
Alleviating Load Imbalance in Data Processing
for Large-Scale Deep Learning

Sarunya Pumma,∗ Daniele Buono,† Fabio Checconi,† Xinyu Que,† and Wu-chun Feng∗

∗ Virginia Tech, Blacksburg, VA, USA; {sarunya, wfeng}@vt.edu
† IBM T.J. Watson, Yorktown Heights, NY, USA; {dbuono, fchecco, xque}@us.ibm.com

Abstract—Despite its growing importance, scalable deep learn-
ing remains a difficult challenge. Scalable deep learning is
constrained by many factors, including those deriving from load
imbalance. For most deep-learning software systems, multiple
data-processing components—including neural network training,
graph scheduling, input pipeline, and gradient synchronization—
execute simultaneously and asynchronously. Such execution can
cause the various data-processing components to contend with
one another for the hardware resources, leading to severe load
imbalance and, in turn, degraded scalability. In this paper, we
present an in-depth analysis of state-of-the-art deep-learning
software, TensorFlow and Horovod, to understand their scal-
ability limitations. Based on this analysis, we propose four
novel solutions that minimize resource contention and improve
performance by up to 35% for training various neural networks
on 24,576 GPUs of the Summit supercomputer at Oak Ridge
National Laboratory.

Index Terms—scalable deep learning, load imbalance, resource
contention, TensorFlow, Horovod

I. INTRODUCTION

Neural network learning has been around for decades as
a method to classify complex data and trends, although it
has only recently gained significant traction [15]. One of the
main reasons for its recent popularity is the advancement
of hardware technology [6, 7, 16, 20, 26, 38] that enables
deep neural network learning (i.e., deep learning or DL) with
massive quantities of data. On top of this DL hardware,
many DL software frameworks have been rapidly developed
to incorporate the cited trends. Most modern DL frameworks,
such as TensorFlow [1], allow for parallel and distributed
training. However, these frameworks suffer from scalability
limitations, particularly on large supercomputing systems.

Most recent efforts to improve the scalability of DL have
targeted network I/O optimization, that is, improving gradi-
ent synchronization [4, 35, 39]. Consequently, a number of
communication plugins exist for parallel and distributed DL.
Horovod [25] is one of the most widely used communication
libraries because of its ease of use and good out-of-the-box
performance. However, Horovod’s inability to scale to large
supercomputing systems is a known problem [33].

In this paper, we first study the scalability limitation in
TensorFlow with Horovod (henceforth referred to as Tensor-
Flow/Horovod) on large supercomputing systems and analyze
the root cause of such limitation. Our analysis shows that the
scalability limitation is not caused by the native performance
of the hardware or software ecosystem itself but, instead, is an
artifact of subtle resource contention issues that slows down

This work was done when Sarunya Pumma was a summer intern at IBM T.J. Watson.

the execution of some processes thus resulting in straggler
processes or imbalance in the amount of time spent on
computing by the different processes (i.e., load imbalance).
The parallel DL ecosystem comprises multiple data-processing
components, which typically run simultaneously and asyn-
chronously. We observe that poor coordination between these
components can cause high hardware resource contention,
which leads to load imbalance and prevents DL training from
achieving high scalability on large-scale systems.

Because of the graph-based computational model used in
modern DL frameworks, such load imbalance occurs only in
portions of the graph where the resource demand is higher
than the available hardware resources. This imbalance then
propagates the resource contention into future iterations of the
computation, creating further imbalance and further slowing
down the overall computation. Due to the subtlety of this prob-
lem, the DL community continues to overlook this scalability
limitation in DL frameworks.

Based on our analysis, we propose, design, and imple-
ment four techniques that enable different data-processing
components to share the available computational resources
more effectively in TensorFlow/Horovod. We then evaluate the
performance of our proposed solutions in training several real-
world deep neural networks and demonstrate improvements
of up to 35% when using 24,576 GPUs of the Summit
supercomputer at Oak Ridge National Laboratory [13].

It is important to note that this paper is not about im-
proving the accuracy of the training itself but rather about
understanding and alleviating scalability issues in large-scale
DL. As such, we leverage well-known accuracy-improvement
techniques showcased in [36, 37]—where the authors demon-
strate scaling to batch sizes of around 32,768 while sustaining
the best known accuracy of ∼75% for ImageNet training—
to tune our neural networks. On a related note, while [23]
claims to be able to sustain good accuracy with batch sizes
as large as 131,072, we have not been able to reproduce that
claim. Nevertheless, we note that there is significant ongoing
research in the community to allow DL workloads to use very
large batch sizes without losing accuracy [11, 28, 34], and that
these batch size numbers are expected to go up dramatically
in the next few years.

The rest of the paper is organized as follows. In Section II,
we present background information on data processing in
parallel DL. In Section III, we analyze the performance of Ten-
sorFlow/Horovod and their scalability issues. In Section IV,
we describe the design and implementation of our proposed
solutions. A detailed evaluation of our solutions while training

CCGrid 2020 Melbourne, Australia



various deep neural networks is presented in Section V. Other
literature related to this paper is presented in Section VI. We
summarize our work in Section VII.

