LMDB refers to a library that provides the API to access and manipulate the LMDB

database. This library makes use of the OS memory-mapping mechanism, mmap, to enable

in-memory database access. We note that LMDB is not specific to DL. It is a well-known

key-value database that is used in multiple domains with different usage models. In this

section, we discuss background information related to LMDB in two ways: (1) mmap and its

dynamic data-reading mechanism and (2) the LMDB database format and its data access

model.

Overview of LMDB’s Dynamic Data Loading via Mmap

LMDB relies on mmap to perform in-memory data access. Mmap is a generic Unix system call

that maps the layout of a file on the filesystem to the virtual address space of a process, thus

giving an illusion to the process that the entire file is in memory. Data access is tracked by

the OS at a page-level granularity, and data is dynamically fetched from the filesystem to

memory when the application accesses it. This model is convenient for accessing files with

complex structures, such as B+-tree databases since the application process does not have

to be concerned about which exact bytes need to be fetched to memory. It can pretend that

the entire file is already in memory.

Mmap dynamically reads pages from the filesystem to memory on demand. In other words, the

data is not read until it is required. The workflow used by mmap is illustrated in Figure 2.8.

Three components are involved in data reading: the filesystem (which can be local or shared

across machines), a page cache (which is shared across processes on the node), and a virtual

2.4. Overview of Modern Deep Learning Software 25

Shared	file system
(shared	between	nodes)

Page	cache

Virtual	memory: Process	0

Node1

Virtual	memory:	Process	1		

Node2

Page	cache

ReadRead

Map Map

Figure 2.8: Workflow of memory-mapped file I/O (mmap)

address space (which is private to each process). When mmap is called, each process allocates

a virtual address space for the database, but it does not fetch any data into this space.

Instead, the mmap call protects the allocated virtual address space to raise a page fault if the

process tries to read from or write to this virtual address space. When the process accesses

the first page, which is not present in memory, the page fault handler is triggered. The

page fault handler first reads data from the filesystem to the page cache and then maps the

corresponding page from the page cache to the appropriate virtual address region that the

user is trying to access. The pages in the page cache can be mapped to the virtual address

spaces of multiple processes on the same node. Another benefit of using mmap is that the

OS automatically frees pages when physical memory is almost full. Thus, the user does not

have to worry about out-of-memory problems.

Aside from these advantages, mmap also has several shortcomings that stem primarily from

the fact that it offloads all the I/O handling responsibilities to the OS. Thus, application

processes do not have any control over the actual I/O. For example, mmap does not allow users

to provide detailed information about their access pattern. While users can provide some

simple hints using madvise and fadvise, these hints are primarily for simple manipulation

of access patterns. For example, they allow users to distinguish between sequential and

26 Chapter 2. Background

random access to data. However, they are not suitable for more complex access patterns,

such as strided access to batches of data. This abstraction of I/O from the applications that

mmap provides sometimes results in a tremendous loss in I/O performance.

LMDB Database Format

LMDB adopts a flattened B+-tree data structure as its database layout. It uses pages to

represent nodes (i.e., branch and leaf nodes) in the B+ tree, where each node is stored on

the filesystem in a block-aware manner.

B+ trees are balanced n-way search trees. LMDB uses this tree format to organize the

database indices in a way that data records can be accessed efficiently when stored on a

local or external filesystem. Generally speaking, a B+ tree consists of two types of nodes:

branch nodes and leaf nodes (see Figure 2.9 for a 3-way B+ tree structure). A branch

node contains pointers that point to n children nodes (which can be branch nodes or leaf

nodes). Indices contained in a branch node govern the range of indices of its successors. For

example, in Figure 2.9, the pointer from index 3 in the branch node points to a leaf node

that contains data with indices less than or equal to 3. B+ trees are designed to be efficient

for filesystem access. In B+ trees, nodes are stored in a block-aware manner, where each

node is a filesystem page.

3 5

1 2 3
d1 d2 d3

4 5
d4 d5

6 7
d6 d7

Branch	node

Leaf	node	l1 Leaf	node	l2 Leaf	node	l3

di =	ith data	record

Figure 2.9: B+ tree data structure

2.4. Overview of Modern Deep Learning Software 27

The LMDB database consists of four types of pages: metadata pages, branch pages, leaf

pages, and overflow pages. The first two pages of the database file are metadata pages

that store information specific to the overall database (e.g., version of the database, size of

the database). The branch and leaf pages represent the internal branch and leaf nodes in

the B+-tree structure. Each of the branch and leaf pages contains a page header that has

information associated with that page (e.g., type of page, amount of free space in the page,

pointers to neighboring pages) and some actual data key-value records. Since the size of each

page is typically limited to 4 KB (the OS page size), a leaf node cannot accommodate data

records that are larger than 4 KB.1 In such cases, LMDB uses overflow pages to store data

records that cannot fit within one page. Thus, each leaf page can have zero or more overflow

pages associated with it. We note that not all overflow pages have a header associated with

them. Only the first overflow page corresponding to a given leaf page has a header.

Since LMDB’s data format is a complex tree structure, correctly identifying a record requires

a complete collection of pointers to all the branch pages in the path to the target data record.

LMDB stores this information in a convenient data structure that it refers to as the “cursor,”

which can be thought of as the identity of a data record in the LMDB database. When the

database is opened, LMDB initializes this cursor to point to the root of the database. LMDB

also provides API functions to move the cursor forward or backward, thus allowing us to

access the remaining records in the database.

LMDB’s database format is designed to allow for efficient sequential data access: each leaf

node has a link that connects it to the adjacent leaf node. The layout of the LMDB database

file depends not only on database’s contents but also on how the content was inserted into the

database, that is, the order in which they are inserted and the frequency of database commit

operations between insertions. In other words, for a given set of data records, depending on

1Even though most systems today support large 2 MB pages and huge 1 GB pages, file-backed mmap still
typically uses 4 KB pages, even on modern systems.

28 Chapter 2. Background

how they are inserted and how frequently the commit operations are issued, the database

layout can be very different. Thus, we cannot determine the exact layout of the database

unless we also have information on how the database was created. This information is not

stored in the native LMDB database format.

In order to access an arbitrary data record in the database, LMDB needs to navigate from

the root of the B+ tree and through all the corresponding branch and leaf nodes, but not

the overflow nodes. Such tree parsing, which we refer to as “sequential seek,” requires data

to be read from the filesystem to memory because the pointer information is stored in the

page headers. Although only the header portion of the page is needed for parsing the tree,

the entire page is read to memory since mmap loads data at a page-level granularity. The

worst-case scenario is when every data record fits in the leaf page (i.e., no overflow pages).

In this case, every page along the way to the target leaf page will need to be read while

parsing the tree.

Since not all pages have headers associated with them (e.g., overflow pages), none of the

existing LMDB operations allow for random access within the database. Unfortunately, the

data access pattern of parallel DL is semi-random—in other words, each process would need

to skip the records that are being processed by the other processes—thus making file I/O

hard to optimize in such frameworks.

2.4.3 Overview of TensorFlow Deep Learning Framework

TensorFlow [6, 166] is the most popular open-source machine learning framework to date.

It is developed by Google. It provides various highly optimized machine learning building

blocks that can be easily utilized via Python and C++ APIs. TensorFlow can operate on

several computing platforms ranging from mobile devices to supercomputers. It supports all

2.4. Overview of Modern Deep Learning Software 29

four parallel DL training mentioned in Chapter 2.3. The details of the parallel model used in

this work will be explained in Chapter 6. Unlike Caffe, TensorFlow provides asynchronous

execution of data processing-components. In common practice, the input component is

pipelined with the core DNN execution when possible. Moreover, the communication and

computation overlap can also be enabled in TensorFlow, that is the gradient synchronization

process can be pipelined with the backward pass computation.

2.4.4 Overview of Horovod Communication Plugin

Horovod is a communication plugin for distributed DL frameworks, including TensorFlow,

PyTorch, and MXNet. It provides new communication operation classes with similar seman-

tics as the native communication operations in these DL frameworks. Because of this, users

can construct computation graphs, which are the representations of the DNNs, by simply

replacing the native communication operations with Horovod operations.

Horovod relies on several highly optimized data-movement libraries, such as MPI, NVIDIA

Collective Communications Library (NCCL),2, IBM PowerAI Distributed Deep Learning

(DDL) [26], Facebook Gloo,3 and Intel Machine Learning Scaling Library (MLSL) [149] for

communication, thus allowing for better data-transfer performance and scalability. Each

Horovod operation takes one input tensor and produces one output tensor. Typical DL

computations require processing more than one tensor. Consequently, computation graphs

generally contain multiple Horovod operations.

All Horovod operations are nonblocking asynchronous. They are nonblocking in that a

Horovod operation will always return in a finite amount of time, irrespective of the state

of other processes in the system. Specifically, when a Horovod operation is executed in the

2https://developer.nvidia.com/nccl
3https://github.com/facebookincubator/gloo

30 Chapter 2. Background

computation graph, the DL framework’s graph scheduler thread enqueues a communication

request into the Horovod’s internal request queue and then returns. Horovod operations are

asynchronous in that once the operation is enqueued, the DL framework is no longer respon-

sible for its completion. The progress and completion of the operation are asynchronously

handled by Horovod. To achieve this, within each OS process, Horovod creates a “back-

ground thread” whose primary purpose is to perform the data transfers associated with

the various Horovod operations in that process. The background thread periodically checks

the request queue (into which the graph scheduler had enqueued communication requests),

issues data transfers for the tensors associated with the enqueued requests, and executes

completion callbacks to the DL framework once the transfers are completed. More details of

the background thread will be explained in Chapter 6.2.2.

Chapter 3

Intra-node File I/O Optimization

In this chapter, we first provide the scalability analysis of Caffe with its default I/O subsys-

tem, LMDB, to demonstrate data reading inefficiency in the state-of-the-art DL framework.

We then provide the detailed analysis of LMDB inefficiency on a single node along with

the detailed design and implementation of our proposed optimization, namely LMDBIO-

LMM—localized mmap optimization.

From the analysis, we observe that data reading performance of LMDB is inferior when

using multiple readers within one node. In fact, using multiple readers is worse than using a

single reader. This is because LMDB internally uses mmap which entirely relies on the OS to

handle I/O operations. The low quality I/O management of the OS causes high interprocess

contention when using multiple readers. This results in a surge of a number of context

switches in the multiple-reader environment.

LMDBIO-LMM attempts to eliminate interprocess contention of mmap by localizing it. Our

mmap localization approach reduces I/O management stress of the OS which results in a

significant increase in overall reading performance within a single node.

At the end of this chapter, we compare the performance of LMDBIO against that of LMDB

using a microbenchmark and actual DL benchmark on various datasets and supercomputing

platforms. Our experimental results show that LMDBIO performs better than LMDB in

most cases.

31

32 Chapter 3. Intra-node File I/O Optimization

3.1 Analysis of Caffe/LMDB Performance and Ineffi-

ciencies

In this section, we analyze the scalability performance of Caffe with LMDB as well as the

root cause of the scalability loss.

3.1.1 Experimental Setup for File I/O Experiments

To enable cross-comparison between proposed file I/O optimization techniques in our pro-

posed work (including the approaches presented in Chapters 3, 4, and 5), we use the same

experimental setup for all experiments. Our evaluation framework addresses several dimen-

sions of large-scale DL including size of dataset, type of dataset, type of neural network,

type of supercomputing platform, type of data storage, type of software stack, data access

pattern, and configuration of the experiment. In this work, we fix the latter four dimensions

while experimenting with the rest, as noted in the following subsections.

Datasets: We use three image classification datasets for our experiments. The first is the

CIFAR10-Large1 [83] dataset, which consists of 50 million sample images in 10 classes,

each approximately 3 KB. The total dataset size, including raw images and metadata cor-

responding to the images, is approximately 190 GB. The second is the ImageNet2 [138]

dataset, which consists of 1.2 million sample images in 1,000 categories, each approximately

192 KB (total dataset is 240 GB). The third is the ImageNet-Large dataset, which is

1CIFAR10-Large is an amplified version of CIFAR10 which is a dataset that contains 60,000 32x32 color
images in 10 classes. Although we adopt simple replication techniques to augment our dataset, other data
augmentation approaches (such as Gaussian noise [133]) can be used to replicate our results as well because
the size and the layout of the dataset would be identical irrespective of which technique is used. CIFAR10
can be downloaded from https://www.cs.toronto.edu/~kriz/cifar.html

2The ImageNet dataset that we used is a part of Large Scale Visual Recognition Challenge 2012
(ILSVRC2012). The dataset can be downloaded at http://www.image-net.org/challenges/LSVRC/2012/

https://www.cs.toronto.edu/~kriz/cifar.html
http://www.image-net.org/challenges/LSVRC/2012/

3.1. Analysis of Caffe/LMDB Performance and Inefficiencies 33

an amplified version of ImageNet that replicates some images from ImageNet for a total of

6 million images (total dataset is 1.1 TB). Although all datasets can be I/O intensive, the

ImageNet datasets are particularly so, given the size of the images that need to be processed.

DNNs: We use three DNNs for our experiments. AlexNet3 [84] is used to train the

CIFAR10-Large dataset. AlexNet is a small neural network with 13 layers and 89K param-

eters. CaffeNet4 is used to train the ImageNet and the ImageNet-Large datasets. It is a

large neural network with 22 layers and 60M parameters. ResNet505 [63] is used to train

ImageNet-Large. It is a large network with 228 layers and 25.6M parameters [184]. We note

that the number of layers in each DNN is based on the DNN definition in Caffe.

Supercomputing platforms: The experimental evaluation for this work is performed on

two clusters operated by the Laboratory Computing Resource Center at Argonne National

Laboratory: Blues and Bebop. Blues consists of 310 computing nodes connected via

InfiniBand Qlogic QDR. Each node has 64 GB of memory, two Sandy Bridge 2.6 GHz

Pentium Xeon processors (16 cores, hyperthreading disabled), and a 15 GB ramdisk. Bebop

consists of 672 Intel Broadwell nodes. Each node consists of 36 cores, 128 GB of memory,

and a 15 GB ramdisk. The interconnect is Intel OmniPath.

Data storage: The datasets are stored on IBM General Parallel File System (GPFS). Blues

and Bebop share the same GPFS installation. The storage is 110 TB of clusterwide space.

The system has 10 Network Shared Disk servers with no replication. To ensure that data is

read from the filesystem rather than from memory (i.e., no caching), we clear the OS’s page

cache and GPFS’s file cache prior to performing each experiment.

3The AlexNet neural network is Caffe’s variant of AlexNet which is also known as “cuda-convnet”.
The neural network definition can be found at https://github.com/BVLC/caffe/blob/master/examples/
cifar10/cifar10_full.prototxt.

4CaffeNet definition can be found at https://github.com/BVLC/caffe/blob/master/models/bvlc_

reference_caffenet/train_val.prototxt
5https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/

ResNet-50-deploy.prototxt

https://github.com/BVLC/caffe/blob/master/examples/cifar10/cifar10_full.prototxt
https://github.com/BVLC/caffe/blob/master/examples/cifar10/cifar10_full.prototxt
https://github.com/BVLC/caffe/blob/master/models/bvlc_reference_caffenet/train_val.prototxt
https://github.com/BVLC/caffe/blob/master/models/bvlc_reference_caffenet/train_val.prototxt
https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-50-deploy.prototxt
https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-50-deploy.prototxt

34 Chapter 3. Intra-node File I/O Optimization

DL frameworks and software stack: We use Caffe version 1.0.0-rc3 together with single-

threaded Intel Math Kernel Library or MKL [167], unless specified otherwise. We use LMDB

version 0.9.21.6 Caffe and LMDB are built by using the Intel ICC compiler (version 17.0.4).

On Blues, we use MVAPICH-2.2 over PSM (Performance Scaled Messaging) [160] for all

experiments. On Bebop, we use Intel MPI version 2017 for all experiments.

Data access pattern: Caffe supports a data access pattern that is commonly known as data

sharding, strided data reading, or distributed data reading. All processes together access

contiguous blocks of data in each iteration, while each individual process has a strided access

pattern for data access across iterations. Thus, each process accesses a disjoint set of data

samples in each training iteration. This data access pattern is a part of the Caffe workflow

and is the same across all experiments. Data reading and parsing are performed in parallel

by multiple processes. We note that Caffe does not perform data shuffling.

Experimental configuration: All experiments use single-precision floating-point SGD

training. All experiments are run three times, and the average performance is shown.

3.1.2 Scalability Analysis of Caffe/LMDB

In this section, we analyze the file I/O bottleneck in Caffe. We evaluate the strong-scaling

scalability of Caffe with LMDB (denoted Caffe/LMDB) by training it using the CIFAR10-

Large dataset on AlexNet [84]. We use a batch size of 18,432 for 512 iterations (approximately

9 million total data samples) on Bebop. The training is scaled from 1 core to 9,216 cores

(i.e., 256 nodes with 36 cores on each node). Figure 3.1(a) shows the overall training time of

Caffe compared with linear strong scaling. The figure shows that Caffe/LMDB scales poorly

even with a small number of cores and is nearly 660-fold worse than linear strong scaling on

6https://github.com/LMDB/lmdb/releases/tag/LMDB_0.9.21

https://github.com/LMDB/lmdb/releases/tag/LMDB_0.9.21

3.1. Analysis of Caffe/LMDB Performance and Inefficiencies 35

9,216 cores.

1

10

100

1000

10000

100000

Ti
m
e	
(s
)

Number	of	Cores

Caffe/LMDB Linear	saling

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Ex
ec
ut
io
n	
Ti
m
e	
Br
ea
kd
ow

n

Number	of	Cores
Read	time Transform	time Total	forward	time
Total	backward	time I/O	skew	time Param	sync	time
Param	calculation	time Param	update	time

Figure 3.1: Caffe/LMDB’s strong scaling using CIFAR10-Large on Bebop: (a) total execu-
tion time; (b) execution time breakdown

We next perform a breakdown of the execution time, shown in Figure 3.1(b), to understand

which components of Caffe/LMDB take the most time. We notice two significant trends in

the figure. First, the file I/O time (denoted “Read time”) increases with the number of cores.

This increase is because the computation time (i.e., total forward time, total backward time,

parameter calculation time, and parameter update time) tends to scale well with the number

of cores, leaving I/O as the bottleneck. In fact, as we scale the problem to 9,216 cores, I/O

36 Chapter 3. Intra-node File I/O Optimization

takes approximately 90% of the total time. Second, the “I/O skew time” grows with the

number of cores, raising concerns of load imbalance occurring between the cores as we scale

to a large number of cores.

10

100

1000

10000

576 1152 2304 4608 9216

Ti
m
e	
(s
)

Number	of	Cores

Caffe Linear	scaling

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

576 1152 2304 4608 9216

Ex
ec
ut
io
n	
Ti
m
e	
Br
ea
kd
ow

n

Number	of	Cores
Read	time Transform	time Total	forward	time
Total	backward	time I/O	skew	time Param	sync	time
Param	calculation	time Param	update	time

Figure 3.2: Caffe/LMDB’s strong scaling using ImageNet-Large with CaffeNet on Bebop:
(a) total execution time; (b) execution time breakdown

We also perform a similar analysis with ImageNet-Large using the CaffeNet and ResNet50

network models by using a batch size of 18,432 for 128 iterations, as illustrated in Figures 3.2

and 3.3. From our experiments, we observe that the actual read time (denoted “Read time”)

and the I/O imbalance time (denoted “I/O skew time”) take up to 66% of the time with

3.1. Analysis of Caffe/LMDB Performance and Inefficiencies 37

100

1000

10000

4608 9216

Ti
m
e	
(s
)

Number	of	Processes

Caffe/LMDB Linear	scaling

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

4608 9216

Ex
ec
ut
io
n	
Ti
m
e	
Br
ea
kd
ow

n

Number	of	Processes
Read	time Transform	time Total	forward	time
Total	backward	time I/O	skew	time Param	sync	time
Param	calculation	time Param	update	time

Figure 3.3: Caffe/LMDB’s strong scaling using ImageNet-Large with ResNet50 on Bebop:
(a) total execution time; (b) execution time breakdown

38 Chapter 3. Intra-node File I/O Optimization

CaffeNet and 75% of the time with ResNet50 on 9,216 processes, thus dominating the overall

training time. We note that we cannot run experiments with ResNet50 on less than 4,608

processes on Bebop because of insufficient memory on each node. For this reason, we use

the CaffeNet neural network for all of the remaining experiments with the ImageNet-Large

dataset in this work.

A broader issue that one needs to be aware of is that hardware technology trends point to

the fact that I/O is already a bottleneck and its performance relative to that of computation

is only getting worse with time [137]. The specific ratios between the computation cost (in

the model that we choose) and the I/O cost (in the filesystem that we choose) are simply

representative examples of a more general problem.

As a final step, we would like to understand the peak performance that our filesystem can

achieve, to help us distinguish between using a slow filesystem vs. LMDB itself being inef-

ficient. To do so, we use the IOR benchmark [144] to measure the performance of POSIX

I/O on Bebop and compared that with the file I/O performance achieved by Caffe/LMDB.

IOR performance is often considered to be the best case for I/O performance that a given

platform can achieve. Our comparison shows that the I/O performance achieved by Caf-

fe/LMDB is much worse than that reported by IOR. In fact, the file I/O bandwidth achieved

by Caffe/LMDB is less than 10% of that demonstrated by IOR. This result suggests that the

performance loss is caused mainly by inefficiencies in Caffe/LMDB rather than by limitations

in the filesystem (or the I/O hardware) itself.

3.1. Analysis of Caffe/LMDB Performance and Inefficiencies 39

3.1.3 Memory-Mapped File I/O (mmap) Interprocess Contention

As discussed in Section 2.4.2, mmap maps the layout of a file from the filesystem to the

virtual address space of a process and enables accesses to the file as if it were a memory

buffer. Mmap’s fundamental workflow relies on the OS to dynamically fetch data from the

filesystem to physical memory. The OS, however, has no knowledge that the application

is a parallel application, and hence it must consider the mmap done by each process to be

independent (except for sharing the page cache when possible). This behavior, however,

causes an unfortunate interaction with the Linux process scheduler.

Before discussing mmap interprocess contention in detailed, it is noteworthy to understand

Linux scheduler and its scheduling policy. Linux kernel 2.6 introduced the Completely Fair

Scheduler (CFS) [114] as the default process scheduler. CFS guarantees fairness of CPU

usage between processes and attempts to maximize CPU utilization. It schedules processes

to execute on the CPUs from a red-black tree where a process with the least-used CPU time

will be chosen to run first. The scheduler does not take into account the order in which the

processes are enqueued.

Despite its various benefits, mmap suffers from a few shortcomings, specifically in the way it

handles I/O requests. When a user process accesses a page, if that page is not already in

memory, a page fault handler is triggered to fetch the data from the filesystem. This I/O re-

quest is then passed down to the hardware controller (e.g., Small Computer System Interface

or SCSI [136] for local storage or a network I/O adapter for network-based filesystems), and

the user process goes to sleep while waiting for the I/O request to complete. When the I/O

operation completes, the hardware controller raises an interrupt informing the filesystem of

the completion. We note here that this interrupt handler is a bottom-half handler in Linux.

That is, the interrupt is not associated with any particular user process in the system but

40 Chapter 3. Intra-node File I/O Optimization

is a generic event informing the filesystem that an I/O operation that was issued by one

or more processes has now completed. The interrupt handler then marks as runnable all

processes that were sleeping while waiting for an I/O event.

At this point, CFS takes over. The next time the scheduler is triggered, it traverses all

processes in its red-black tree and schedules the runnable processes one at a time. In general,

however, since only some of the processes were waiting for the specific I/O operation that

just completed, most processes will see that their I/O operation has not completed and

go back to sleep. Only one or a few processes will be able to use this I/O completion to

perform further processing. Consequently, this model significantly increases the number of

context switches that get triggered, with most of the switches resulting in no real work. This

approach thus increases the amount of “sleep time” associated with each process as well.

This problem is not present when performing a simple mmap I/O with a single process ac-

cessing the data. In such cases, the I/O completion handler wakes up only one process, and

every completion corresponds to the exact process that is waiting for that I/O operation.

However, the larger the number of readers, the greater the chance that the processes will

be woken up without having any real work to do. Therefore, we expect the total number of

context switches in the processes to grow as we increase the number of readers. Moreover, we

expect that with more than one process, the processes will spend most of the data reading

time waiting for I/O (i.e., sleeping).

We demonstrate this behavior in Figures 3.4(a) and 3.4(b). As expected, the context switches

increase as we increase the number of processes (note that there is one process per core).

The number of context switches increases by approximately 48 times from one process to

two processes and by approximately 18,000 times from one process to 9,216 processes. When

using multiple processes to read the data, the ratio of the sleep time to the read time increases

to 99% on 9,216 processes. These results show that mmap-based file access is highly inefficient

3.1. Analysis of Caffe/LMDB Performance and Inefficiencies 41

0.
2

9.
8 50
.7

10
3.
9

20
6.
1 50
9.
3

55
0.
2

57
6.
7

60
7.
3

69
9.
2

87
5.
6 12

44
.9

20
56
.2

37
69
.1

0

500

1000

1500

2000

2500

3000

3500

4000

4500

N
um

be
r	o

f	C
on

te
xt
	Sw

itc
he

s

M
ill
io
ns

Number	of	Cores

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Re
ad

	T
im

e	
Br
ea
kd
ow

n

Number	of	Cores

User	time Kernel	time Sleep	time

Figure 3.4: Caffe/LMDB’s mmap analysis (CIFAR10-Large dataset on Bebop): (a) context
switches; (b) sleep time

with more than one process because processes are wasting time in getting context switched

in and out for I/O interrupts that do not belong to them.

42 Chapter 3. Intra-node File I/O Optimization

3.2 Design and Implementation of LMDBIO-LMM: Lo-

calized Mmap Optimization

As discussed in Section 3.1.3, LMDB is highly inefficient in the way that it accesses data.

The primary inefficiency comes from the way mmap-based I/O requests are generated and

handled by multiple processes. To alleviate this issue, we propose LMDBIO-LMM—an I/O

plugin for DL frameworks that takes the data access characteristics of Caffe into account in

order to optimize the I/O performance.

One of the major drawbacks in the current file I/O model in Caffe is the lack of true paral-

lelism. Data fetching for each process is independent of the other processes even though it is

a parallel application and the I/O could, in principle, be coordinated. Thus several potential

optimization opportunities are lost. Often, this approach results in unnecessary data to be

read and discarded. Moreover, since all processes are performing file I/O and relying on the

underlying bottom-half handler to wake them up, the wakeup model is imprecise and leads

to unnecessary context switches.

The general idea of LMDBIO-LMM is to utilize what we refer to as “localized mmap.” In

this model, a single process is chosen on each node as the root process. The root process

reads data from the filesystem and distributes it to the remaining processes on the node using

MPI-3 shared memory. This approach aims to reduce I/O parallelism in order to give mmap a

more sequential view of I/O and to minimize interprocess contention. The mmap localization

approach also allows the traditional Linux bottom-half handler for I/O to wake up the exact

process that is waiting for I/O to complete since only one process is performing I/O. This

strategy minimizes the number of context switches and helps improve performance.

LMDBIO-LMM is written in C++ and utilizes MPI and LMDB as core engines. We assume

3.2. Design and Implementation of LMDBIO-LMM: Localized Mmap

Optimization 43

the availability of MPI-37 in order to allow LMDBIO-LMM to detect process colocation

automatically, perform reader assignment, and utilize a shared memory buffer. LMDBIO-

LMM adopts LMDB’s API for accessing the database file efficiently. Moreover, LMDBIO-

LMM abstracts parallel data reading from applications and provides a convenient C++ API

that the applications can utilize to obtain the data for each process.

3.2.1 Detecting Colocated Processes

One of the first aspects that we need to solve in order to achieve localized mmap is to detect

which processes reside on the same node—or more precisely, which processes share the same

mmap page cache and bottom-half interrupt handlers.

Achieving this objective portably is hard. LMDBIO adopts a feature in MPI-3 to split a

global MPI communicator into multiple local communicators (MPI Comm split type with

MPI COMM TYPE SHARED). The general idea of this feature is to inform the user of the group

of processes that are capable of allocating a shared memory buffer. In theory, the MPI

implementation can provide any group of processes that are capable of creating a shared-

memory buffer together. For example, this could be all the processes on the same non-uniform

memory access (NUMA) domain or the same socket. In practice, however, this group is often

the processes that reside on the same node and thus share the same page cache and bottom-

half interrupt handlers. This gives us a semi-portable way to detect processes on the same

node with the added convenience that in case the approach does not give the right set of

processes, we can gracefully degrade performance rather than failing outright.

Once the communicators are set up, LMDBIO-LMM chooses one reader from each local

7Most supercomputers in the world already support MPI-3. The only notable exception to this claim is
the IBM Blue Gene series of supercomputers that do not yet support MPI-3. However, these supercomputers
are nearing their end of life, and the next generation of supercomputers from IBM do plan to support MPI-3
and later MPI standards.

44 Chapter 3. Intra-node File I/O Optimization

Shared	file system
(shared	between	nodes)

Page	cache

Read

Map
Shared	Memory

mmap buffer
(Process	0)	

Copy

Process	0 Process	1 Process	2

Access Access Access

Figure 3.5: LMDBIO-LMM overview

group as the “root.”

3.2.2 Inner Workings of LMDBIO-LMM

LMDBIO-LMM consists of two phases: an initialization phase and a data-reading phase.

Initialization phase: In the initialization phase, LMDBIO-LMM assigns one reader per

node using the approach mentioned in Chapter 3.2.1. Then, each reader opens the LMDB

database that internally maps the database to that process’s virtual address space using mmap.

All processes on the node also allocate a shared-memory buffer that is directly accessible by

all of them.

Data-reading phase: In the data-reading phase (shown in Figure 3.5), each reader in

LMDBIO-LMM (one process per node) reads B/R data samples (B is the batch size and R

is the number of readers) from the database. The data is read from the filesystem to page

cache and mapped to the virtual address space of the reader process. The reader process

then copies the data to the shared memory buffer that was allocated during the initialization

3.3. Shortcomings of LMDBIO-LMM 45

phase in order to allow other processes to access this data. LMDBIO-LMM then synchronizes

the processes within the local communicator (to ensure that the read has completed), after

which the other processes on the node are allowed to access the shared memory buffer. Even

though each process has full access to all of the shared memory buffer, LMDBIO-LMM

internally limits such access so that each process can access only B/P samples of data (P is

a total number of processes).

We note that several other approaches exist to implement shared memory between processes,

for example, using /dev/shm or using mmap. These methods are portable on POSIX-based

systems. However, we have chosen MPI-3’s shared-memory implementation for two reasons:

(1) the MPI implementation can choose the most suitable shared-memory model for a par-

ticular system including non-POSIX models such as XPMEM [171] and PiP [67], providing

a minor performance advantage in some cases, and (2) we already use MPI for other com-

munication in our framework, thus making MPI-3 shared memory a more natural model to

be used in our framework.

3.3 Shortcomings of LMDBIO-LMM

Despite the various advantages of LMDBIO it still suffers from some shortcomings.

Serialized I/O: LMDBIO serializes I/O on each node, so only one process per node is

doing the I/O rather than all processes. While this approach is beneficial for minimizing the

amount of interprocess I/O contention that occurs with mmap, we lose the opportunity to

maximize a read bandwidth of the file system. To utilize the I/O bandwidth more efficiently

with multiple processes, we have to use other approaches, for example, direct I/O, in order

to avoid the problems with mmap.

46 Chapter 3. Intra-node File I/O Optimization

Buffer aliasing: In general, when a buffer is allocated, the allocated memory can contain

pointers to other pieces of memory. Thus, any access on such memory could inadvertently

modify other memory regions, a problem referred to as buffer aliasing. Most compilers are

conservative in computing on aliased buffers since they need to be aware of such side effects

and consequently generate less-optimized code. Malloc and malloc-like memory allocation

calls are special in that they pass a special attribute to the compiler assuring it that any buffer

allocated through malloc is not aliased. Thus, the compiler can perform more aggressive

optimizations on this buffer, leading to better performance. Unfortunately, this “no aliasing”

attribute can be passed to the compiler only when the return value of the allocation function

is the memory buffer, not when the memory buffer is a function parameter. The MPI-3

shared-memory buffer allocation function misses this optimization opportunity: the shared-

memory buffer that is allocated is not the return value of the function but, rather, a function

parameter. This flaw in the MPI-3 interface design can cause degradation in the compiler

optimization. The issue can be worked around by using restrict pointers to access the

buffer, which provides the compiler with equivalent information as an unaliased buffer, thus

achieving the same level of performance. However, this is an extra step that the application

needs to be aware of.

TLB misses: In LMDBIO, the data samples are copied from the mmap buffer into a shared

memory buffer. In traditional Caffe, this data is copied into a regular malloc buffer. Un-

fortunately, malloc buffers and shared-memory buffers differ significantly in the way the OS

assigns physical pages to them. Buffers allocated with malloc use large (2 MB) pages on

most processors, whereas shared-memory buffers use regular (4 KB) pages. Thus, comput-

ing directly on this buffer might cause a larger number of TLB misses when using shared

memory than when using malloc. In Caffe, we are not affected by this issue because of a

second transformation that copies the data again into another malloc buffer before any core

3.4. LMDBIO-LMM Experiments and Results 47

computation is done. Thus, the core computation itself does not suffer from the increased

TLB misses. Nevertheless, this is an issue that future variants of Caffe need to be aware of.

3.4 LMDBIO-LMM Experiments and Results

In this section, we compare the performance of LMDBIO-LMM with that of LMDB. We split

the experiments into two parts: (1) Evaluating the performance of LMDB and LMDBIO-

LMM using simple microbenchmarks. The purpose of this evaluation is to understand the

benefits and shortcomings of each optimization without diluting the results with other com-

putation that would happen in a typical DL application. (2) Evaluating the performance of

LMDB and LMDBIO-LMM using Caffe. The purpose of this evaluation is to understand the

impact of LMDBIO on the overall performance of the Caffe DL framework on real datasets.

Our experiments use the datasets, neural networks, and supercomputer systems described

in Chapter 3.1.1.

3.4.1 Microbenchmark Evaluation and Analysis

We evaluate the performance of LMDB and LMDBIO-LMM using the microbenchmark that

emulates the I/O behavior of Caffe. Our microbenchmark is designed to use LMDB or

LMDBIO to perform file I/O. It performs iterative file I/O, similar to what Caffe would, but

it does not perform any of the computation associated with DNN training. The experiment in

this section is performed on Bebop, with 9.4 million images of the CIFAR10-Large database;

the batch size is set to 18,432 images.

Figure 3.6(a) shows a comparison of the read performance of LMDB and LMDBIO-LMM.

We see that LMDBIO-LMM outperforms LMDB by up to 43.77-fold when the number of

48 Chapter 3. Intra-node File I/O Optimization

cores is smaller than or equal to 1,152. This improvement in performance is attributed

to reduced interprocess contention. For large numbers of cores, LMDBIO-LMM performs

slightly worse than LMDB because we used a single root process on each node in all our

experiments for consistency. Increasing to two root processes per node, when running on

a large number of cores, improves the LMDBIO-LMM performance enough to address this

degradation, although those numbers are not shown in this graph.

10

100

1000

10000

1 2 4 8 16 36 72 14
4

28
8

57
6

11
52

23
04

46
08

Ti
m
e	
(s
)

Number	of	Cores

LMDB LMDBIO-LMM

0
100
200
300
400
500
600
700
800

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 8 16 36 72 14
4

28
8

57
6

11
52

23
04

46
08

Ti
m
e	
(s
)

Ti
m
e	
Br
ea
kd
ow

n

Number	of	Cores

Seek	time I/O	time I/O	skew	time

Seek	time I/O	time I/O	skew	time

Figure 3.6: LMDBIO-LMM performance analysis: (a) read performance compared with
LMDB; (b) total read time breakdown

Figure 3.6(b) shows the breakdown of the total read time, divided into the seek time (which

3.4. LMDBIO-LMM Experiments and Results 49

is still sequential), the I/O time, and the I/O skew time. From the graph, we observe that

although the I/O time itself is fairly small, a significant amount of time is spent in the

sequential seek and in the skew among processes where some processes are waiting for other

processes to catch up. These two are related. The skew is caused by the data-seeking process

in LMDBIO-LMM.

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

Ti
m
e

Rank	No.

seek

seek	2	batches

seek	1	batch

prefetchprefetch

prefetch

Global	barrier

Timeline

P0

P1

P2
prefetch

seek

seek

…

…

…
prefetch

prefetch

seek prefetch

Global	barrier

seek

seek

prefetch

prefetch

Global	barrier

Figure 3.7: LMDBIO-LMM performance analysis: (a) seek time vs. reader’s rank number;
(b) mmap’s data prefetching and data seeking

To further understand this, we perform an additional analysis using a small benchmark

that contains only the seek part and plot it against the root process’s MPI rank, as shown

in Figure 3.7(a). We observe that the seek time increases with the process rank. This

phenomenon is a subtle outcome of the data prefetching that is performed within mmap, as

demonstrated in Figure 3.7(b). Specifically, after opening a database, each reader process

50 Chapter 3. Intra-node File I/O Optimization

will initialize the cursor by seeking to its corresponding starting location in the database.