II. DATA PROCESSING IN PARALLEL DEEP LEARNING

Deep neural network (DNN) learning is a complex com-
putational method that consists of multiple data-processing
components. Most modern DL frameworks assign these com-
ponents to run on the available computational devices, e.g.,
CPUs and GPUs, simultaneously and asynchronously so as
to increase resource utilization and computational throughput.
Without proper coordination, however, these data-processing
components compete with each other for resources, such as
CPU cycles, memory bandwidth, network bandwidth, and
access to the direct memory-access (DMA) engine.

Node	0

Do	layer	0	forward

Do	layer	L–1	forward

Calculate	error	 (loss)

Do	layer	L-1	backward

Do	layer	0	backward

Al
lre

du
ce

Update	params

Load	local	batch

Al
lre

du
ce

GP
U	
da
ta
	q
ue
ue

GPU

Input	pipeline

Pr
ef
et
ch

CPU	data	queue

…
…

Graph	
Scheduling

Note:	L	is	a	total	number	of	neural	network	layers

Node	1

Do	layer	0	forward

Do	layer	L–1	forward

Calculate	error	 (loss)

Do	layer	L-1	backward

Update	params

Load	local	batch
GP

U	
da
ta
	q
ue
ue

GPU

Input	pipeline

Pr
ef
et
ch

CPU	data	queue

CPUs

…
…

Graph	
SchedulingHorovod Horovod

CPUs

Do	layer	0	backward

Al
lre

du
ce

Al
lre

du
ce

Fig. 1. Data-processing components of deep learning.

In this paper, we adopt a multilevel parallel DL model that
provides data parallelism across nodes as well as within the
node via multiple GPUs on each node. In other words, a full
replica of the DNN is trained with a different batch of input
data on each GPU. Each GPU then uses model parallelism to
further parallelize the DL training. Figure 1 shows the data-
processing components of our data-parallel environment. In
the figure, we show only one GPU per node for simplicity,
but the actual system that we use in our experiments has
multiple GPUs per node. The model comprises four main data-
processing components:

1) Graph Scheduling (occurs on the CPUs): Each ker-
nel/operation in the DNN is dispatched to run on the GPU by
the graph scheduler that is driven by the CPU threads. Any
delay in graph scheduling can slow the DNN training.

2) Neural Network Training (occurs on the GPUs):
The core computation associated with the DNN training (i.e.,
forward and backward computations) occurs on the GPUs.

3) Gradient Synchronization (occurs on both the CPUs
and GPUs): The gradient synchronization between all GPUs
is performed via the Allreduce operation during the backward
computation of the training. Similar to other operations, the
Allreduce operation is dispatched to run on the GPU by the
graph scheduler. (Although the Allreduce operation in Figure 1
is depicted as executing on the GPUs, it uses both CPU and

GPU resources.) The gradient transfers are scheduled and
managed by Horovod, more details of which are presented
in Section III-B.

4) Input Pipeline Processing (occurs on the CPUs): Input
pipeline processing in the DL system involves a number of
steps including file I/O, data shuffling, data augmentation,
data prefetching, and host-to-device data transfer. In our ex-
periments, we enable data batch prefetching and pipelining to
avoid data-movement bottlenecks that might occur.

Of these various data-processing components, the gradient
synchronization is of particular interest because of its depen-
dence on both CPU and GPU resources. Without sophisticated
coordination, it can potentially compete for both CPU and
GPU resources with the other data-processing components de-
scribed above. Thus, in this work, we focus on minimizing the
interactions between the gradient synchronization component
and the other data-processing components on the CPUs (i.e.,
graph scheduling and input pipeline processing).

III. TENSORFLOW/HOROVOD PERFORMANCE ANALYSIS

Here we profile and analyze the data processing components
in TensorFlow/Horovod on a large-scale system.

A. Experimental Setup

We first articulate our experimental setup, from which
we gather our experimental data for subsequent performance
analysis.
Experimental testbed: We use Summit,1 a supercomputer at
Oak Ridge National Laboratory, as our experimental testbed.
Summit has 4,608 nodes connected via Mellanox EDR 100-
Gbps InfiniBand. Each node has two sockets of IBM POWER9
CPUs (total of 44 cores), six NVIDIA Tesla V100 GPUs,
512 GB of memory, and 1,500 GB NVMe (short for Non-
Volatile Memory Express) which is used as our data storage.
Each socket connects 22 cores, three GPUs, and 256 GB
of memory. For each node, two cores (one per socket) are
isolated for operating system tasks and cannot be used by user
applications. We use six processes per node because Horovod
restricts each process to drive at most one GPU. Each process
has exclusive access to seven cores and one of the GPUs that is
located on the same socket. Processes are limited to accessing
only 256 GB of memory within their socket.
DL frameworks and software stack: We use TensorFlow
v1.14.0-rc0 and Horovod v0.16.3 as our DL framework
and communication subsystem, respectively. We use CUDA
v10.1.168, CUDNN v7.6.1, and NCCL v2.4.7 (with GPUDi-
rect RDMA) as the drivers for TensorFlow and Horovod. We
compile the TensorFlow computation graph using the Accel-
erated Linear Algebra (XLA) compiler [2], which, in turn,
disables any overlap between the computation and communi-
cation in the overall execution of a program. We performed
experiments with both XLA-enabled and XLA-disabled bench-
marks. In our experiments, the loss of performance due to the
lack of overlap between the computation and communication