The amount of seek that is performed by each reader is rank ×B (rank denotes the reader

process’s rank, and B denotes the batch size), which is not uniform among the different

processes. Because of the bulk synchronous nature of the computation, however, some

processes end up waiting in the synchronization longer than others. The processes that wait

in the synchronization longer thus have a better opportunity to prefetch data that they

would need in the next iteration. For instance, P0 spends a large part of its time prefetching

data for the next iteration, while P2 gets very little time to prefetch. This prefetching, in

turn, helps P0 with its seek in the next iteration, thus causing it to complete faster than the

other processes in that iteration as well, so the cycle continues and results in large skew.

To analyze the reduced contention, we show in Figure 3.8 the number of context switches that

occur with LMDBIO-LMM compared with LMDB. We can see that in some cases LMDBIO-

LMM achieves more than an 83-fold reduction in the number of context switches compared

with LMDB, thus demonstrating that our technique to localize mmap can significantly reduce

interprocess contention.

0.
2

9.
8 50
.7

10
3.
9

20
6.
1 50
9.
3

55
0.
2

57
6.
7

60
7.
3

69
9.
2

87
5.
6 12
44
.9

20
56
.2

37
69
.1

0.
2

0.
4

0.
8

1.
6

3.
2

6.
1

12
.1

18
.8

29
.5

50
.2

95
.4

19
1.
2

38
0.
9 74
9.
8

0
500
1000
1500
2000
2500
3000
3500
4000
4500

N
um

be
r	o

f	C
on

te
xt
	Sw

itc
he

s

M
ill
io
ns

Number	of	Cores

Caffe/LMDB Caffe/LMDBIO-LMM

Figure 3.8: LMDBIO-LMM performance analysis: context switches compared with LMDB

3.4. LMDBIO-LMM Experiments and Results 51

3.4.2 Evaluation of Caffe Deep Learning Training

In this section, we use the real DL framework, Caffe, to evaluate the performance of I/O

subsystems. The results of LMDB and LMDBIO in this section are denoted as Caffe/LMDB

and Caffe/LMDBIO, respectively. We perform our experiments on two platforms, Blues and

Bebop, using all three datasets.

Evaluation Results on Blues

We train CIFAR10-Large and ImageNet on Blues by using a batch size of 4,096 for both

datasets. CIFAR10-Large is trained for 1,024 iterations (4 million images), while ImageNet

is trained for 32 iterations (128K images). We scale the training from 1 to 512 cores (32

nodes).

Figure 3.9(a) shows the strong-scaling results for training Caffe with the CIFAR10-Large

dataset on Blues. Caffe/LMDBIO-LMM outperforms Caffe/LMDB in all cases, achieving

1.21-fold improvements on 512 cores. For ImageNet (Figure 3.9(b)), the improvement reaches

up to 7-fold, which is attributed to the reduced interprocess contention in LMDBIO-LMM.

Evaluation Results on Bebop

We train CIFAR10-Large and ImageNet-Large on Bebop. The batch size used in the exper-

iment for both datasets is 18,432. CIFAR10-Large is trained for 512 iterations (9 million

images), and ImageNet-Large is trained for 128 iterations (2 million images).

Here, we show both strong scaling results and performance breakdown of both datasets.

Figure 3.10(a) compares the performance of the original Caffe/LMDB with that of Caf-

fe/LMDBIO for the CIFAR10-Large dataset. The general trend that we notice is that

52 Chapter 3. Intra-node File I/O Optimization

1.00 1.05
1.18

1.62
1.67

1.33

1.75
1.69

1.42

1.21

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

100

1000

10000

100000

1 2 4 8 16 32 64 128 256 512

Fa
ct
or
	o
f	I
m
pr
ov
em

en
t

Ti
m
e	
(s
)

Number	of	Cores
Factor	of	Improvement Caffe/LMDB Caffe/LMDBIO-LMM

10.72

20.88

8.98 9.22
7.13

0

5

10

15

20

25

100

1000

10000

100000

32 64 128 256 512

Fa
ct
or
	o
f	I
m
pr
ov
em

en
t

Ti
m
e	
(s
)

Number	of	Cores

Factor	of	Improvement Caffe/LMDB Caffe/LMDBIO-LMM

Figure 3.9: Caffe/LMDBIO-LMM strong scaling on Blues using (a) CIFAR10-Large; (b)
ImageNet

3.4. LMDBIO-LMM Experiments and Results 53

1.0 1.0 1.1 1.2

1.7

4.5

3.3

2.6

2.1

1.6

1.1
0.9 0.8 0.7

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

100

1000

10000

100000
1 2 4 8 16 36 72 14
4

28
8

57
6

11
52

23
04

46
08

92
16

Fa
ct
or
	o
f	I
m
pr
ov
	o
ve
r	L
M
DB

Ti
m
e	
(s
)

Number	of	Cores

Improv	of	LMDBIO-LMM Caffe/LMDB Caffe/LMDBIO-LMM

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Ex
ec
ut
io
n	
Ti
m
e	
Br
ea
kd
ow

n

Number	of	Cores
Read	time Transform	time Total	forward	time
Total	backward	time I/O	skew	time Param	sync	time
Param	calculation	time Param	update	time

Figure 3.10: Caffe/LMDBIO-LMM strong scaling on Bebop using CIFAR10-Large: (a) scal-
ing results; (b) performance breakdown

54 Chapter 3. Intra-node File I/O Optimization

Caffe/LMDBIO performs better than Caffe/LMDB by up to a factor of 4.5. Figure 3.10(b)

shows the breakdown of performance for Caffe/LMDBIO where we notice that time taken

by the file I/O (represented as “Read time” in the figure) has reduced significantly compared

with that of the original Caffe/LMDB implementation (shown in Figure 3.1(b)), specifically

from 90% to 56% on 9,216 cores.

10.72

20.88

8.98 9.22
7.13

0

5

10

15

20

25

100

1000

10000

100000

32 64 128 256 512

Fa
ct
or
	o
f	I
m
pr
ov
em

en
t

Ti
m
e	
(s
)

Number	of	Cores

Factor	of	Improvement Caffe/LMDB Caffe/LMDBIO-LMM

0%

20%

40%

60%

80%

100%

32 64 128 256 512

Ex
ec
ut
io
n	
Ti
m
e	
Br
ea
kd
ow

n

Number	of	Cores
Read	time Transform	time
Total	forward	time Total	backward	time
Waiting	time	before	param	sync Param	sync	time
Param	calculation	time Param	update	time

Figure 3.11: Caffe/LMDBIO-LMM strong scaling on Bebop using ImageNet-Large: (a)
scaling results; (b) performance breakdown

We perform a similar analysis on the ImageNet-Large dataset, as shown in Figures 3.11(a)

and 3.11(b). The general trend for ImageNet-Large is similar to that of CIFAR10-Large.

3.4. LMDBIO-LMM Experiments and Results 55

The performance breakdown graphs of both datasets complement with our findings in Chap-

ter 3.4.1 that LMDBIO-LMM suffers from I/O skew. The results show that I/O skew takes

up to 42% and 26% of the total execution time of CIFAR10-Large and ImageNet-Large,

respectively.

0.
2

9.
8 50
.7

10
3.
9

20
6.
1 50
9.
3

55
0.
2

57
6.
7

60
7.
3

69
9.
2

87
5.
6 12
44
.9

20
56
.2

37
69
.1

0.
2

0.
4

0.
8

1.
6

3.
2

6.
1

12
.1

18
.8

29
.5

50
.2

95
.4

19
1.
2

38
0.
9 74
9.
8

0
500
1000
1500
2000
2500
3000
3500
4000
4500

N
um

be
r	o

f	C
on

te
xt
	Sw

itc
he

s

M
ill
io
ns

Number	of	Cores

Caffe/LMDB Caffe/LMDBIO-LMM

7305 7491 7314
6943

7276

99 123 153

1618

318

0

1000

2000

3000

4000

5000

6000

7000

8000

576 1152 2304 4608 9216

N
um

be
r	o

f	C
on

te
xt
	Sw

itc
he

s

M
ill
io
ns

Number	of	Cores

Caffe/LMDB Caffe/LMDBIO-LMM

Figure 3.12: Caffe/LMDBIO-LMM context switches compared to Caffe/LMDB on Bebop
using (a) CIFAR10-Large; (b) ImageNet-Large

Figure 3.12 shows the improvement of context switches for both datasets. We see that the

number of context switches is significantly better for Caffe/LMDBIO-LMM compared with

that of the original Caffe/LMDB. For the CIFAR10-Large dataset, LMDBIO-LMM reduces

56 Chapter 3. Intra-node File I/O Optimization

the number of context switches by nearly 5-fold. For ImageNet-Large, the improvement is

even better, with close to a 22-fold reduction in the number of context switches.

This improvement is expected. Since LMDBIO has a single process performing mmap, it

ensures that no contention occurs between mmap calls performed by multiple processes. This

serialization reduces the number of unnecessary wakeups created by the interrupt handler,

thus reducing the number of context switches.

3.5 Chapter Summary

In this chapter, we presented LMDBIO-LMM, an intra-node I/O optimization for scalable

DL, that is based on LMDB. We first performed a detailed analysis of file I/O in Caffe,

showcased and discussed the interprocess contention problem caused by mmap when using

multiple readers. We then presented LMDBIO-LMM, which alleviates the presented problem

by localizing mmap. We presented experimental results with three datasets and two neural

network models on two platforms, demonstrating nearly a 20-fold improvement in the overall

performance of Caffe in some cases.

We note that our work is not fully completed yet. File I/O still takes a large portion of the

overall time even in LMDBIO-LMM. Nevertheless, the proposed approach is still a significant

step toward improving I/O performance for DL. Moreover, this improvement is despite the

reduced I/O parallelism and the extra data copy that we perform within Caffe/LMDBIO-

LMM.

Chapter 4

Inter-node File I/O Optimization via

Speculative Parallel I/O

The problem of LMDB discussed in this chapter is its sequential database access limitation.

LMDB database format, B+ tree, does not allow random database accesses. In our investi-

gation, we found that this limitation causes a large amount of redundant data reading among

readers. Despite redundant data reading, this causes skew in file I/O as different processes

perform a different amount of work, which can severely degrade the overall progress of a

parallel application.

To tackle the problem, we propose LMDBIO-LMM-DM—distributed memory file I/O

optimization, which is a successive optimization of LMDBIO-LMM for distributed data

reading. LMDBIO-LMM-DM leverages two techniques, speculative data reading, and reader

collaboration, in order to reduce redundant and imbalanced data reading as well as enhance

file I/O parallelism.

We evaluate the performance of LMDBIO-LMM-DM and compare it to that of LMDB

and LMDBIO-LMM using a microbenchmark and the actual benchmark to train multiple

datasets on two different distributed memory platforms. Our results show that LMDBIO-

LMM-DM consistently outperforms other frameworks. We also provide the discussion on

the accuracy of our speculative data reading at the end of this chapter.

57

58
Chapter 4. Inter-node File I/O Optimization via

Speculative Parallel I/O

4.1 Analysis of LMDB Sequential Data Access Restric-

tion

As mentioned in Chapter 2.4.2, LMDB does not support random database accesses; that is,

the LMDB database can be accessed only sequentially. This is a significant issue for parallel

DL because each process needs to read and process a different subset of data (typically

interleaved with the data required by other processes). Thus, each process needs to start

from the root of the database and parse through (and skip) all the intermediate records

until it reaches the desired record that it wants to process. We refer to this operation as

the “sequential seek” operation, although unlike a traditional UNIX seek operation, it is

not possible to directly jump to an arbitrary page without risk of accidentally reaching an

overflow page that contains no information on how to go to the next or leaf node.

While traversing through the tree nodes, the header on each node is read to obtain a pointer

to the next record location. To do so, the page containing the header needs to be loaded into

memory. Since the header itself is much smaller than the physical page size, the header page

usually contains additional information that needs to be loaded into memory even when it

does not need to be accessed.

The data access pattern when using LMDB in parallel is demonstrated in Figure 4.1. Suppose

four readers (P0 - P3) need to read a different portion of the database (D0 - D3) from the

filesystem to memory. When P0 reads D0, it reads both the headers and the actual content.

In this case, P0 does not read any extra data. In order to read D1, however, P1 has to seek

through all of the branch and leaf nodes in the D0 portion of the database before it gets

to the D1 portion. From the figure, we notice that the amount of extra data read increases

with the process count, where in this case P3 reads the most extra data. With this data

access model, in the worst case a process could end up reading a total of R×B bytes, where

4.1. Analysis of LMDB Sequential Data Access Restriction 59

R is a total number of readers and B is a size of an individual data portion.

D0 D1 D2 D3Database

P0	reads

Concurrent P1	seeks P1	reads
P2	reads

P3	reads

P2	seeks

P3	seeks

Figure 4.1: LMDB redundant data movement

Apart from a large amount of redundant file I/O, this data access also causes large imbalance

and skew in data reading because each process reads a different number of bytes. Such a

load imbalance can cause processes to stay idle at a process synchronization point (e.g.,

parameter synchronization in DL) waiting for the last process to finish its task. This can

severely degrade the overall progress of a parallel application.

4.1.1 Analysis of Amount of Extra Data Fetched

In this section, we perform a more profound analysis to understand the amount of data

that is fetched to each node with Caffe/LMDBIO-LMM. To perform our measurements, we

modify Caffe to initially memory-protect all of the memory-mapped database. When a page

in the database gets accessed, it triggers a page-fault handler, which we catch to measure

the amount of data that would be fetched by the filesystem. Once the page is touched, it

is unprotected, so any future accesses to the page do not raise additional page faults. We

note that the most accurate way to measure the exact number of bytes read is to profile

the filesystem driver performing the operations. The GPFS file I/O framework, however, is

closed source, making that an impossible option. Thus, the method we suggested above is

an approximation of the behavior to estimate the total data read, which we believe is fairly

accurate. There are two aspects this approximation does not consider.

60
Chapter 4. Inter-node File I/O Optimization via

Speculative Parallel I/O

1. For each page that generates a page fault, at least one page of data would be fetched

from the filesystem. Some filesystems perform prefetching of additional data during

page faults. Unfortunately, since GPFS is closed-source, we could not measure the

exact amount of such additional prefetch data. However, since our data access is

contiguous, we believe that this additional unaccounted data would be small.

2. The filesystem has a page cache that is limited. Thus, if the processes access too

many pages, eventually they will run out of cache space and start swapping out pages

that are already in memory and fetch them again when needed. While, in theory, it is

possible for this to happen, we argue that it is improbable in practice (in our particular

use case) because of two reasons. First, data access in LMDB is mostly (though not

entirely) sequential. Most accesses are to a few of the most recently, and even if an

existing page gets swapped out, it is highly unlikely that it would get fetched back in.

Second, on modern OSs, this limit is most of the memory available on the system. In

our experiments, the amount of data read per node is much smaller than this limit.

0

0.5

1

1.5

2

2.5

3

3.5

4

32 64 128 256 512

N
um

be
r	o

f	E
xt
ra
	B
yt
es
	R
ea
d	
(G
B)

Number	of	Cores

CIFAR10-Large

ImageNet

Figure 4.2: Caffe/LMDBIO-LMM extra bytes read

We collect the results by training CIFAR10-Large and ImageNet for 1,024 iterations and 32

iterations, respectively. Both experiments are executed using Caffe with LMDBIO-LMM on

Blues.

4.1. Analysis of LMDB Sequential Data Access Restriction 61

Figure 4.2 shows the number of “extra” bytes read by Caffe/LMDBIO-LMM for the CIFAR10-

Large and ImageNet datasets—that is, how many additional bytes are read by the different

processes apart from the actual data that they need for their processing.

We make two observations based on this figure. First, the number of additional bytes

increases with the number of cores for both datasets, reaching 4 GB in some cases. In

fact, the increase is almost linear with the number of cores. This increase is due primarily to

the redundancy in the data read as we increase the number of cores. Specifically, a process

on each core needs to seek through the data read by all of the previous processes.

Our second observation is that the increase for the ImageNet dataset is much smaller than

that of the CIFAR10-Large dataset. This is also expected, although the reason is more

subtle. As a process seeks through the dataset to reach its relevant portion of the database,

it needs to read the appropriate headers of the database pages. As discussed in Section 2.4.2,

these pages are branch and leaf pages. In the CIFAR10-Large dataset, each data sample is

approximately 3 KB. Thus, the header and the data sample reside on the same physical page.

Consequently, reading the header would load the entire data sample into memory, causing

a large amount of additional data to be fetched into memory. In the ImageNet dataset,

on the other hand, each data sample is approximately 192 KB and thus takes around 48

pages to store. Therefore, the header page is encountered fewer times in ImageNet if the

total dataset size of both datasets is approximately the same; that is, there is one header for

every physical page in the CIFAR10-Large dataset, whereas there is one header for every 48

physical pages in the ImageNet dataset. This results in fewer additional bytes read for the

ImageNet dataset.

62
Chapter 4. Inter-node File I/O Optimization via

Speculative Parallel I/O

4.2 Design and Implementation of LMDBIO-LMM-DM:

Distributed Memory File I/O Optimization

In this section, we present details of the design and implementation of LMDBIO-LMM-

DM. The LMDBIO-LMM-DM software itself is an extension of the original LMDBIO-LMM

software and has been developed on top of the same code base. Details of LMDBIO-LMM

can be found in Chapter 3.

As discussed in Chapter 4.1, one of the primary reasons for the performance loss in file

I/O with Caffe/LMDB and Caffe/LMDBIO-LMM is the redundant file I/O by the different

processes. To solve this issue, we propose a two-step approach. In the first step, described

in Chapter 4.2.1, we present an approach where each process reads exactly the data that it

needs to process, although it does so by serializing I/O across the different processes. In the

second step, described in Chapter 4.2.2, we present an approach for estimating what data

pages each process will eventually need and speculatively performing parallel I/O to regain

most of the performance lost because of the I/O serialization described in the first step.

4.2.1 Serializing I/O Using a Portable Cursor Representation

Here, our goal is to ensure that each process reads only the data that it needs to process.

In other words, no additional data is read at seek time. To do so, each process must first

read the data that it needs to process and then pass to the next process the information

about the location where it stopped. The general model we want to follow is illustrated in

Figure 4.3. In the figure, P1 cannot start reading data D1 until P0 finishes reading D0 and

sends the starting point of D1 (i.e., the cursor) to it. Executing this in practice, however,

has a few complications that we discuss in this section.

4.2. Design and Implementation of LMDBIO-LMM-DM: Distributed Memory
File I/O Optimization 63

D0 D1 D2 D3Database

P0	reads

Sequential

P0	sends	cursor	to	P1	
P1	sends	cursor	to	P2	

P2	sends	cursor	to	P3	
P3	sends	cursor	to	P0
(for	the	next	batch)

P1	reads
P2	reads

P3	reads

Ti
m
el
in
e

Figure 4.3: LMDBIO-LMM-DM design: sequential I/O and cursor handoff

As described in Chapter 2.4.2, since LMDB uses a B+ tree to represent its data elements, the

position indicator for a record within the B+ tree is not a simple offset from the start of the

file, but rather a more complex data structure which LMDB refers to as a cursor. The cursor

includes information about the record it points to. But it also includes other information

such as the path of the record’s parent branch nodes, a pointer to the page header containing

the record, and information about the access flags of the particular record being pointed to.

Unfortunately, the cursor data structure itself is not portable across different processes since

it contains information represented as pointers within the B+ tree that is relevant only

within the virtual address space of the original process that created the cursor. Luckily, all

the pointers contained within this structure point to locations within the B+ tree.

In order to serialize the cursor into a format that is portable across different processes,

the simplest model that we envision is that of a symmetric address space. That is if we can

ensure that all processes can memory-map the database into exactly the same virtual address

location on all processes, any pointers that point to locations within the B+ tree would be

portable across the different processes, thus making it possible to serialize the cursor to a

portable format. To achieve this, we use the following algorithm. The first reader process

randomly picks a virtual address location from its 64-bit address space and tries to memory-

map the database to this memory location. If it is successful, it broadcasts this address to

the remaining reader processes. Each of the remaining reader processes tries to memory-

64
Chapter 4. Inter-node File I/O Optimization via

Speculative Parallel I/O

map the database file at the exact same memory location. Each process indicates whether

it was successful or not within an MPI Allreduce operation where all processes try to come

to a consensus. If everyone was successful, the database is now mapped to the same virtual

address location on all processes. If at least one of the processes was not successful, all

processes unmap their database and try again. This process is repeated for a few iterations.

In theory, it is possible to find no virtual address location that can be symmetrically used

across all processes. However, given that most of the 64-bit address space is typically unused

on any given process, in practice, we can find a symmetrical address space in 1–2 attempts

with the algorithm described above. In the worst case, if we are not able to find a symmetrical

address space after a few attempts, we abandon this optimization and fall back to the

approach used by the original LMDBIO-LMM.

An alternative approach to achieve the same outcome would be to modify the LMDB im-

plementation such that the user could pass in a pointer offset that would be used for the

database parsing. Such an approach would be equally effective, although we feel that the

symmetric memory allocation technique that we use in this work is a less intrusive (to the

LMDB implementation) and generally more elegant solution to the problem.

Once the database is mapped to the symmetrical address space, the actual serialization of

the cursor itself is mostly trivial. The internal content of the cursor data structure is copied

into a memory buffer that can be sent to the other processes by using MPI send/recv.

4.2.2 Speculative Parallel I/O

The first step of our algorithm, discussed in Chapter 4.2.1, provides a portable solution to

pass the location information within the database to other processes. However, the approach

described there comes at the cost of serialization in file I/O. That is, only one process is

4.2. Design and Implementation of LMDBIO-LMM-DM: Distributed Memory
File I/O Optimization 65

actively reading data at any given point of time. This is inefficient on most parallel filesystems

where multiple processes need to be performing I/O to achieve the best performance.

Here, we discuss the second step of our algorithm that tries to estimate what data needs

to be processed by a given process and speculatively performs parallel I/O on that data

(illustrated in Figure 4.4). To do this, we must first estimate what part of the database

we need to fetch to memory. This is a complex task since the structure of the B+ tree is

not always straightforward. Depending on how many branch nodes are used and how many

records each branch node points to, estimating which physical pages each process would need

to access is nontrivial.

D0 D1 D2 D3Database

P0	seeks

Sequential
(in-memory)

P0	sends	cursor	to	P1	
P1	sends	cursor	to	P2	

P2	sends	cursor	to	P3	

P3	sends	cursor	to	P0
(for	the	next	batch)

P0	reads

P0	accesses P1	seeks

P1	accesses P2	seeks

P2	accesses P3	seeks

P3	accesses

P1	reads
P2	reads

P3	reads
Concurrent

Ti
m
el
in
e

Figure 4.4: LMDBIO-LMM-DM design: speculative parallel I/O and in-memory sequential
seek

In our approach, we assume that the sizes of all records are roughly the same, which is a

reasonably safe assumption to make for most DL frameworks because of the way the input

data samples are handled. Each reader process reads the first data record in the database

file to retrieve the record’s size. The readers use the obtained size information along with the

number of records that they will read (i.e., a fraction of the batch) to estimate the number

of pages to be fetched. For instance, the size of each sample in the CIFAR10-Large dataset

is approximately 3 KB. For I/O efficiency reasons, LMDB pads the data to ensure that each

66
Chapter 4. Inter-node File I/O Optimization via

Speculative Parallel I/O

record occupies one page (4 KB). Therefore, the number of speculative pages for n data

records is n × 1 pages. The read offset of each reader is calculated in the same fashion.

Once we guess what pages we need to process, each process “touches” the appropriate pages

in the memory-mapped database file, thus forcing the filesystem to fetch those pages to

memory. This step is done in parallel on all processes. Once the data has been fetched

to memory, we perform the sequential seek process described in Chapter 4.2.1 to find the

starting point of the data batch for the next reader. We expect, however, that this sequential

seek process accesses only or mostly pages that are already in memory and thus will be quick

compared with the file I/O itself. Once the seek is done, and the reader successfully sends

the starting location to the corresponding process, the reader can perform the actual data

processing.

min min	*	(r	– 1)

min	*	r

max max	*	(r	– 1)

max*	r

next	pages	to	read	if	read	min	pages

next	pages	to	read	if	read	max	pages

startnext =	startprevious +	(min	*	r)	 endnext =	startprevious +	(max	*	r)	+	max	

startprevious

(a)

(b)

(c)

Note: min	=	minimum	number	of	pages	read max	=	maximum	number	of	pages	read r	=	total	number	of	readers
starti =	start	page	to	read	in	i iteration endi =	end	page	to	read	in	i iteration

next	actual	pages	to	read

Figure 4.5: Pages accessed by a reader process using the history-based speculative read
approach: (a) pages accessed if the minimum number of pages are read; (b) pages accessed
if the maximum number of pages are read; (c) pages accessed in the actual case

In the next iterations, we use a history-based approach to correct the speculative read pages.

Each reader process maintains a minimum (denoted min) and maximum (denoted max)

number of pages that it has accessed so far. The key idea of the correction method is to

4.3. LMDBIO-LMM-DM Experiments and Results 67

expand boundaries of speculative read pages based on min and max as shown in Figure 4.5.

Figure 4.5(a) and Figure 4.5(b) illustrate the pages to read in the case that min and max

number of pages are read in the next iteration, respectively. To minimize the amount of

missed pages (i.e., pages that are supposed to be read but are not read), the reader process

speculatively reads all pages between the min and max boundaries as demonstrated in

Figure 4.5(c). We expect that over a few iterations, we get a fairly accurate picture of the

branch structure of the database file that will allow us to estimate more precisely.

We note that the proposed history-based speculative I/O technique can be used in conjunc-

tion with other in-memory data shuffling approaches, where shuffling is done after the I/O

has completed. In other words, as long as data I/O is structured and iterative (which is true

for most DL frameworks), one can take advantage of the proposed history-based speculative

I/O technique.

4.3 LMDBIO-LMM-DM Experiments and Results

Evaluation of LMDBIO-LMM-DM is divided into three subsections: (1) Evaluating the per-

formance of LMDBIO-LMM-DM against LMDB and LMDBIO-LMM using a microbench-

mark. (2) Evaluating the performance of LMDBIO-LMM-DM against the other two I/O

subsystems using the Caffe DL framework. (3) Evaluating the accuracy of our speculative

parallel I/O of LMDBIO-LMM-DM. Our experiments use the datasets, neural networks, and

supercomputer systems described in Chapter 3.1.1.

68
Chapter 4. Inter-node File I/O Optimization via

Speculative Parallel I/O

4.3.1 Microbenchmark Evaluation and Analysis

The microbenchmark used in this section is the same as the one used in Chapter 3.4.1. The

microbenchmark performs iterative file I/O using LMDB or LMDBIO; however, it excludes

the training part. The experiment is performed on Bebop using the CIFAR10-Large dataset

with a batch size of 18,432 images (9.4 million images).

10

100

1000

10000

1 2 4 8 16 36 72 14
4

28
8

57
6

11
52

23
04

46
08

Ti
m
e	
(s
)

Number	of	Cores

LMDB LMDBIO-LMM LMDBIO-LMM-DM

0

20

40

60

80

100

120

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 8 16 36 72 14
4

28
8

57
6

11
52

23
04

46
08

Ti
m
e	
(s
)

Ti
m
e	
Br
ea
kd
ow

n

Number	of	Cores

Seek	time I/O	time I/O	skew	time

Seek	time I/O	time I/O	skew	time

Figure 4.6: LMDBIO-LMM-DM performance analysis: (a) read performance compared with
LMDB and LMDBIO-LMM; (b) total read time breakdown

Figure 4.6(a) compares the performance of LMDBIO-LMM-DM with that of LMDB and

LMDBIO-LMM. On a single node, LMDBIO-LMM-DM does not achieve any performance

4.3. LMDBIO-LMM-DM Experiments and Results 69

improvement compared with LMDBIO-LMM because it utilizes the same general principle

as LMDBIO-LMM to avoid interprocess contention. In fact, the additional file I/O per-

formed by LMDBIO-LMM-DM hurts performance somewhat, causing it to achieve slightly

worse performance compared with LMDBIO-LMM. When using multiple nodes, however,

LMDBIO-LMM-DM performs better than both LMDB and LMDBIO-LMM, outperforming

LMDB by 6.7-fold on 4,608 cores. This improvement is attributed primarily to the reduction

in redundant data read during the seek and to the speculative parallel I/O.

We study the breakdown of the LMDBIO-LMM-DM read time in Figure 4.6(b), which shows

that the data seek in LMDBIO-LMM-DM is highly efficient compared with that of LMDB

and LMDBIO-LMM. The seek in LMDBIO-LMM-DM takes less than 1% of the read time,

compared with LMDBIO-LMM, which spends nearly 60% of the read time in seek. The

better performance with LMDBIO-LMM-DM is mainly because the seek is performed in

memory. In fact, in some cases, LMDBIO-LMM-DM improves the seek time by nearly

1,741-fold compared with LMDBIO-LMM.

4.3.2 Evaluation of Caffe Deep Learning Training

In this section, we evaluate the performance of our optimization using Caffe. The experiments

are run on both Blues and Bebop. Each platform uses different datasets in the evaluation.

Evaluation Results on Blues

We evaluate Caffe/LMDBIO-LMM-DM against Caffe/LMDB and Caffe/LMDBIO-LMM us-

ing two sets of datasets, which are CIFAR10-Large (trained for 1,024 iterations) and Ima-

geNet (trained for 32 iterations). Both experiments use a batch size of 4,096. We scale the

training from 1 to 512 cores (32 nodes).

70
Chapter 4. Inter-node File I/O Optimization via

Speculative Parallel I/O

Figure 4.7(a) compares the performance of Caffe/LMDBIO-LMM-DM with that of

Caffe/LMDBIO-LMM and Caffe/LMDB for the CIFAR10-Large dataset. Caffe/LMDBIO-

LMM-DM performs better than Caffe/LMDBIO-LMM by around 1.87-fold and better than

Caffe/LMDB by around 2.65-fold. The primary improvement in performance for LMDBIO-

LMM-DM is attributed to the reduced data movement compared with that of LMDBIO-

LMM and LMDB. Even though LMDBIO-LMM-DM introduces additional serialization in

the file I/O path compared with LMDBIO-LMM and LMDB, the impact of this serialization

is minimal because of the speculative parallel I/O that it performs.

With LMDBIO-LMM-DM, most of the file I/O is parallelized across processes, and each

process reads mostly distinct parts of the database. Some serialization still exists in the

cursor propagation across the different processes; but since that propagation is done almost

entirely in memory without requiring file I/O, the impact of such serialization is minimal.

This helps reduce the skew significantly.

We performed a similar analysis on the ImageNet dataset, as shown in Figure 4.7(b). The

general trend for ImageNet is similar to that of CIFAR10-Large.

Evaluation Results on Bebop

In this section, we use two datasets to evaluate Caffe/LMDBIO-LMM-DM against Caf-

fe/LMDB and Caffe/LMDBIO-LMM. We train CIFAR10-Large and ImageNet-Large for

512 iterations and 128 iterations, respectively. Both datasets use a batch size of 18,432. We

scale our experiments from 1 core to 9,216 cores.

Figure 4.8(a) shows performance comparison of Caffe/LMDB, Caffe/LMDBIO-LMM,

and Caffe/LMDBIO-LMM-DM using CIFAR10-Large. Similar to the results on Blues,

Caffe/LMDBIO-LMM-DM begins to outperform other I/O subsystems when scaled on to

4.3. LMDBIO-LMM-DM Experiments and Results 71

0

0.5

1

1.5

2

2.5

3

100

1000

10000

100000

1 2 4 8 16 32 64 128 256 512

Fa
ct
or
	o
f	I
m
pr
ov
	o
ve
r	L
M
DB

Ti
m
e	
(s
)

Number	of	Cores
Improv	of	LMDBIO-LMM Improv	of	LMDBIO-LMM-DM
Caffe/LMDB Caffe/LMDBIO-LMM
Caffe/LMDBIO-LMM-DM

0

5

10

15

20

25

30

35

100

1000

10000

100000

32 64 128 256 512

Fa
ct
or
	o
f	I
m
pr
ov
	o
ve
r	L
M
DB

Ti
m
e	
(s
)

Number	of	Cores
Improv	of	LMDBIO-LMM Improv	of	LMDBIO-LMM-DM
Caffe/LMDB Caffe/LMDBIO-LMM
Caffe/LMDBIO-LMM-DM

Figure 4.7: Caffe/LMDBIO-LMM-DM strong scaling on Blues using (a) CIFAR10-Large;
(b) ImageNet

multiple nodes. In the best case, Caffe/LMDBIO-LMM-DM achieves 9.2-fold improvement

from Caffe/LMDB. Figure 4.8(b) shows that the improvement of LMDBIO-LMM-DM from

LMDBIO-LMM is subject to the smaller amount of I/O skew. The I/O skew time of

LMDBIO-LMM-DM is less than 10% from 1 to 4,608 cores and is 30% on 9,216 cores,

while that of Caffe/LMDBIO-LMM begins to be larger than 10% from 288 cores onward

(see Figure 3.10(b)).

Figure 4.9 shows performance comparison of Caffe/LMDB, Caffe/LMDBIO-LMM, and

72
Chapter 4. Inter-node File I/O Optimization via

Speculative Parallel I/O

1.0 1.1 1.2
1.7

4.5

3.3
2.8 2.9 3.2

4.2

7.9

9.2

7.8

0
1
2
3
4
5
6
7
8
9
10

10

100

1000

10000

100000
1 2 4 8 16 36 72 14
4

28
8

57
6

11
52

23
04

46
08

92
16

Fa
ct
or
	o
f	I
m
pr
ov
	o
ve
r	L
M
DB

Ti
m
e	
(s
)

Number	of	Cores
Improv	of	LMDBIO-LMM Improv	of	LMDBIO-LMM-DM
Caffe/LMDB Caffe/LMDBIO-LMM
Caffe/LMDBIO-LMM-DM

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Ex
ec
ut
io
n	
Ti
m
e	
Br
ea
kd
ow

n

Number	of	Cores
Read	time Transform	time Total	forward	time
Total	backward	time I/O	skew	time Param	sync	time
Param	calculation	time Param	update	time

Figure 4.8: Caffe/LMDBIO-LMM-DM strong scaling on Bebop using CIFAR10-Large: (a)
scaling results; (b) performance breakdown

4.3. LMDBIO-LMM-DM Experiments and Results 73

Caffe/LMDBIO-LMM-DM using ImageNet-Large. From the results, Caffe/LMDBIO-LMM-

DM outperforms Caffe/LMDB in all cases but performs similarly to Caffe/LMDBIO-LMM.

The reason is that Caffe/LMDBIO-LMM-DM on Bebop suffers from the problem that we

refer to as “I/O randomization”, which we will further discuss it in Chapter 5.1.3.

3.5

2.8
2.7

1.1
1.3

0

0.5

1

1.5

2

2.5

3

3.5

4

100

1000

10000

576 1152 2304 4608 9216

Fa
ct
or
	o
f	I
m
pr
ov
	o
ve
r	L
M
DB

Ti
m
e	
(s
)

Number	of	Cores

Improv	of	LMDBIO-LMM Improv	of	LMDBIO-LMM-DM
Caffe/LMDB Caffe/LMDBIO-LMM
Caffe/LMDBIO-LMM-DM

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

576 1152 2304 4608

Ex
ec
ut
io
n	
Ti
m
e	
Br
ea
kd
ow

n

Number	of	Cores
Read	time Transform	time Total	forward	time
Total	backward	time I/O	skew	time Param	sync	time
Param	calculation	time Param	update	time

Figure 4.9: Caffe/LMDBIO-LMM-DM strong scaling on Bebop using ImageNet-Large: (a)
scaling results; (b) performance breakdown

74
Chapter 4. Inter-node File I/O Optimization via

Speculative Parallel I/O

4.3.3 Evaluation of Speculative Data Reading Accuracy

The performance capability of LMDBIO-LMM-DM depends heavily on the accuracy of its

estimation on what data will likely be needed for the computation in that iteration. In this

section, we present a series of experiments to analyze this behavior. In our experiments, we

study the accuracy of our estimation in terms of the number of pages that are needed but

are not fetched during the parallel I/O phase (i.e., “missed pages”) and the number of pages

that are not needed but are fetched during the parallel I/O phase (i.e., “redundant pages”).

In the first experiment, we measure the number of missed pages as the computation pro-

gressed through its iterations, for the CIFAR10-Large and ImageNet datasets. The experi-

ment use 512 cores on Blues in all cases. The first two iterations result in nonzero missed

pages, although for iterations after that we do not notice any missed pages for both datasets.

The reason is that LMDBIO-LMM-DM automatically tunes the page range that it fetches

based on the history of the accessed data in the previous iterations. That is, it corrects its

estimate based on history from the prior iterations, thus allowing it to estimate the best- and

worst-case bounds of access more effectively. We note that since training computations typ-

ically run for several thousands or millions of iterations, the additional missed pages during

the first few iterations are mostly inconsequential for overall performance.

In our second experiment, we study the number of redundant pages read through the required

iterations. Experimental results are shown in Figure 4.10. Once again, the experiment use

512 cores on Blues in all cases. We notice that the number of redundant pages increases until

a certain iteration and then stabilizes. This behavior is expected because of how LMDBIO-

LMM-DM works. That is since LMDBIO-LMM-DM starts with an initial estimate and then

corrects this estimate based on the prior iterations, the range of pages fetched expands with

iterations to cover more pages for the parallel I/O. However, once the number of redundant

4.3. LMDBIO-LMM-DM Experiments and Results 75

0

500

1000

1500

2000

2500

3000

3500

1 50 99 14
8

19
7

24
6

29
5

34
4

39
3

44
2

49
1

54
0

58
9

63
8

68
7

73
6

78
5

83
4

88
3

93
2

98
1

Nu
	m
be

r	o
f	E
xt
ra
	Pa

ge
s

Number	of	Iterations

0
500
1000
1500
2000
2500
3000
3500
4000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Nu
m
be

r	o
f	E

xt
ra
	Pa

ge
s

Number	of	Iterations

Figure 4.10: Caffe/LMDBIO-LMM-DM redundant pages read using (a) CIFAR10-Large; (b)
ImageNet

pages read is large enough to not miss any page, the number of redundant pages stabilizes

to a constant value.

In our third experiment, we study the missed pages with changing numbers of cores. We run

the experiments for the full iteration count on Blues. We make the following observations

based on Figure 4.11:

1. The number of missed pages increases with the number of cores, but the count is very

small. In fact, the total number of missed pages at 512 cores is less than 700 for the

CIFAR10-Large dataset, which is less than 1.4 missed pages per core, and less than

200 for the ImageNet dataset, which is less than 0.5 missed pages per core. Moreover,

76
Chapter 4. Inter-node File I/O Optimization via

Speculative Parallel I/O

0

100

200

300

400

500

600

700

800

32 64 128 256 512

N
um

be
r	o

f	M
is
se
d	
Pa
ge
s

Number	of	Cores

CIFAR10-Large

ImageNet

Figure 4.11: Caffe/LMDBIO-LMM-DM missed pages with varying number of cores

most of these missed pages are in the first few iterations while LMDBIO-LMM-DM is

trying to converge on the range of pages to fetch.

2. The number of missed pages in the ImageNet dataset is much smaller than that in

the CIFAR10-Large dataset. The reason is that the data samples are much larger in

the ImageNet dataset than they are in the CIFAR10-Large dataset and, for the same

amount of data processed, the ImageNet dataset covers fewer iterations than does the

CIFAR10-Large dataset, thus resulting in fewer missed pages.

4.4 Chapter Summary

In this chapter, we presented LMDBIO-LMM-DM, an enhanced version of LMDBIO-LMM,

our intra-node file I/O optimization presented in the previous chapter. LMDBIO-LMM-

DM optimizes the I/O access of the DL framework in distributed-memory environments by

coordinating between reader processes to minimize redundant file I/O. Moreover, LMDBIO-

LMM-DM uses a history-based speculative data reading to enhance parallelism of its data

reading. We presented the overall design and implementation of LMDBIO-LMM-DM. We

also presented experimental results that show that Caffe/LMDBIO-LMM-DM can improve

4.4. Chapter Summary 77

the overall training time by more than 30-fold compared with the original Caffe/LMDB

framework in some cases.

Chapter 5

Direct File I/O Optimizations

We have presented the analysis and optimizations of data reading on intra- and inter-node

in the previous chapters (Chapters 3 and 4). In this chapter, we continue to investigate

inefficiencies of LMDB.

With a thorough analysis of LMDB, we realize that the major flaw of LMDB is mmap as

it prevents LMDB from various I/O tuning opportunities. In this section, we attempt to

replace mmap with a more efficient file I/O—direct I/O. However, it is not trivial to remove

mmap from LMDB since the LMDB database layout is not deterministic unless additional

data is present. Here, we present a series of four direct I/O optimizations to remove mmap

and tune the direct I/O performance.

The first two techniques incrementally replace mmap with direct I/O. Our first optimiza-

tion, LMDBIO-LMM-DIO—direct I/O exploitation, manages to eliminate mmap almost

entirely, except in the sequential seek phase that mmap is still required for getting the offsets

and sizes of all the data records that will be read. The second optimization, LMDBIO-

LMM-DIO-PROV—provenance information exploitation, introduces additional informa-

tion to the LMDB database to enable its random database access capacity which allows us

to completely remove mmap from our I/O path.

The latter two optimizations attempt to improve the direct I/O performance. Our third opti-

mization, LMDBIO-LMM-DIO-PROV-COAL—I/O coalescing optimization, tunes the

78

5.1. Analysis of LMDB Inefficiencies 79

I/O block size used to achieve the peak read bandwidth. The last optimization, LMDBIO-

LMM-DIO-PROV-COAL-STAG—I/O staggering optimization, delays some I/O re-

quests to address the I/O randomization problem.

In the experiments and results section, we evaluate each LMDBIO optimization using a

microbenchmark and Caffe on Bebop. The results show that LMDBIO with all six opti-

mizations outperforms LMDB in all cases.

5.1 Analysis of LMDB Inefficiencies

This section presents the analysis of LMDB inefficiencies. The problems shown in this section

can be solved by using direct I/O instead of mmap.

5.1.1 Mmap Workflow Overheads

Since mmap performs implicit I/O, the user has no control over when an I/O operation is

issued. Mmap needs to keep track of what data the user is trying to access. Only when the

user tries to touch a piece of data can mmap deduce that that data segment is needed. The

typical workflow used by mmap is as follows. When the user tries to access data that is not

already available, a page fault signal is generated, which internally invokes an I/O operation.

When the I/O operation completes, an interrupt is generated that marks the corresponding

operation as complete. Thus, the workflow used by mmap is necessarily reactive based on the

user data access pattern and leads to inefficiencies in the I/O path.

To showcase this inefficiency in mmap, we experiment to compare the I/O read bandwidth

achieved by mmap with the bandwidth achieved by using explicit I/O (based on POSIX I/O).

We develop a microbenchmark to read a 256 GB file using a single reader on a single machine.

80 Chapter 5. Direct File I/O Optimizations

To read the file, we use memcpy and pread with the mmap and POSIX I/O benchmarks,

respectively. In this benchmark, we keep the read chunk size used by POSIX I/O to be 4 KB,

namely, the OS page size, similar to what is used by mmap. In this way, the benchmark does

not mix effects from the read block size with that of the mmap workflow. Effects of the read

block size are studied separately in Section 5.1.2. The results from our experiment show that

mmap’s read bandwidth is approximately 2.4 times lower than the read bandwidth achieved

by POSIX I/O. This observation showcases the inefficiencies in mmap’s workflow.

5.1.2 I/O Block Size Management

As discussed earlier, most DL frameworks are iterative. In each iteration, they read one batch

of data samples and process them before moving on to the next iteration. With parallel DL,

this batch of data samples is further split into multiple subbatches, where each process reads

a subbatch and processes it. As the number of processes increases, however, the batch of

data samples is split among more processes, so each subbatch is smaller. In the extreme case,

where the number of processes participating in parallel DL is equal to the number of data

samples in the batch, each subbatch would contain just a single data sample. This would

dramatically reduce the size of the I/O performed by each process within an iteration. For

instance, with the CIFAR10-Large dataset, each data sample is just 3 KB, causing the I/O

operations to be done in small page-size granularity, thus leading to significant inefficiencies.

To demonstrate the effect of I/O block size on read performance, we use the same mi-

crobenchmark discussed in Section 5.1.1, but this time we vary the read block size from

4 KB to 1 GB. Figure 5.1 shows the read I/O bandwidth of mmap and POSIX I/O with dif-

ferent I/O block sizes. Two trends are noteworthy. First, the I/O read bandwidth of POSIX

I/O increases with the block size. This increase is expected and has also been demonstrated

5.1. Analysis of LMDB Inefficiencies 81

0

500

1000

1500

2000

2500

3000

4	
K

8	
K

16
	K

32
	K

64
	K

12
8	
K

25
6	
K

51
2	
K

1	
M

2	
M

4	
M

8	
M

16
	M

32
	M

64
	M

12
8	
M

25
6	
M

51
2	
M

10
24
	M

Re
ad

	B
an

dw
id
th
	(M

B/
s)

I/O	Request	Size	(bytes)

mmap POSIX	I/O

Figure 5.1: I/O block size

by other researchers in the past. Second, the block size has no impact on the I/O perfor-

mance achieved by mmap. The reason is that mmap does not have information about the

overall access pattern used by the application and needs to wait for the application to access

data before fetching it. Even when the application uses a larger block size for performing the

memcpy in the benchmark, this information is not passed to mmap. Thus, the I/O blocks used

by it are inherently small. The takeaway of this analysis is that although the current I/O

methodology used by LMDB cannot benefit from larger I/O blocks. If one were to migrate

LMDB to using explicit I/O, larger I/O blocks could give a significant performance boost.

5.1.3 I/O Randomization

One aspect to consider while performing parallel I/O is the data access order that the various

I/O requests create. For example, consider a scenario where a large number of processes need

to divide a large file into smaller pieces and each process needs to access a part of it. In

this example, each process issues an I/O request for its piece of the data that it needs to

fetch. Since each process is independent, however, these I/O requests do not arrive at the

82 Chapter 5. Direct File I/O Optimizations

I/O server processes in any specific order, causing the server processes to access the file in

a nondeterministic fashion. We refer to this problem as I/O randomization and illustrate it

in Figure 5.2.

Server	1

1 3 5 7

Request	queue

Client	8

All	requests	are	issued	at	the	same	time

File

5

3

7

1

Server	2

2 4 6 8

Request	queue

File

2

6

8

4

Client	7Client	6Client	5Client	4Client	3Client	2Client	1

Figure 5.2: I/O randomization

I/O randomization hurts performance because, unlike sequential I/O, it cannot benefit from

most I/O optimizations including data prefetching and caching, thus becoming limited by

disk seek overheads. Another unfortunate aspect of I/O randomization is that as the number

of processes performing parallel I/O increases, the randomization of I/O requests increases

as well. Furthermore, as the read block size associated with each I/O operation increases, the

impact of the additional disk seeks and the lack of benefits from data prefetching and caching

increase as well. Thus, we need to carefully balance the various metrics of the amount of I/O

parallelism, read block size, and I/O randomization, to maximize the overall performance.

5.2. Design and Implementation of LMDBIO-LMM-DIOs: Series of Direct
I/O Optimizations 83

5.2 Design and Implementation of LMDBIO-LMM-DIOs:

Series of Direct I/O Optimizations

This section presents the design and implementation of four direct I/O optimizations of LMD-

BIO: (1) LMDBIO-LMM-DIO tackles mmap’s inefficiency; (2) LMDBIO-LMM-DIO-

PROV addresses mmap’s inefficiency and sequential database access restriction of LMDB;

(3) LMDBIO-LMM-DIO-PROV-COAL alleviates the inefficient I/O block size problem;

(4) LMDBIO-LMM-DIO-PROV-COAL-STAG minimizes I/O randomization.

5.2.1 LMDBIO-LMM-DIO: Direct I/O Exploitation

As shown in Section 5.1.1, the implicit I/O model used by LMDB (through mmap) can have a

significant performance impact on file I/O read. In this section, we present LMDBIO-LMM-

DIO, an approach to extend LMDBIO-LMM to use direct I/O (through POSIX I/O).

The basic working model of LMDBIO-LMM-DIO is similar to that of LMDBIO-LMM. That

is, LMDBIO-LMM-DIO still has a small subset of the processes designated as root pro-

cesses on each node that, in turn, mmap the LMDB database into their respective address

spaces. And, like LMDBIO-LMM, LMDBIO-LMM-DIO also creates a shared-memory buffer

between all processes on the node to share the data that the root processes read from the

database. The primary difference between LMDBIO-LMM and LMDBIO-LMM-DIO is that

the latter uses direct POSIX I/O for performing the actual read of the data. That is, once

the location of the data record in the database has been identified, LMDBIO-LMM-DIO

does not use mmap to copy the data into the shared buffer. Instead, it computes the virtual

address offset of the data record address compared with the virtual address of the start of the

database and uses that offset to directly read the data using the POSIX I/O pread function.

84 Chapter 5. Direct File I/O Optimizations

We note, however, that LMDBIO-LMM-DIO does little to improve the sequential seek for

locating the database records and continues to use mmap, just like LMDB and LMDBIO-

LMM. Thus, in LMDBIO-LMM-DIO, the seek path, and the actual data read path are

disjoint: the seek goes through mmap, whereas the actual data read goes through POSIX

I/O. Because of this separation of paths, performing the seek on the same process as the one

that does the actual data read is not too beneficial for LMDBIO-LMM-DIO. Therefore, we

use a single process to seek through the entire database and obtain offsets and sizes for all

the data records that will be used in the following training iterations. Performing the seek on

a single process has the advantage of avoiding the redundant file I/O among the various root

processes, although it does not help with the sequential nature of the seek. Once the seek is

complete, the offsets and sizes are distributed to the other root processes, as illustrated in

Figure 5.3.

read	data	to	shared	buffer

read	data	to	shared	buffer

read	data	to	shared	buffer

seek

scatter
offsets

Timeline

P0
P1
P2

wait	
wait

…
…
…

Figure 5.3: LMDBIO-LMM-DIO design: sequential seek

5.2.2 LMDBIO-LMM-DIO-PROV: Provenance Information Ex-

ploitation

LMDBIO-LMM-DM attempts to address the serialization in file I/O by performing specu-

lative parallel reads. While that approach can be effective in reducing the redundant data

5.2. Design and Implementation of LMDBIO-LMM-DIOs: Series of Direct
I/O Optimizations 85

accesses in some cases, it is still an approximation technique and can cause a significant

increase in the file I/O if the approximation is incorrect. Unfortunately, no way exists to

precisely estimate the location of the data records without the sequential seek or additional

information. The reason is that the layout of the LMDB database depends not only on the

content of the database but also on the way the database was created. This information is

not natively stored in the LMDB database file.

In this section, we propose LMDBIO-LMM-DIO-PROV, a technique that provides a more el-

egant alternative to address the serialization in file I/O, compared with LMDBIO-LMM-DM,

by completely and deterministically eliminating the sequential seek restriction of LMDB. The

catch, however, is that LMDBIO-LMM-DIO-PROV requires the user to provide more infor-

mation than what the LMDB database natively provides. We refer to this information as

the “database provenance information.”

LMDB Database Creation

Before explaining the provenance information that we require for LMDBIO-LMM-DIO-

PROV, we briefly summarize how the LMDB database creation process works. LMDB

employs a multi-version concurrency control policy to guarantee data integrity and reliabil-

ity in the multi-reader & single-writer model. This model allows a reader to read a valid

snapshot of the database without acquiring a lock. Locking is required only when writing

to the database. To provide concurrency, LMDB adopts a “copy-on-write” policy on the

database file where new data is written to the file without overwriting or relocating old data.

Any change to existing data in the database file, however, will be applied to a copy of that

data. In other words, LMDB will copy existing data to a new location and apply changes to

the new resource when a write occurs. This policy ensures that data in the file is always in

a valid state.

86 Chapter 5. Direct File I/O Optimizations

Since LMDB is a transactional database, it operates at the granularity of transactions.

When new data is added to the database, it will be written to permanent storage only

when that transaction is committed. During the commit, the layout of the database file is

modified. Resources that have been modified will be duplicated. For LMDB, these modifiable

resources are the branch pages and leaf pages. When the tree structure changes, some of

existing branch and leaf pages are modified to update their connectivity to other pages (i.e.,

neighboring and children pages). With LMDB the tree grows in a bottom-up manner where

pages that contain data (i.e., key-value pairs) are added first. Each leaf/branch page has a

limit on the number of children that it can have. New pages are added to the tree when the

number of children in that page has reached that limit.

An example of LMDB database creation is demonstrated in Figure 5.4. State1 shows an

example initial state of the database where all prior transactions have been successfully

committed (i.e., the previous data is in the disk and is identical to the content in memory

1A). In State2, data page O4 is appended to the tree causing the leaf page L1 to be modified.

In this case, LMDB copies L1 to a new location before modifying it (memory 2A). Then,

the old memory location of L1 is marked as free (memory 2B). After that, O4 will be added

to the database file. In this example, we assume that O4 can fit in the free memory region

(memory 2C). Otherwise, it will be appended to the end of the memory area. Suppose that

the transaction has not yet been committed. State3 shows how the tree grows in the case

that the number of children of L1 exceeds its limit (i.e., 4 children). In that case, a new leaf

page (L2) and a new branch page (B1) are added to the tree.

LMDB Provenance Information

As explained earlier, the location of data records in the LMDB database cannot be deter-

mined by using only the natively available information in the database metadata. Fortu-

5.2. Design and Implementation of LMDBIO-LMM-DIOs: Series of Direct
I/O Optimizations 87

L1

O2 O3O1
L1 O1 O2 O3Memory	1A

Disk L1 O1 O2 O3

State	1: Initial	state	of	the	database	

State	2: Growing	 the	tree	after	commit

L1

O2 O3O1

L1 O1 O2 O3 L1

O4

Copy

F O1 O2 O3 L1

O4 O1 O2 O3 L1

State	3:	Growing	 the	tree	when	number	 of	children	exceeds	threshold	

L1

O2 O3O1

O4 O1 O2 O3 L1 O5 L2 B1

O4 O5

L2

B1

Memory	2A

Memory	2B

Memory	2C

Memory	3A

Figure 5.4: LMDB database creation example

nately, LMDB uses a deterministic algorithm to create the B+ tree database. Thus, with

additional information about the database creation (i.e., the database provenance informa-

tion), we can dynamically compute the database layout. This computation allows us to

precisely deduce the accurate location of each database record, completely eliminating the

seek.

In LMDBIO-LMM-DIO-PROV, we propose maintaining a separate auxiliary file for each

LMDB database file that contains the following provenance information: (1) frequency that

the transactions are committed in, (2) maximum number of records that a leaf node can

contain, (3) maximum number of children that a branch node can have, (4) size of each

data record, (5) order in which the data records are added, and (6) number of LMDB

metadata pages. This provenance information can be collected either when the database

is being generated or later as one-time postprocessing of the database. We note that the

88 Chapter 5. Direct File I/O Optimizations

proposed provenance information is typically small compared with the database itself (i.e.,

a few hundred bytes).

Once such provenance information is available, its usage in LMDBIO-LMM-DIO-PROV

is straightforward. Each root process computes the offsets of all the data records that it

needs by following the algorithm that is adopted by LMDB for creating the database. This

computation adds negligible cost compared with the cost of the I/O itself. Once the offsets

are calculated, the actual file I/O is done through POSIX I/O, similar to LMDBIO-LMM-

DIO. We note that without the additional provenance information LMDBIO-LMM-DIO-

PROV cannot be used and we would need to fall back to LMDBIO-LMM-DM for improving

the sequential seek.

An important aspect to note here is that any improvement to the seek time needs to be

taken with a grain of salt. For example, in cases where the application iterates over the data

for a very large number of epochs, one might be able to simply store the database offsets in

memory to be used in later epochs. However, such an approach raises a few concerns that

must be kept in mind.

1. It is practical only if the number of data samples is an exact multiple of the number of

processes. Any offset in this would mean that the data samples computed by a given

process would not be exactly the same in every epoch. In cases where the number

of data samples is not an exact multiple of the number of processes, one can divide

the data samples as evenly as possible across the different processes and then treat

the remainder separately. While this might seem like an enticing possibility, however,

we note that it would change the semantics of the LMDB model. With its current

semantics, the database is treated as a circular collection of records, so one would

return to the first record after the last record has been read. This allows applications

5.2. Design and Implementation of LMDBIO-LMM-DIOs: Series of Direct
I/O Optimizations 89

using LMDB to be guaranteed that the read of a block of records always returns the full

block of records and never a partial block. If we treat the remainder separately, those

semantics would no longer be true. As a consequence, such a change in the semantics

would, in turn, require intrusive modification to the entire LMDB ecosystem.

2. The efficiency of this approach depends on how many epochs of training are used. For

cases where the database is extremely large, some algorithms tend to rely on a single-

pass analysis (i.e., the database is read only once) or on analyzing the data using just a

few epochs. In such cases, the seek overhead can still be significant, and the provenance

information that we proposed in this section can help.

3. While data could theoretically be streamed from an online source, such a model is not

as common today. Training datasets are typically stored in persistent files and used

for training with multiple models or multiple parameter settings.

4. Similarly, while splitting the dataset into a large number of files is possible (e.g., one file

per process), so as to completely avoid seeking, such practice is strongly discouraged on

most large supercomputing systems. The reason is that reading from a large number

of files can easily overwhelm the metadata server, causing the filesystem to suffer from

significant performance loss or even crash [110].

5.2.3 LMDBIO-LMM-DIO-PROV-COAL: I/O Coalescing Opti-

mization

As mentioned in Section 5.1.2, as the parallelism used by the DL algorithm increases, the size

of the subbatch used by each process decreases. In the extreme case, when the parallelism

used for the DL training is as large as the number of available data samples in each batch,

90 Chapter 5. Direct File I/O Optimizations

each process would need a single data sample in each iteration. Thus, each root process

would end up reading smaller blocks of data. As an example, if we consider the CIFAR10-

Large database, when using 9,216 processes with a batch size of 18,432, each process would

need just two data samples in every iteration, where each data sample would be 4 KB in

size (3 KB actual data). Even if we use a single root process on each node, the root process

would perform an I/O of 288 KB in every iteration. Most filesystems, however, require much

larger block sizes (typically in multiple megabytes) for optimal I/O performance.

We tackle this issue in LMDBIO-LMM-DIO-PROV-COAL by allowing it to assume the

iterative nature of DL applications. That is, even though a single iteration does not require

too much data, if we can coalesce the data required in multiple iterations, we can increase the

block size used in each I/O operation. With LMDBIO-LMM-DIO-PROV-COAL, each root

process reads a large contiguous chunk of data (large enough to saturate the I/O performance

of the filesystem). LMDBIO-LMM-DIO-PROV-COAL tunes the I/O block size that it uses

so as to limit the amount of memory that it consumes for I/O (kept at 2.5 GB in our

experiments). Thus, as the parallelism in the DL training increases, it fetches data required

for more iterations within a single I/O operation.

5.2.4 LMDBIO-LMM-DIO-PROV-COAL-STAG: I/O Staggering

Optimization

Our last optimization technique, LMDBIO-LMM-DIO-PROV-COAL-STAG, addresses the

I/O randomization problem presented in Section 5.1.3. The general idea used by LMDBIO-

LMM-DIO-PROV-COAL-STAG is to limit the number of I/O operations that are issued

simultaneously so as to minimize such randomization while maintaining sufficient parallelism

to maximize I/O performance. To achieve this goal, we use a technique called I/O staggering.

5.2. Design and Implementation of LMDBIO-LMM-DIOs: Series of Direct
I/O Optimizations 91

In this technique, the root processes are divided into multiple groups of the same size. Root

processes that access segments of the file that are close to each other are grouped together.

Once the grouping is done, we allow one group of root processes (referred to as a staggering

group) to access the file concurrently while the remaining groups wait for the previous groups

to complete their I/O. We use a token-passing approach: a process can perform I/O only

when it has a token. Suppose the staggering group size is n. Then there are n tokens, with

the root processes in each group labeled from 0 to n− 1. When a root process is done with

its I/O, it passes on its token to the root process in the next group with the same label as

itself. We simply use MPI send/recv to pass tokens between processes.

We note that the staggering size needs to be carefully selected. A substantial staggering

size would lead to increased randomization, while a very small staggering size would lead to

reduced parallelism in I/O. We empirically evaluated the best staggering sizes for a different

number of processes and used them for our experiments.

We also note that more elegant approaches for managing I/O staggering exist than those we

propose in this work. One example would be to use the POSIX file-locking mechanism. That

is, each group would attempt to lock the database file; and once it acquired the lock, it would

perform the actual I/O. This approach would achieve the same outcome as our token-passing

approach and would further remove the unnecessary and artificial ordering restriction that

the proposed token-passing approach forces. Unfortunately, most distributed filesystems

(e.g., Network File System or NFS) do not provide strict POSIX semantics, including fcntl

and file locking [158], thus making its portability questionable. Therefore, we used the

proposed token-passing approach as a workaround to this particular shortcoming of some

filesystems.

92 Chapter 5. Direct File I/O Optimizations

5.3 Direct File I/O Optimization Experiments and Re-

sults

In this section, we compare the performance of LMDBIO with that of LMDB. In Section 5.3.1

we evaluate the performance of each of the proposed optimizations using simple microbench-

marks. The purpose of this evaluation is to understand the benefits and shortcomings of

each optimization without diluting the results with other computation that would happen

in a typical DL application. In Sections 5.3.2 and 5.3.3, we use strong- and weak-scaling

experiments to compare the performance of Caffe/LMDBIO with that of the original Caf-

fe/LMDB. The purpose of this evaluation is to understand the impact of LMDBIO on the

overall performance of the Caffe DL framework on real datasets. Our experiments use the

datasets, networks, and supercomputer systems described in Chapter 3.1.1.

5.3.1 Microbenchmark Evaluation and Analysis

This section consists of evaluations of our LMDBIO direct I/O optimizations using the same

microbenchmark that is presented in Chapter 3.4.1. The benchmark contains only the file

I/O portion of Caffe, but not the training part. The experiment is conducted on Bebop

using the CIFAR10-Large dataset with a batch size of 18,432 images (9.4 million images).

LMDBIO-LMM-DIO

We compare the read performance of LMDBIO-LMM-DIO with that of LMDB, LMDBIO-

LMM, and LMDBIO-LMM-DM, as shown in Figure 5.5(a). LMDBIO-LMM-DIO achieves

better performance than the other approaches in almost all cases primarily because of its

usage of POSIX I/O for data reading in place of mmap. In some cases, however, LMDBIO-

5.3. Direct File I/O Optimization Experiments and Results 93

LMM-DM slightly outperforms LMDBIO-LMM-DIO. The reason is that LMDBIO-LMM-

DIO does nothing to optimize the seek, a process that can take a significant amount of

time. In fact, as shown in our read time breakdown in Figure 5.5(b), the seek in LMDBIO-

LMM-DIO takes up nearly 20% of the read time. Nevertheless, LMDBIO-LMM-DIO still

outperforms LMDB by 17.18-fold on 4,608 cores.

10

100

1000

10000

1 2 4 8 16 36 72 14
4

28
8

57
6

11
52

23
04

46
08

Ti
m
e	
(s
)

Number	of	Cores

LMDB LMDBIO-LMM LMDBIO-LMM-DM LMDBIO-LMM-DIO

0

5

10

15

20

25

30

35

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Ti
m
e	
(s
)

Ti
m
e	
Br
ea
kd
ow

n

Number	of	Cores

Seek	time I/O	time I/O	skew	time

Seek	time I/O	time I/O	skew	time

Figure 5.5: LMDBIO-LMM-DIO performance analysis: (a) read performance compared with
LMDB, LMDBIO-LMM, and LMDBIO-LMM-DM; (b) total read time breakdown

We note that LMDBIO-LMM-DIO still suffers from data skew, similar to LMDBIO-LMM

and LMDBIO-LMM-DM. Unlike LMDBIO-LMM, however, this skew is not because of data

94 Chapter 5. Direct File I/O Optimizations

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

19
9

21
0

22
1

23
2

24
3

25
4

Ti
m
e

Rank	No.

Figure 5.6: LMDBIO-LMM-DIO I/O skew analysis

prefetching, which we verified by measuring the I/O time on each reader rank as shown in

Figure 5.6. Instead, the skew is due to other serialization in the file I/O such as that related

to I/O randomization.

LMDBIO-LMM-DIO-PROV

Figure 5.7(a) compares the performance of LMDBIO-LMM-DIO-PROV with that of LMDB,

LMDBIO-LMM, LMDBIO-LMM-DM, and LMDBIO-LMM-DIO. LMDBIO-LMM-DIO-PROV

consistently outperforms all the existing approaches, achieving 19.44-fold improvement in

performance on 4,608 cores compared with LMDB. The performance improvement in LMDBIO-

LMM-DIO-PROV is attributed to its elimination of the sequential seek to access the database

records. This improvement in performance highlights the importance of the database prove-

nance information in scalable DL.

Despite the impressive gains in performance, however, LMDBIO-LMM-DIO-PROV still suf-

fers from some shortcomings that cause its I/O time to increase as the number of cores

increases. We plotted this behavior in Figure 5.7(b). This figure shows that a significant

5.3. Direct File I/O Optimization Experiments and Results 95

10

100

1000

10000
1 2 4 8 16 36 72 14
4

28
8

57
6

11
52

23
04

46
08

Ti
m
e	
(s
)

Number	of	Cores
LMDB LMDBIO-LMM
LMDBIO-LMM-DIO LMDBIO-LMM-DM
LMDBIO-LMM-DIO-PROV

0

5

10

15

20

25

30

35

40

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Ti
m
e	
(s
)

Ti
m
e	
Br
ea
kd
ow

n

Number	of	Cores

I/O	time I/O	skew	time I/O	time I/O	skew	time

Figure 5.7: LMDBIO-LMM-DIO-PROV performance analysis: (a) read performance com-
pared with LMDB, LMDBIO-LMM, LMDBIO-LMM-DIO, and LMDBIO-LMM-DM; (b)
total read time breakdown

96 Chapter 5. Direct File I/O Optimizations

portion of the I/O time is taken by the skew between the different processes, which is an

artifact of the I/O randomization described in Section 5.1.3.

LMDBIO-LMM-DIO-PROV-COAL

Figure 5.8(a) compares the performance of LMDBIO-LMM-DIO-PROV-COAL with that of

LMDB, LMDBIO-LMM, LMDBIO-LMM-DIO, and LMDBIO-LMM-DIO-PROV and demon-

strates that LMDBIO-LMM-DIO-PROV-COAL consistently achieves the best performance

among all approaches. In fact, LMDBIO-LMM-DIO-PROV-COAL outperforms LMDB by

21.86-fold on 4,608 cores. The primary performance gain in LMDBIO-LMM-DIO-PROV-

COAL comes from the fact that it optimizes the I/O block size by coalescing data required

in multiple iterations into fewer I/O operations. This approach better utilizes the I/O sub-

system, resulting in improved performance.

A breakdown of the read time in Figure 5.8(b) shows that LMDBIO-LMM-DIO-PROV-

COAL reduces the skew time to around 25% of the total I/O time. While the actual read

operation now takes most of the time, room for improvement still remains.

LMDBIO-LMM-DIO-PROV-COAL-STAG

Figure 5.9(a) compares the performance of LMDBIO-LMM-DIO-PROV-COAL-STAG with

that of LMDB, LMDBIO-LMM, LMDBIO-LMM-DIO, LMDBIO-LMM-DIO-PROV, and

LMDBIO-LMM-DIO-PROV-COAL. The figure shows that LMDBIO-LMM-DIO-PROV-

COAL-STAG performs the same as or better than all the other techniques, outperforming

LMDB by 81.05-fold on 4,608 cores. This improvement in performance is attributed to the

reduced I/O randomization in LMDBIO-LMM-DIO-PROV-COAL-STAG.

Our analysis of the I/O time breakdown is shown in Figure 5.9(b). This figure, however,

5.3. Direct File I/O Optimization Experiments and Results 97

10

100

1000

10000
1 2 4 8 16 36 72 14
4

28
8

57
6

11
52

23
04

46
08

Ti
m
e	
(s
)

Number	of	Cores
LMDB LMDBIO-LMM
LMDBIO-LMM-DIO LMDBIO-LMM-DM
LMDBIO-LMM-DIO-PROV LMDBIO-LMM-DIO-PROV-COAL

0

5

10

15

20

25

30

35

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Ti
m
e	
(s
)

Ti
m
e	
Br
ea
kd
ow

n

Number	of	Cores

I/O	time I/O	skew	time I/O	time I/O	skew	time

Figure 5.8: LMDBIO-LMM-DIO-PROV-COAL performance analysis: (a) read performance
compared with LMDB, LMDBIO-LMM, LMDBIO-LMM-DIO, LMDBIO-LMM-DM, and
LMDBIO-LMM-DIO-PROV; (b) total read time breakdown

98 Chapter 5. Direct File I/O Optimizations

10

100

1000

10000
1 2 4 8 16 36 72 14
4

28
8

57
6

11
52

23
04

46
08

Ti
m
e	
(s
)

Number	of	Cores
LMDB LMDBIO-LMM
LMDBIO-LMM-DIO LMDBIO-LMM-DM
LMDBIO-LMM-DIO-PROV LMDBIO-LMM-DIO-PROV-COAL
LMDBIO-LMM-DIO-PROV-COAL-STAG

0

5

10

15

20

25

30

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Ti
m
e	
(s
)

Ti
m
e	
Br
ea
kd
ow

n

Number	of	Cores

I/O	time I/O	skew	time I/O	time I/O	skew	time

Figure 5.9: LMDBIO-LMM-DIO-PROV-COAL-STAG performance analysis: (a) read per-
formance compared with LMDB, LMDBIO-LMM, LMDBIO-LMM-DIO, LMDBIO-LMM-
DM, LMDBIO-LMM-DIO-PROV, and LMDBIO-LMM-DIO-PROV-COAL; (b) total read
time breakdown

5.3. Direct File I/O Optimization Experiments and Results 99

can be a bit misleading. While it shows a significant increase in I/O skew compared with

LMDBIO-LMM-DIO-PROV-COAL, this skew is intentional. That is, because LMDBIO-

LMM-DIO-PROV-COAL-STAG groups the root processes and forces only one group to be

actively performing I/O at a given point in time, it artificially appears that there is high

I/O skew time. Nevertheless, LMDBIO-LMM-DIO-PROV-COAL-STAG comprehensively

outperforms all the other presented techniques.

5.3.2 Strong-Scaling Evaluation of Caffe Deep Learning Training

This section presents the evaluation results of our LMDBIO direct I/O optimizations using

the actual DL benchmark, Caffe. The experiments are run on Bebop.

As described in Chapter 3.1.1, all of our experiments so far use single-threaded MKL while

achieving parallelism on the node using multiple processes. An alternate approach that one

might consider is to use a single process on each node but to take advantage of intra-node

parallelism through the multithreaded Intel MKL library, so as to utilize the cores better.

While at first blush that seems promising, such an approach would, by definition, only

utilize the cores on the node during MKL operations, while the rest of the computational

workflow would remain sequential, thus wasting cores. We have included the multithreaded

MKL version (denoted LMDB-MT-MKL) in the experiments in this section for completeness,

despite its known inefficiency especially when the number of cores is large.

Figure 5.10 presents the strong-scaling results for CIFAR10-Large using a batch size of 18,432

and the training iterations of 512. Figure 5.10(a) shows the execution time of Caffe with

the different frameworks, and Figure 5.10(b) shows the factor of improvements compared

with Caffe/LMDB. All Caffe/LMDBIO optimizations outperform Caffe/LMDB in all cases,

with Caffe/LMDBIO-LMM-DIO-PROV-COAL-STAG achieving nearly 65-fold performance

100 Chapter 5. Direct File I/O Optimizations

10

100

1000

10000

100000

Ti
m
e	
(s
)

Number	of	Cores

LMDB

LMDB-MT-MKL

LMDBIO-LMM

LMDBIO-LMM-DIO

LMDBIO-LMM-DM

LMDBIO-LMM-DIO-PROV

LMDBIO-LMM-DIO-PROV-COAL

LMDBIO-LMM-DIO-PROV-COAL-STAG

0

10

20

30

40

50

60

70

Fa
ct
or
	o
f	I
m
pr
ov
m
en

t	o
ve
r	L
M
DB

Number	of	Processes

LMDB-MT-MKL
LMDBIO-LMM
LMDBIO-LMM-DIO
LMDBIO-LMM-DM
LMDBIO-LMM-DIO-PROV
LMDBIO-LMM-DIO-PROV-COAL
LMDBIO-LMM-DIO-PROV-COAL-STAG

Figure 5.10: Strong scaling using CIFAR10-Large on Bebop: (a) total execution time; (b)
factor of improvement over Caffe/LMDB

5.3. Direct File I/O Optimization Experiments and Results 101

improvement over Caffe/LMDB on 9,216 cores.

Figure 5.11 shows execution time breakdown of each optimization. Note that graph scales

are not the same as each optimization has a different absolute total execution time. The

execution time breakdown of each optimization is similar to the one that we obtain in the

microbenchmark evaluation.