1Ranked one on Top500, November 2019 (https://www.top500.org/lists/2019/11)

CCGrid 2020 Melbourne, Australia



was typically equal to the gain in performance from using
XLA. So there was no significant difference in performance
whether XLA was enabled or disabled. We chose to use the
XLA-enabled version in most of our experiments for ease of
analysis.
Benchmarks: We use tf cnn benchmarks,2 one of the most
well-known convolutional neural network (CNN) training
benchmarks. All experiments use the ImageNet3 dataset. Our
analysis and evaluations are conducted on various CNNs,
including five variants of ResNet [12] (sizes 18, 34, 50, 101,
and 152), AlexNet [15], GoogLeNet [30], Inception-v3 [31],
and VGG16 [27]. All our experiments use mixed-precision
floating-point computations [14].
Experimental configuration: In all of our experiments, the
training is run for 500 iterations with an additional 10 “warm-
up” iterations that are not included in the performance results.
All experiments are run three times, and the average perfor-
mance is shown.

B. Understanding Horovod and its Background Thread

Horovod is a communication plugin for distributed DL
frameworks, including TensorFlow [1], PyTorch [24], and
MXNet [8]. It provides new communication operation classes
with similar semantics as the native communication opera-
tions in these DL frameworks. Because of this, users can
construct computation graphs, which are the representations
of the DNNs, by simply replacing the native communication
operations with Horovod operations.

Horovod relies on several highly optimized data-movement
libraries, such as the Message Passing Interface (MPI) [32],
NVIDIA Collective Communications Library (NCCL),4 IBM
Distributed Deep Learning Library (DDL) [9], Intel Machine
Learning Scaling Library (MLSL) [29], and Facebook Gloo5

for communication, thus allowing for better data-transfer
performance and scalability. Each Horovod operation takes
one input tensor and produces one output tensor. Typical
DL computations require processing more than one tensor.
Consequently, computation graphs generally contain multiple
Horovod operations.

All Horovod operations are nonblocking asynchronous.
They are nonblocking in that a Horovod operation will always
return in a finite amount of time, irrespective of the state of
other processes in the system. Specifically, when a Horovod
operation is executed in the computation graph, the DL frame-
work’s graph scheduler thread enqueues a communication
request into the Horovod’s internal request queue and then
returns. Horovod operations are asynchronous in that once
the operation is enqueued, the DL framework is no longer
responsible for its completion. The progress and completion
of the operation are asynchronously handled by Horovod.
To achieve this, within each operating system (OS) process,

2https://github.com/tensorflow/benchmarks.git
3http://www.image-net.org/challenges/LSVRC/2012/
4https://developer.nvidia.com/nccl
5https://github.com/facebookincubator/gloo

Sync	response	cache	(MPI_Allreduce)

Perform	collective	communication	ops

Sleep	for	(HOROVOD_CYCLE_TIME	- Tprevious)

Start
Is	shutdown?

F

T

Is	response	cache	empty?
F T

Are	there	ready	tensors	to	transfer?
F T

Do	tensor	ordering	 (MPI	collectives)

Dequeue tensor	transfer	requests

End

Note:	Default	HOROVOD_CYCLE_TIME	is	5	ms

Update	response	cache

Fig. 2. Horovod background thread workflow.

Horovod creates a background thread whose primary purpose
is to perform the data transfers associated with the various
Horovod operations in that process. The background thread
periodically checks the request queue (into which the graph
scheduler had enqueued communication requests), issues data
transfers for the tensors associated with the enqueued requests,
and executes completion callbacks to the DL framework once
the transfers are completed.

Tensor transfer requests associated with Horovod operations
that have no dependencies with one another in the computation
graph could be enqueued simultaneously, for example, by dif-
ferent graph scheduler threads processing the graph. Therefore,
even when all processes are executing the same graph, the
operations in the graph, including Horovod operations, could
be executed out of order, thus making the order of data transfer
requests nondeterministic. Because Horovod relies on other
collective communication primitives, it has to ensure that data
transfers for different tensors are performed in the same order
on all processes. Consequently, the background threads on
these processes have to perform an additional tensor-ordering
consensus protocol to determine a globally consistent order
of data transfers.