0%

20%

40%

60%

80%

100%

Ex
ec
ut
io
n	
Ti
m
e	
Br
ea
kd
ow

n

Number	of	Cores

(a)	Caffe/LMDBIO-LMM-DIO

Sequential	seek	time Read	time I/O	skew	time
Transform	time Total	forward	time Total	backward	time
Wait	time	before	param	sync Param	sync	time Param	calculation	time
Param	update	time

0%

20%

40%

60%

80%

100%

Ex
ec
ut
io
n	
Ti
m
e	
Br
ea
kd
ow

n

Number	of	Cores

(b)	Caffe/LMDBIO-LMM-DIO-PROV

Sequential	seek	time Read	time I/O	skew	time
Transform	time Total	forward	time Total	backward	time
Wait	time	before	param	sync Param	sync	time Param	calculation	time
Param	update	time

0%

20%

40%

60%

80%

100%

Ex
ec
ut
io
n	
Ti
m
e	
Br
ea
kd
ow

n

Number	of	Cores

(c)	Caffe/LMDBIO-LMM-DIO-PROV-COAL

Sequential	seek	time Read	time I/O	skew	time
Transform	time Total	forward	time Total	backward	time
Wait	time	before	param	sync Param	sync	time Param	calculation	time
Param	update	time

0%

20%

40%

60%

80%

100%

Ex
ec
ut
io
n	
Ti
m
e	
Br
ea
kd
ow

n

Number	of	Cores

(d)	Caffe/LMDBIO-LMM-DIO-PROV-COAL-STAG

Sequential	seek	time Read	time I/O	skew	time
Transform	time Total	forward	time Total	backward	time
Wait	time	before	param	sync Param	sync	time Param	calculation	time
Param	update	time

Figure 5.11: Execution time breakdown using CIFAR10-Large on Bebop: (a)
Caffe/LMDBIO-LMM-DIO; (b) Caffe/LMDBIO-LMM-DIO-PROV; (c) Caffe/LMDBIO-
LMM-DIO-PROV-COAL; (d) Caffe/LMDBIO-LMM-DIO-PROV-COAL-STAG

Figure 5.12 shows strong-scaling results for ImageNet-Large using a batch size of 18,432 and

the training iterations of 32. Figure 5.12(a) shows the execution time of Caffe with the

different frameworks, and Figure 5.12(b) shows the factor of improvements compared with

Caffe/LMDB. The general performance trend observed in the figures is similar to that with

CIFAR10-Large, although the performance improvements are smaller. The reason is that

102 Chapter 5. Direct File I/O Optimizations

100

1000

10000

576 1152 2304 4608 9216

Ti
m
e	
(s
)

Number	of	Processes

LMDB
LMDB-MT-MKL
LMDBIO-LMM
LMDBIO-LMM-DIO
LMDBIO-LMM-DM
LMDBIO-LMM-DIO-PROV
LMDBIO-LMM-DIO-PROV-COAL
LMDBIO-LMM-DIO-PROV-COAL-STAG

0

0.5

1

1.5

2

2.5

3

3.5

4

576 1152 2304 4608 9216

Fa
ct
or
	o
f	I
m
pr
ov
em

en
t	o

ve
r	L
M
DB

Number	of	Processes

LMDB-MT-MKL
LMDBIO-LMM
LMDBIO-LMM-DIO
LMDBIO-LMM-DM
LMDBIO-LMM-DIO-PROV
LMDBIO-LMM-DIO-PROV-COAL
LMDBIO-LMM-DIO-PROV-COAL-STAG

Figure 5.12: Strong scaling using ImageNet-Large on Bebop (a) total execution time; (b)
factor of improvement over Caffe/LMDB

5.3. Direct File I/O Optimization Experiments and Results 103

the structures of the two datasets are different. Specifically, ImageNet-Large contains larger

data sample sizes (192 KB for ImageNet-Large compared with 3 KB for CIFAR10-Large),

resulting in significantly different I/O characteristics. For example, header access is a small

fraction of I/O for ImageNet-Large, whereas it is a significant portion of I/O for CIFAR10-

Large; in other words, the header and the data are on the same physical page in memory

for CIFAR10-Large, so accessing one without the other is difficult. Another example is that

of I/O randomization, which has a significantly higher impact on ImageNet-Large than it

does on CIFAR10-Large because of the larger sizes of the data samples, making each batch

of samples typically larger than the I/O request size of the filesystem.

An interesting trend that we observe is that for the ImageNet-Large dataset, Caffe/LMDBIO-

LMM-DIO-PROV-COAL performs worse than other techniques, particularly when the num-

ber of cores is large. The reason is that although all techniques other than Caffe/LMDBIO-

LMM-DIO-PROV-COAL-STAG suffer from I/O randomization, Caffe/LMDBIO-LMM-DIO-

PROV-COAL is particularly susceptible because this technique actively increases the amount

of data that each process reads through coalescing. Thus, in Caffe/LMDBIO-LMM-DIO-

PROV-COAL, if I/O requests arrive out of order at the I/O server, the data segments ac-

cessed by these requests are especially far away for ImageNet-Large because of the large size

of its data samples, thus causing further degradation in performance. As expected, once I/O

staggering is applied in Caffe/LMDBIO-LMM-DIO-PROV-COAL-STAG, this performance

degradation goes away. In fact, Caffe/LMDBIO-LMM-DIO-PROV-COAL-STAG outper-

forms all other approaches, gaining approximately 1.6-fold performance over Caffe/LMDB

on 9,216 cores.

Execution time breakdowns are demonstrated in Figure 5.13. The breakdown of each op-

timization is similar to those of the microbenchmark and CIFAR10-Large except that the

ImageNet-Large training has a bigger portion of communication time (denoted as “Param

104 Chapter 5. Direct File I/O Optimizations

sync time”). This demonstrates that once we minimize the file I/O bottleneck, the effect of

the network I/O has become more significant.

0%

20%

40%

60%

80%

100%

576 1152 2304 4608 9216

Ex
ec
ut
io
n	
Ti
m
e	
Br
ea
kd
ow

n

Number	of	Cores

(a)	Caffe/LMDBIO-LMM-DIO

Sequential	seek	time Read	time I/O	skew	time
Transform	time Total	forward	time Total	backward	time
Wait	time	before	param	sync Param	sync	time Param	calculation	time
Param	update	time

0%

20%

40%

60%

80%

100%

576 1152 2304 4608 9216

Ex
ec
ut
io
n	
TI
m
e	
Br
ea
kd
ow

n

Number	of	Cores

(b)	Caffe/LMDBIO-LMM-DIO-PROV

Sequential	seek	time Read	time I/O	skew	time
Transform	time Total	forward	time Total	backward	time
Wait	time	before	param	sync Param	sync	time Param	calculation	time
Param	update	time

0%

20%

40%

60%

80%

100%

576 1152 2304 4608 9216

Ex
ec
ut
io
n	
Ti
m
e	
Br
ea
kd
ow

n

Number	of	Cores

(c)	Caffe/LMDBIO-LMM-DIO-PROV-COAL

Sequential	seek	time Read	time I/O	skew	time
Transform	time Total	forward	time Total	backward	time
Wait	time	before	param	sync Param	sync	time Param	calculation	time
Param	update	time

0%

20%

40%

60%

80%

100%

576 1152 2304 4608 9216

Ex
ec
ut
io
n	
Ti
m
e	
Br
ea
kd
ow

n

Number	of	Cores

(d)	Caffe/LMDBIO-LMM-DIO-PROV-COAL-STAG

Sequential	seek	time Read	time I/O	skew	time
Transform	time Total	forward	time Total	backward	time
Wait	time	before	param	sync Param	sync	time Param	calculation	time
Param	update	time

Figure 5.13: Execution time breakdown using ImageNet-Large on Bebop: (a)
Caffe/LMDBIO-LMM-DIO; (b) Caffe/LMDBIO-LMM-DIO-PROV; (c) Caffe/LMDBIO-
LMM-DIO-PROV-COAL; (d) Caffe/LMDBIO-LMM-DIO-PROV-COAL-STAG

The performance in term of a number of trained images per second is shown in Figure 5.14.

In the case that a number of images and a number of cores are given, the information shown

in the graph can be used to estimate the amount of time that Caffe with each I/O framework

uses to complete the training. For instance, in the best case, LMDBIO-LMM-DIO-PROV-

COAL-STAG can finish one epoch of CIFAR10-Large (50 million samples) in 2 hours and

16 minutes on 4,608 cores (364,788 images per second), while it can complete an epoch of

ImageNet-Large (6 million images) in 24 hours (4,100 images per second). However, we

note that our datasets are not conventional as they are amplified from the original datasets.

Therefore, the results here cannot be compared with the ones shown in the existing literature.

5.3. Direct File I/O Optimization Experiments and Results 105

0

50

100

150

200

250

300

350

400

Im
ag
es
	/	
Se
co
nd

Th
ou

sa
nd

s

Number	of	Cores

LMDB
LMDBIO-LMM
LMDBIO-LMM-DIO
LMDBIO-LMM-DM
LMDBIO-LMM-DIO-PROV
LMDBIO-LMM-DIO-PROV-COAL
LMDBIO-LMM-DIO-PROV-COAL-STAG

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

576 1152 2304 4608 9216

Im
ag
es
/S
ec
on

d

Th
ou

sa
nd

s

Number	of	Cores

LMDB
LMDBIO-LMM
LMDBIO-LMM-DIO
LMDBIO-LMM-DM
LMDBIO-LMM-DIO-PROV
LMDBIO-LMM-DIO-PROV-COAL
LMDBIO-LMM-DIO-PROV-COAL-STAG

Figure 5.14: Images per second of Caffe/LMDBIO using (a) CIFAR10-Large; (b) ImageNet-
Large

106 Chapter 5. Direct File I/O Optimizations

5.3.3 Weak-Scaling Performance Evaluation of Caffe Deep Learn-

ing Training

Apart from the strong-scaling experiments shown so far, we also conduct a weak-scaling

evaluation of LMDBIO on Bebop. Here, we increase the total batch size (i.e., the total

number of images processed by all processes together in each iteration) by k times when

the process count is increased by k times. The subbatch size (i.e., the number of samples

that a single process computes in each iteration) is set to two. We choose to keep the

total number of processed data samples constant throughout the weak-scaling experiments

to 9,437,184 and 2,359,296 samples for CIFAR10-Large and ImageNet-Large, respectively.

Thus, when the number of processes doubles, the total batch size doubles, and the number

of iterations halves. We note that because each iteration is bulk synchronous, increasing the

number of iterations would not change the performance trend showcased in the graphs—all

the performance numbers for a given number of processes would simply be multiplied by a

constant factor.

The weak-scaling results for CIFAR10-Large are illustrated in Figure 5.15 and those of

ImageNet-Large are illustrated in Figure 5.16. We observe trends for our weak-scaling exper-

iments similar to those for the strong-scaling experiments. For weak scaling, Caffe/LMDBIO

outperforms Caffe/LMDB by up to 43 times for CIFAR10-Large and by up to 1.9 times for

ImageNet-Large. In the case of ImageNet-Large, LMDBIO-LMM-DIO-PROV-COAL-STAG

achieves the same performance as LMDBIO-LMM-DM. This is expected. LMDBIO-LMM-

DM is an effective approach in improving performance—the drawback of LMDBIO-LMM-

DM is not that it cannot improve performance but that the approach itself is speculative.

That is, in some cases, the speculation might work well while in other cases the speculation

might result in additional I/O causing some performance loss. The direct I/O methods (all

5.3. Direct File I/O Optimization Experiments and Results 107

10

100

1000

10000

100000

Ti
m
e	
(s
)

Number	of	Processes

LMDB
LMDBIO-LMM
LMDBIO-LMM-DM
LMDBIO-LMM-DIO
LMDBIO-LMM-DIO-PROV
LMDBIO-LMM-DIO-PROV-COAL
LMDBIO-LMM-DIO-PROV-COAL-STAG

0
5
10
15
20
25
30
35
40
45
50

Fa
ct
or
	o
f	I
m
pr
ov
em

en
t	o

ve
r	L

M
DB

Number	of	Processes

LMDBIO-LMM
LMDBIO-LMM-DM
LMDBIO-LMM-DIO
LMDBIO-LMM-DIO-PROV
LMDBIO-LMM-DIO-PROV-COAL
LMDBIO-LMM-DIO-PROV-COAL-STAG

Figure 5.15: Weak scaling using CIFAR10-Large on Bebop: (a) total execution time; (b)
factor of improvement over Caffe/LMDB.

108 Chapter 5. Direct File I/O Optimizations

100

1000

10000

576 1152 2304 4608 9216

Ti
m
e	
(s
)

Number	of	Processes

LMDB
LMDBIO-LMM
LMDBIO-LMM-DM
LMDBIO-LMM-DIO
LMDBIO-LMM-DIO-PROV
LMDBIO-LMM-DIO-PROV-COAL
LMDBIO-LMM-DIO-PROV-COAL-STAG

0

0.5

1

1.5

2

2.5

3

576 1152 2304 4608 9216

Fa
ct
or
	o
f	I
m
pr
ov
em

en
t	o

ve
r	L

M
DB

Number	of	Processes

LMDBIO-LMM
LMDBIO-LMM-DM
LMDBIO-LMM-DIO
LMDBIO-LMM-DIO-PROV
LMDBIO-LMM-DIO-PROV-COAL
LMDBIO-LMM-DIO-PROV-COAL-STAG

Figure 5.16: Weak scaling using ImageNet-Large on Bebop: (a) total execution time; (b)
factor of improvement over Caffe/LMDB.

5.4. Chapter Summary 109

optimizations with the LMDBIO-LMM-DIO prefix), on the other hand, deterministically

improve performance without using such speculation. Thus, they are better approaches in

the general case.

5.4 Chapter Summary

In this chapter, we presented our continuous ambition to improve data I/O performance

of large-scale DL frameworks. We continued to analyze state-of-the-art I/O subsystem of

DL, LMDB. We have identified that the core file I/O engine of LMDB, namely mmap, was

the largest source of data reading inefficiencies. Therefore, we proposed LMDBIO direct

I/O optimizations that leverage POSIX I/O for data reading instead of mmap. Our final

direct I/O optimization, LMDBIO-LMM-DIO-PROV-COAL-STAG, is able to maximize the

available I/O performance on our experimental system.

Chapter 6

Computational Imbalance

Optimizations for Data Processing

In the previous chapters, we have addressed one aspect of the scalability bottlenecks, that

is the file I/O problem. In this chapter, we investigate another important aspect of DL

scalability that is usually overlooked, computational imbalance, which is a subtle problem

that usually occurs in a parallel computation when different processes/threads in the system

have a different amount of work to process. This problem is especially bad for the execution

that requires synchronization between processes/threads, including DL.

The computational imbalance problem that we present in this chapter is caused by high

hardware resource contention. Such contention is an effect from the lack of coordination be-

tween different data-processing components in the DL environment, including DNN training,

graph scheduling, gradient synchronization, and input pipeline components, that execute si-

multaneously and asynchronously on the shared hardware. Such computational imbalance

degrades the DL training performance in terms of scalability and data processing throughput.

According to the scalability and computational imbalance analysis of TensorFlow with

Horovod (denoted TensorFlow/Horovod), we propose four optimizations to Horovod that

minimize the interactions between the data-processing components to allow them to share

hardware resources more efficiently. Our first optimization, Horovod-GS—global sleep time

optimization, solves the nonuniform sleep time problem that causes resource contention

110

6.1. Data Processing in Parallel Deep Learning 111

by using a global sleep time between processes in the system. The second optimization,

Horovod-NBCS—nonblocking cache synchronization, adopts a nonblocking communica-

tion technique to solve the resource competition problem. The next optimization, Horovod-

SCP—static CPU resource partitioning, isolates a CPU core for handling data transfer to

prevent the gradient synchronization component from interfering with other components.

Our last optimization, Horovod-TOPO—graph topology exploitation, leverages the avail-

able computation graph topology information to delicately enhance the way that Horovod

handles data transfer, thus reducing the effect of computational imbalance significantly. Our

optimizations can improve the performance of various DNN trainings by up to 35% on up to

24,576 GPUs of the Summit supercomputer at Oak Ridge National Laboratory—the world’s

fastest super computer (as of June 2019).

6.1 Data Processing in Parallel Deep Learning

DNN learning is a complex computational method that consists of multiple data-processing

components. Most modern DL frameworks assign these components to run on the available

computational devices, e.g., CPUs and GPUs, simultaneously and asynchronously so as to

increase resource utilization and computational throughput. Without proper coordination,

however, these data-processing components compete with each other for resources, such as

CPU cycles, memory bandwidth, network bandwidth, and access to the direct memory-access

(DMA) engine.

In this work, we adopt a multilevel parallel DL model that provides data parallelism across

nodes and within the node by using multiple GPUs on each node. In other words, a full

replica of the DNN is trained with a different batch of input data on each GPU. Each GPU

then uses model parallelism to further parallelize the DL training. Figure 6.1 shows the

112Chapter 6. Computational Imbalance Optimizations for Data Processing

Node	0

Do	layer	0	forward

Do	layer	L–1	forward

Calculate	error	 (loss)

Do	layer	L-1	backward

Do	layer	0	backward
Al
lre

du
ce

Update	params

Load	local	batch

Al
lre

du
ce

GP
U	
da
ta
	q
ue
ue

GPU

Input	pipeline

Pr
ef
et
ch

CPU	data	queue

…
…

Graph	
Scheduling

Note:	L	is	a	total	number	of	neural	network	layers

Node	1

Do	layer	0	forward

Do	layer	L–1	forward

Calculate	error	 (loss)

Do	layer	L-1	backward

Update	params

Load	local	batch

GP
U	
da
ta
	q
ue
ue

GPU

Input	pipeline

Pr
ef
et
ch

CPU	data	queue

CPUs

…
…

Graph	
SchedulingHorovod Horovod

CPUs

Do	layer	0	backward

Al
lre

du
ce

Al
lre

du
ce

Figure 6.1: Data-processing components of DL

data-processing components of our data-parallel environment. In the figure, we show only

one GPU per node for simplicity, but the actual system that we use in our experiments has

multiple GPUs per node. The model comprises four main data-processing components:

1. Graph Scheduling (occurs on the CPUs): Each kernel/operation in the DNN

is dispatched to run on the GPU by the graph scheduler that is driven by the CPU

threads. Any delay in graph scheduling can slow the DNN training.

2. Neural Network Training (occurs on the GPUs): The core computation associ-

ated with the DNN training (i.e., forward and backward computations) occurs on the

GPUs.

3. Gradient Synchronization (occurs on both the CPUs and GPUs): The gradi-

ent synchronization between all GPUs is performed via the Allreduce operation during

the backward computation of the training. Similar to other operations, the Allre-

6.2. TensorFlow/Horovod Performance Analysis 113

duce operation is dispatched to run on the GPU by the graph scheduler. (Although

the Allreduce operation in Figure 6.1 is depicted as executing on the GPUs, it uses

both CPU and GPU resources.) The gradient transfers are scheduled and managed by

Horovod, more details of which are presented in Chapter 6.2.2.

4. Input Pipeline Processing (occurs on the CPUs): Input pipeline processing

in the DL system involves a number of steps including file I/O, data shuffling, data

augmentation, data prefetching, and host-to-device data transfer. In our experiments,

we enable data batch prefetching and pipelining to avoid data-movement bottlenecks

that might occur.

Of these various data-processing components, the gradient synchronization is of particular

interest because of its dependence on both CPU and GPU resources. Without sophisticated

coordination, it can potentially compete for both CPU and GPU resources with the other

data-processing components described above. Thus, in this work, we focus on minimizing the

interactions between the gradient synchronization component and the other data-processing

components on the CPUs (i.e., graph scheduling and input pipeline processing).

6.2 TensorFlow/Horovod Performance Analysis

Here we profile and analyze the data processing components in TensorFlow/Horovod on a

large-scale system.

114Chapter 6. Computational Imbalance Optimizations for Data Processing

6.2.1 Experimental Setup for Computational Imbalance Optimiza-

tion Experiments

We first articulate our experimental setup, including our datasets, deep neural networks,

supercomputing platform, data storage, DL frameworks and software stack, and experimen-

tal configuration, from which we gather our experimental data for subsequent performance

analysis.

Datasets and DNNs: We use tf cnn benchmarks,1 one of the most well-known convolu-

tional neural network (CNN) training benchmarks. All experiments use the ImageNet2

dataset—an image classification dataset. Our analysis and evaluations are conducted on

various CNNs, including five variants of ResNet [63] (sizes 18, 34, 50, 101, and 152),

AlexNet [84], GoogLeNet [152], Inception-v3 [153], and VGG16 [145].

Supercomputing platform: We use Summit, a supercomputer at Oak Ridge National

Laboratory, as our experimental testbed. Summit has 4,608 nodes connected via Mellanox

EDR 100-Gbps InfiniBand. Each node has two sockets of IBM POWER9 CPUs (total of 44

cores), six NVIDIA Tesla V100 GPUs, 512 GB of memory, and 1,500 GB NVMe (short for

Non-Volatile Memory Express). Each socket connects 22 cores, three GPUs, and 256 GB

of memory. For each node, two cores (one per socket) are isolated for OS tasks and cannot

be used by user applications. We use six processes per node because Horovod restricts each

process to drive at most one GPU. Each process has exclusive access to seven cores and one

of the GPUs that is located on the same socket. Processes are limited to accessing only

256 GB of memory within their socket.

Data storage: Unlike our file I/O study presented in Chapters 3, 4, and 5, we adopt the

1https://github.com/tensorflow/benchmarks.git
2http://www.image-net.org/challenges/LSVRC/2012/

6.2. TensorFlow/Horovod Performance Analysis 115

available on-node storage, NVMe, as our data storage. The dataset is staged in to NVMe

prior to the execution of the benchmark. As the file I/O performance is not the main

emphasis of this part of the thesis, the data staging time is not included in the performance

results.

DL frameworks and software stack: We use TensorFlow v1.14.0-rc0 and Horovod

v0.16.3 as our DL framework and communication subsystem, respectively. We use CUDA

v10.1.168, CUDNN v7.6.1, and NCCL v2.4.7 (with GPUDirect RDMA) as the drivers for

TensorFlow and Horovod. For performance, we compile the TensorFlow computation graph

using the Accelerated Linear Algebra (XLA) compiler [7], which, in turn, disables any overlap

between the computation and communication in the overall execution of a program. However,

we do not obtain much performance improvement when the computation and communication

overlap is present when XLA is disabled. Therefore, we use the XLA-enabled version as our

baseline in order to distinguish the communication and computation bottlenecks from each

other in our analysis.

Experimental configuration: In all of our experiments, the training is run for 500 itera-

tions with an additional 10 “warm-up” iterations that are not included in the performance

results. All our experiments use mixed-precision floating-point SGD training [112]. All

experiments are run three times, and the average performance is shown.

6.2.2 Understanding Horovod and its Background Thread

The high-level overview of Horovod and its background thread can be found in Chapter 2.4.4.

In this section, we explain the inner workings of Horovod that originates computational

imbalance.

Tensor transfer requests associated with Horovod operations that have no dependencies with

116Chapter 6. Computational Imbalance Optimizations for Data Processing

Horovod Background	Thread	
on	Process	0

Request	queue

Horovod Background	Thread	
on	Process	1

Request	queue

HorovodAllreduce 2

HorovodAllreduce 2HorovodAllreduce 0

HorovodAllreduce 1

HorovodAllreduce 1
HorovodAllreduce 1

Op	1

Op	2

Op	3

HorovodAllreduce 0

HorovodAllreduce 2

Op	1

Op	2

Op	3

Computation	graph

Figure 6.2: Example of a state of the Horovod request queues on two processes

one another in the computation graph could be enqueued simultaneously, for example, by

different graph scheduler threads processing the graph. Therefore, even when all processes are

executing the same graph, the operations in the graph, including Horovod operations, could

be executed out of order, thus making the order of data transfer requests nondeterministic.

Figure 6.2 demonstrates that the tensor requests in the request queues of two Horovod

background threads can be different, and the requests of the same tensors can be in the

different order. Because Horovod relies on other collective communication primitives, it has

to ensure that data transfers for different tensors are performed in the same order on all

processes. Consequently, the background threads on these processes have to perform an

additional tensor-ordering consensus protocol to determine a globally consistent order

of data transfers.

The provided implementation of the tensor-ordering consensus protocol in the Horovod back-

ground thread is unfortunately inefficient. Figure 6.3 shows the high-level workflow of this

protocol. The background thread executes an infinite loop of progress checks on tensor data

transfers. We refer to each such loop as a “cycle.” To prevent the background thread from

monopolizing a CPU core for progress checks, there is sleep time inserted between cycles.

The sleep time is HOROVOD CYCLE TIME − Tprevious, where HOROVOD CYCLE TIME is the max-

6.2. TensorFlow/Horovod Performance Analysis 117

Sync	response	cache	
(MPI_Allreduce)

Perform	collective	communication	ops

Sleep	for	(HOROVOD_CYCLE_TIME	- Tprevious)

Start
Is	shutdown?

F

T

Is	response	cache	empty?
F T

Are	there	ready	tensors	to	transfer?
F T

Do	tensor	ordering	consensus	
protocol	 (MPI	collectives)

Dequeue tensor	transfer	requests

End

Note:	The	default	HOROVOD_CYCLE_TIME	is	5	ms

Update	response	cache

Figure 6.3: Horovod background thread workflow

imum sleep time or the maximum cycle time threshold (which is a user input; default is

5 ms) and Tprevious is the execution time of the previous cycle excluding the sleep time. If

Tprevious is larger than HOROVOD CYCLE TIME, the background thread will not sleep; other-

wise, it will sleep, and upon waking up, the background thread dequeues the tensor transfer

requests from the request queue and attempts to create a global ordering for them through

a consensus protocol.

The consensus protocol is straightforward; one of the background threads is assigned as the

“master background thread” (MPI rank zero). All background threads use MPI collective

operations to send the transfer request details of their ready tensors to the master background

thread. The master background thread, in turn, looks through the list of ready tensors

from all the background threads, forms an ordered list of tensors that are ready on all the

background threads, and sends this list back to all the background threads. Once this tensor-

ordering consensus protocol has completed, each background thread fuses its local tensors

118Chapter 6. Computational Imbalance Optimizations for Data Processing

and performs data transfer based on the order received from the master background thread.

This tensor-ordering consensus protocol is heavyweight and often causes severe performance

degradation, especially on the master background thread. To address this issue, recent

versions of Horovod (since v0.16.2) have introduced a tensor-ordering cache called a “response

cache,” which can be reused across cycles. This cache, which is a data structure for storing

tensor information and tensor order for future use, is initially empty. Once the tensor-

ordering consensus protocol occurs, each background thread locally stores the tensor request

information and ordering scheme in its response cache. In the next cycle, the response cache

is not empty, so the heavyweight consensus protocol can be avoided, but the background

threads still need to synchronize their caches via MPI Allreduce, to determine which tensors

in the cache are ready to be transferred because this list can change from cycle to cycle as

illustrated in Figure 6.4. In other words, the response cache reduces the amount of work done

by the master background thread, but it does not (and cannot) remove the synchronization

needed between the background threads.

An important aspect to understand here is that the cache synchronization is a “worst-

case” requirement. Typically, the cache is not empty, and there are no tensors ready to be

transferred. Thus, in most cycles, the background thread sleeps and then does an empty

MPI Allreduce for the cache synchronization. Because the arrival of tensor transfer requests

is nondeterministic, each background thread still needs to participate in every MPI Allreduce

even if it has no new tensor transfer requests in order to prevent deadlocks.

6.2.3 Scalability Analysis

Figure 6.5 shows the results of weak scaling with TensorFlow/Horovod using the ResNet50

network (relative to linear scaling). Our baseline is XLA-enabled TensorFlow/Horovod

6.2. TensorFlow/Horovod Performance Analysis 119

Horovod Background	Thread
on	Process	0

Request	queue
Horovod Background	Thread	

on	Process	1

Request	queue

HorovodAllreduce 2

HorovodAllreduce 2HorovodAllreduce 0

HorovodAllreduce 1

HorovodAllreduce 1

Tensor Ready

HorovodAllreduce 0 ✓

HorovodAllreduce 1 ✓

HorovodAllreduce 2 ✓

Response	cache Response	cache

Tensor Ready

HorovodAllreduce 0

HorovodAllreduce 1 ✓

HorovodAllreduce 2 ✓

HorovodAllreduce 1

Op	1

Op	2

Op	3

HorovodAllreduce 0

HorovodAllreduce 2

Op	1

Op	2

Op	3

Computation	graph

Figure 6.4: Example of a state of the Horovod request queues and response caches on two
processes

(hereafter called TensorFlow/Horovod), but we show XLA-disabled TensorFlow/Horovod

performance for completeness. The data-processing throughput of TensorFlow/Horovod is

approximately 3.3 times worse than linear scaling on 24,576 GPUs; that is, the scaling loss

is 69.7%.

To identify the source of this scaling loss, we profile the GPU execution, as shown in Fig-

ure 6.6, and classify the overall time into two parts: computation (denoted by “Forward &

backward pass execution time”) and communication (denoted by “HorovodAllreduce time”).

The figure shows that the computation time stays relatively constant as the number of

GPUs increase but that the communication time increases nearly linearly. In the worst case,

HorovodAllreduce consumes up to 70.3% of the overall GPU execution time, which accounts

for virtually all of the scaling loss noted above.

Next, we analyze the GPU time during HorovodAllreduce, as shown in Figure 6.7. The figure

shows the HorovodAllreduce time separated into three parts: (1) ncclAllReduce, where the

120Chapter 6. Computational Imbalance Optimizations for Data Processing

0

5000

10000

15000

20000

25000

1 6 12 24 48 96 19
2

38
4

76
8

15
36

30
72

61
44

12
28
8

24
57
6

Th
ou

sa
nd

s	I
m
ag
es
/S
ec
on

d

Number	of	GPUs

linear	scaling
XLA-enabled	TensorFlow/Horovod	(our	baseline)
XLA-disabled	TensorFlow/Horovod

Figure 6.5: Weak scaling of TensorFlow/Horovod compared with linear scaling

GPU can be either idle (waiting for other GPUs to send data) or busy (calculating the

summation of data), (2) memory copy, where the GPU is considered to be idle as it is using

the DMA engine, but not the computation units, and (3) the Horovod background thread

overhead, where the GPU is idle and waiting for the host to finish its work. Our profiling

shows that the GPU is idle for at least 67% of the HorovodAllreduce time (i.e., summation

of the background thread overhead and memory copy time). The majority of this idle time

is due to the Horovod background thread overhead, which includes cycle latency (i.e., the

sleep between cycles), tensor stalling (i.e., waiting for tensors to be ready for transfer on all

processes), and tensor ordering.

6.2.4 Investigating the Horovod Background Thread

As noted in Chapter 6.2.2, the Horovod background thread spends most of its time alter-

nating between sleeping and performing an often empty MPI Allreduce. When there are

tensors to be transferred, it calls the collective communication operations. The workflow of

the Horovod background threads was designed for scenarios where all background threads

6.2. TensorFlow/Horovod Performance Analysis 121

0

10

20

30

40

50

60

70

Ti
m
e	
(s
)

Number	of	GPUs

Forward	&	backward	pass	execution	time HorovodAllreduce	time

Figure 6.6: TensorFlow/Horovod GPU time breakdown. (We note that using XLA disables
any overlap between the computation and communication, as explained in Chapter 6.2.1)

are fairly synchronized. In such a scenario, as shown in Figure 6.8, the background threads

spend most of their time sleeping. Thus, they would not compete for resources with other

data-processing components, and consequently, would not create any further performance

imbalance in the computation. In reality, however, this is not always the case.

In real DNN training, even when all processes are computing on exactly the same compu-

tation graph, there can be a slight imbalance in their execution time or the state of the

various threads in the system (e.g., which threads are executing at a given point in time).

Such imbalance is expected but generally small and uninteresting. However, the cascading

effect of such small imbalances is of particular interest as it makes up virtually all of the

HorovodAllreduce time.

Consider a case with two processes, where both processes are computing on the same com-

putation graph, but the state of the execution or that of the various threads is not exactly

identical on both processes. For these processes, when the background threads are ready

to be scheduled by the OS, the two background threads might have to wait for vastly dif-

ferent amounts of time to get scheduled. This difference in actual scheduling time depends

122Chapter 6. Computational Imbalance Optimizations for Data Processing

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Ex
ec
ut
io
n	
Ti
m
e	
Br
ea
kd
ow

n

Number	of	GPUs
ncclAllReduce	time	(idle	&	compute)
Memory	copy		time	(idle)
Horovod	background	thread	overhead	(idle)

Figure 6.7: TensorFlow/Horovod HorovodAllreduce GPU time breakdown

BG	Thread	0

BG	Thread	1

HorovodAllreduce of	BG	Thread	1	

Sleep MPI_Allreduce Call	collective	communication	 ops

Note: BG	Thread	i denotes	 the	background thread	on	process	i,	Ti denotes	the	execution	time	of	cycle	i of	each	background	 thread		

Cycle	Boundaries

HorovodAllreduce of	BG	Thread	0	

Cycle	0 Cycle	1 Cycle	2 Cycle	3 Cycle	4 Cycle	5 Cycle	6 Cycle	7 Cycle	8

T0 T1 T2 T3 T4 T5 T6 T7 T8

T0 T1 T2 T3 T4 T5 T6 T7 T8

Figure 6.8: A perfect synchronization of Horovod background threads

on when the OS decides to preempt the other currently executing threads (i.e., the input

pipeline and graph scheduling threads) and to execute the background thread. This wait

time for preemption can be as high as tens of milliseconds on modern Linux versions. We

call this scenario, where some background threads take longer to be scheduled than the other

background threads, as “oversleep.”

Figure 6.9 demonstrates the cascading effect of computational imbalance that propagates

from one cycle to the next. In the figure, BG Thread i denotes the background thread

on process i. In Cycle 0, BG Thread 0 arrives at the MPI Allreduce function first and

6.2. TensorFlow/Horovod Performance Analysis 123

consequently takes longer to complete the operation because it is waiting for BG Thread 1,

that oversleeps, to call MPI Allreduce. In this case, BG Thread 1 is a straggler thread.

BG	Thread	0

BG	Thread1 Oversleep

HorovodAllreduce of	BG	Thread	0	
HorovodAllreduce of	BG	Thread	1	

Sleep MPI_Allreduce Call	collective	communication	 ops

Cycle	Boundaries
Cycle	0 Cycle	1 Cycle	2 Cycle	3 Cycle	4 Cycle	5 Cycle	6 Cycle7

Note: BG	Thread	i denotes	 the	background thread	on	process	i,	Ti denotes	the	execution	time	of	cycle	i of	each	background	 thread
*HOROVOD_CYCLE_TIME	is	constant	across	different	cycles.		We	show	HOROVOD_CYCLE_TIME	only	 in	Cycle	 0	for	reference

T0 T1 T2 T3 T4 T5 T6 T7

T0 T1 T2 T3 T4 T5 T6 T7

HOROVOD_CYCLE_TIME*

Figure 6.9: Horovod background thread oversleep problem

In the next cycle (i.e., Cycle 1), BG Thread 0’s previous cycle time T0 is larger than the

maximum cycle time threshold, HOROVOD CYCLE TIME, and thus Horovod would not let it

sleep at all, as described in Chapter 6.2.2. BG Thread 0 would then issue MPI Allreduce

right away. In contrast, T0 of the straggler thread is smaller than HOROVOD CYCLE TIME

causing it to sleep in Cycle 1. This action would cause the straggler thread to be delayed in

reaching its MPI Allreduce in the next cycle as well, further exacerbating the computational

imbalance impact.

In addition, while MPI Allreduce waits for other processes to arrive, it spin waits, thus

consuming CPU cycles and potentially slowing down other data-processing components,

namely, input pipeline processing and graph scheduling. For input pipeline processing, the

impact is minimal because the outcome of the input pipeline is used in the next training

iteration (recall that data prefetching is enabled), and the delay does not stall the current

iteration. For graph scheduling, however, this slowdown can cause the forward and backward

computation on the GPU to be delayed. This delay causes some GPUs (e.g., the GPU

associated with process 0 in Figure 6.9) to execute the gradient synchronization late, thus

124Chapter 6. Computational Imbalance Optimizations for Data Processing

making the imbalance show up in the HorovodAllreduce time as the Horovod background

thread overhead.

6.2.5 Resource Contention Analysis

As explained in Chapter 6.2.4, when computational imbalance are present, the Horovod back-

ground thread spends the majority of its execution time busy-waiting inside MPI Allreduce.

Thus, we expect the user-space time of the background thread to be the dominant portion

of the execution time. We measure the CPU usage of the background thread during the

computation as shown in Figure 6.10. As expected, the background thread sleeps for a very

small amount of time and spends most of its time in user space. These results indicate that

the background thread is active and occupies the CPU core for 60–90% of the execution time,

which is unusually high considering that its workflow is not computationally expensive.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

CP
U
	T
im

e	
Br
ea
kd
ow

n	
(%
)

user-space	time kernel-space	time sleep	time

Figure 6.10: Horovod background thread’s CPU usage

We also analyze the involuntary context switches (ICSWs) in the DL data-processing com-

ponents to determine whether the background thread is actually competing for CPU time.

ICSWs occur when a thread is suspended by the OS scheduler in favor of other threads either

6.3. Design and Implementation of Computational
Imbalance Optimizations 125

to maintain fairness in the CPU scheduling policy or when other higher-priority threads exist.

Typically, ICSWs happen when the system lacks CPU resources. A large number of ICSWs

can indicate high resource contention. We compare the ICSWs of the benchmark with two

data-processing configurations: (1) using synthetic data and (2) using real ImageNet data.

We note that synthetic data is generated on the GPU; thus the input pipeline processing

does not exist in the synthetic data execution. This would result in less CPU contention

for the synthetic data if there indeed is contention. (Performance of the synthetic data is

up to ∼30% better than the real ImageNet data.) We notice that the number of ICSWs of

the real data execution is ∼8.5-times higher than that of the synthetic data execution. This

indicates that high resource contention does occur when the input pipeline and the Horovod

background thread are present at the same time.

6.3 Design and Implementation of Computational

Imbalance Optimizations

In this section, we present four solutions to alleviate computational imbalance problem in

distributed DL processing, based on our performance analysis of TensorFlow/Horovod in

Chapter 6.2.

6.3.1 Horovod-GS: Global Sleep Time Optimization

The oversleeping of some background threads causes the processes to issue MPI Allreduce at

different points in time, as noted in Chapter 6.2.4; in other words, the processes are “out of

sync” in calling MPI Allreduce. To address this issue, we propose Horovod-GS. In Horovod-

GS, each background thread, instead of using just its local knowledge to figure out how long

126Chapter 6. Computational Imbalance Optimizations for Data Processing

it needs to sleep, uses a globally coordinated sleep time to ensure that all processes use

the same sleep time every N cycles. This prevents the computational imbalance effect from

propagating beyond N cycles. The intent here is to separate the imbalance from the actual

data transfer time in MPI Allreduce.

Before sleeping, each background thread computes its local sleep time using the same formula

as in the original Horovod (HOROVOD CYCLE TIME−Tprevious). Then, all processes determine

the globally minimum sleep time by using another MPI Allreduce. Once the minimum

sleep time is received, each background thread sleeps for the globally minimum sleep time.

The rest of the workflow is the same as the original Horovod. This approach prevents the

computational imbalance effect from propagating to subsequent cycles.

Figure 6.11 shows an example of the timeline of the background threads in Horovod-GS.

Suppose we resynchronize the background threads every ten cycles. From the figure, BG

Thread 1 oversleeps in Cycle 0. As explained in Chapter 6.2.4, the local sleep times in Cycle

1 of BG Thread 0 and BG Thread 1 are different (i.e., BG Thread 0’s local sleep time is

zero while BG Thread 1’s local sleep time is nonzero). Since we have the background threads

synchronize their sleep times before actually sleeping, both background threads will not sleep

in Cycle 1 in this example. Here, the computational imbalance effect is not transferred to

the subsequent cycles.

As noted above, the second MPI Allreduce that we introduce in Horovod-GS occurs once ev-

ery N cycles. So, theoretically, a smaller value for N creates higher synchronization overhead

while reducing the imbalance effect, whereas a large value of N provides the opposite tradeoff.

Empirically, we found that N = 1 delivered the best performance on our system—although,

depending on the dataset and the system, this value may need to be tuned appropriately.

6.3. Design and Implementation of Computational
Imbalance Optimizations 127

BG	Thread	0

BG	Thread1 Oversleep

HorovodAllreduce of	BG	Thread	0	
HorovodAllreduce of	BG	Thread	1	

Sleep

MPI_Allreduce

Call	collective	communication	 ops

Cycle	Boundaries
Cycle	0 Cycle	1 Cycle	2 Cycle	3 Cycle	4 Cycle	5 Cycle	6

Note: BG	Thread	i denotes	 the	background thread	on	process	i,	Ti denotes	the	execution	time	of	cycle	i of	each	background	 thread
*HOROVOD_CYCLE_TIME	is	constant	across	different	cycles.		We	show	HOROVOD_CYCLE_TIME	only	 in	Cycle	 0	for	reference

T0 T1 T2 T3 T4 T5 T6 T7

T0 T1 T2 T3 T4 T5 T6 T7

Global	sleep	time	sync	(MPI_Allreduce)

HOROVOD_CYCLE_TIME*

Cycle	7

Figure 6.11: Timeline of Horovod-GS’s background threads

6.3.2 Horovod-NBCS: Nonblocking Cache Synchronization

While Horovod-GS can reduce the computational imbalance effect, it cannot completely pre-

vent the background thread from competing for resources with other components. Specif-

ically, the imbalance in the first MPI Allreduce still remains and typically consumes the

most time. Thus, the Horovod background thread still spends a significant amount of time

occupying the CPU cores and competing for resources with the input pipeline and the graph

scheduling components.

Thus, we propose Horovod-NBCS (i.e., nonblocking cache synchronization), where we seek to

limit the time spent inside MPI Allreduce in order to free up computational resources for the

other two data-processing components. To do so, we leverage nonblocking MPI collective op-

erations, specifically, MPI Iallreduce and MPI Test, for the response cache synchronization.

While this approach does not avoid the out-of-sync problem between processes, the processes

no longer compete for resources with other components because the time spent inside each

MPI call is finite (as guaranteed by the MPI standard for all nonblocking operations) and

typically small.

Figure 6.12 shows an example of the timeline of the background threads in Horovod-NBCS.

128Chapter 6. Computational Imbalance Optimizations for Data Processing

From the figure, the background threads are still out of sync (i.e., MPI Iallreduces are

issued at the different points in time between the two background threads), however, the

nonblocking communication prevents the background threads from occupying the cores (i.e.,

“sleep” is the dominant portion in the timeline). Note that in the implementation, we invoke

MPI Test in a loop until the message arrives. There is a small constant sleep at the end of

the loop (denoted “Sleep between MPI Tests” in Figure 6.12) to prevent the background

thread from monopolizing the core.

BG	Thread	0

BG	Thread1 Oversleep

HorovodAllreduce of	BG	Thread	0	
HorovodAllreduce of	BG	Thread	1	

Sleep	between	cycles

MPI_Iallreduce

Call	collective	communication	 ops

Cycle	Boundaries
of	BG	Thread	0

Cycle	1 Cycle	2 Cycle	3 Cycle	4 Cycle	5 Cycle	7

Note: BG	Thread	i denotes	 the	background thread	on	process	i,	Ti denotes	the	execution	time	of	cycle	i of	each	background	 thread

T1 T2 T3 T4 T5 T6 T7

T0 T1 T2 T3 T4 T5 T6 T7

MPI_Test

Cycle	Boundaries
of	BG	Thread	1 Cycle	0 Cycle	1 Cycle	2 Cycle	4 Cycle	5 Cycle	6 Cycle	7

Cycle	6Cycle	0

T0

Cycle	3

Sleep	between	MPI_Tests

Figure 6.12: Timeline of Horovod-NBCS’s background threads

The Horovod-GS and Horovod-NBCS solutions are applicable only for cases where the time

taken by the Allreduce operation is small enough that it is completely overlapped by the com-

putation time. If this balance changes, then the computation would no longer be able to fully

hide the communication and imbalance time and would result in performance degradation.

6.3.3 Horovod-SCP: Static CPU Resource Partitioning

With Horovod-SCP, we address the resource contention problem via a simple static parti-

tioning of resources. Specifically, to avoid contention between the different data-processing

components, we partition the available cores into groups such that each group of threads

6.3. Design and Implementation of Computational
Imbalance Optimizations 129

that executes a different data-processing component gets a different set of cores. This guar-

antees that there is no contention between the different data-processing components, thus

potentially alleviating computation time imbalance.

As we will see in Chapter 6.4, Horovod-SCP successfully reduces the contention between

different data-processing components to alleviate computational imbalance. Despite the im-

pressive performance gains, however, we view Horovod-SCP as a somewhat of a workaround.

Specifically, while Horovod-SCP does alleviate the biggest cause for load imbalance, it comes

with several shortcomings.

First, the static partitioning of CPU resources means that any variation in processing needs

that arise during the execution of the DL workflow cannot be dynamically resolved. For

instance, the background thread only needs to be active for a small part of the total execution,

but having a dedicated core means that that core cannot be used for other data-processing

components when the background thread is idle. This can impact the overall performance

if the other data-processing components starve for CPU resources. Second, even with a

dedicated core, computation time imbalance cannot be fully avoided. This is because, as

described in Chapter 6.2.4, even when all processes are computing on exactly the same

computation graph, there can be a slight imbalance in their execution time. Because of this

slight imbalance, how long each background thread spends in the MPI Allreduce can be

different, which would cause different threads to sleep for different amounts of time in the

next cycle, which would further increase the imbalance. Thus, future work will study and

integrate dynamic partitioning, as appropriate.

130Chapter 6. Computational Imbalance Optimizations for Data Processing

6.3.4 Horovod-TOPO: Graph Topology Exploitation

While the previous solutions can help reduce the time the background thread spends com-

peting for computational resources, they are still fundamentally limited by the way Horovod

performs tensor ordering. In particular, they rely on the most generic possibility where the

tensor transfers can be issued in any arbitrary order. However, this is not true in reality and

over-generalizes the TensorFlow workflow.

TensorFlow uses a graph processing workflow, and the order in which tensors are issued

depends on the graph structure. Tensors that are logically concurrent (i.e., belong to

graph nodes with no dependency between them—for example, Allreduce0, Allreduce1, and

Allreduce4 in Figure 6.13) can be issued in any order. When Horovod sees such a tensor

request, it can wait for the other logically concurrent tensor requests to be issued without

creating deadlock. In contrast, for two tensors whose corresponding graph nodes have a

dependency between them (for example, Allreduce0, Allreduce2, and Allreduce3 in Fig-

ure 6.13), there is a guaranteed ordering where the second tensor cannot be issued before

the first tensor operation has completed.

Allreduce 1

Allreduce 3 Allreduce 4

Allreduce 2

Other	op	1

Allreduce 0 Other	op	2

Other	op	3

• Allreduces 0,	2,	3	have	dependencies
• Allreduces 0,	1,	4	are	logically	concurrent
• Allreduces 2,	1,	4	are	logically	concurrent
• Allreduces 3,	1,	4	are	logically	concurrent

Figure 6.13: Example of TensorFlow computation graph

Thus, our Horovod-TOPO solution seeks to eliminate the original tensor ordering and the re-

sponse cache synchronization by performing a one-time TensorFlow graph analysis. The core

idea of Horovod-TOPO is to analyze the TensorFlow graph and the dependencies between

6.3. Design and Implementation of Computational
Imbalance Optimizations 131

the graph nodes to form a partial logical ordering of tensor data-movement requests. The

generated ordering is a logical ordering because some tensor requests are logically concurrent

and can be issued in any arbitrary order by the graph scheduling threads. The generated

ordering is partial because the graph dependencies restrict the reordering of some tensor

requests have dependencies between one another. Thus, their tensor transfers cannot be

reordered). Based on this partial logical ordering, we can then precompute a tensor fusion

scheme that determines which tensors can be fused together so that the data-transfer re-

quests can be larger, thus amortizing data-transfer overhead. Once the tensor fusion scheme

is determined, it is stored within Horovod and utilized for all future computation iterations.

Thus, this topological graph analysis needs to be done only once and never repeated.

In TensorFlow, normally only a subgraph is executed at any given time. A subgraph is

identified by the user with “fetches,” which are nodes in the graph whose outputs will be

obtained from the execution, i.e., fetches are sink nodes of the subgraph. On the first execu-

tion of the subgraph, we assign an identification number (ID) to every Horovod operation in

the subgraph. We then adopt a traditional reverse depth-first search algorithm to traverse

from fetches to the root nodes to identify all Horovod operations and their dependencies.

The time complexity of this algorithm is O(V +E), where V and E are the number of nodes

and the number of edges in the subgraph, respectively. The ID represents the chronological

order in which the operations are executed. To account for operation dependencies, parent

operations are assigned a smaller ID than are children operations. Among sibling operations,

IDs are assigned based on the order that they are added to the graph. For parallel nonsibling

operations, we assign IDs to the operations according to their depth in the subgraph. (If the

depths are the same, the ID assignment is arbitrary.)

Together with the tensor order, we determine the tensor fusion model (i.e., which tensors

should be fused before communicating) the first time that a subgraph is executed. We follow

132Chapter 6. Computational Imbalance Optimizations for Data Processing

Horovod’s original approach to fuse only HorovodAllreduce’s tensors and to cap the fusion

buffers at HOROVOD FUSION THRESHOLD (64 MB by default).

Figure 6.14 shows an example of our tensor ordering and tensor fusion. The fetches in

this example are Allreduce1, Allreduce3 and Allreduce4. From the figure, we assign the

parent operations to have a smaller ID than their children (e.g., Allreduce0 and Allreduce2).

The parallel nonsibling operations are assigned IDs based on their depth in the subgraph

(e.g., Allreduce4 has a larger ID than Allreduce1). Allreduce0 and Allreduce1 can be

fused as they are logically concurrent, likewise for Allreduce3 and Allreduce4. In contrast,

Allreduce0 and Allreduce2 cannot be fused because they share a dependency. Likewise,

Allreduce2 and Allreduce3 have to be in different fusion buffers.

Allreduce 0
HVD	ID:	0

Allreduce 1
HVD	ID:	1

Allreduce 3
HVD	ID:	3

Allreduce 4
HVD	ID:	4

Fu
sio

n	
Bu

ffe
r	0

Fu
sio

n	
Bu

ffe
r	2

Note:	HVD	ID	is	Horovod ID

Allreduce 2
HVD	ID:	2Fu

sio
n	

Bu
ffe

r	1

Other	op	1

Other	op	2

Other	op	3

Depth	0

Depth	1

Depth	2

Depth	3

Figure 6.14: Example of tensor ordering and tensor fusion

During the actual execution of the TensorFlow graph, the background thread performs a

tensor transfer only if the transfers of all tensors with smaller IDs have been issued as shown

in Figure 6.15. We use one request array per fusion buffer for storing tensor transfer requests

from the TensorFlow’s graph scheduler threads. Once a Horovod operation is executed, a

graph scheduler thread puts a tensor transfer request into the designated slot (i.e., based on

the Horovod ID) in the request array. The background thread repeatedly checks whether

6.3. Design and Implementation of Computational
Imbalance Optimizations 133

the request at the current slot has been added into the array. Once the request arrives,

the background thread determines whether this request is for the last tensor in the fusion

buffer. If it is not, the background moves onto the next slot. If it is, the background thread

fuses all tensors in the request array, issues the corresponding data transfer for this request

array (by calling the appropriate collective communication function), and shifts to the next

request array. It then repeats the same steps until all requests have been issued. After all

tensor transfers have been issued, the Horovod background thread goes to sleep and does

not wake up until the next tensor transfer request arrives. The queues and variables that

are shared between the different threads are managed by using C++11 std::atomics, with

some portions of the code optimized for IBM POWER9 CPU hardware atomics and memory

ordering/consistency semantics.

Call	collective	communication	APIs

Start
Are	all	tensors	transferred?

F

T

Move	to	next	request	array

Is	the	request in	the	
current	slot	enqueued?

Fuse	all	tensors	in	request	array

Is	this the	last	tensor	 in	
the	fusion	buffer?

F

T

T
Move	to	next	slot

End
Sleep

F

Figure 6.15: Horovod background thread’s workflow in Horovod-TOPO

While Horovod-TOPO cannot guarantee that the data transfer requests for logically con-

current tensors will always arrive in the same order, it does guarantee that (1) the data

transfer requests are issued in the same order on the different background threads and (2)

the background threads do not have to wait indefinitely before issuing a data transfer re-

quest. Background threads wait for additional tensor requests to be issued only when the

corresponding graph nodes are logically concurrent, and thus, the difference in their arrival

is bounded by a finite amount of time.

134Chapter 6. Computational Imbalance Optimizations for Data Processing

6.4 Computational Imbalance Optimization Experiments

and Results

We evaluate the performance of our proposed solutions and compare them against that of

the original TensorFlow/Horovod implementation.

6.4.1 Evaluation of Proposed Solutions on ResNet50 Training

We first measure the weak-scaling performance of our various solutions using the ResNet50

network and the ImageNet dataset. In this experiment, we use a fixed local batch size (i.e.,

number of samples per GPU in one iteration) of 32; the global batch size increases propor-

tionally with the number of GPUs. Figure 6.16(a) shows the data-processing throughput

for the different approaches (i.e., original Horovod and our four optimized versions, namely

GS, NBCS, SCP, and TOPO) and Figure 6.16(b) shows the improvement percentage com-

pared with TensorFlow/Horovod. All four optimizations outperform TensorFlow/Horovod

by up to 10%, 16%, 18%, and 21%, respectively. Despite using each of the four techniques

individually, we combine SCP with TOPO (denoted SCP-TOPO) to verify the combinatory

benefit of the two techniques. We observe that SCP-TOPO outperforms TOPO in some cases

yielding up to 23% performance improvement over the original Horovod. Technically, the

performance of TOPO should be comparable or better than the performance of SCP-TOPO

since all CPU cores in TOPO are shared among all data-processing components. However,

it is highly possible that the Horovod background thread in TOPO is interfered by the other

threads in the system causing it to not be able to handle the tensor transfers as fast and as

efficient as the background thread in SCP-TOPO that has its own core.

Figure 6.16(a) also shows that for runs with the number of GPUs ≥ 3,072, our global batch

6.4. Computational Imbalance Optimization Experiments and Results 135

0

1000

2000

3000

4000

5000

6000

7000

8000

Th
ou

sa
nd

s	I
m
ag
es
/S
ec
on

d

Number	of	GPUs

TensorFlow/Horovod
TensorFlow/Horovod-GS
TensorFlow/Horovod-NBCS
TensorFlow/Horovod-SCP
TensorFlow/Horovod-TOPO
TensorFlow/Horovod-SCP-TOPO

Sustains	high	 inference accuracy

0

10

20

30

40

Im
pr
ov
em

en
t	(
%
)

Number	of	GPUs

TensorFlow/Horovod-GS	improv
TensorFlow/Horovod-NBCS	improv
TensorFlow/Horovod-SCP	improv
TensorFlow/Horovod-TOPO	improv
TensorFlow/Horovod-SCP-TOPO	improv

Figure 6.16: Weak-scaling results on ResNet50 on Summit: (a) image-processing rates (im-
ages/second); (b) percentage improvement in performance

size becomes large enough that the inference accuracy drops. (We can sustain the state-

of-art inference accuracy of 75% until up to the global batch size of 61,440.) Despite this

drop in accuracy, we highlight the following two points: (1) our proposed solutions are also

applicable to smaller global batch sizes and deliver significant performance improvements

even in such cases, and (2) the general trend in the research community seems to be towards

algorithmic improvements that allow for larger batch sizes, thus indicating the increasing

importance of studying the scalability of DL frameworks on large supercomputing systems.

136Chapter 6. Computational Imbalance Optimizations for Data Processing

0

10

20

30

40

50

60

70

Ti
m
e	
(s
)

Number	of	GPUs
ncclAllReduce	time	(idle	&	compute)
Memory	copy		time	(idle)
Horovod	background	thread	overhead	(idle)
Forward	&	backward	pass	execution	time

0

10

20

30

40

50

60

70

Ti
m
e	
(s
)

Number	of	GPUs
ncclAllReduce	time	(idle	&	compute)
Memory	copy		time	(idle)
Horovod	background	thread	overhead	(idle)
Forward	&	backward	pass	execution	time

Figure 6.17: GPU time breakdown of ResNet50 training: (a) TensorFlow/Horovod; (b)
TensorFlow/Horovod-TOPO

Because TensorFlow/Horovod-TOPO delivers the best performance gain, we further ana-

lyze its performance in order to understand the improvement. Specifically, we compare

the GPU time breakdown of TensorFlow/Horovod-TOPO with that of the original Tensor-

Flow/Horovod in Figure 6.17. The improvement with TensorFlow/Horovod-TOPO is mainly

from the reduction of the Horovod background thread overhead. On 24,576 GPUs, this over-

head shrinks from ∼46% of the execution time to 3.4%. We note that some computation time

imbalance still remains in the execution, as evidenced by the increase in the time taken by

6.4. Computational Imbalance Optimization Experiments and Results 137

ncclAllReduce. This imbalance does not appear as part of the Horovod background thread

overhead because the background thread’s workflow is now completely nonblocking. Instead,

it shows up in the ncclAllReduce time. Investigating this imbalance is outside the scope of

this work but part of our future work.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

CP
U
	T
im

e	
Br
ea
kd
ow

n	
(%
)

Number	of	GPUs

user-space	time kernel-space	time sleep	time

Figure 6.18: Horovod-TOPO background thread’s CPU usage

We also measure the CPU usage time and involuntary context switches in TensorFlow/Horovod-

TOPO. The background thread in TensorFlow/Horovod-TOPO is active only for ∼6% of

the execution time (as shown in Figure 6.18), which is much smaller than the 60–90% of

the execution time in TensorFlow/Horovod. Similarly, the involuntary context switches

in TensorFlow/Horovod-TOPO are 3–25 times smaller than those in TensorFlow/Horovod.

These results demonstrate the ability of TensorFlow/Horovod-TOPO to almost entirely elim-

inate the resource contention that is caused by the Horovod background thread.

Figure 6.19 presents our strong-scaling results. Here we use a fixed global batch size of 24,576,

which still sustains state-of-the-art accuracy. The local batch size is scaled proportionally

with the number of GPUs. We use at least 96 GPUs in this experiment to ensure sufficient

memory. The performance results show similar trends as weak scaling: our optimizations

improve performance by up to ∼19%. We experience a slight drop in the image processing

138Chapter 6. Computational Imbalance Optimizations for Data Processing

0

5

10

15

20

25

30

35

0

100

200

300

400

500

96 192 384 768 1536 3072 6144 12288

Im
pr
ov
em

en
t	(
%
)

Th
ou

sa
nd

s	I
m
ag
es
/S
ec
on

d

Number	of	GPUs

TensorFlow/Horovod-GS	 improv TensorFlow/Horovod-NBCS	 improv
TensorFlow/Horovod-SCP	 improv TensorFlow/Horovod-TOPO	improv
TensorFlow/Horovod TensorFlow/Horovod-GS
TensorFlow/Horovod-NBCS TensorFlow/Horovod-SCP
TensorFlow/Horovod-TOPO

Figure 6.19: Strong-scaling results on ResNet50 on Summit: image-processing rates (im-
ages/second) and percentage improvement in performance

rate after 1,536 GPUs because the local batch size becomes too small (i.e., ≤ 8) and the

communication time, which increases with the number of GPUs, dominates the overall time.

6.4.2 Horovod-TOPO’s Performance on Other Neural Networks

Below we analyze the performance of Horovod-TOPO while training a variety of neural

networks.

Graph Parsing Overhead

As noted in Chapter 6.3.4, Horovod-TOPO traverses the TensorFlow computation subgraph

prior to the first execution of the subgraph to obtain tensor dependencies and the tensor

6.4. Computational Imbalance Optimization Experiments and Results 139

fusion model. To understand how much impact the graph parsing has on the overall per-

formance of training various neural networks, we compute the node and edge counts in the

subgraph and measure the graph traversal overhead, as shown in Table 6.1.

Table 6.1: Computation graph characteristics and Horovod-TOPO’s graph traversal over-
head

CNN Name Node Count Edge Count
Traversal Overhead

ms Percenta

ResNet18 1,714 2,565 32 0.18
ResNet34 2,866 4,325 86 0.37
ResNet50 3,988 6,042 159 0.04
ResNet101 7,558 11,499 594 1.49
ResNet152 11,128 16,956 1,274 2.33
AlexNet 655 893 6 0.02

GoogLeNet 3,499 4,970 182 0.89
Inception-v3 6,146 9,211 382 1.12

VGG16 1,091 1,479 17 0.03

aPercentage in the execution time of the complete ImageNet training on 12,288 GPUs.

As expected, the graph traversal time increases proportionally with the node and edge counts.

In most cases, the total traversal overhead is a few tens or hundreds of milliseconds. The

overhead is the highest for ResNet152, which takes around 1.2 seconds for the graph traversal.

To put this in perspective, the overall execution time of the training runs is typically on the

order of tens of minutes to even hours. For ResNet152, for example, our graph traversal

overhead accounts for a mere 2.33% of the total execution time of a complete ImageNet

training. Thus, we conclude that Horovod-TOPO incurs an insignificant amount of overhead

for the graph parsing.

Weak-scaling Evaluation

Figure 6.20 illustrates the image-processing rates and improvement percentage while using

TensorFlow/Horovod-TOPO compared with TensorFlow/Horovod for various neural net-

140Chapter 6. Computational Imbalance Optimizations for Data Processing

0
5
10
15
20
25
30
35
40

0
1000
2000
3000
4000
5000
6000
7000

1 6 12 24 48 96 19
2

38
4

76
8

15
36

30
72

61
44

12
28
8

Im
pr
ov
em

en
t	(
%
)

Th
ou

sa
nd

s	I
m
ag
es
/S
ec
on

d

Number	of	GPUs

Improv	(%)
TensorFlow/Horovod
TensorFlow/Horovod-TOPO

(a) ResNet18

0
5
10
15
20
25
30
35
40

0

1000

2000

3000

4000

5000

6000

1 6 12 24 48 96 19
2

38
4

76
8

15
36

30
72

61
44

12
28
8

Im
pr
ov
em

en
t	(
%
)

Th
ou

sa
nd

s	I
m
ag
es
/S
ec
on

d

Number	of	GPUs

(b) ResNet34

0
5
10
15
20
25
30
35
40

0
500
1000
1500
2000
2500
3000
3500

1 6 12 24 48 96 19
2

38
4

76
8

15
36

30
72

61
44

12
28
8

Im
pr
ov
em

en
t	(
%
)

Th
ou

sa
nd

s	I
m
ag
es
/S
ec
on

d

Number	of	GPUs

(c) ResNet101

0
5
10
15
20
25
30
35
40

0

500

1000

1500

2000

2500

1 6 12 24 48 96 19
2

38
4

76
8

15
36

30
72

61
44

12
28
8

Im
pr
ov
em

en
t	(
%
)

Th
ou

sa
nd

s	I
m
ag
es
/S
ec
on

d

Number	of	GPUs

(d) ResNet152

-10

0

10

20

30

40

0
500
1000
1500
2000
2500
3000
3500
4000

1 6 12 24 48 96 19
2

38
4

76
8

15
36

30
72

61
44

12
28
8

Im
pr
ov
em

en
t	(
%
)

Th
ou

sa
nd

s	I
m
ag
es
/S
ec
on

d

Number	of	GPUs

(e) AlexNet

0
5
10
15
20
25
30
35
40

0

1000

2000

3000

4000

5000

6000

1 6 12 24 48 96 19
2

38
4

76
8

15
36

30
72

61
44

12
28
8

Im
pr
ov
em

en
t	(
%
)

Th
ou

sa
nd

s	I
m
ag
es
/S
ec
on

d

Number	of	GPUs

(f) GoogLeNet

0
5
10
15
20
25
30
35
40

0
500
1000
1500
2000
2500
3000
3500
4000

1 6 12 24 48 96 19
2

38
4

76
8

15
36

30
72

61
44

12
28
8

Im
pr
ov
em

en
t	(
%
)

Th
ou

sa
nd

s	I
m
ag
es
/S
ec
on

d

Number	of	GPUs

(g) Inception-v3

0
5
10
15
20
25
30
35
40

0

500

1000

1500

2000

2500

1 6 12 24 48 96 19
2

38
4

76
8

15
36

30
72

61
44

12
28
8

Im
pr
ov
em

en
t	(
%
)

Th
ou

sa
nd

s	I
m
ag
es
/S
ec
on

d

Number	of	GPUs

(h) VGG16

Figure 6.20: Weak-scaling results on various DNNs (image-processing rates and improvement
percentage): (a) ResNet18; (b) ResNet34; (c) ResNet101; (d) ResNet152; (e) AlexNet; (f)
GoogLeNet; (g) Inception-v3; (h) VGG16. Note: the scale of the image-processing rate axis
varies among graphs

6.4. Computational Imbalance Optimization Experiments and Results 141

works. For all the experiments, the input pipeline is identical. For simplicity in discussion,

we define the term “computational imbalance susceptible window” or “CIS window,”

which refers to the period where the graph scheduling component and the input pipeline are

both active but tensor transfers have not yet occurred. During the CIS window, the com-

putational imbalance have the highest impact on the graph scheduling, which in turn has a

direct impact on the core neural network training on the GPUs. When the input pipeline

is not active, the computational imbalance do not have a significant impact on the graph

scheduling because the cores are mostly free. In our evaluation, for the ResNet networks, we

observe 5–21% performance gain. The smaller ResNets tend to achieve larger improvement

because the input pipeline computation amount is fixed and thus smaller ResNet networks

have a larger CIS window (as a fraction of the total execution time) than the larger networks.

The CIS windows of ResNets 18, 34, 50, 101, and 152 are approximately 46%, 55%, 48%,

30%, and 23%, respectively.

Similar to ResNets, DNNs that have a large CIS window tend to show better performance

improvements. For example, GoogLeNet, which has an CIS window of 56%, achieves the best

performance improvement with an average improvement of 25% and a maximum improve-

ment of 35%. Inception-v3 has a slightly smaller CIS window of 42% and correspondingly

achieves a smaller performance gain of 10–18%. VGG16 has a relatively small CIS window

of 32%, limiting its performance gain to 2–6%.

For AlexNet, Horovod-TOPO achieves slightly worse performance (∼6%) than the original

Horovod. This is because the computation graph of AlexNet is very small (see Table 6.1)

and the overhead associated with managing the tensor ordering and fusion buffers hurts

performance more than the benefit of the reduced cache synchronization. While additional

(engineering) optimizations to Horovod-TOPO to improve how the tensor ordering and fusion

buffers are managed could be made, they would simply bring the performance of Horovod-

142Chapter 6. Computational Imbalance Optimizations for Data Processing

TOPO in line with that of original Horovod.

6.5 Chapter Summary

We investigated the limitations in scaling DL frameworks to large-scale supercomputing

systems. Specifically, we analyzed TensorFlow and Horovod—state-of-the-art DL software

frameworks—and identified resource contention between data-processing components, which

causes straggler processes or computational imbalance, as the root cause of their scaling

limitations. To address this scaling limitation, we proposed four solutions that efficiently

tackle such computational imbalance problem and demonstrate up to 35% improvement in

performance on 24,576 GPUs of the Summit supercomputer at Oak Ridge National Labora-

tory.

Chapter 7

Related Work

This chapter discusses work related to our work, including DL frameworks, file I/O opti-

mizations, communication optimizations, and algorithmic improvement to parallel DL.

7.1 Deep Learning Frameworks

Caffe is a well-known DL framework for which a number of parallel derivatives have been

proposed. Most of its derivatives [3, 15, 92], focus on parallel efficiency improvements of

the training, but only in the computation and communication aspects. In these frame-

works, file I/O and computational imbalance aspects are left untouched. Apart from Caffe,

other open-source DL frameworks have been developed, including Google TensorFlow [6,

166], Theano [105, 161], Facebook Caffe2 [148], PyTorch [79], Microsoft Cognitive Toolkit

(CNTK) [135], Apache MXNet [21], and Chainer [164]. These frameworks provide different

competitive advantages in terms of training features and platform compatibility. All of them

support at least one parallel model shown in Chapter 2.3. Moreover, most of them can

dispatch threads or even whole CPUs (if the system is equipped with accelerators) for com-

munication and I/O prefetching and preprocessing. Such prefetching techniques, however,

can hide some of the I/O and communication costs when the costs are smaller than that of

computation, but they cannot fully avoid it. We will discuss details of these frameworks in

subsequent sections.

143

144 Chapter 7. Related Work

7.2 File I/O Optimizations

In this section, we present various file I/O optimization techniques for parallel DL ranging

from file I/O frameworks, storage architecture, and I/O pipelining. We compare and contrast

our file I/O system to others to provide the insight on how our file I/O optimizations can

be applied and generalized for most existing file I/O system.

7.2.1 File I/O Subsystems in Deep Learning Frameworks

Most DL frameworks adopt a core I/O infrastructure similar to that of Caffe in order to

perform parallel data I/O. For instance, Caffe2 inherits the I/O subsystems from Caffe.

Thus, its distributed I/O subsystems are highly similar to the parallel extensions of the

Caffe framework that we used in our file I/O optimization work. PyTorch supports a broad

range of data formats, the most popular of which is NumPy [121]. Both the memory and

file layouts of NumPy can be irregular. For example, bytes of a single array can be laid out

into noncontiguous chunks of a file or memory. Since the file structure is not deterministic,

NumPy supports partial database access via mmap, the same as LMDB, in order to avoid

reading the entire file to memory. To the best of our knowledge, there is no other way to

partially load NumPy data from a file without using mmap, thus making it susceptible to the

same shortcomings as LMDB. TensorFlow’s I/O subsystem, by default, performs replicated

data reads across different processes, but such a model can hurt the accuracy of the training

because of reduced diversity of the sample data across different processes. Data sharding,

which would make its data processing equivalent to that of Caffe, can be enabled through

its high-level API to filter out unwanted data. While data sharding improves TensorFlow’s

accuracy, however, it also causes extra and redundant data access between processes similarly

to what LMDB suffers from.

7.2. File I/O Optimizations 145

In summary, while our file I/O optimization work uses Caffe for the experiments, we believe

that the lessons learned are generally applicable to other frameworks, too. In fact, a common

practice in the community is to store datasets in LMDB format as it is natively supported by

various other well-known DL frameworks such as TensorFlow, Caffe2, PyTorch, and Keras-

TensorFlow. While other database formats certainly exist, the portability of LMDB across

different frameworks has made it a go-to format, particularly for industries that use multiple

frameworks for their artificial intelligence and DL efforts.

7.2.2 Other File I/O Frameworks

Various high-efficiency I/O frameworks have been developed for HPC. MPI-IO [156, 157]

is a low-level parallel I/O library that provides generic unstructured data I/O support.

HDF51 and NetCDF [37], on the other hand, provide high-level I/O libraries for structured

scientific application data via feature-rich programming interfaces. The parallel variants of

these libraries [58, 95] leverage MPI-IO to enable parallel access and storage for files. These

technologies are complementary to our work. While we used POSIX I/O in our work, our

approach is not limited to it and can easily adopt any of the mentioned parallel I/O models

instead.

We note, however, that although in theory MPI collective I/O is supposed to internally

perform optimizations that limit I/O randomization, this is not always true in practice.

In most MPI-IO implementations today, collective I/O significantly lags in performance

compared with POSIX I/O. In fact, in our experiments, the performance of MPI collective

I/O was much worse than that of POSIX I/O. The performance of MPI independent-I/O

was comparable to, but not as good as, POSIX I/O.

1https://support.hdfgroup.org/HDF5

https://support.hdfgroup.org/HDF5

146 Chapter 7. Related Work

We point out that other frameworks, such as RocksDB2 and HDF5, also use tree-based

structures and allow for highly efficient sequential access to the database. Although random

database access is possible, it is not as efficient as sequential access because the database

layout is not deterministic—the layout cannot be computed unless all data records are al-

ready laid out in the database (essentially the same problem as LMDB). Similarly, TFRecord

(TensorFlow’s native database format) allows only for sequential database access. The cen-

tral issue here is that the data samples are not indexed in a way that are suitable for parallel

I/O (i.e., indexing is based on keys, rather than a numerical ordering). Thus, the lessons

learned in our work are applicable to the above mentioned other frameworks, too.

7.2.3 Storage Architecture

Some researchers have worked around the issue of I/O in DL by using cluster systems where

each node has its own permanent storage [80, 186]. Thus, the input data can be fragmented

and the corresponding fragment placed locally on each node, instead of on the global filesys-

tem. While such workarounds are possible, they are not practical in several scenarios, such

as those that require DL algorithms to be executed on large supercomputing systems. Most

supercomputer systems tend to host their data on a shared global filesystem and do not equip

each node with its own permanent storage. In fact, for such shared global filesystems, reading

from a large number of smaller files has been shown to be significantly worse than reading

from a single large file because of the additional metadata traffic that it generates [110].

Having said that, on-node storage (e.g., NVMe [88] and solid-state drives [77, 109]) are

becoming common in large supercomputing systems. Some new-generation supercomputers,

for example, Summit at Oak Ridge National Laboratory and Cori3 at the National Energy

2https://rocksdb.org
3http://www.nersc.gov/users/computational-systems/cori/

https://rocksdb.org
http://www.nersc.gov/users/computational-systems/cori/

7.2. File I/O Optimizations 147

Research Scientific Computing Center, are equipped with on-node permanent storage using

these technologies. Such on-node storage, however, is accessible only when the job is allocated

to a particular node and is wiped clean when the job terminates or when a new job is

allocated. Thus, any data that needs to be persistently stored across jobs must be fetched

from the global filesystem. Some systems utilize on-node storage technologies in the form

of burst buffers, where data staging can be performed prior to the job start. However, we

remind the readers of this work that datasets used for training are often very large and cannot

be simply replicated on the on-node storage of each node. Thus, using burst buffers would

mean that the training dataset needs to be segmented across the burst buffers available

on each node. As discussed in the work, this is not an easy task and would require the

application to have prior knowledge as to what parts of the file would be accessed by each

node. Unfortunately, traditional I/O systems used in DL do not have this knowledge, at least

not without some of the improvements proposed in this work such as the data provenance

information. Having said that, one could imagine combining the proposed data provenance

technique with burst buffer technology to predict what data goes on which node and perform

the necessary I/O before the job starts, that is, while the job is waiting in the queue. This

is a viable technique that we have not explored in this work.

7.2.4 Input Pipeline Optimizations

Recently, researchers have realized the importance of I/O in DL. Consequently, a number

of input pipeline optimization techniques have been proposed [23, 86, 88, 180, 191], for

example, data caching, computation and I/O overlapping (pipelining/prefetching), parallel

data parsing, and in-memory data shuffling. While these approaches are certainly useful, we

believe that they are orthogonal improvements. For example, techniques such as data caching

assume that all the data can fit in the system’s memory for multiple epochs. This approach

148 Chapter 7. Related Work

is useful for small datasets but is obviously not a feasible optimization for larger datasets.

Techniques such as prefetching can hide the I/O cost behind that of the computation, but

they benefit only those cases where the computation is more expensive than the I/O itself.

For single-pass algorithms (approaches that compute on the data only once), I/O is often

more expensive than the computation. In contrast, our work solves the root causes of

various I/O problems. In any case, these other input pipeline optimizations can be applied

in conjunction with our proposed approach to further improve performance.