The provided implementation of the tensor-ordering con-
sensus protocol in the Horovod background thread is unfor-
tunately inefficient. Figure 2 shows the high-level workflow
of this protocol. The background thread executes an infi-
nite loop of progress checks on tensor data transfers. We
refer to each such loop as a “cycle.” To prevent the back-
ground thread from monopolizing a CPU core for progress
checks, there is sleep time inserted between cycles. The
sleep time is HOROVOD CYCLE TIME − Tprevious, where
HOROVOD CYCLE TIME is the maximum sleep time or the
maximum cycle time threshold (which is a user input; de-
fault is 5 ms) and Tprevious is the execution time of the
previous cycle excluding the sleep time. If Tprevious is larger
than HOROVOD CYCLE TIME, the background thread will not
sleep; otherwise, it will sleep, and upon waking up, the
background thread dequeues the tensor transfer requests from
the request queue and attempts to create a global ordering for
them through a consensus protocol.

The consensus protocol is straightforward; one of the back-
ground threads is assigned as the “master background thread”

CCGrid 2020 Melbourne, Australia



(MPI rank zero). All background threads use MPI collective
operations to send the transfer request details of their ready
tensors to the master background thread. The master back-
ground thread, in turn, looks through the list of ready tensors
from all the background threads, forms an ordered list of
tensors that are ready on all the background threads, and sends
this list back to all the background threads. Once this tensor-
ordering consensus protocol has completed, each background
thread fuses its local tensors and performs data transfer based
on the order received from the master background thread.

This tensor-ordering consensus protocol is heavyweight and
often causes severe performance degradation, especially on
the master background thread. To address this issue, recent
versions of Horovod (since v0.16.2) have introduced a tensor-
ordering cache called a “response cache,” which can be
reused across cycles. This cache, which is a data structure
for storing tensor information and tensor order for future
use, is initially empty. Once the tensor-ordering consensus
protocol occurs, each background thread locally stores the
tensor request information and ordering scheme in its response
cache. In the next cycle, the response cache is not empty,
so the heavyweight consensus protocol can be avoided, but
the background threads still need to synchronize their caches
via MPI Allreduce, to determine which tensors in the cache
are ready to be transferred because this list can change from
cycle to cycle. In other words, the response cache reduces the
amount of work done by the master background thread, but
it does not (and cannot) remove the synchronization needed
between the background threads.

An important aspect to understand here is that the cache
synchronization is a “worst-case” requirement. Typically, the
cache is not empty, and there are no tensors ready to be
transferred. Thus, in most cycles, the background thread
sleeps and then does an empty MPI Allreduce for the cache
synchronization. Because the arrival of tensor transfer requests
is nondeterministic, each background thread still needs to
participate in every MPI Allreduce even if it has no new tensor
transfer requests in order to prevent deadlocks.

C. Scalability Analysis

Figure 3 shows the results of weak scaling with Tensor-
Flow/Horovod using the ResNet50 network (relative to linear
scaling). Our baseline for comparison is XLA-enabled Tensor-
Flow/Horovod (hereafter called TensorFlow/Horovod), but in
this graph we also show XLA-disabled TensorFlow/Horovod
performance for completeness. The data-processing through-
put of TensorFlow/Horovod is approximately 3.3 times worse
than linear scaling on 24,576 GPUs; that is, the scaling loss
is 69.7%.

To identify the source of this scaling loss, we profile the
GPU execution, as shown in Figure 4, and classify the overall
time into two parts: computation (denoted by “Forward &
backward pass execution time”) and communication (denoted
by “HorovodAllreduce time”). The figure shows that the com-
putation time stays relatively constant as the number of GPUs
increase but that the communication time increases nearly

0

5000

10000

15000

20000

25000

1 6 12 24 48 96 19
2

38
4

76
8

15
36

30
72

61
44

12
28
8

24
57
6

Th
ou

sa
nd

s	I
m
ag
es
/S
ec
on

d

Number	of	GPUs

linear	scaling

XLA-enabled	TensorFlow/Horovod	(our	baseline)

XLA-disabled	TensorFlow/Horovod

Fig. 3. Weak scaling of TensorFlow/Horovod compared with linear scaling.

0

10

20

30

40

50

60

70

Ti
m
e	
(s
)

Number	of	GPUs

Forward	&	backward	pass	execution	time
HorovodAllreduce	time

Fig. 4. TensorFlow/Horovod GPU time breakdown. (Using XLA disables any
overlap between the computation and communication, as explained in Section III-A).

linearly. In the worst case, HorovodAllreduce consumes up
to 70.3% of the overall GPU execution time, which accounts
for virtually all of the scaling loss noted above.

Next, we analyze the GPU time during HorovodAllreduce,
as shown in Figure 5. The figure shows the HorovodAllreduce
time separated into three parts: (1) ncclAllReduce, where the
GPU can be either idle (waiting for other GPUs to send
data) or busy (calculating the summation of data), (2) memory
copy, where the GPU is considered to be idle as it is using
the DMA engine, but not the computation units, and (3) the
Horovod background thread overhead, where the GPU is idle
and waiting for the host to finish its work. Our profiling shows
that the GPU is idle for at least 67% of the HorovodAllreduce
time (i.e., summation of the background thread overhead and
memory copy time). The majority of this idle time is due to the
Horovod background thread overhead, which includes cycle
latency (i.e., the sleep between cycles), tensor stalling (i.e.,
waiting for tensors to be ready for transfer on all processes),
and tensor ordering.

0% 

20% 

40% 

60% 

80% 

100% 

Ex
ec
ut
io
n	
Ti
m
e	
Br
ea
kd
ow

n

Number	of	GPUs

ncclAllReduce	
time	(idle	&	
compute)

Memory	copy		
time	(idle)

Horovod	
background	
thread	overhead	
(idle)

Fig. 5. TensorFlow/Horovod HorovodAllreduce time breakdown.

D. Investigating the Horovod Background Thread

As noted in Section III-B, the Horovod background thread
spends most of its time alternating between sleeping and

CCGrid 2020 Melbourne, Australia



performing an often empty MPI Allreduce. When there are
tensors to be transferred, it calls the collective communication
operations. The workflow of the Horovod background threads
was designed for scenarios where all background threads are
fairly synchronized. In such a scenario, as shown in Figure 6,
the background threads spend most of their time sleeping.
Thus, they would not compete for resources with other data
processing components, and consequently, would not create
any further performance imbalance in the computation. In
reality, however, this is not always the case.

BG	Thread	0

BG	Thread	1

HorovodAllreduce of	BG	Thread	1	

Sleep MPI_Allreduce Call	collective	communication	
ops

Note: BG	Thread	i denotes	 the	background thread	on	process	i,	Ti denotes	the	execution	time	of	cycle	i of	each	background	 thread		

Cycle	Boundaries

HorovodAllreduce of	BG	Thread	0	

Cycle	0 Cycle	1 Cycle	2 Cycle	3 Cycle	4 Cycle	5 Cycle	6 Cycle	7 Cycle	8

T0 T1 T2 T3 T4 T5 T6 T7 T8

T0 T1 T2 T3 T4 T5 T6 T7 T8

Fig. 6. A perfect synchronization of Horovod background threads.

In real DNN training, even when all processes are com-
puting on exactly the same computation graph, there can be
a slight imbalance in their execution time or the state of the
various threads in the system (e.g., which threads are executing
at a given point in time). Such load imbalance is expected
but generally small and uninteresting. However, the cascading
effect of such small imbalances is of particular interest as it
makes up virtually all of the HorovodAllreduce time.

Consider a case with two processes, where both processes
are computing on the same computation graph, but the state
of the execution or that of the various threads is not exactly
identical on both processes. For these processes, when the
background threads are ready to be scheduled by the OS, the
two background threads might have to wait for vastly different
amounts of time to get scheduled. This difference in actual
scheduling time depends on when the OS decides to preempt
the other currently executing threads (i.e., the input pipeline
and graph scheduling threads) and to execute the background
thread. This wait time for preemption can be as high as tens of
milliseconds on modern Linux versions. We call this scenario,
where some background threads take longer to be scheduled
than the other background threads, as “oversleep.”

Figure 7 demonstrates the cascading effect of load imbal-
ance that propagates from one cycle to the next. In the figure,
BG Thread i denotes the background thread on process i. In
Cycle 0, BG Thread 0 arrives at the MPI Allreduce function
first and consequently takes longer to complete the operation
because it is waiting for BG Thread 1, that oversleeps, to
call MPI Allreduce. In this case, BG Thread 1 is a straggler
thread.

In the next cycle (i.e., Cycle 1), BG Thread 0’s previous
cycle time T0 is larger than the maximum cycle time threshold,
HOROVOD CYCLE TIME, and thus Horovod would not let it
sleep at all, as described in Section III-B. BG Thread 0
would then issue MPI Allreduce right away. In contrast, T0 of
the straggler thread is smaller than HOROVOD CYCLE TIME
causing it to sleep in Cycle 1. This action would cause the

BG	Thread	0

BG	Thread1 Oversleep

HorovodAllreduce of	BG	Thread	0	
HorovodAllreduce of	BG	Thread	1	

Sleep MPI_Allreduce Call	collective	communication	 ops

Cycle	Boundaries
Cycle	0 Cycle	1 Cycle	2 Cycle	3 Cycle	4 Cycle	5 Cycle	6 Cycle7

Note: BG	Thread	i denotes	 the	background thread	on	process	i,	Ti denotes	the	execution	time	of	cycle	i of	each	background	 thread
*HOROVOD_CYCLE_TIME	is	constant	across	different	cycles.		We	show	HOROVOD_CYCLE_TIME	only	 in	Cycle	 0	for	reference

T0 T1 T2 T3 T4 T5 T6 T7

T0 T1 T2 T3 T4 T5 T6 T7

HOROVOD_CYCLE_TIME*

Fig. 7. Horovod background thread oversleep problem.

straggler thread to be delayed in reaching its MPI Allreduce in
the next cycle as well, further exacerbating the load imbalance.