7.3 Communication Optimizations

Network I/O has been identified as one of the significant bottlenecks in distributed DL sys-

tems. A large body of work has been performed to optimize communication performance

(i.e., tensor transfer during parameter update or between subgraphs on different machines)

in distributed training. We present the gradient compression techniques, gradient synchro-

nization optimizations, and communication frameworks in the following subsections.

7.3.1 Gradient Compression

Data compression is a way to reduce the communication data size which can effectively

mitigate the communication bottleneck. A lot of active research in DL focuses on gradient

compression, which can be carried out in two ways: gradient quantization, and gradient

sparsification. Gradient quantization is to represent a set of continuous values of a gradient

with a set of finite values, while gradient sparsification leverages some threshold to transfer

only informative gradients selectively. The most challenging aspect of gradient compression

is to minimize the amount of data transfer while maintaining the quality of training in term

7.3. Communication Optimizations 149

of inference accuracy.

Gradient quantization has been shown to improve training performance of distributed DL

in the literature. One-bit SGD [140], an aggressive data quantization approach, achieved

10-fold speed up with negligible accuracy loss on speech DNNs on 20 distributed machines.

QSGD [13] adopts the stochastic quantization method along with an efficient lossless data

encoding to compress gradients. It demonstrated 1.8-fold improvement on ImageNet and

ResNet152 training on 16 GPUs. TernGrad [169] proposed three-level gradient quantization,

which significantly improved performance for various DNNs. Both QSGD and TernGrad

guarantee convergence and accuracy of the training. DoReFa-Net [190] modified AlexNet

to use low-bitwidth gradients to reduce communication bandwidth. The research showed

that DoReFa-Net achieved the similar inference accuracy compared to the original 32-bit

AlexNet.

Similarly, gradient sparsification has been demonstrated to be useful for data communication

in parallel DL. Gradient sparsification was adopted in DNN training on a commodity GPU

cloud [150] by using a constant threshold for each parameter. The approach had shown good

training scalability up to 80 GPU instances with no loss in accuracy or convergence rate;

however, a threshold selection is difficult. Dryden et al. [40] extensively modified the one-bit

and threshold quantization approaches and achieved nearly 2-fold speedup in some cases. Aji

and Heafield [9] observed that most of the gradient updates were not useful; therefore, they

dropped 99% of the smallest updates. The initial results showed that this extreme gradient

sparsification achieved up to 49% speedup on MNIST training on 4 GPUs. AdaComp [20],

the adaptive residual gradient compression scheme, automatically tunes the compression

rate based on local activity. With AdaComp, the compression ratio can be as high as 200x

without any degradation in model accuracies. Deep Gradient Compression (DGC) [102]

adopted several existing techniques, including momentum correction, local gradient clipping,

150 Chapter 7. Related Work

momentum factor masking, and warm-up scheme, to efficiently compress gradients. DGC

achieved up to 600x compression ratio without losing accuracy.

7.3.2 Gradient Synchronization Optimizations

The allreduce communication has been well studied in much literature [12, 55, 74, 176, 180].

Overlapping communication with computation is one of the most popular techniques. Our

work currently does not include computation and communication overlap in our optimization,

but we plan to revisit this optimization in the future. The similar approach to Horovod-

TOPO has been proposed in [74]. Importantly, though, it does not directly handle tensor

ordering—in fact, it ignores tensor dependencies and forces tensor transfers to be in the

reverse order of the layers (i.e., assuming that tensor transfers only happen in the backprop-

agation phase). We believe that this approach is not applicable to many graph structures.

For example, such method would not work with the synchronization of batch-normalization

statistics in [180] that takes place in both forward and backward passes and the statistics

have dependencies between each other. In contrast, our work analyzes the actual dependency

structure in the graph and creates a tensor ordering schedule that would work for any static

graph. We note that our work tackles the computational imbalance problem, rather than

allreduce directly, which is different from the related work.

7.3.3 Communication Frameworks

Optimizing network I/O via data compression requires algorithmic changes in the DL train-

ing. In the case that adjusting the learning algorithm is not preferable, we can optimize the

network I/O performance by improving the communication software.

Typically, TCP is used as a default communication protocol in most state-of-the-art DL

7.3. Communication Optimizations 151

frameworks. For instance, the most popular DL framework, TensorFlow, uses gRPC [1, 2,

24] as the backbone communication protocol for its distributed training. gRPC internally

uses HTTP/2 [54] which operates on top of TCP. However, gRPC/TCP is not a universal

communication library option for supercomputing systems because it either is not supported

or performs poorly on most supercomputers.

On the other hand, MPI [4] is more supercomputer friendly because it has been well optimized

for a broad range of communication protocols for high-performance computing systems. MPI

collective communication provides highly optimized group communication functionalities

among a large number of processes and nodes [159]. Several DL frameworks, including

TensorFlow, Caffe2, and CNTK, adopt MPI as a native communication protocol.

Because GPUs are becoming the most popular accelerators for DL, various GPU-aware MPI

implementations also exist [10, 11, 14, 72, 73, 108, 151]. In addition, the GPU-specific

data movement optimizations, such as the CUDA unified memory technology [100] and

communication-computation overlap techniques [32, 33], have been proposed to improve the

performance of data transfer between host and device

Verbs [106] is a network I/O library for interfacing with the InfiniBand architecture. With

Verbs, applications can utilize the Remote Direct Memory Access (RDMA) capability, that

allows a machine to access data in a memory of another machine over the network by by-

passing the processing of CPUs on that system, provided by the InfiniBand hardware. Similar

to MPI, various DL libraries [155, 179] have natively support Verbs for communication.

Several recent communication middlewares for DL are implemented on top of MPI or Verbs.

Gloo [43], Facebook’s collective communication library for Caffe2, has an implementation

on both TCP and Verbs. Note that Gloo uses MPI for machine rendezvous, but not for

underlying communication. However, Gloo has implemented its collective operations based

152 Chapter 7. Related Work

on the designs of MPI collective algorithms [159]. The Cray Programming Environment

(CPE) Machine Learning (ML) Plugin [109] is built on top of MPI. Despite its impressive

scaling, however, CPE ML’s operations are blocking synchronous (as opposed to Horovod’s

nonblocking asynchronous operations), making them susceptible to deadlock, and are invalid

in some computation graphs. Aluminum [39], an asynchronous GPU-aware communication

library, contains a novel latency-optimized Allreduce algorithm to improve the performance

of communication that overlaps with computation.

Baidu utilizes MPI point-to-point operations to compose its own allreduce library, namely

baidu-allreduce [134] based on a novel ring-algorithm [50, 126]. Uber addresses inefficiency

of the default tensor transfer of TensorFlow by proposing Horovod. Horovod is developed

based on baidu-allreduce by replacing the ring algorithm with high-performance collective

communication APIs including MPI, NVIDIA NCCL, IBM DDL, Facebook Gloo, and Intel

MLSL. Moreover, Horovod proposes an optimization approach, called “tensor fusion”, to

coalesce small tensors into one buffer before performing the actual data transfer to reduce the

data transfer overhead. Horovod has shown impressive performance in the literature [88, 142].

However, its loss of scalability on large-scale systems is well documented [173]. Kurth et

al. [87] utilized Horovod-MLSL (Intel Machine Learning Scaling Library backend to Horovod)

and reported that it required additional thread binding to avoid the background threads from

monopolizing CPU cores.

Overall, to the best of our knowledge, our work on computational imbalance is the first to

identify the contention between data-processing components as a cause of TensorFlow/Horovod’s

scalability limitation.

7.4. Algorithmic Improvements to Parallel Deep Learning 153

7.4 Algorithmic Improvements to Parallel Deep Learn-

ing

Another crucial DL research area involves high-accuracy large-batch training. Using large

batches of data samples to train DNNs on large-scale supercomputers is a common practice

for achieving high parallelism. In doing so, however, the inference accuracy can degrade sig-

nificantly since the DNN parameters are updated less frequently with gradients that contain

more information. Consequently, several ongoing studies have been trying to improve the

inference accuracy of large-batch training.

The common key idea of these techniques is to adjust the “learning rate” or LR which

controls the magnitude of parameter changes in the DNN training. One of the earliest

approaches in this direction involves adjusting the global LR linearly [82] based on the size

of the batch. For instance, if the batch size is scaled by k times, the LR is also scaled by k.

This approach is risky, however, and can cause the training to diverge during the initial phase.

To address this issue, a warm-up scheme was introduced in [55] to prevent such divergence

by starting with a small LR and increasing it later during the training. Various SGD-based

LR adjustment schemes have been proposed and have significantly improved the robustness

of SGD while using large batch sizes, for example, Adagrad [41] dynamically adjusts LR

based on the gradient magnitudes, Adadelta [185] solves the shortcomings of Adagrad by

applying the squared gradient exponential decay method (similar to using momentum [52])

to reduce its sensitivity to the initial global LR, and Adam [81] adds the gradient exponential

decay to address flat minima in the error surface. You et al. [181, 183] proposed layer-wise

adaptive rate scaling (LARS). LARS uses a different LR for different layers in the DNN,

where the LR of a layer is the ratio between the norm of the layer weights and the norm of

the gradients. With these optimizations, LARS successfully enables parallel training using

154 Chapter 7. Related Work

large batch sizes—up to 32,768—with negligible loss in inference accuracy.

At the time of writing this thesis, the largest batch size known is 131,072 [122]. These studies

demonstrate that training with large batch sizes is practical and needs to be optimized, a

subject that is the target for this work.

Chapter 8

Summary and Discussion

We present a summary of the work performed as a part of this thesis in Chapter 8.1. We

list the peer-reviewed publications related to this thesis work in Chapter 8.2. Discussions

on some of the lessons learned during this thesis work and on some open questions on large-

scale DL are presented in Chapter 8.3. Finally, we provide some ideas on tradeoffs between

performance and accuracy that can be extended in the future in Chapter 8.4.

8.1 Thesis Summary

This thesis addresses two significant scalability limitations in large-scale DL, namely data

movement from the filesystem (i.e., file I/O) and computational imbalance in data processing.

For the first limitation, we showcased the file I/O bottleneck through the analysis and op-

timization of Caffe/LMDB on up to 9,216 cores of the Bebop cluster. On such large-scale

system, we observed that up to 90% of the overall DL training time was devoted to data

loading from a shared filesystem. We thoroughly analyzed LMDB and found that the main

causes of its shortcomings were from the use of mmap and its nondeterministic database

layout. These problems are quite common among existing file I/O subsystems for DL. We

proposed LMDBIO—an optimized I/O plugin for scalable DL. A summary of the six op-

timizations that comprise LMDBIO is shown in Table 8.1. All LMDBIO optimizations

outperform LMDB in all cases and improve overall application performance by up to 65-fold

155

156 Chapter 8. Summary and Discussion

in some cases. In fact, on our system, these optimizations can saturate the system’s available

I/O bandwidth for DL frameworks.

Table 8.1: LMDBIO optimization summary

Library Optimization

Reducing

Interprocess

Contention

Using

Explicit I/O

Eliminating

Sequential

Seek

Managing

I/O Size

Reducing

I/O Ran-

domization

LMDB -

LMDBIO

LMM1 X

LMM-DM2 X (partial)

LMM-DIO3 X X

LMM-DIO-PROV3 X X X

LMM-DIO-PROV-

COAL3

X X X X

LMM-DIO-PROV-

COAL-STAG3

X X X X X

1 Intra-node file I/O optimization.
2 Speculative distributed file I/O optimization.
3 Direct file I/O optimization.

For the second limitation, we demonstrated the impact of computational imbalance in the

processing of large-scale DL via the analysis and optimizations of TensorFlow/Horovod on

the Summit supercomputer. Modern DL frameworks, including TensorFlow, allow multiple

data-processing components to operate on the same hardware asynchronously at the same

time causing them to compete with each other for resources and lead to computational

imbalance. We proposed four optimizations to overcome its shortcomings. The summary of

our optimizations is shown in Table 8.2. With our optimizations, we are able to improve

the performance of the training of several real-world DNNs by 35% in some cases on 24,576

GPUs of Summit—the world’s fastest supercomputer today.

The scalability problems that we addressed in this thesis are only a subset of a broad range

of issues that have been identified in large-scale DL systems. Achieving perfect scalability

8.2. List of Publications 157

Table 8.2: Computation imbalance optimization summary

Library Optimization

Eliminating

MPI Allreduce

Out-of-Sync

Eliminating

Resource

Competition

Original Horovod -

Our Horovod

GS (partial) (partial)

NBCS
(partial; better

than GS)

SCP X

TOPO X X

as well as a good accuracy is still a hard problem in DL. Although we have not solved all

the problems that we have identified, we provide some thoughts on ways to improve the

scalability of DL in the subsequent sections.

8.2 List of Publications

The following is the list of peer-reviewed publications related to this thesis.

Chapter 3: Intra-node File I/O Optimization

• Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji. Towards Scalable Deep

Learning via I/O Analysis and Optimization. In Proceedings of the 19th IEEE Inter-

national Conference on High Performance Computing and Communications (HPCC),

2017, pp. 223-230. [131]

Chapter 4: Inter-node File I/O Optimization via Speculative Parallel I/O

• Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji. Parallel I/O Optimizations

for Scalable Deep Learning. In Proceedings of the 23rd IEEE International Conference

158 Chapter 8. Summary and Discussion

on Parallel and Distributed Systems (ICPADS), 2017, pp. 720-729. [130]

• Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji. Parallel I/O Optimizations

for Scalable Deep Learning. (Poster.) EuroMPI/USA, 2017.

Chapter 5: Direct File I/O Optimizations

• Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji. Scalable Deep Learning

via I/O Analysis and Optimization. In ACM Transactions on Parallel Computing

(TOPC), 2019, 6, 2, Article 6 (July 2019), 34 pages. [132]

• Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji. File I/O Optimizations for

Large Scale Deep Learning. (Poster.) The 7th Annual MVAPICH User Group (MUG)

Meeting, 2019.

• Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji. I/O Bottleneck Inves-

tigation in Deep Learning Systems. (Poster.) The 47th International Conference on

Parallel Processing (ICPP), 2018. Best Student Poster (Best Ph.D. Forum)

Award.

Chapter 6: Computation Imbalance Optimizations for Data Processing

• (Under review.) Sarunya Pumma, Daniele Buono, Fabio Checconi, Xinyu Que, and

Wu-chun Feng. Alleviating Load Imbalance in Data Processing for Large-Scale Deep

Learning. The 20th IEEE/ACM International Symposium on Cluster, Cloud and In-

ternet Computing, 2020. [128]

• Sarunya Pumma, Daniele Buono, Fabio Checconi, Xinyu Que, and Wu-chun Feng.

Optimizing Large-Scale Deep Learning by Minimizing Resource Contention for Data

Processing. (Poster.) The 2nd IBM IEEE CAS and EDS – AI Compute Symposium,

2019. Best Student Poster Award.

8.3. Discussion 159

Other publications

The following publications are not directly related to this thesis. However, they are related

to the preliminary work that I studied at the beginning of my Ph.D. prior to this thesis.

• Hao Wang, Jing Zhang, Da Zhang, Sarunya Pumma, and Wu-chun Feng. PaPar:

A Parallel Data Partitioning Framework for Big Data Applications. In Proceedings of

the 32nd IEEE International Parallel and Distributed Processing Symposium (IPDPS),

2017, pp. 605-614. [168]

• Sarunya Pumma, Wu-chun Feng, Phond Phunchongharn, Sylvain Chapeland, and Tira-

nee Achalakul. A Runtime Estimation Framework for ALICE. Future Generation Com-

puter Systems, 72:65–77, 2017. [129]

8.3 Discussion

In this section, we provide the discussion related to this thesis work. The discussion aims to

address some open problems in large-scale deep learning.

8.3.1 What Would the Ideal Filesystem for Deep Learning Look

Like?

While our file I/O study provides an empirical evaluation of some of the I/O problems in

large-scale DL and some solutions to these problems, we would like to take a moment to

discuss the broader lessons that we learned from this study. One important takeaway is

that several of the solutions proposed in our work are effectively workarounds for problems

in the filesystem. A more comprehensive and elegant solution instead would be to improve

160 Chapter 8. Summary and Discussion

or develop a new filesystem that is more targeted to DL workloads. What would such a

filesystem look like? We have some thoughts.

1. Deep learning workloads are read-heavy and rarely ever do writes. In fact, most DL

frameworks perform writes only for checkpointing purposes, and these writes happen

to files that are disjoint from the database file. In other words, the database files

are “read only” for the lifetime of the application, and the checkpoint files are “write

only” for the lifetime of the application. If these files are separated onto two different

filesystems, each filesystem can be modified to support much more restrictive semantics.

For example, the read-only filesystem can perform aggressive caching of global data on

local nodes and avoid any locking and state management overheads needed for such

data consistency. Similarly, the write-only filesystem does not have to concern about

data consistency (the writes are nonoverlapping) and need not perform any caching at

all.

2. The ideal filesystem for DL would be one that supports fast random access similar to

main memory. Thus the random data batch composition requirement of the training

algorithms, namely, SGD, can be satisfied through data reading, and the additional

in-memory data shuffling can be completely avoided. Technologies such as on-node

non-volatile random-access memory or NVRAM and consortia such as Gen-Z1 are

already working in this direction, so such an approach might not be completely off the

table. We note, however, that practically using such technologies is still some time

away at the time of writing this thesis and avoiding random access is perhaps still the

best strategy for now.

3. If random access is impractical for filesystems, the next best option would be strided

access. Strided accesses are, unfortunately, not well supported by filesystems. I/O

1https://en.wikipedia.org/wiki/Gen-Z

https://en.wikipedia.org/wiki/Gen-Z

8.3. Discussion 161

access in DL is very structured and is regularly strided. Moreover, there are no “holes”

in the data access. All bytes are accessed by one process or another. Filesystems

typically do not provide native APIs for such access, thus resulting in unnecessary

prefetching and cache flushing. We worked around this problem with our staggered

I/O model, but that model serializes I/O, which could have been entirely avoided if

the filesystem had provided better strided I/O access.

8.3.2 Rethinking Process/thread Synchronization in DL Commu-

nication Subsystems

Process/thread synchronization is critical for performance in multiprocessor programming.

There exist two main classes of process/thread synchronization approaches [65]: spin waiting

and blocking, each of which is suitable for the different performance requirements. Spin

waiting or busy waiting is an approach that a process/thread repeatedly checks whether an

expected event has happened, while blocking or yielding is a method where a process/thread

suspends itself to allow the OS to schedule another process/thread to run while it is waiting

for some event to occur. Spin waiting consumes CPU cycles, thus it is suitable for the case

where the arrival time of the expected event is small. In contrast, blocking is appropriate

for the case that the arrival time of the event is long and larger than the context switching

time. In this section, we will discuss the process/thread synchronization in the context of

network I/O subsystems in DL.

As mentioned in Chapter 7.3.3, various DL frameworks and high-level communication frame-

works, including Horovod, are built on top of MPI. The pros and cons between the spin

waiting and blocking approaches for checking incoming messages have been long studied by

MPI researchers and developers. The spin wait method has been proven to be better for

162 Chapter 8. Summary and Discussion

latency compared to the blocking approach. For this reason, all MPI implementations today

adopt spin waiting within their blocking communication operations. MPI is not designed

to support applications that oversubscribe CPU cores.2 It assumes that there are sufficient

cores to run MPI processes/threads. Unfortunately, that is not the case for modern DL

frameworks. They usually oversubscribe cores via multithreading. As a consequence, spin

waiting within MPI can cause performance degradation in parallel DL as presented in Chap-

ter 6. In our work, Horovod-NBCS is the workaround of the spin wait problem—it uses

nonblocking MPI operations and manually and periodically yields the Horovod background

thread. However, the best way to tackle this problem is to avoid using MPI when the core

oversubscription occurs.

Given that the core oversubscription is present, the gRPC’s model for checking for new

messages might be a more suitable for DL. gRPC uses a combination of spin waiting and

blocking—that is a gRPC thread/process loops over the epoll wait call with timeout until a

new message arrives. epoll wait is a blocking system call that puts the caller process/thread

to sleep until the awaited event shows up or timeout expires. With this model, the gRPC

process/thread gives up the core occasionally for others. Although the gRPC process/thread

synchronization model sounds appealing, its performance is questionable (as discussed in

Chapter 7.3.3).

Since there is no-one-size-fits-all communication subsystem for DL while the core oversub-

scription occurs, we can either reimplement a communication method that nicely balances

between spin waiting and blocking or directly solve the core oversubscription problem (we

present a way to solve this problem in Chapter 8.3.3).

2Some MPI implementations have an option to yield a process/thread when it is idle waiting, for
example, OpenMPI provides the mpi yield when idle knob to control the synchronization behavior
(https://www.open-mpi.org/faq/?category=running#oversubscribing).

8.3. Discussion 163

8.3.3 Enhancing Intra-node Parallelism of DL Frameworks via

Lightweight User-Level Threading Libraries

As mentioned in Chapter 6.1, there are multiple data-processing components running in

the DL environment. Typically, an on-node parallelism on CPUs is provided via multiple

threads. Modern DL frameworks, e.g., TensorFlow and PyTorch, employ a similar threading

model—that is each component is associated with at least one thread pool, which can be

either private or shared with other components. Each pool contains one or more threads

which are normally the OS-level threads, i.e., Pthreads, which their management cost is

known to be expensive. These threads are forked when the pool is being created and joined

once the pool is being destructed. Each pool has a task queue where each enqueued task

is picked up and run by one thread in the pool until the task is completed. When the task

queue is empty, all threads sleep. In common practice, each thread pool manages its own

threads separately from other pools in the system—which is a coarse-grained management

of threads. Consequently, users have to carefully configure a number of threads in each pool

to avoid CPU oversubscription which can degrade the entire execution performance.

Despite threads within a DL framework, some external libraries/plugins have their own

threads—for example, multithreaded Intel MKL is based on OpenMP [34], and Horovod

has one background thread for handling data transfer requests and one thread for each

data transfer to check for completion of some collective communication APIs (e.g., NVIDIA

NCCL). These libraries/plugins mostly rely on OS-level threads. To avoid oversubscription

of OS-level threads, users have to rigorously tune the amount of threads used in each li-

brary/plugin, which it is a nontrivial task. Figure 8.1 illustrates the oversubscription of

OS-level threads example. In the figure, more than one thread is running on each core.

In Chapter 6, we demonstrated that although we have carefully configure the number of

164 Chapter 8. Summary and Discussion

DL	Framework MKL	(with	OpenMP)

Core

Thread	poolThread	pool

T T

T T

T T

Thread	pool

T T

T T

T

T

T

T

Core

T

T

T

Core

T

T

Core

T

T

Pthread
(the	color	denotes	the	thread	pool/application	that	the	thread	is	in)

Execution	on	
the	cores

Horovod

T

T

T T

Active	threads	in	each	thread	pool/applications

Figure 8.1: Example of oversubscription of OS-level threads

threads in the DL framework and external libraries/plugins, oversubscription of OS-level

threads still occurs causing threads to oversleep which leads to computational imbalance.

To actually solve the core oversubscription problem, the heavyweight OS-level threading

approach can be replaced with lightweight user-level threading (LULT) library, such as Ar-

gobots [141] and BOLT [70]. The main advantage of the LULT library over the OS-level one

is that its thread management is less expensive.

The LULT library provides an abstraction over the OS-level thread library in order to re-

duce the thread synchronization cost and alleviate the core oversubscription problem. The

execution model of LULT is shown in Figure 8.2. In case of Argobots, it provides execution

streams and lightweight work units (i.e., a user-level thread or a tasklet; although there are

many types of work units, we will loosely call each work unit “lightweight thread”). Each

execution stream is mapped to an OS thread, and it has one associated scheduler which is

8.3. Discussion 165

responsible for scheduling lightweight threads to run in the stream. As long as the num-

ber of execution streams is not more than the number of cores, the user applications—DL

framework, MKL, and Horovod—can create as many lightweight threads as they would like

without the risk of oversubscribing the cores.

Core

DL	Framework MKL	(with	OpenMP)

Thread	poolThread	pool Thread	pool

Core Core Core

Lightweight	thread
(the	color	denotes	the	thread	pool/application	that	the	thread	is	in)

Horovod

Active	threads	in	each	thread	pool/applications

Pool Pool Pool

S

Pool

S S S

T T

T T

T T

T T

T T
T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

S Scheduler Execution	stream	(running	inside	a	Pthread)

Execution	on	
the	cores

Figure 8.2: Example of using lightweight user-level threading library in DL

We have not performed an in-depth study on the use of LULT library in the DL execution

environment. However, we believe that it is an alternative approach to avoid computational

imbalance presented in Chapter 6 as explained above.

166 Chapter 8. Summary and Discussion

8.3.4 Can We Beat the ImageNet-ResNet50 Training World Record?

Since 2017 [55], there has been ongoing informal “fastest time to convergence of the ImageNet-

ResNet50 training” competition in the HPC community. The training must converge to the

state-of-art top-1 testing accuracy of 75% or more. Several researchers and companies have

been improving the training algorithm and strategy in order to beat the world record. The

world record currently belongs to Fujitsu [176] with a training time of 74.7 seconds and top-1

accuracy of 75.08%.

Our work utilized Summit, the world’s fastest supercomputer at the time of this writing, but

this supercomputer still falls short of the world record. While this thesis does not directly

target beating the world record, we thought that it would be interesting to identify why

Summit falls short of this goal. Figure 8.3 compares our image processing rate with that

of the current world record. Our best training performance in term of image processing

rate is 0.35 millions images per second, while the one of the world record is 1.73 millions

images per second. Our performance is five times worse than the world record even though

Summit is approximately 5.4 times faster than the AI Bridging Cloud Infrastructure (ABCI)

cluster that Fujitsu used (Summit’s and ABCI’s peak performance are 200 petaflops and 37

petaflops, respectively). This suggests that Fujitsu is able to utilize its cluster more efficiently

than Summit.

In this section, we present six observations on the shortcomings of our work and the

advantages of Fujitsu’s work:

Observation 1: Global batch size (GBS)—We cannot achieve state-of-art accuracy

using a large GBS. The largest GBS that we can use without accuracy loss is 24,576 which is

very close to the best known GBS prior to Fujitsu’s work (that is, GBS of 32,768 [181, 182]).

However, Fujitsu has claimed that they are able to maintain the accuracy while using 3.3

8.3. Discussion 167

0

1

2

3

4

96 192 384 768 1536 3072 6144 12288 24576

M
ill
io
ns
	Im

ag
es
/S
ec
on

d

Number	of	GPUs

World	record	training	performance	with	sustained	accuracy:	
1.73M images/sec	(Fujitsu’s	ABCI)

Ours:	0.35M images/sec
5x

Figure 8.3: Our ImageNet training performance vs. the world record (the graph is showing
strong scaling—the state-of-art top-1 accuracy is maintained)

times larger GBS, that is 81,920. With such large GBS, Fujitsu has 3.3 times more data

parallelism compared to ours. However, we are not able to reproduce their claim.

Solution 1: We need to be able to reproduce Fujitsu’s claim to achieve the same level of

parallelism or use a larger GBS than Fujitsu’s (while sustaining accuracy) to achieve more

parallelism.

Observation 2: CPU/GPU architecture—Summit is more GPU biased than ABCI.

Summit has smaller CPUs-to-GPUs ratio than ABCI (7 CPU cores per GPU for Summit

and 10 CPU cores per GPU for ABCI), which makes it harder for Summit to dispatch work

to the GPU fast enough. As a consequence, the GPUs on Summit are more susceptible to

be idle than those of ABCI.

Solution 2: Hardware improvement—Adding more CPU cores to the system is one way

to address this problem. The additional CPU cores can help improving the performance of

GPU kernel dispatching.

Software improvement—We can offload some tasks from the CPUs to run on the GPUs, e.g.,

168 Chapter 8. Summary and Discussion

data augmentation in the input pipeline, to free the CPU cores for task dispatching.

Observation 3: Network architecture—Communication software is the bottleneck. Tra-

ditional network hardware requires large buffers to achieve the peak performance. Thus,

communication software, such as, Horovod, fuses data buffers to create large buffers, al-

though it adds overhead to data transfers. However, current network hardware, including

InfiniBand on Summit, allow for efficient communication even with small message sizes (i.e.,

a few kilobytes of data).

Moreover, most current network hardware provides multiple concurrent communication con-

texts, but the access to them is serialized in the software, for example, Horovod has one

thread per process to handle concurrent data transfers.

Solution 3: If the communication software can directly access the network hardware or

through a lightweight software stack, e.g., Mellanox Scalable Hierarchical Aggregation and

Reduction Protocol or SHARP [56], the buffer fusion step can be bypassed. Moreover, if mul-

tiple network hardware contexts can be exposed to the software, we can inject simultaneous

data transfers using multiple threads to increase the data transfer parallelism.

Observation 4: GPU computation—Computation kernels are not always GPU opti-

mized. Although kernel fusion can help improve the performance of the GPU kernel execu-

tion, the current method only fuses consecutive kernels. However, Fujitsu hand-optimized

their kernels by fusing nonconsecutive kernels to increase the GPU utilization. In addition,

the current graph compiler used in our work, XLA, disables the communication-computation

overlap as explained in Chapter 6.2.1.

Solution 4: XLA should be improved to fuse nonconsecutive kernels as well as provide

communication and computation overlap.

8.3. Discussion 169

Observation 5: OS scheduler—Modern Linux versions use the completely fair scheduler

(CFS) which is not always fair. CFS only schedules threads/processes based on the CPU

usage time, which can be a problem for asynchronous event based applications, including

GPU applications. For instance, event polling threads, e.g., MPI threads, might not be able

to yield when they need. Because their CPU usage times are small, CFS will reschedule

them quickly once they yield causing them to occupy CPU cores for longer than what they

actually need. This can potentially prevent other threads from using the cores.

Solution 5: OS scheduler should take into account other information in scheduling, such as

a type of a process/thread.

Observation 6: DL framework (minor observation)—We use TensorFlow which might

not be the best DL framework. There exist several open-source DL frameworks as presented in

Chapter 7.1. While TensorFlow was adopted by a few previous world record holders [74, 180],

majority of the world record’s work did not use TensorFlow. For instance, Caffe and Caffe2

were utilized in the early period of the competition [55, 63, 181, 182]. Later on, other

frameworks were used and able to break the world record [12, 113]. Recently, Fujitsu used

MXNet.

Solution 6: An empirical evaluation of DL frameworks is needed to determine which DL

framework is the best on Summit.

Based on the solutions presented in the observations above, we should be able to close the

performance gap between our work and Fujitsu’s. Perhaps, we might be able to beat the

world record in the future.

On a related note, MLPerf [111],3 a benchmark suite for machine learning, was released in

3https://mlperf.org

https://mlperf.org

170 Chapter 8. Summary and Discussion

February 2018 to establish fairness in benchmarking machine learning software and hard-

ware. MLPerf includes the ImageNet-ResNet50 benchmark. However, the world record work

mentioned earlier in this section did not use MLPerf. At the time of writing this thesis, the

latest MLPerf is v0.6. Based on the MLPerf Training v0.6 results,4 Google [85] achieved

the best ImageNet-ResNet505 training performance on 2,048 TPU-v3 cores using the GBS

of 32K with the training time of 76.8 seconds and the top-1 testing accuracy of 76.9%.

8.3.5 Compatibility of Our Work to Modern DL Frameworks

This thesis adopts two of the most popular DL frameworks in their times, Caffe and Ten-

sorFlow. However, as the DL domain is evolving very quickly, other DL frameworks that

contain more recent features and capacities might become more popular in the future. For

instance, at the time of writing this thesis, Caffe is already outdated. From the growth

score shown in Figure 8.4, TensorFlow is still the most popular DL framework, and PyTorch

is gaining much popularity which it might overtake TensorFlow’s place in the future. To

address this issue, we discuss how the approaches presented in this thesis can be used in the

modern DL frameworks, specifically PyTorch, in this section.

One of the main differences between TensorFlow and PyTorch is their programming styles.

TensorFlow adopts the declarative paradigm that is a computation graph is defined prior to

the execution takes place, whereas PyTorch inherits the imperative model from Python [125]

where the structure of a computation graph is not predefined but realized when the graph

is being executed. As TensorFlow is a declarative-style DL framework, static computation

graphs, which the graph structures remain unchanged throughout the execution, are inher-

ently supported. However, a limited dynamic computation graph support has been recently

4https://mlperf.org/training-results-0-6/
5Quality target: 75.9% top-1 accuracy; dataset: ImageNet (224 x 224); reference implementation model:

ResNet50 v1.5

https://mlperf.org/training-results-0-6/

8.3. Discussion 171

0

10

20

30

40

50

60

70

80

90

TensorFlow PyTorch Keras FastAI

G
ro
w
th
	Sc
or
e

Six-Month	Growth	Scores	of	DL	Frameworks	in	2019

Figure 8.4: Six-month growth scores of DL frameworks in 2019 [59]: the growth scores are
calculated based on six criteria, i.e., Google search interest, GitHub activity, Quora followers,
Medium articles, ArXiv articles, and online job listings

added to TensorFlow v.2.0. PyTorch supports both static and dynamic graphs, but due to

its imperative nature, the graphs are dynamically created and freed at runtime.

However, PyTorch is made up of various data-processing components similar to those of

TensorFlow (see Chapter 6.1 for more details). Each component provides an external li-

brary/plugin support. Thus, our LMDBIO and optimized Horovod can be used as file I/O

and network I/O plugins for PyTorch. Below, we will discuss some issues that users have to

be aware of when adopting our work in PyTorch.

LMDBIO-PyTorch interfacing overhead: PyTorch is a C++ & Python based DL frame-

work. Its backend is mainly written in C++. However, the Python backend is also heavily

optimized for performance and seamless integration with Python—which is used as the main

frontend. PyTorch supports the file I/O subsystem plugin via the Python interface, namely

Dataset6. LMDBIO has the Python API support. However, using LMDBIO via the Python

interface incurs an overhead in transforming the read data from the C++ data buffer to

6https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset

https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset

172 Chapter 8. Summary and Discussion

the Tensor7 PyTorch’s Python object. We have not studied this overhead in depth, but

the addition cost can be significant for large datasets. The better way to use LMDBIO in

PyTorch is to connect them in the C++ level to avoid the C++-Python interfacing over-

head. However, doing so requires an intrusive modification of the PyTorch code. We note

that LMDBIO should be able to be used via the C++ APIs without any modification to the

PyTorch code as well as additional interfacing overhead.

Static graph limitation of Horovod-TOPO: Our first three optimized Horovods, Horovod-

GS, Horovod-NBCS, and Horovod-SCP, support dynamic computation graphs as they inherit

the workflow of the original Horovod background thread. As Horovod-TOPO assumes that

the dependencies of the tensors to be transferred in the same graph are constant throughout

the execution, it supports only static computation graphs. To leverage Horovod-TOPO for

static graphs in PyTorch, Horovod-TOPO has to compute tensor dependencies during the

first execution of the graph. Then, it can use such information to compute the tensor ordering

and fusion schemes once the first iteration execution is finished. Although Horovod-TOPO is

currently restricted to static computation graphs, we believe that we can extend the dynamic

graph computation capability to Horovod-TOPO with a small engineering effort.

Despite the limitations discussed above, we believe that our LMDBIO and optimized Horovod

will able to improve the scalability performance of PyTorch as well as other modern DL

frameworks

7https://pytorch.org/docs/stable/tensors.html

https://pytorch.org/docs/stable/tensors.html

8.3. Discussion 173

8.3.6 Tradeoff Between Batch Size, Convergence Period and Ac-

curacy

In the large-scale DL domain, using a large batch size is a popular technique to increase

the training parallelism. However, large batch sizes tend to decrease the inference accuracy

due to a small number of parameter updates. To address such problem, a broad range

of approaches have been proposed. One of the most popular techniques is to train for a

larger number of iterations to allow the parameters to be updated for more times. In some

cases, the training can converge to a desire inference accuracy within a reasonable amount

of additional training iterations. In other cases, the additional training iterations becomes

too large making the use of the large batch size not worth it.

In this section, we discuss the tradeoff between batch size, convergence period—in term of

a total number of epochs to reach the desire accuracy, and inference accuracy. We demon-

strate our discussion through the CIFAR10-AlexNet training8 example. We tune the hyper-

parameters via an empirical study. We note that the different batch sizes have the different

hyperparameter settings9. We set the target accuracy to 0.85 and the maximum training

epochs to 2000. The training is considered converged if a moving average of the last five

epochs reaches the target accuracy. If the training cannot reach the target inference accuracy

within 2000 epochs, we consider it not converged.

Our criteria in choosing the batch size that gives the best tradeoff between the three factors

mentioned above is that by doubling the batch size, we gain two times more parallelism.

Thus, if we double the number of processors for the training, as long as the number of

8The experiments are run on the Theta cluster at Argonne National Laboratory (https://www.alcf.
anl.gov/theta) using a single processor.