In addition, while MPI Allreduce waits for other processes
to arrive, it spin waits, thus consuming CPU cycles and
potentially slowing down other data-processing components,
namely, input pipeline processing and graph scheduling. For
input pipeline processing, the impact is minimal because the
outcome of the input pipeline is used in the next training
iteration (recall that data prefetching is enabled), and the
delay does not stall the current iteration. For graph scheduling,
however, this slowdown can cause the forward and backward
computation on the GPU to be delayed. This delay causes
some GPUs (e.g., the GPU associated with process 0 in
Figure 7) to execute the gradient synchronization late, thus
making the imbalance show up in the HorovodAllreduce time
as the Horovod background thread overhead.

IV. PROPOSED SOLUTIONS

In this section, we present four solutions to alleviate the
load imbalance in distributed DL processing, based on our
performance analysis of TensorFlow/Horovod in Section III.

A. Horovod-GS: Global Sleep Time Optimization

The oversleeping of some background threads causes the
processes to issue MPI Allreduce at different points in time,
as noted in Section III-D; in other words, the processes are
“out of sync” in calling MPI Allreduce. To address this issue,
we propose Horovod-GS. In Horovod-GS, each background
thread, instead of using just its local knowledge to figure out
how long it needs to sleep, uses a globally coordinated sleep
time to ensure that all processes use the same sleep time every
N cycles. This prevents the load imbalance from propagating
beyond N cycles. The intent here is to separate the load
imbalance from the actual data transfer time in MPI Allreduce.

Before sleeping, each background thread computes its local
sleep time using the same formula as in the original Horovod
(HOROVOD CYCLE TIME−Tprevious). Then, all processes de-
termine the globally minimum sleep time by using another
MPI Allreduce. Once the minimum sleep time is received,
each background thread sleeps for the globally minimum sleep
time. The rest of the workflow is the same as the original
Horovod. This approach prevents the load imbalance effect
from propagating to subsequent cycles.

As noted above, the second MPI Allreduce that we intro-
duce in Horovod-GS occurs once every N cycles. So, theo-
retically, a smaller value for N creates higher synchronization

CCGrid 2020 Melbourne, Australia



overhead while reducing load imbalance, whereas a large value
of N provides the opposite tradeoff. Empirically, we found
that N = 1 delivered the best performance on our system—
although, depending on the dataset and the system, this value
may need to be tuned appropriately.

B. Horovod-NBCS: Nonblocking Cache Synchronization

While Horovod-GS can reduce the load imbalance, it cannot
completely prevent the background thread from competing for
resources with other components. Specifically, the imbalance
in the first MPI Allreduce still remains and typically consumes
the most time. Thus, the Horovod background thread still
spends a significant amount of time occupying the CPU cores
and competing for resources with the input pipeline and the
graph scheduling components.

Thus, we propose Horovod-NBCS (i.e., nonblocking cache
synchronization), where we seek to limit the time spent inside
MPI Allreduce in order to free up computational resources
for the other two data-processing components. To do so, we
leverage nonblocking MPI collective operations, specifically,
MPI Iallreduce and MPI Test, for the response cache syn-
chronization. While this approach does not avoid the out-
of-sync problem between processes, the processes no longer
compete for resources with other components because the time
spent inside each MPI call is finite (as guaranteed by the MPI
standard for all nonblocking operations) and typically small.

We note that, even though this approach uses nonblock-
ing cache synchronization, it guarantees cache consistency
by ensuring that the cache synchronization has completed
before performing another one. Thus, the cache content of
all background threads is identical in each cycle.

C. Horovod-SCP: Static CPU Resource Partitioning

With Horovod-SCP, we address the load imbalance problem
via a simple static partitioning of resources. Specifically, to
avoid contention between the different data-processing com-
ponents, we partition the available cores into groups such that
each group of threads that executes a different data-processing
component gets a different set of cores. This guarantees that
there is no contention between the different data-processing
components, thus potentially alleviating load imbalance.

As we will see in Section V, Horovod-SCP successfully
reduces the contention between different data-processing com-
ponents to alleviate load imbalance. Despite the impressive
performance gains, however, we view Horovod-SCP as a
somewhat of a workaround. Specifically, while Horovod-SCP
does alleviate the biggest cause for load imbalance, it comes
with several shortcomings.

First, the static partitioning of CPU resources means that any
variation in processing needs that arise during the execution
of the DL workflow cannot be dynamically resolved. For
instance, the background thread only needs to be active for a
small part of the total execution, but having a dedicated core
means that that core cannot be used for other data-processing
components when the background thread is idle. This can
impact the overall performance if the other data-processing

components starve for CPU resources. Second, even with
a dedicated core, load imbalance cannot be fully avoided.
This is because, as described in Section III-D, even when
all processes are computing on exactly the same computation
graph, there can be a slight imbalance in their execution time.
Because of this slight imbalance, how long each background
thread spends in the MPI Allreduce can be different, which
would cause different threads to sleep for different amounts
of time in the next cycle, which would further increase the
load imbalance. Thus, future work will study and integrate
dynamic partitioning, as appropriate.