9Hyperparameters for batch sizes 32 - 2048: SGD with momentum = 0.9, linear learning rate scaling with
maximum initial learning rate = 5.12, and linear warm-up scheme. Hyperparameters for batch sizes 4096 -
16384: SGD with LARS, linear learning rate scaling with maximum initial learning rate = 5.12, and linear
warm-up scheme.

https://www.alcf.anl.gov/theta
https://www.alcf.anl.gov/theta

174 Chapter 8. Summary and Discussion

Table 8.3: Batch size vs. convergence period (a total number of epochs to reach the target
inference accuracy) of the CIFAR10-AlexNet training. The target inference accuracy is 0.85
and the maximum training epochs is 2000.

Batch Size Convergence Period (Epochs)
32 104
64 103
128 103
256 104
512 104
1024 117
2048 144
4096 1198
8192 1483
16384 Does not converge

epochs does not increase by more than double, we will still get some benefits from using the

larger batch size. Therefore, the best batch size is 2048 in our example. We note that it is

not worth it to jump from the batch size of 2048 to 4096 as the convergence period increases

by ∼8 times. Therefore, in the data parallel execution of the CIFAR10-AlexNet training,

we can use at most 2048 processors. In the perfect scenario, we will be able to improve the

training time by 64 times using the batch size of 2048 compared to the training using the

batch size of 32 (given that the convergence periods for the two batch sizes are almost the

same).

8.4 Future Work: Tradeoffs Between Data Movement

and Accuracy

In this thesis, we focus mainly on the scalability performance of deep learning in large scale.

We have touched upon the accuracy aspect of DL only slightly in Chapters 6 and 8.3.6.

8.4. Future Work: Tradeoffs Between Data Movement and Accuracy 175

However, both scalability and accuracy are important to the large-scale DL execution. They

tend to have a definite duality between each other. Improving one tends to hurt the other.

Thus, as a future work, we propose to explore the tradeoffs between training performance

and inference accuracy. There are several aspects that we can study in this area. We present

three potential studies to give a general indication of the kind of optimizations possible in

this area. Two of these aspects address the data movement and inference accuracy tradeoffs,

while the third addresses process synchronization overheads, which can loosely be considered

to be a network I/O problem.

8.4.1 Data Reuse Optimization

In general, the training process of DL iterates through samples in the dataset multiple times

to improve the trained model quality until it reaches satisfied prediction accuracy. This

training scheme is referred to as “multi-pass training”. In common practice, each data

sample is visited once every epoch (i.e., all data samples in the dataset). Therefore, the

state-of-art “reuse distance” is equal to one epoch. As the datasets nowadays are in the

scales of hundreds of terabytes and petabytes, the reuse distance can be very large. Large

reuse distance has a positive impact on the inference accuracy; however, it hurts data reuse

as the data can already be taken out of memory by the time that it is revisited.

Since data samples are trained several times, it is essential to perform “data shuffling” to add

some variance into the input batches. The convergence rate of the training highly depends

on the degree of randomness in which group of samples is processed in each iteration [16].

The ideal data shuffling is to perform it among all the samples in the entire dataset, but

because the total amount of memory in the system is usually smaller than the dataset size,

the memory cannot accommodate the entire epoch of data. Therefore, in common practice,

176 Chapter 8. Summary and Discussion

data shuffling is performed within a few batches of data that are in memory instead of across

the whole epoch.

The goal of this proposed work is to investigate tradeoff between reuse distance and data

movement. The core idea of this work is to reuse the data samples while they are still

in memory. In other words, our approach attempts to minimize the data movement, both

from filesystem to memory and in the network I/O, to improve training performance and to

maximize the reuse distance to maintain inference accuracy.

Table 8.4: Tradeoff between reuse distance and data movement

Level Max In-Memory Data Size
Intra-process M
Per node M × N
Per switch M × N × S
Per rack M × N × R
Per supercomputer M × N × SC

M = amount of memory per process
N = a total number of processes per node
S = a total number of nodes per switch
R = a total number of nodes per rack
SC = a total number of nodes in the entire supercom-
puter

Our approach exploits the benefit of a large-scale system to use multiple process memories

collaboratively to maximize the reuse distance. To minimize data movement, we use the

topology-aware subbatch shuffling approach. Note that a partition of a batch of input is

called “subbatch”, where the size of a subbatch is equal to B/P (B is a batch size, and P is

a total number of processes). Table 8.4 presents multiple levels of subbatch shuffling.

From Table 8.4, the way to compose a batch of input with the least data movement is

to perform subbatch shuffling within processes. In this case, although data movement is

minimal, a variety of data and reuse distance are also very small which can hurt the inference

8.4. Future Work: Tradeoffs Between Data Movement and Accuracy 177

accuracy. In order to increase the reuse distance, subbatch shuffling can be carried out

between processes on the same node or the same switch or the same rack or the same

supercomputer. The farther the data shuffling is performed, the higher the reuse distance

and the better the variety of the data, however; more data movement is required. Thus, a

balance between reuse distance and data movement has to be carefully determined.

S	0 S	1 S	2 S	3 S	4 S	5 S	6 S	7 S	8 S	9 S	10 S	11

Node	0 Node	1 Node	2

S	0 S	4 S	8Batch	0

S	1 S	5 S	9Batch	1

S	2 S	6 S	10Batch	2

S	3 S	7 S	11Batch	3

S	0 S	5 S	11Batch	4

S	1 S	6 S	8Batch	5

S	2 S	7 S	9Batch	6

S	3 S	4 S	10Batch	7

S	0 S	6 S	9Batch	8

S	1 S	7 S	10Batch	9

S	2 S	4 S	11Batch	10

S	3 S	5 S	8Batch	11

Original	batches Shuffled	 batches

Figure 8.5: Intra-process subbatch shuffling

Intra-process subbatch shuffling is illustrated in Figure 8.5 (S is a subbatch). Suppose there

are three nodes in the system, one process per node, and four subbatches in the memory

of each process. In the state-of-art data reading, which also includes LMDBIO, only four

batches can be created from the in-memory data (i.e., batches inside the “Original batches”

box in Figure 8.5). Moreover, the data is typically discarded from memory immediately after

the training of each batch is completed. In our approach, we trade smaller reuse distance

for lesser data movement. The data is reused while it is still in memory, which is earlier

than one epoch. Thus, our reuse distance is smaller than the one in general practice. In this

particular example, we can generate at least eight more batches using the same data (i.e.,

batches inside the “Shuffled batches” box in Figure 8.5).

178 Chapter 8. Summary and Discussion

S	0 S	1 S	2 S	3 S	4 S	5 S	6 S	7 S	8 S	9 S	10 S	11

Node	0 Node	1 Node	2

S	0 S	2 S	6Batch	12

S	1 S	3 S	7Batch	13

S	4 S	8 S	10Batch	14

S	5 S	9 S	11Batch	15

S	0 S	3 S	11Batch	16

S	1 S	8 S	6Batch	17

S	4 S	9 S	7Batch	18

S	5 S	2 S	10Batch	19

S	0 S	8 S	7Batch	20

S	1 S	9 S	10Batch	21

S	4 S	2 S	11Batch	22

S	5 S	3 S	6Batch	23

Shuffled	 batches

S	0 S	1 S	4	 S	5 S	2 S	3 S	8 S	9 S	6 S	7 S	10 S	11

Figure 8.6: Inter-process subbatch shuffling

Inter-process subbatch shuffling, which includes all the levels shown in Table 8.4 except for

the first one, is demonstrated in Figure 8.6. There is one additional step to this method from

the intra-process subbatch shuffling that is the processes exchange subbatches among one

another at the beginning. The remaining steps are as same as the intra-process subbatch

shuffling. In this case, we can compose 24 new batches from the data that is already in

memory.

Our approach may suffer from the lower convergence rate as the reuse distance can be smaller

than the one of the state-of-art approach (i.e., one epoch). Thus, we may need to perform

more training iterations to reach the state-of-art level of inference accuracy. However, we

expect that the reduced data movement will allow our approach to complete each training

iteration faster, which should result in the overall training performance improvement.

Related Work

Most of the efforts in data reuse optimizations in DL focus on minimizing data movement

in the processor-memory subsystem to reduce energy consumption by improving the data

8.4. Future Work: Tradeoffs Between Data Movement and Accuracy 179

flow and data access patterns during the training. Eyeriss [22] maximizes data reuse in the

processing element’s scratch pads to minimize data access to an on-chip global buffer and an

off-chip DRAM of a reconfigurable accelerator. Similarly, some researchers have proposed

approaches to maximize data reuse in GPU’s register file to reduce the amount of data

movement [42, 124]. In contrast, our work focuses on minimizing data movement in the file

I/O subsystem which has not been accounted for in these works.

Various researchers have also explored efficient data shuffling methods. DeepIO [191] uti-

lizes multiple process memories, similar to what we have proposed, to store the dataset to

enable in-memory data shuffling. However, in the case that a dataset cannot fit in memory,

DeepIO fails to minimize the amount of data movement as it only pipelines data reading

with the training. For the file I/O bound problems where the computation is light, DeepIO

is unlikely to be able to improve the data reading performance of such training. The Dis-

tributed In-Memory Data [86] approach also shuffles data in multi-node memory. However, it

makes an impractical assumption that the total available memory on all nodes is always suf-

ficient to accommodate the entire dataset. Lightweight Implementation of Random Shuffling

(LIRS) [77] leverages a fast storage (i.e., Intel Optane SSD) instead of a main memory to

allow for efficient random data accesses. LIRS shuffles indexes of the entire training dataset

in memory and directly accesses data samples in the storage based on the randomized in-

dexes. This work is not practical for large-scale systems where the storage system is shared

and remote. On a final note, none of the approaches consider reusing input data with the

reuse distance smaller than one epoch.

180 Chapter 8. Summary and Discussion

8.4.2 Topology-Aware Parameter Servers for Asynchronous Train-

ing

SGD is one of the most common techniques used in the state-of-art DL frameworks. The

default SGD approach updates trainable parameters at the end of each training iteration

to continually improve the quality of the model. This type of training is referred to as

“synchronous” training. Although synchronous SGD training [192] has been proven to be

highly efficient as it can provide good inference accuracy as well as good convergence rate,

its bulk synchronous nature prevents it from scaling onto large-scale computer systems due

to the communication bottleneck.

To alleviate the network I/O bottleneck, an asynchronous version of SGD was introduced.

This training model updates parameters asynchronously in every iteration. In other words,

the processes are not blocked during the parameter update step, which allows the training of

an individual process to progress independently from one another and results in an improve-

ment of overall training progress. Because of the asynchronous parameter update nature,

the parameters can be updated only partially which makes the training model susceptible

to training divergence as well as low inference accuracy. Asynchronous training is generally

implemented using parameter servers [30, 35, 96, 97, 98, 187, 188], where parameters are

read and write through centralized servers.

Figure 8.7 shows one possible structure of a connection of workers and parameter servers,

the fat-tree topology which is widely adopted in supercomputer systems (W is a worker, and

PS is a parameter server). In the case of data parallel training, every worker has to access

every parameter server during the parameter update step irrespective of how far the worker

is from the parameter server. The cost of accessing the parameter server of each worker

is non-uniform since the distances between the pairs of workers and parameter servers are

8.4. Future Work: Tradeoffs Between Data Movement and Accuracy 181

PS	2 PS	3W	0 W	1 W	2 W	3PS	0 PS	1

Figure 8.7: Connection to parameter servers (fat-tree topology)

different. As discussed in Chapter 1.2, the cost of moving data, regarding time and energy,

increases with the range of which data is moved. For instance, it is more expensive for

W0 to access PS3 than PS0 since W0 and P3 are connected to a different leaf switch.

Without network I/O congestion, the parameter update step of an individual worker is

already expensive. With a large amount of global communication, the network I/O is highly

congested, which makes the parameter update of each worker even more expensive. Note

that although the fat-tree topology is one of the interconnections that are good for hiding

contention compared to the torus (e.g., in Blue Gene systems—5D torus) and Dragonfly

(e.g., in Cray supercomputers—Cray Aries) structures, from Figure 8.7, high network I/O

contention can still be observed.

Therefore, we propose to tackle the parameter server access problem by reducing the amount

of global data movement. One of the possible methods to solve this problem is to have

additional processes as proxies that communicate with a subset of workers and a subset of

parameter servers. The purpose of these proxies is to localize the communication to reduce

the global data transfer congestion. To access the parameter servers, the worker processes

communicate with only their local proxy, which is the nearest one. The hierarchical structure

of the proxies is based on the machine and network I/O topologies, which can be realized

182 Chapter 8. Summary and Discussion

through hwloc [19] and netloc [51].

For each machine, we take into account the internal hierarchical topology of the machine,

such as non-uniform memory access (NUMA) memory nodes, sockets, shared caches, and

cores, to determine the structure of the proxies. The design principle of the on-node proxy

structure is to reduce the data movement cost within the node. For the NUMA architecture,

the memory access cost is minimized if the process accesses the nearest memory to the NUMA

node of the core that it is running on. Usually, interprocess communication is carried out

through shared memory. Thus, processes on the same NUMA node can communicate with

one another with a smaller cost than with the ones on the different nodes [99]. Therefore,

to optimize the data movement cost, each NUMA node can have one proxy, which is a

process that is running on or bound to one of the cores inside that NUMA node, as shown

in Figure 8.8.

Machine	0

Socket	0

Die	0

Core	0

Core	1

Core	2

Core	3

PX	
0

P1

P2

P3

Socket	1

Die	0

Core	0		.

Core	1		.

Core	2		.

Core	3		.

PX	
1

P4

P5

P6

… connection	to	other	proxy/switch

Mem	Ctl Mem	Ctl

… connection	to	memory … connection	to	memory

Virtual	data	movement	path

Actual	connection

Figure 8.8: On-node non-uniform memory access (NUMA) topology with proxies

8.4. Future Work: Tradeoffs Between Data Movement and Accuracy 183

Figure 8.8 demonstrates a machine with two NUMA nodes (MemCtl is a memory controller,

PX is a proxy process, and P is a computing process). Each NUMA node has four cores,

and each core has one process, either a proxy or a computing process, running on. The solid

black line represents the physical connection between a core and a memory controller or

between the memory controllers, which is where the actual data transfer happens. However,

we show the red dotted line to demonstrate the virtual data movement between processes.

In this case, all computing processes on the same NUMA node send/receive data to/from the

proxy process. Since there are multiple proxies within the machine, one of the proxies acts as

a root proxy, which is responsible for communicating with external proxies. We henceforth

call the root proxy the “on-node proxy”.

PSPX	2 PSPX	3WPX	0 WPX	1 WPX	2 WPX	3PSPX	0 PSPX	1PX	0 PX	1

… connection	to	other	switches

Virtual	data	movement	path
Actual	connection

Figure 8.9: Parameter servers with proxies

For the off-node topology, we can localize the data movement by having one proxy per a leaf

switch. The off-node proxy can be one of the on-node proxies or a new process on one of

the nodes on the same switch. This model is illustrated in Figure 8.9 (PSPX is an on-node

proxy of the parameter server, WPX is an on-node proxy of the worker, PX is an off-node

proxy, a solid black line is a physical data movement path, and a dotted red line is a virtual

data movement path). Although we show the connection of the on-node and off-node proxies

in the figure, for conciseness, we further refer to the on-node proxy of the parameter server,

184 Chapter 8. Summary and Discussion

the on-node proxy of the worker, and the off-node proxy as parameter server, worker, and

proxy, respectively. To write to the parameter server, the proxy locally reduces parameters

from the workers and forwards the accumulated results to the parameter server directly or

to another proxy. To read from the parameter server, the proxy fetches data from the server

or another proxy and forward it to the corresponding workers. Note that the proxy can

prefetch parameters before they receive actual requests from the workers.

Although our proposed approach increases the total amount of communication, most of the

data movement is local. In other words, we trade more local data movement for lesser

global communication, which, based on our hypothesis, can improve communication as a

whole. With our solution, the current parameter update policy has to be modified to enable

the proxies to prefetch parameters from the servers or hold parameters for reduction before

for updating them on the parameter servers. We may have to perform the training with

higher iteration counts than the typical approach as our new parameter update scheme can

result in a lower convergence rate. However, we expect to improve the parameter update

performance significantly. Therefore, our proposed work should deliver better overall training

performance.

Related Work

A large body of work has been proposed to increase training capability and scalability of DL

using parameter servers. The work in this area focuses on maximizing data consistency and

minimizing overall data movement. However, none of the work has taken into account the

topology of the parameter servers in their optimizations.

Google [38, 98] has implemented large-scale asynchronous training using the parameter server

model and proposed a training algorithm, namely DownpourSGD, that works on top of the

model. DownpourSGD adopts Adagrad [41], a method to use a separate adaptive learning

8.4. Future Work: Tradeoffs Between Data Movement and Accuracy 185

rate for each parameter, to address the inconsistent parameter update problem. It has been

reported to provide good inference accuracy and training convergence rate for the speech

recognition application (with 42M parameters) using nearly 2K CPU cores. Petuum [174],

a general purpose parameter server, adopts the bounded-asynchronous consistency model

to preserve data-parallel convergence guarantees. It can handle up to 220B parameters of

the YahooLDA [8] application using 256 cores. Apache PS-Lite [96] is a key-value store

parameter server model that is used in MXNet. It can handle petabytes of data with billions

of data samples and parameters. The critical optimizations in PS-Lite, are mainly related

to data movement optimizations, include (1) range push and pull: for using a small number

of large messages instead of a large number of small messages, (2) user-defined filter: for

minimizing amount of computation (e.g., transferring only non-zero values), and (3) message

compression: for reducing message size. Although the experiments were run on large scale

systems (up to 1,000 nodes; 16 cores on each node), the scalability of PS-Lite has not been

reported in the literature.

8.4.3 Dynamic Batch Sizing

We have presented in Chapter 7.4 that a large batch is used in common practice; however,

it can degrade model quality. To support this claim, we train the original CIFAR10 dataset

(50,000 images in an epoch) on AlexNet by using different batch sizes. The inference accuracy

of each batch size is shown in Figure 8.10.

From the experimental results, the batch size of 64 is the optimal one as it is the smallest

batch size that provides the highest inference accuracy. Although the larger batch sizes

achieve slightly worse convergence accuracies, they allow for more computation parallelism.

We can leverage such an advantage by adding more resources to accelerate the training

186 Chapter 8. Summary and Discussion

0.10

0.29

0.57

0.69
0.73 0.74

0.81 0.81 0.79 0.79 0.78 0.76 0.73

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

In
fe
re
nc
e	
Ac
cu
ra
cy

Batch	Size

Figure 8.10: Batch size vs. inference accuracy (CIFAR10-AlexNet training)

convergence. In fact, even for typical sequential training, large batch sizes provide better

training throughput than the small batch sizes. The improvement of throughput for large

batch sizes is subject to less parameter update frequency.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

40
00

80
00

12
00
0

16
00
0

20
00
0

24
00
0

28
00
0

32
00
0

36
00
0

40
00
0

44
00
0

48
00
0

52
00
0

56
00
0

60
00
0

Ab
so
lu
te
	In

fe
re
nc
e	
Ac
cu
ra
cy
	C
ha
ng
e	
pe
r	1

K	
Ite

ra
tio

ns

In
fe
re
nc
e	
Ac
cu
ra
cy

Iteration	Count

Inference	Accuracy	Change	(per	1K	iterations)

Inference	Accuracy

Figure 8.11: Inference accuracy vs. iteration count for the batch size of 64

From the same experiment, we plot the inference accuracy of the batch size of 64 against an

iteration count as shown in Figure 8.11. We also compute the absolute inference accuracy

change per one thousand iterations and plotted it in the same graph. Based on the graph,

8.4. Future Work: Tradeoffs Between Data Movement and Accuracy 187

the inference accuracy changes dramatically in the first few thousands of iterations. After

the 5,000th iteration (i.e., approximately 6.4 epochs; 3.2 million images), the inference ac-

curacy begins to converge and gradually increases with the average change of 0.01 for every

1,000 iterations, which is only 0.00001 per iteration. The average change of inference accu-

racy between iterations is extremely small making the high-frequency updates unnecessary.

Therefore, the training can reduce parameter update frequency after the training starts to

converge.

Adjusting parameter update frequency is practical as it is based on the principle that the

inference accuracy slowly becomes more robust to low-quality parameter changes as the

training progresses. The parameter changes at the beginning of the training are highly

sensitive as the rest of parameter updates are based on them [170]. To ensure that the

training moves into the direction of the true gradient (i.e., towards the minimum error), we

need to be careful not to make dramatic moves at the start (i.e., using small learning rate

and/or batch size) so that we can correct the parameter change direction in the next iteration

in the case that the current move is not appropriate. Once the training moves towards the

true gradient direction, we can aggressively change the parameters (i.e., using large learning

rate and/or batch size).

In this proposed work, we attempt to balance inference accuracy and training speed by using

the dynamic batch sizing approach. We start the training by using a small or medium size

batch. Then, we periodically evaluate the progress of the training and increase the size of

the batch along with the amount of underlying compute resources when appropriate. Doing

so increases computation capability which enables the training to process data samples in a

shorter amount of time; thus, allowing the training to reach the convergence and the target

inference accuracy faster. Moreover, increasing the size of the batch also reduces the amount

of process synchronization since we train a larger number of data samples before updating

188 Chapter 8. Summary and Discussion

parameters. Therefore, the overall data movement during parameter updates is minimized;

hence, increasing data processing throughput.

Our approach scales the batch size based on two aspects of the training progress.

1. Convergence rate: We scale the batch size up once the convergence rate is smaller

than a preset threshold.

2. Percentage of reused data in the batch (PRD): In the case that the data reuse

optimization (presented in Chapter 8.4.1) is used in collaboration with the dynamic

batch sizing approach, we can consider PRD in our batch size scaling policy. Suppose

N is a number of data samples that we read to memory each time, B is an initial batch

size, where B < N , and N is a multiple of B (N mod B = 0). We can gradually

increase the batch size, starting from B, when the PRD reaches some threshold. Once

the batch size reaches N , we read new batches of data to memory and scale batch

size down to B. Note that this scaling policy is a saw-tooth-like scaling rather than a

monotonic increase.

Large batch sizes have a negative impact on the inference accuracy but have a positive impact

on the data processing speed due to increased parallelism. Since the rate of convergence of

the inference accuracy reduces as the training progresses, we hypothesize that using smaller

batch sizes early during the training and large batch sizes later in the training would allow

us to benefit from the faster data processing of large batch sizes without being significantly

affected by the negative influence on the inference accuracy.

Related Work

Google Brain [147] has proposed the static batch size scaling scheme that is to increase the

batch size after every certain number of iterations. Although the scaling policy is simple, it

8.4. Future Work: Tradeoffs Between Data Movement and Accuracy 189

is not practical as a convergence of parameters is rarely linear in practice. Moreover, such

an approach assumes prior knowledge on training convergence. For instance, from one of the

experiments, the batch size of the ImageNet training is doubled at the 30th epoch as they

know beforehand that the training begins to converge at that epoch. Although this batch

size scaling policy works well with the training of ImageNet, it might not deliver the same

performance for the training of other datasets and neural networks. Ignoring the progress

of the training can deviate the direction of the parameter update into the wrong way, which

can result in training divergence.

Bibliography

[1] GRPC: A High Performance, Open-Source Universal RPC Framework. http://www.

grpc.io.

[2] TensorFlow Architecture. https://www.tensorflow.org/extend/architecture.

[3] Caffe-MPI for Deep Learning. https://github.com/Caffe-MPI/Caffe-MPI.github.

io, September 2015.

[4] MPI: A Message-Passing Interface Standard. http://mpi-forum.org/docs/mpi-3.

1/mpi31-report.pdf, September 2015.

[5] Cerebras Reveals World’s ‘Largest Computer Chip’ for AI Tasks. https://www.bbc.

com/news/technology-49395577, August 2019.

[6] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal

Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat

Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,

Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay

Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin

Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-Scale Machine Learning

on Heterogeneous Systems, 2015. Software available from tensorflow.org.

[7] Mart́ın Abadi, Michael Isard, and Derek G Murray. A Computational Model for

190

http://www.grpc.io
http://www.grpc.io
https://www.tensorflow.org/extend/architecture
https://github.com/Caffe-MPI/Caffe-MPI.github.io
https://github.com/Caffe-MPI/Caffe-MPI.github.io
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.bbc.com/news/technology-49395577
https://www.bbc.com/news/technology-49395577

BIBLIOGRAPHY 191

TensorFlow: An Introduction. In Proceedings of the 1st ACM SIGPLAN International

Workshop on Machine Learning and Programming Languages, pages 1–7. ACM, 2017.

[8] Amr Ahmed, Moahmed Aly, Joseph Gonzalez, Shravan Narayanamurthy, and Alexan-

der J Smola. Scalable Inference in Latent Variable Models. In Proceedings of the

Fifth ACM International Conference on Web Search and Data Mining, pages 123–132.

ACM, 2012.

[9] Alham Fikri Aji and Kenneth Heafield. Sparse Communication for Distributed Gradi-

ent Descent. In Proceedings of the 2017 Conference on Empirical Methods in Natural

Language Processing, pages 440–445, Copenhagen, Denmark, September 2017. Associ-

ation for Computational Linguistics.

[10] Ashwin M Aji, Lokendra S Panwar, Feng Ji, Milind Chabbi, Karthik Murthy, Pavan

Balaji, Keith R Bisset, James Dinan, Wu-chun Feng, John Mellor-Crummey, et al.

On the Efficacy of GPU-integrated MPI for Scientific Applications. In Proceedings

of the 22nd International Symposium on High-performance Parallel and Distributed

Computing, pages 191–202. ACM, 2013.

[11] Ashwin M Aji, Lokendra S Panwar, Feng Ji, Karthik Murthy, Milind Chabbi, Pavan

Balaji, Keith R Bisset, James Dinan, Wu-chun Feng, John Mellor-Crummey, et al.

MPI-ACC: Accelerator-aware MPI for Scientific Applications. IEEE Transactions on

Parallel and Distributed Systems, 27(5):1401–1414, 2015.

[12] Takuya Akiba, Shuji Suzuki, and Keisuke Fukuda. Extremely Large Minibatch SGD:

Training Resnet-50 on ImageNet in 15 Minutes. arXiv preprint arXiv:1711.04325,

2017.

[13] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD:

192 BIBLIOGRAPHY

Communication-Efficient SGD via Gradient Quantization and Encoding. In Advances

in Neural Information Processing Systems, pages 1709–1720, 2017.

[14] A. A. Awan, J. Bdorf, C. Chu, H. Subramoni, and D. K. Panda. Scalable Distributed

DNN Training using TensorFlow and CUDA-Aware MPI: Characterization, Designs,

and Performance Evaluation. In 2019 19th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGRID), pages 498–507, May 2019.

[15] Ammar Ahmad Awan, Khaled Hamidouche, Jahanzeb Maqbool Hashmi, and Dha-

baleswar K Panda. S-Caffe: Co-designing MPI Runtimes and Caffe for Scalable Deep

Learning on Modern GPU Clusters. In Proceedings of the 22nd ACM SIGPLAN Sym-

posium on Principles and Practice of Parallel Programming, pages 193–205. ACM,

2017.

[16] Yoshua Bengio. Practical Recommendations for Gradient-based Training of Deep Ar-

chitectures. In Neural networks: Tricks of the trade, pages 437–478. Springer, 2012.

[17] André B Bondi. Characteristics of Scalability and Their Impact on Performance. In

Proceedings of the 2nd International Workshop on Software and Performance, pages

195–203. ACM, 2000.

[18] Antoine Bordes, Sumit Chopra, and Jason Weston. Question Answering with Sub-

graph Embeddings. In Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing (EMNLP), pages 615–620, Doha, Qatar, October 2014.

Association for Computational Linguistics.

[19] François Broquedis, Jérôme Clet-Ortega, Stéphanie Moreaud, Nathalie Furmento,

Brice Goglin, Guillaume Mercier, Samuel Thibault, and Raymond Namyst. Hwloc:

A Generic Framework For Managing Hardware Affinities In HPC Applications. In

BIBLIOGRAPHY 193

Proceedings of the 18th Euromicro International Conference on Parallel, Distributed

and Network-Based Processing (PDP), pages 180–186. IEEE, 2010.

[20] Chia-Yu Chen, Jungwook Choi, Daniel Brand, Ankur Agrawal, Wei Zhang, and

Kailash Gopalakrishnan. AdaComp: Adaptive Residual Gradient Compression for

Data-Parallel Distributed Training. In Thirty-Second AAAI Conference on Artificial

Intelligence, 2018.

[21] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao,

Bing Xu, Chiyuan Zhang, and Zheng Zhang. MXNet: A Flexible and Efficient

Machine Learning Library for Heterogeneous Distributed Systems. arXiv preprint

arXiv:1512.01274, 2015.

[22] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss: An Energy-

efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks. IEEE

Journal of Solid-State Circuits, 52(1):127–138, 2017.

[23] Steven WD Chien, Stefano Markidis, Chaitanya Prasad Sishtla, Luis Santos, Pawel

Herman, Sai Narasimhamurthy, and Erwin Laure. Characterizing Deep-Learning I/O

Workloads in TensorFlow. In 2018 IEEE/ACM 3rd International Workshop on Parallel

Data Storage & Data Intensive Scalable Computing Systems (PDSW-DISCS), pages

54–63. IEEE, 2018.

[24] Wei Der Chien. An Evaluation of TensorFlow as a Programming Framework for HPC

Applications. Master’s thesis, KTH Royal Institute of Technology, Sweden, 2018.

[25] Trishul M Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.

Project Adam: Building an Efficient and Scalable Deep Learning Training Sys-

tem. In 11th USENIX Symposium on Operating Systems Design and Implementation

(OSDI’14), volume 14, pages 571–582, 2014.

194 BIBLIOGRAPHY

[26] Minsik Cho, Ulrich Finkler, Sameer Kumar, David Kung, Vaibhav Saxena, and Dheeraj

Sreedhar. PowerAI DDL. arXiv preprint arXiv:1708.02188, 2017.

[27] Howard Chu. Lightning Memory-Mapped Database Manager (LMDB). http://www.

lmdb.tech/doc/.

[28] Dan CireşAn, Ueli Meier, Jonathan Masci, and Jürgen Schmidhuber. Multi-column

Deep Neural Network for Traffic Sign Classification. Neural Networks, 32:333–338,

2012.

[29] Alexander Collins, Christian Fensch, Hugh Leather, and Murray Cole. MaSiF: Machine

Learning Guided Auto-tuning of Parallel Skeletons. In 20th Annual International

Conference on High Performance Computing, pages 186–195. IEEE, 2013.

[30] Henggang Cui, Hao Zhang, Gregory R Ganger, Phillip B Gibbons, and Eric P Xing.

GeePS: Scalable Deep Learning on Distributed GPUs with a GPU-specialized Parame-

ter Server. In Proceedings of the Eleventh European Conference on Computer Systems,

page 4. ACM, 2016.

[31] Xuewen Cui and Wu-chun Feng. Iterative Machine Learning (IterML) for Effective

Parameter Pruning and Tuning in Accelerators. In 16th ACM International Conference

on Computing Frontiers, Alghero, Sardinia, Italy, April 2019.

[32] Xuewen Cui, Thomas RW Scogland, Bronis R de Supinski, and Wu-chun Feng.

Directive-based Pipelining Extension for OpenMP. In 2016 IEEE International Con-

ference on Cluster Computing (CLUSTER), pages 481–484. IEEE, 2016.

[33] Xuewen Cui, Thomas RW Scogland, Bronis R de Supinski, and Wu-chun Feng.

Directive-based Partitioning and Pipelining for Graphics Processing Units. In 2017

http://www.lmdb.tech/doc/
http://www.lmdb.tech/doc/

BIBLIOGRAPHY 195

IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages

575–584. IEEE, 2017.

[34] Leonardo Dagum and Ramesh Menon. OpenMP: An Industry-standard API for

Shared-memory Programming. Computing in Science & Engineering, (1):46–55, 1998.

[35] Wei Dai, Abhimanu Kumar, Jinliang Wei, Qirong Ho, Garth A Gibson, and Eric P

Xing. High-Performance Distributed ML at Scale through Parameter Server Consis-

tency Models. In Twenty-Ninth AAAI Conference on Artificial Intelligence, pages

79–87, 2015.

[36] Anwesha Das, Frank Mueller, Charles Siegel, and Abhinav Vishnu. Desh: Deep Learn-

ing for System Health Prediction of Lead Times to Failure in HPC. In Proceedings

of the 27th International Symposium on High-Performance Parallel and Distributed

Computing, pages 40–51. ACM, 2018.

[37] Glenn Davis and Russ Rew. Data Management: NetCDF: An Interface for Scientific

Data Access. IEEE Computer Graphics and Applications, 10:76–82, 1990.

[38] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,

Marc'aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc V. Le, and An-

drew Y. Ng. Large Scale Distributed Deep Networks. In F. Pereira, C. J. C. Burges,

L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information Processing

Systems 25, pages 1223–1231. Curran Associates, Inc., 2012.

[39] N. Dryden, N. Maruyama, T. Moon, T. Benson, A. Yoo, M. Snir, and B. Van Essen.

Aluminum: An Asynchronous, GPU-Aware Communication Library Optimized for

Large-Scale Training of Deep Neural Networks on HPC Systems. In 2018 IEEE/ACM

Machine Learning in HPC Environments (MLHPC), pages 1–13, November 2018.

196 BIBLIOGRAPHY

[40] Nikoli Dryden, Tim Moon, Sam Ade Jacobs, and Brian Van Essen. Communication

Quantization for Data-parallel Training of Deep Neural Networks. In Workshop on

Machine Learning in HPC Environments (MLHPC), pages 1–8. IEEE, 2016.

[41] John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for On-

line Learning and Stochastic Optimization. Journal of Machine Learning Research,

12(Jul):2121–2159, 2011.

[42] Sindhuja Gopalakrishnan Elango. Convolutional Neural Network Acceleration on GPU

by Exploiting Data Reuse. PhD thesis, San Jose State University, 2017.

[43] Facebook. Gloo. https://github.com/facebookincubator/gloo/blob/master/

docs/readme.md, 2017.

[44] Thomas L Falch and Anne C Elster. Machine Learning Based Auto-tuning for En-

hanced OpenCL Performance Portability. In 2015 IEEE International Parallel and

Distributed Processing Symposium Workshop, pages 1231–1240. IEEE, 2015.

[45] Clément Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. Scene Parsing

with Multiscale Feature Learning, Purity Trees, and Optimal Covers. In Proceedings

of the 29th International Coference on International Conference on Machine Learning,

ICML12, page 18571864, Madison, WI, USA, 2012. Omnipress.

[46] Clément Farabet, Yann LeCun, Koray Kavukcuoglu, Eugenio Culurciello, Berin Mar-

tini, Polina Akselrod, and Selcuk Talay. Large-scale FPGA-based Convolutional Net-

works. Scaling Up Machine Learning: Parallel and Distributed Approaches, pages

399–419, 2011.

[47] Michael Feldman. Intel Spills Details on Knights Mill Processor. https://www.

top500.org/news/intel-spills-details-on-knights-mill-processor/, 2017.

https://github.com/facebookincubator/gloo/blob/master/docs/readme.md
https://github.com/facebookincubator/gloo/blob/master/docs/readme.md
https://www.top500.org/news/intel-spills-details-on-knights-mill-processor/
https://www.top500.org/news/intel-spills-details-on-knights-mill-processor/

BIBLIOGRAPHY 197

[48] Christophe Garcia and Manolis Delakis. Convolutional Face Finder: A Neural Archi-

tecture for Fast and Robust Face Detection. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 26(11):1408–1423, 2004.

[49] Joseph D Garvey and Tarek S Abdelrahman. Automatic Performance Tuning of Stencil

Computations on GPUs. In 2015 44th International Conference on Parallel Processing,

pages 300–309. IEEE, 2015.

[50] Andrew Gibiansky. Bringing HPC Techniques to Deep Learning. http://andrew.

gibiansky.com.

[51] Brice Goglin, Joshua Hursey, and Jeffrey M Squyres. Netloc: Towards a Comprehensive

View of the HPC System Topology. In 2014 43rd International Conference on Parallel

Processing Workshops (ICCPW), pages 216–225. IEEE, 2014.

[52] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

[53] Google. Cloud Tensor Processing Units (TPUs). https://cloud.google.com/tpu/

docs/tpus, 2018.

[54] Google. gRPC over HTTP2. https://github.com/grpc/grpc/blob/master/doc/

PROTOCOL-HTTP2.md, 2018.

[55] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo

Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, Large Minibatch

SGD: Training ImageNet in 1 Hour. arXiv preprint arXiv:1706.02677, 2017.

[56] Richard L Graham, Devendar Bureddy, Pak Lui, Hal Rosenstock, Gilad Shainer, Gil

Bloch, Dror Goldenerg, Mike Dubman, Sasha Kotchubievsky, Vladimir Koushnir, et al.

Scalable Hierarchical Aggregation Protocol (SHArP): A Hardware Architecture for

http://andrew.gibiansky.com
http://andrew.gibiansky.com
http://www.deeplearningbook.org
https://cloud.google.com/tpu/docs/tpus
https://cloud.google.com/tpu/docs/tpus
https://github.com/grpc/grpc/blob/master/doc/PROTOCOL-HTTP2.md
https://github.com/grpc/grpc/blob/master/doc/PROTOCOL-HTTP2.md

198 BIBLIOGRAPHY

Efficient Data Reduction. In 2016 First International Workshop on Communication

Optimizations in HPC (COMHPC), pages 1–10. IEEE, 2016.