D. Horovod-TOPO: Graph Topology Exploitation

While the previous solutions can help reduce the time
the background thread spends competing for computational
resources, they are still fundamentally limited by the way
Horovod performs tensor ordering. In particular, they rely on
the most generic possibility where the tensor transfers can be
issued in any arbitrary order. However, this is not true in reality
and over-generalizes the TensorFlow workflow.

TensorFlow uses a graph processing workflow, and the order
in which tensors are issued depends on the graph structure.
Tensors that are logically concurrent (i.e., belong to graph
nodes with no dependency between them) can be issued in any
order. When Horovod sees such a tensor request, it can wait
for the other logically concurrent tensor requests to be issued
without creating deadlock. In contrast, for two tensors whose
corresponding graph nodes have a dependency between them,
there is a guaranteed ordering where the second tensor cannot
be issued before the first tensor operation has completed.

Thus, our Horovod-TOPO solution seeks to eliminate the
original tensor ordering and the response cache synchroniza-
tion by performing a one-time TensorFlow graph analysis. The
core idea of Horovod-TOPO is to analyze the TensorFlow
graph and the dependencies between the graph nodes to form
a partial logical ordering of tensor data-movement requests.
The generated ordering is a logical ordering because some
tensor requests are logically concurrent and can be issued
in any arbitrary order by the graph scheduling threads. The
generated ordering is partial because the graph dependencies
restrict the reordering of some tensor requests. Based on this
partial logical ordering, we can then precompute a tensor
fusion scheme that determines which tensors can be fused
together so that the data-transfer requests can be larger, thus
amortizing data-transfer overhead. Once the tensor fusion
scheme is determined, it is stored within Horovod and utilized
for all future computation iterations. Thus, this topological
graph analysis needs to be done only once and never repeated.

In TensorFlow, normally only a subgraph is executed at
any given time. A subgraph is identified by the user with
“fetches,” which are nodes in the graph whose outputs will be
obtained from the execution, i.e., fetches are sink nodes of the
subgraph. On the first execution of the subgraph, we assign an
identification number (ID) to every Horovod operation in the
subgraph. We then adopt a traditional reverse depth-first search
algorithm to traverse from fetches to the root nodes to identify

CCGrid 2020 Melbourne, Australia



all Horovod operations and their dependencies. The time
complexity of this algorithm is O(V +E), where V and E are
the number of nodes and the number of edges in the subgraph,
respectively. The ID represents the chronological order in
which the operations are executed. To account for operation
dependencies, parent operations are assigned a smaller ID
than are children operations. Among sibling operations, IDs
are assigned based on the order that they are added to the
graph. For parallel nonsibling operations, we assign IDs to
the operations according to their depth in the subgraph. (If the
depths are the same, the ID assignment is arbitrary.)

Together with the tensor order, we determine the ten-
sor fusion model (i.e., which tensors should be fused be-
fore communicating) the first time that a subgraph is exe-
cuted. We follow Horovod’s original approach to fuse only
HorovodAllreduce’s tensors and to cap the fusion buffers at
HOROVOD FUSION THRESHOLD (64 MB by default).

Figure 8 shows an example of our tensor ordering and tensor
fusion. The fetches in this example are Allreduces 1, 3 and
4. From the figure, we assign the parent operations to have
a smaller ID than their children (e.g., Allreduces 0 and 2).
The parallel nonsibling operations are assigned IDs based on
their depth in the subgraph (e.g., Allreduce 4 has a larger ID
than Allreduce 1). Allreduces 0 and 1 can be fused as they
are logically concurrent, likewise for Allreduces 3 and 4. In
contrast, Allreduces 0 and 2 cannot be fused because they
share a dependency. Likewise, Allreduces 2 and 3 have to be
in different fusion buffers.

Allreduce 0
HVD	ID:	0

Allreduce 1
HVD	ID:	1

Allreduce 3
HVD	ID:	3

Allreduce 4
HVD	ID:	4

Fu
sio

n	
Bu

ffe
r	0

Fu
sio

n	
Bu

ffe
r	2

Note:
HVD	ID	is	Horovod ID

Allreduce 2
HVD	ID:	2Fu

sio
n	

Bu
ffe

r	1

Other	op	1

Other	op	2

Other	op	3

Depth	0

Depth	1

Depth	2

Depth	3

Fig. 8. Example of tensor ordering and tensor fusion.

During the actual execution of the TensorFlow graph, the
background thread performs a tensor transfer only if the
transfers of all tensors with smaller IDs have been issued as
shown in Figure 9. We use one request array per fusion buffer
for storing tensor transfer requests from the TensorFlow’s
graph scheduler threads. Each tensor request has its designated
slot based on the Horovod ID in the request array. The queues
and variables that are shared between the different threads are
managed by using C++11 std::atomics, with some portions of
the code optimized for IBM POWER9 CPU hardware atomics
and memory ordering/consistency semantics.