[57] Ivan Grasso, Klaus Kofler, Biagio Cosenza, and Thomas Fahringer. Automatic Prob-

lem Size Sensitive Task Partitioning on Heterogeneous Parallel Systems. In ACM

SIGPLAN Notices, volume 48, pages 281–282. ACM, 2013.

[58] The HDF Group. Enabling a Strict Consistency Semantics Model in

Parallel HDF5. https://support.hdfgroup.org/HDF5/doc/Advanced/

PHDF5FileConsistencySemantics/PHDF5FileConsistencySemantics.pdf, 2012.

[59] Jeff Hale. Which Deep Learning Framework is Grow-

ing Fastest? https://towardsdatascience.com/

which-deep-learning-framework-is-growing-fastest-3f77f14aa318, 2019.

[60] Jiawei Han, Jian Pei, and Micheline Kamber. Data Mining: Concepts and Techniques.

Elsevier, 2011.

[61] Mark Harris. NVIDIA DGX-1: The Fastest Deep Learning System. https://

devblogs.nvidia.com/dgx-1-fastest-deep-learning-system/, 2017.

[62] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into Recti-

fiers: Surpassing Human-Level Performance on ImageNet Classification. In Proceedings

of the IEEE International Conference on Computer Vision (ICCV), December 2015.

[63] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning

for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 770–778, 2016.

[64] Moritz Helmstaedter, Kevin L Briggman, Srinivas C Turaga, Viren Jain, H Sebastian

https://support.hdfgroup.org/HDF5/doc/Advanced/PHDF5FileConsistencySemantics/PHDF5FileConsistencySemantics.pdf
https://support.hdfgroup.org/HDF5/doc/Advanced/PHDF5FileConsistencySemantics/PHDF5FileConsistencySemantics.pdf
https://towardsdatascience.com/which-deep-learning-framework-is-growing-fastest-3f77f14aa318
https://towardsdatascience.com/which-deep-learning-framework-is-growing-fastest-3f77f14aa318
https://devblogs.nvidia.com/dgx-1-fastest-deep-learning-system/
https://devblogs.nvidia.com/dgx-1-fastest-deep-learning-system/

BIBLIOGRAPHY 199

Seung, and Winfried Denk. Connectomic Reconstruction of the Inner Plexiform Layer

in the Mouse Retina. Nature, 500(7461):168, 2013.

[65] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming, Revised

First Edition. Morgan Kaufmann, 2012.

[66] J. Hines. Stepping up to Summit. Computing in Science Engineering, 20(2):78–82,

Mar 2018.

[67] Atsushi Hori, Min Si, Balazs Gerofi, Masamichi Takagi, Jai Dayal, Pavan Balaji, and

Yutaka Ishikawa. Process-in-Process: Techniques for Practical Address-Space Sharing.

In Proceedings of the 27th International Symposium on High-Performance Parallel and

Distributed Computing, pages 131–143. ACM, 2018.

[68] Forrest N Iandola, Matthew W Moskewicz, Khalid Ashraf, and Kurt Keutzer. Fire-

Caffe: Near-linear Acceleration of Deep Neural Network Training on Compute Clusters.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 2592–2600, 2016.

[69] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International

Conference on International Conference on Machine Learning - Volume 37, ICML15,

page 448456. JMLR.org, 2015.

[70] Shintaro Iwasaki, Abdelhalim Amer, Kenjiro Taura, Sangmin Seo, and Pavan Bal-

aji. BOLT: Optimizing OpenMP Parallel Regions with User-Level Threads. In 2019

28th International Conference on Parallel Architectures and Compilation Techniques

(PACT), pages 29–42. IEEE, 2019.

200 BIBLIOGRAPHY

[71] Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. On Us-

ing Very Large Target Vocabulary for Neural Machine Translation. In Proceedings

of the 53rd Annual Meeting of the Association for Computational Linguistics and the

7th International Joint Conference on Natural Language Processing (Volume 1: Long

Papers), pages 1–10, Beijing, China, July 2015. Association for Computational Lin-

guistics.

[72] John Jenkins, James Dinan, Pavan Balaji, Nagiza F Samatova, and Rajeev Thakur.

Enabling Fast, Noncontiguous GPU Data Movement in Hybrid MPI+ GPU Environ-

ments. In 2012 IEEE International Conference on Cluster Computing, pages 468–476.

IEEE, 2012.

[73] Feng Ji, Ashwin M Aji, James Dinan, Darius Buntinas, Pavan Balaji, Wu-chun Feng,

and Xiaosong Ma. Efficient Intranode Communication in GPU-accelerated Systems. In

2012 IEEE 26th International Parallel and Distributed Processing Symposium Work-

shops & PhD Forum, pages 1838–1847. IEEE, 2012.

[74] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong, Feihu Zhou,

Liqiang Xie, Zhenyu Guo, Yuanzhou Yang, Liwei Yu, et al. Highly Scalable Deep

Learning Training System with Mixed-precision: Training ImageNet in Four Minutes.

In 2018 Workshop on Systems for ML and Open Source Software, Thirty-third Con-

ference on Neural Information Processing Systems (NeurIPS), 2018.

[75] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross

Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional Architecture

for Fast Feature Embedding. In Proceedings of the 22nd ACM International Conference

on Multimedia, MM 14, page 675678, New York, NY, USA, 2014. ACM.

BIBLIOGRAPHY 201

[76] Kaggle. Data Science Bowl 2017: Can You Improve Lung Cancer Detection? https:

//www.kaggle.com/c/data-science-bowl-2017, 2017.

[77] Zhi-Lin Ke, Hsiang-Yun Cheng, and Chai-Lin Yang. LIRS: Enabling Efficient Ma-

chine Learning on NVM-based Storage via a Lightweight Implementation of Random

Shuffling. arXiv preprint arXiv:1810.04509, 2018.

[78] Gokcen Kestor, Roberto Gioiosa, Darren J Kerbyson, and Adolfy Hoisie. Quantifying

the Energy Cost of Data Movement in Scientific Applications. In IEEE International

Symposium on Workload Characterization (IISWC), 2013, pages 56–65. IEEE, 2013.

[79] Nikhil Ketkar. Introduction to PyTorch, pages 195–208. Apress, Berkeley, CA, 2017.

[80] Akhmedov Khumoyun, Yun Cui, and Lee Hanku. Spark Based Distributed Deep Learn-

ing Framework for Big Data Applications. In International Conference on Information

Science and Communications Technologies (ICISCT), pages 1–5. IEEE, 2016.

[81] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.

In 2015 3rd International Conference on Learning Representations (ICLR), 2015.

[82] Alex Krizhevsky. One Weird Trick for Parallelizing Convolutional Neural Networks.

arXiv preprint arXiv:1404.5997, 2014.

[83] Alex Krizhevsky and Geoffrey Hinton. Learning Multiple Layers of Features from Tiny

Images. Technical report, University of Toronto, 2009.

[84] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification with

Deep Convolutional Neural Networks. In F. Pereira, C. J. C. Burges, L. Bottou, and

K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25,

pages 1097–1105. Curran Associates, Inc., 2012.

https://www.kaggle.com/c/data-science-bowl-2017
https://www.kaggle.com/c/data-science-bowl-2017

202 BIBLIOGRAPHY

[85] Sameer Kumar, Victor Bitorff, Dehao Chen, Chiachen Chou, Blake Hechtman, Hy-

oukJoong Lee, Naveen Kumar, Peter Mattson, Shibo Wang, Tao Wang, et al. Scale

MLPerf-0.6 models on Google TPU-v3 Pods. arXiv preprint arXiv:1909.09756, 2019.

[86] Sameer Kumar, Dheeraj Sreedhar, Vaibhav Saxena, Yogish Sabharwal, and Ashish

Verma. Efficient Training of Convolutional Neural Nets on Large Distributed Systems.

arXiv preprint arXiv:1711.00705, 2017.

[87] Thorsten Kurth, Mikhail Smorkalov, Peter Mendygral, Srinivas Sridharan, and Amrita

Mathuriya. TensorFlow at Scale: Performance and productivity analysis of distributed

training with Horovod, MLSL, and Cray PE ML. Concurrency and Computation:

Practice and Experience, 31(16):e4989, 2019.

[88] Thorsten Kurth, Sean Treichler, Joshua Romero, Mayur Mudigonda, Nathan Luehr,

Everett Phillips, Ankur Mahesh, Michael Matheson, Jack Deslippe, Massimiliano Fat-

ica, Prabhat, and Michael Houston. Exascale Deep Learning for Climate Analytics.

In Proceedings of the International Conference for High Performance Computing, Net-

working, Storage, and Analysis, SC ’18, pages 51:1–51:12, Piscataway, NJ, USA, 2018.

IEEE Press.

[89] Thorsten Kurth, Jian Zhang, Nadathur Satish, Evan Racah, Ioannis Mitliagkas,

Md Mostofa Ali Patwary, Tareq Malas, Narayanan Sundaram, Wahid Bhimji, Mikhail

Smorkalov, et al. Deep Learning at 15PF: Supervised and Semi-Supervised Classi-

fication for Scientific Data. In Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, page 7. ACM, 2017.

[90] Quoc V Le. Building High-level Features using Large Scale Unsupervised Learning. In

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

2013, pages 8595–8598. IEEE, 2013.

BIBLIOGRAPHY 203

[91] LeCun, Yann and Bengio, Yoshua and Hinton, Geoffrey. Deep Learning. Nature,

521(7553):436, 2015.

[92] Stefan Lee, Senthil Purushwalkam, Michael Cogswell, David J. Crandall, and Dhruv

Batra. Why M Heads Are Better than One: Training a Diverse Ensemble of Deep

Networks. arXiv preprint arXiv:1511.06314, 2015.

[93] Michael KK Leung, Hui Yuan Xiong, Leo J Lee, and Brendan J Frey. Deep Learning

of the Tissue-Regulated Splicing Code. Bioinformatics, 30(12):i121–i129, 2014.

[94] Jiangtian Li, Xiaosong Ma, Karan Singh, Martin Schulz, Bronis R de Supinski, and

Sally A McKee. Machine Learning Based Online Performance Prediction for Run-

time Parallelization and Task Scheduling. In 2009 IEEE International Symposium on

Performance Analysis of Systems and Software, pages 89–100. IEEE, 2009.

[95] Jianwei Li, Wei keng Liao, Alok Choudhary, Robert Ross, Rajeev Thakur, William

Gropp, Rob Latham, Andrew Siegel, Brad Gallagher, and Michael Zingale. Parallel

netCDF: A High-Performance Scientific I/O Interface. In Proceedings of the 2003

ACM/IEEE Conference on Supercomputing, SC ’03, pages 39–, New York, NY, USA,

2003. ACM.

[96] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja

Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling Distributed Ma-

chine Learning with the Parameter Server. In 11th USENIX Symposium on Operating

Systems Design and Implementation (OSDI’14), pages 583–598, 2014.

[97] Mu Li, David G Andersen, Alexander J Smola, and Kai Yu. Communication Efficient

Distributed Machine Learning with the Parameter Server. In Advances in Neural

Information Processing Systems, pages 19–27, 2014.

204 BIBLIOGRAPHY

[98] Mu Li, Li Zhou, Zichao Yang, Aaron Li, Fei Xia, David G Andersen, and Alexander

Smola. Parameter Server for Distributed Machine Learning. In Big Learning NIPS

Workshop, volume 6, page 2. 2013.

[99] Shigang Li, Torsten Hoefler, and Marc Snir. NUMA-Aware Shared-Memory Collective

Communication for MPI. In Proceedings of the 22nd International Symposium on

High-Performance Parallel and Distributed Computing, pages 85–96. ACM, 2013.

[100] Wenqiang Li, Guanghao Jin, Xuewen Cui, and Simon See. An Evaluation of Uni-

fied Memory Technology on NVIDIA GPUs. In 2015 15th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing, pages 1092–1098. IEEE, 2015.

[101] Min Lin, Qiang Chen, and Shuicheng Yan. Network in Network. arXiv preprint

arXiv:1312.4400, 2013.

[102] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep Gradient Compres-

sion: Reducing the Communication Bandwidth for Distributed Training. In 2018 6th

International Conference on Learning Representations (ICLR), April 2018.

[103] Robert Love. Linux System Programming: Talking Directly to the Kernel and C Li-

brary. O’Reilly Media, Inc., 2013.

[104] Piotr Luszczek. Hardware for Numerical Libraries. http://www.icl.utk.edu/

~luszczek/teaching/courses/2017/mhpc/numlinalghw.pdf, 2017.

[105] He Ma, Fei Mao, and Graham W. Taylor. Theano-MPI: A Theano-Based Distributed

Training Framework. CoRR, abs/1605.08325, 2016.

[106] P. MacArthur, Q. Liu, R. D. Russell, F. Mizero, M. Veeraraghavan, and J. M. Dennis.

An Integrated Tutorial on InfiniBand, Verbs, and MPI. IEEE Communications Surveys

Tutorials, 19(4):2894–2926, 2017.

http://www.icl.utk.edu/~luszczek/teaching/courses/2017/mhpc/numlinalghw.pdf
http://www.icl.utk.edu/~luszczek/teaching/courses/2017/mhpc/numlinalghw.pdf

BIBLIOGRAPHY 205

[107] Alberto Magni, Christophe Dubach, and Michael O’Boyle. Automatic Optimization of

Thread-coarsening for Graphics Processors. In Proceedings of the 23rd International

Conference on Parallel Architectures and Compilation, pages 455–466. ACM, 2014.

[108] KV Manian, AA Ammar, Amit Ruhela, C-H Chu, Hari Subramoni, and Dhabaleswar K

Panda. Characterizing CUDA Unified Memory (UM)-Aware MPI Designs on Modern

GPU Architectures. In Proceedings of the 12th Workshop on General Purpose Process-

ing Using GPUs, pages 43–52. ACM, 2019.

[109] Amrita Mathuriya, Deborah Bard, Peter Mendygral, Lawrence Meadows, James Arne-

mann, Lei Shao, Siyu He, Tuomas Kärnä, Diana Moise, Simon J Pennycook, et al. Cos-

moFlow: Using Deep Learning to Learn the Universe at Scale. In SC18: International

Conference for High Performance Computing, Networking, Storage and Analysis, pages

819–829. IEEE, 2018.

[110] Pierre Matri, Maŕıa S Pérez, Alexandru Costan, and Gabriel Antoniu. TỳrFS: In-

creasing Small Files Access Performance with Dynamic Metadata Replication. In 2018

18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

(CCGRID). IEEE, 2018.

[111] Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius Micikevicius,

David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf, et al. MLPerf

Training Benchmark. arXiv preprint arXiv:1910.01500, 2019.

[112] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen,

David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh,

et al. Mixed Precision Training. In 2018 6th International Conference on Learning

Representations (ICLR), April 2018.

206 BIBLIOGRAPHY

[113] H Mikami, H Suganuma, P U-chupala, Y Tanaka, and Y Kageyama. Mas-

sively Distributed SGD: ImageNet/ResNet-50 Training in a Flash. arXiv preprint

arXiv:1811.05233, 2018.

[114] Ingo Molnar. [Announce] [patch] Modular Scheduler Core and Completely Fair Sched-

uler [CFS]. https://lwn.net/Articles/230501/.

[115] Douglas C Montgomery. Design and Analysis of Experiments. John Wiley & Sons,

2008.

[116] Timothy Prickett Morgan. Machine Learning Gets an InfiniBand

Boost with Caffe2. https://www.nextplatform.com/2017/04/19/

machine-learning-gets-infiniband-boost-caffe2/, 2017.

[117] Philipp Moritz, Robert Nishihara, Ion Stoica, and Michael I Jordan. SparkNet: Train-

ing Deep Networks in Spark. In 2016 4th International Conference on Learning Rep-

resentations (ICLR), May 2016.

[118] Karl Ni, Roger Pearce, Kofi Boakye, Brian Van Essen, Damian Borth, Barry Chen,

and Eric Wang. Large-scale Deep Learning on the YFCC100M Dataset. arXiv preprint

arXiv:1502.03409, 2015.

[119] NVIDIA. NVIDIA Depp Learning Platform: Giant Leaps in Performance and Ef-

ficiency for AI Services, From the Data Center to the Networks Edge. https:

//images.nvidia.com/content/pdf/inference-technical-overview.pdf, 2018.

[120] William F Ogilvie, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. Active Learn-

ing Accelerated Automatic Heuristic Construction for Parallel Program Mapping. In

2014 23rd International Conference on Parallel Architecture and Compilation Tech-

niques (PACT), pages 481–482. IEEE, 2014.

https://lwn.net/Articles/230501/
https://www.nextplatform.com/2017/04/19/machine-learning-gets-infiniband-boost-caffe2/
https://www.nextplatform.com/2017/04/19/machine-learning-gets-infiniband-boost-caffe2/
https://images.nvidia.com/content/pdf/inference-technical-overview.pdf
https://images.nvidia.com/content/pdf/inference-technical-overview.pdf

BIBLIOGRAPHY 207

[121] Travis E Oliphant. A Guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

[122] Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira Naruse, Rio Yokota, and Satoshi

Matsuoka. Large-Scale Distributed Second-Order Optimization Using Kronecker-

Factored Approximate Curvature for Deep Convolutional Neural Networks. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

12359–12367, 2019.

[123] Dhinakaran Pandiyan. Data Movement Energy Characterization of Emerging Smart-

phone Workloads for Mobile Platforms. Arizona State University, 2014.

[124] Hyunsun Park, Dongyoung Kim, Junwhan Ahn, and Sungjoo Yoo. Zero and Data

Reuse-Aware Fast Convolution for Deep Neural Networks on GPU. In Proceedings of

the Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software Code-

sign and System Synthesis, page 33. ACM, 2016.

[125] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch:

An Imperative Style, High-performance Deep Learning Library. In Advances in Neural

Information Processing Systems, pages 8024–8035, 2019.

[126] Pitch Patarasuk and Xin Yuan. Bandwidth Optimal All-reduce Algorithms for Clusters

of Workstations. Journal of Parallel and Distributed Computing, 69(2):117–124, 2009.

[127] Simone Pellegrini, Thomas Fahringer, Herbert Jordan, and Hans Moritsch. Automatic

Tuning of MPI Runtime Parameter Settings by Using Machine Learning. In Proceedings

of the 7th ACM International Conference on Computing Frontiers, pages 115–116.

ACM, 2010.

[128] Sarunya Pumma, Daniele Buono, Fabio Checconi, Xinyu Que, and Wu-chun Feng.

208 BIBLIOGRAPHY

Alleviating Load Imbalance in Data Processing for Large-Scale Deep Learning. In

2020 IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing

(CCGrid), under review.

[129] Sarunya Pumma, Wu-chun Feng, Phond Phunchongharn, Sylvain Chapeland, and

Tiranee Achalakul. A Runtime Estimation Framework for ALICE. Future Genera-

tion Computer Systems, 72:65–77, 2017.

[130] Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji. Parallel I/O Optimizations

for Scalable Deep Learning. In 2017 IEEE 23rd International Conference on Parallel

and Distributed Systems (ICPADS), pages 720–729. IEEE, 2017.

[131] Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji. Towards Scalable Deep

Learning via I/O Analysis and Optimization. In 2017 IEEE 19th International Confer-

ence on High Performance Computing and Communications; IEEE 15th International

Conference on Smart City; IEEE 3rd International Conference on Data Science and

Systems (HPCC/SmartCity/DSS), pages 223–230. IEEE, 2017.

[132] Sarunya Pumma, Min Si, Wu-chun Feng, and Pavan Balaji. Scalable Deep Learning

via I/O Analysis and Optimization. ACM Trans. Parallel Comput., 6(2):6:1–6:34, July

2019.

[133] Carl Edward Rasmussen. Gaussian Processes in Machine Learning. In Summer School

on Machine Learning, pages 63–71. Springer, 2003.

[134] Baidu Research. baidu-allreduce. https://github.com/baidu-research/

baidu-allreduce.

[135] Microsoft Research. The Microsoft Cognitive Toolkit. https://docs.microsoft.com/

en-us/cognitive-toolkit/, 2017.

https://github.com/baidu-research/baidu-allreduce
https://github.com/baidu-research/baidu-allreduce
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://docs.microsoft.com/en-us/cognitive-toolkit/

BIBLIOGRAPHY 209

[136] Stephen J. Rogowski. Bus. In Encyclopedia of Computer Science, pages 165–167. John

Wiley and Sons Ltd., Chichester, UK.

[137] Karl Rupp. Microprocessor Trend Data. https://github.com/karlrupp/

microprocessor-trend-data, 2018.

[138] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.

Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. Interna-

tional Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[139] Tara N Sainath, Abdel-rahman Mohamed, Brian Kingsbury, and Bhuvana Ramabhad-

ran. Deep Convolutional Neural Networks for LVCSR. In IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP), 2013, pages 8614–8618.

IEEE, 2013.

[140] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit Stochastic Gradient

Descent and Its Application to Data-parallel Distributed Training of Speech DNNs. In

Fifteenth Annual Conference of the International Speech Communication Association,

2014.

[141] Sangmin Seo, Abdelhalim Amer, Pavan Balaji, Cyril Bordage, George Bosilca, Alex

Brooks, Philip Carns, Adrián Castelló, Damien Genet, Thomas Herault, et al. Argob-

ots: A Lightweight Low-level Threading and Tasking Framework. IEEE Transactions

on Parallel and Distributed Systems, 29(3):512–526, 2017.

[142] Alexander Sergeev and Mike Del Balso. Horovod: Fast and Easy Distributed Deep

Learning in TensorFlow. arXiv preprint arXiv:1802.05799, 2018.

[143] John Shalf, Sudip Dosanjh, and John Morrison. Exascale Computing Technology

https://github.com/karlrupp/microprocessor-trend-data
https://github.com/karlrupp/microprocessor-trend-data

210 BIBLIOGRAPHY

Challenges. In International Conference on High Performance Computing for Compu-

tational Science, pages 1–25. Springer, 2010.

[144] Hongzhang Shan and John Shalf. Using IOR to Analyze the I/O Performance for HPC

Platforms. https://escholarship.org/uc/item/9111c60j, 2007.

[145] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-

Scale Image Recognition. In 2015 3rd International Conference on Learning Represen-

tations (ICLR), 2015.

[146] Karan Singh, Engin İpek, Sally A McKee, Bronis R de Supinski, Martin Schulz, and

Rich Caruana. Predicting Parallel Application Performance via Machine Learning

Approaches. Concurrency and Computation: Practice and Experience, 19(17):2219–

2235, 2007.

[147] Samuel L Smith, Pieter-Jan Kindermans, and Quoc V Le. Don’t Decay the Learning

Rate, Increase the Batch Size. In 2018 6th International Conference on Learning

Representations (ICLR), April 2018.

[148] Facebook Open Source. Caffe2 A New Lightweight, Modular, and Scalable Deep Learn-

ing Framework. https://caffe2.ai.

[149] Srinivas Sridharan, Karthikeyan Vaidyanathan, Dhiraj Kalamkar, Dipankar Das,

Mikhail E Smorkalov, Mikhail Shiryaev, Dheevatsa Mudigere, Naveen Mellempudi,

Sasikanth Avancha, Bharat Kaul, et al. On Scale-out Deep Learning Training for

Cloud and HPC. In SysML Conference, February 2018.

[150] Nikko Strom. Scalable Distributed DNN Training Using Commodity GPU Cloud Com-

puting. In Sixteenth Annual Conference of the International Speech Communication

Association, 2015.

https://escholarship.org/uc/item/9111c60j
https://caffe2.ai

BIBLIOGRAPHY 211

[151] Jeff A Stuart, Pavan Balaji, and John D Owens. Extending MPI to Accelerators. In

Proceedings of the 1st Workshop on Architectures and Systems for Big Data, pages

19–23. ACM, 2011.

[152] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going Deeper

with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 1–9, 2015.

[153] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.

Rethinking the Inception Architecture for Computer Vision. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 2818–2826, 2016.

[154] Yaniv Taigman, Ming Yang, Marc' Aurelio Ranzato, and Lior Wolf. Deepface: Closing

the Gap to Human-level Performance in Face Verification. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 1701–1708, 2014.

[155] TensorFlow. How To Compile, Use and Configure RDMA-Enabled Tensor-

Flow. https://github.com/tensorflow/tensorflow/blob/master/tensorflow/

contrib/verbs/README.md.

[156] R. Thakur, W. Gropp, and E. Lusk. A Case for Using MPI’s Derived Datatypes

to Improve I/O Performance. In IEEE/ACM Conference on Supercomputing (SC),

November 1998.

[157] R. Thakur, W. Gropp, and E. Lusk. Data Sieving and Collective I/O in ROMIO. In

Proceedings of the 7th Symposium on the Frontiers of Massively Parallel Computation,

pages 182–189, Washington, DC, USA, 1999.

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/verbs/README.md
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/verbs/README.md

212 BIBLIOGRAPHY

[158] Rajeev Thakur, Ewing Lusk, and William Gropp. Users Guide for ROMIO: A High-

Performance, Portable MPI-IO Implementation. Technical report, Technical Report

ANL/MCS-TM-234, Mathematics and Computer Science Division, Argonne National

Laboratory, 1997.

[159] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of Collec-

tive Communication Operations in MPICH. Int. J. High Perform. Comput. Appl.,

19(1):49–66, February 2005.

[160] The Ohio State University. MVAPICH: MPI over InfiniBand, 10GigE/iWARP and

RoCE. http://mvapich.cse.ohio-state.edu, 2014.

[161] Theano Development Team. Theano: A Python Framework for Fast Computation of

Mathematical Expressions. arXiv e-prints, abs/1605.02688, May 2016.

[162] Mustafa M Tikir, Laura Carrington, Erich Strohmaier, and Allan Snavely. A Genetic

Algorithms Approach to Modeling the Performance of Memory-bound Computations.

In Proceedings of the 2007 ACM/IEEE conference on Supercomputing, page 47. ACM,

2007.

[163] Philippe Tillet and David Cox. Input-aware Auto-tuning of Compute-bound HPC Ker-

nels. In Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis, page 43. ACM, 2017.

[164] Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. Chainer: A Next-

Generation Open Source Framework for Deep Learning. In Proceedings of workshop

on machine learning systems (LearningSys) in the twenty-ninth annual conference on

neural information processing systems (NIPS), volume 5, pages 1–6, 2015.

[165] Srinivas C Turaga, Joseph F Murray, Viren Jain, Fabian Roth, Moritz Helmstaedter,

http://mvapich.cse.ohio-state.edu

BIBLIOGRAPHY 213

Kevin Briggman, Winfried Denk, and H Sebastian Seung. Convolutional Networks

Can Learn to Generate Affinity Graphs for Image Segmentation. Neural Computation,

22(2):511–538, 2010.

[166] Abhinav Vishnu, Charles Siegel, and Jeffrey Daily. Distributed TensorFlow with MPI.

CoRR, abs/1603.02339, 2016.

[167] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, and

Yajuan Wang. Intel Math Kernel Library. In High-Performance Computing on the

Intel® Xeon Phi, pages 167–188. Springer, 2014.

[168] Hao Wang, Jing Zhang, Da Zhang, Sarunya Pumma, and Wu-chun Feng. PaPar:

A Parallel Data Partitioning Framework for Big Data Applications. In 2017 IEEE

International Parallel and Distributed Processing Symposium (IPDPS), pages 605–614.

IEEE, 2017.

[169] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li.

Terngrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning.

In Advances in Neural Information Processing Systems, pages 1509–1519, 2017.

[170] D Randall Wilson and Tony R Martinez. The General Inefficiency of Batch Training

for Gradient Descent Learning. Neural Networks, 16(10):1429–1451, 2003.

[171] Michael Woodacre, Derek Robb, Dean Roe, and Karl Feind. The SGI® AltixTM 3000

Global Shared-memory Architecture. Silicon Graphics, Inc, 2005.

[172] Kai Wu, Frank Ober, Shari Hamlin, and Dong Li. Early Evaluation of Intel Optane

Non-volatile Memory with HPC I/O Workloads. arXiv preprint arXiv:1708.02199,

2017.

214 BIBLIOGRAPHY

[173] Xingfu Wu, Valerie Taylor, Justin M Wozniak, Rick Stevens, Thomas Brettin, and

Fangfang Xia. Performance, Energy, and Scalability Analysis and Improvement of

Parallel Cancer Deep Learning CANDLE Benchmarks. In Proceedings of the 48th

International Conference on Parallel Processing, page 78. ACM, 2019.

[174] Eric P Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee, Xun

Zheng, Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu. Petuum: A New Platform

for Distributed Machine Learning on Big Data. IEEE Transactions on Big Data,

1(2):49–67, 2015.

[175] Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh, Tameesh Suri, Manu Awasthi, Zvika

Guz, Anahita Shayesteh, and Vijay Balakrishnan. Performance Analysis of NVMe

SSDs and Their Implication on Real World Databases. In Proceedings of the 8th ACM

International Systems and Storage Conference, page 6. ACM, 2015.

[176] Masafumi Yamazaki, Akihiko Kasagi, Akihiro Tabuchi, Takumi Honda, Masahiro

Miwa, Naoto Fukumoto, Tsuguchika Tabaru, Atsushi Ike, and Kohta Nakashima. Yet

Another Accelerated SGD: ResNet-50 Training on ImageNet in 74.7 seconds. arXiv

preprint arXiv:1903.12650, 2019.

[177] Chih-Chieh Yang and Guojing Cong. Accelerating Data Loading in Deep Neural Net-

work Training. arXiv preprint arXiv:1910.01196, 2019.

[178] Joe Yaworski. Intel Omni-Path Architecture Enables Deep Learn-

ing Training on HPC. https://itpeernetwork.intel.com/

intel-omni-path-deep-learning-training/, 2017.

[179] Bairen Yi, Jiacheng Xia, Li Chen, and Kai Chen. Towards Zero Copy Dataflows using

RDMA. In Proceedings of the SIGCOMM Posters and Demos, pages 28–30. ACM,

2017.

https://itpeernetwork.intel.com/intel-omni-path-deep-learning-training/
https://itpeernetwork.intel.com/intel-omni-path-deep-learning-training/

BIBLIOGRAPHY 215

[180] Chris Ying, Sameer Kumar, Dehao Chen, Tao Wang, and Youlong Cheng. Image

Classification at Supercomputer Scale. In 2018 Workshop on Systems for ML and Open

Source Software, Thirty-third Conference on Neural Information Processing Systems

(NeurIPS), 2018.

[181] Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD Batch Size to 32k for

ImageNet Training. arXiv preprint arXiv:1708.03888, 2017.

[182] Yang You, Zhao Zhang, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. ImageNet

Training in 24 Minutes. arXiv preprint arXiv:1709.05011, 2017.

[183] Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer. ImageNet

Training in Minutes. In Proceedings of the 47th International Conference on Parallel

Processing (ICPP), 2018.

[184] Sergey Zagoruyko and Nikos Komodakis. Wide residual Networks. In Edwin R. Han-

cock Richard C. Wilson and William A. P. Smith, editors, Proceedings of the British

Machine Vision Conference (BMVC), pages 87.1–87.12. BMVA Press, September 2016.

[185] Matthew D Zeiler. ADADELTA: An Adaptive Learning Rate Method. arXiv preprint

arXiv:1212.5701, 2012.

[186] Kunlei Zhang and Xue-Wen Chen. Large-Scale Deep Belief Nets with MapReduce.

IEEE Access, 2:395–403, 2014.

[187] Sixin Zhang, Anna E Choromanska, and Yann LeCun. Deep Learning with Elastic

Averaging SGD. In Advances in Neural Information Processing Systems, pages 685–

693, 2015.

[188] Wei Zhang, Suyog Gupta, Xiangru Lian, and Ji Liu. Staleness-Aware Async-SGD for

216 BIBLIOGRAPHY

Distributed Deep Learning. In Proceedings of the Twenty-Fifth International Joint

Conference on Artificial Intelligence, IJCAI16, pages 2350–2356. AAAI Press, 2016.

[189] Yikai Zhang, Hui Qu, Chao Chen, and Dimitris Metaxas. Taming the Noisy Gradient:

Train Deep Neural Networks with Small Batch Sizes. In Proceedings of the 28th In-

ternational Joint Conference on Artificial Intelligence, pages 4348–4354. AAAI Press,

2019.

[190] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. DoReFa-

Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gra-

dients. arXiv preprint arXiv:1606.06160, 2016.

[191] Yue Zhu, Fahim Chowdhury, Huansong Fu, Adam Moody, Kathryn Mohror, Kento

Sato, and Weikuan Yu. Entropy-Aware I/O Pipelining for Large-Scale Deep Learning

on HPC Systems. In IEEE International Symposium on the Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems (MASCOTS 2018), 2018.

[192] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola. Parallelized Stochas-

tic Gradient Descent. In Advances in Neural Information Processing Systems, pages

2595–2603, 2010.

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	DL for HPC vs. HPC for DL
	Challenges in Modern DL Frameworks
	Data Movement Challenges
	Data Processing Challenges

	Thesis Big Picture
	Investigation of File I/O
	Investigation of Computational Imbalance in Data Processing

	Organization of this Thesis

	Background
	Overview of Deep Neural Network Training
	Stochastic Gradient Descent via Batch Training
	Parallel Batch Training
	Overview of Modern Deep Learning Software
	Overview of Caffe Deep Learning Framework
	Overview of Lightning Memory-Mapped Database (LMDB)
	Overview of TensorFlow Deep Learning Framework
	Overview of Horovod Communication Plugin

	Intra-node File I/O Optimization
	Analysis of Caffe/LMDB Performance and Inefficiencies
	Experimental Setup for File I/O Experiments
	Scalability Analysis of Caffe/LMDB
	Memory-Mapped File I/O (mmap) Interprocess Contention

	Design and Implementation of LMDBIO-LMM: Localized Mmap Optimization
	Detecting Colocated Processes
	Inner Workings of LMDBIO-LMM

	Shortcomings of LMDBIO-LMM
	LMDBIO-LMM Experiments and Results
	Microbenchmark Evaluation and Analysis
	Evaluation of Caffe Deep Learning Training

	Chapter Summary

	Inter-node File I/O Optimization via Speculative Parallel I/O
	Analysis of LMDB Sequential Data Access Restriction
	Analysis of Amount of Extra Data Fetched

	Design and Implementation of LMDBIO-LMM-DM: Distributed Memory File I/O Optimization
	Serializing I/O Using a Portable Cursor Representation
	Speculative Parallel I/O

	LMDBIO-LMM-DM Experiments and Results
	Microbenchmark Evaluation and Analysis
	Evaluation of Caffe Deep Learning Training
	Evaluation of Speculative Data Reading Accuracy

	Chapter Summary

	Direct File I/O Optimizations
	Analysis of LMDB Inefficiencies
	Mmap Workflow Overheads
	I/O Block Size Management
	I/O Randomization

	Design and Implementation of LMDBIO-LMM-DIOs: Series of Direct I/O Optimizations
	LMDBIO-LMM-DIO: Direct I/O Exploitation
	LMDBIO-LMM-DIO-PROV: Provenance Information Exploitation
	LMDBIO-LMM-DIO-PROV-COAL: I/O Coalescing Optimization
	LMDBIO-LMM-DIO-PROV-COAL-STAG: I/O Staggering Optimization

	Direct File I/O Optimization Experiments and Results
	Microbenchmark Evaluation and Analysis
	Strong-Scaling Evaluation of Caffe Deep Learning Training
	Weak-Scaling Performance Evaluation of Caffe Deep Learning Training

	Chapter Summary

	Computational Imbalance Optimizations for Data Processing
	Data Processing in Parallel Deep Learning
	TensorFlow/Horovod Performance Analysis
	Experimental Setup for Computational Imbalance Optimization Experiments
	Understanding Horovod and its Background Thread
	Scalability Analysis
	Investigating the Horovod Background Thread
	Resource Contention Analysis

	Design and Implementation of Computational Imbalance Optimizations
	Horovod-GS: Global Sleep Time Optimization
	Horovod-NBCS: Nonblocking Cache Synchronization
	Horovod-SCP: Static CPU Resource Partitioning
	Horovod-TOPO: Graph Topology Exploitation

	Computational Imbalance Optimization Experiments and Results
	Evaluation of Proposed Solutions on ResNet50 Training
	Horovod-TOPO's Performance on Other Neural Networks

	Chapter Summary

	Related Work
	Deep Learning Frameworks
	File I/O Optimizations
	File I/O Subsystems in Deep Learning Frameworks
	Other File I/O Frameworks
	Storage Architecture
	Input Pipeline Optimizations

	Communication Optimizations
	Gradient Compression
	Gradient Synchronization Optimizations
	Communication Frameworks

	Algorithmic Improvements to Parallel Deep Learning

	Summary and Discussion
	Thesis Summary
	List of Publications
	Discussion
	What Would the Ideal Filesystem for Deep Learning Look Like?
	Rethinking Process/thread Synchronization in DL Communication Subsystems
	Enhancing Intra-node Parallelism of DL Frameworks via Lightweight User-Level Threading Libraries
	Can We Beat the ImageNet-ResNet50 Training World Record?
	Compatibility of Our Work to Modern DL Frameworks
	Tradeoff Between Batch Size, Convergence Period and Accuracy

	Future Work: Tradeoffs Between Data Movement and Accuracy
	Data Reuse Optimization
	Topology-Aware Parameter Servers for Asynchronous Training
	Dynamic Batch Sizing

	Bibliography