While Horovod-TOPO cannot guarantee that the data trans-
fer requests for logically concurrent tensors will always ar-
rive in the same order, it does guarantee that (1) the data
transfer requests are issued in the same order on the different
background threads and (2) the background threads do not
have to wait indefinitely before issuing a data transfer request.
Background threads wait for additional tensor requests to be

Call	collective	communication	ops

Start

Are	all	tensors	transferred?
F

T

Move	to	next	request	array

Is	the	request in	the	current	slot	enqueued?

Fuse	all	tensors	in	request	array

Is	this the	last	tensor	 in	the	fusion	buffer?

F
T

T
Move	to	next	slot

EndSleep

F

Initialize	current	slot	to	the	first	slot	(Horovod ID	=	0)

Fig. 9. Horovod background thread’s workflow in Horovod-TOPO.

issued only when the corresponding graph nodes are logically
concurrent, and thus, the difference in their arrival is bounded
by a finite amount of time. Due to space limitations, we
elide the mathematical proof that shows that Horovod-TOPO
is deadlock-free.

Because Horovod-TOPO assumes that the dependencies
between the tensors to be transferred remains unchanged
throughout the execution, it supports only static computation
graphs. As TensorFlow is a declarative-style DL framework,
that is a computation graph is defined prior to the computation
takes place, it has traditionally only supported static graphs.
Limited support for dynamic computation graphs has been
recently added to TensorFlow v.2.0. In case of imperative-
style DL frameworks like PyTorch, both static and dynamic
computation graphs are supported, but they are dynamically
created and freed during runtime, i.e., the graph structure is
not known until the graph is executed. To leverage Horovod-
TOPO for static graphs in PyTorch, Horovod-TOPO has to
compute tensor dependencies during the first execution of the
graph. Then, it can use such information to compute the tensor
ordering and fusion schemes once the first iteration execution
has completed.

V. EXPERIMENTS AND RESULTS

We evaluate the performance of our proposed solutions and
compare them against that of the original TensorFlow/Horovod
implementation.

A. Evaluation of Proposed Solutions on ResNet50 Training

We first measure the weak-scaling performance of our var-
ious solutions using the ResNet50 network and the ImageNet
dataset. In this experiment, we use a fixed local batch size
(i.e., number of samples per GPU in one iteration) of 32; the
global batch size increases proportionally with the number of
GPUs. Figure 10 shows the data-processing throughput for
the different approaches (i.e., original Horovod and our four
optimized versions, namely GS, NBCS, SCP, and TOPO). All
four optimizations outperform TensorFlow/Horovod by up to
10%, 16%, 18%, and 21%, respectively.

Figure 10 also shows that for runs with the number of GPUs
≥ 1,536, our global batch size becomes large enough that the
inference accuracy drops. Despite this drop in accuracy, we
highlight the following two points: (1) our proposed solutions
are also applicable to smaller global batch sizes and deliver

CCGrid 2020 Melbourne, Australia



0

5

10

15

20

25

30

35

40

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Im
pr
ov
em

en
t	(
%
)

Th
ou

sa
nd

s	I
m
ag
es
/S
ec
on

d

Number	of	GPUs

TensorFlow/Horovod-GS	 improv TensorFlow/Horovod-NBCS	 improv
TensorFlow/Horovod-SCP	 improv TensorFlow/Horovod-TOPO	 improv
TensorFlow/Horovod TensorFlow/Horovod-GS
TensorFlow/Horovod-NBCS TensorFlow/Horovod-SCP
TensorFlow/Horovod-TOPO

Sustains	high	 inference	accuracy

Fig. 10. Weak-scaling results on ResNet50: image-processing rates (im-
ages/second) and percentage improvement in performance.

significant performance improvements even in such cases, and
(2) as noted in Section I, the general trend in the research
community seems to be towards algorithmic improvements
that allow for larger batch sizes, thus indicating the increasing
importance of studying the scalability of DL frameworks on
large supercomputing systems.

Because TensorFlow/Horovod-TOPO delivers the best per-
formance gain, we further analyze its performance in order
to understand the improvement. Specifically, we compare the
GPU time breakdown of TensorFlow/Horovod-TOPO with
that of the original TensorFlow/Horovod in Figure 11. The
improvement with TensorFlow/Horovod-TOPO is mainly from
the reduction of the Horovod background thread overhead.
On 24,576 GPUs, this overhead shrinks from ∼46% of the
execution time to 3.4%. We note that some load imbalance
still remains in the execution, as evidenced by the increase
in the time taken by ncclAllReduce. This load imbalance does
not appear as part of the Horovod background thread overhead
because the background thread’s workflow is now completely
nonblocking. Instead, it shows up in the ncclAllReduce time.
Investigating this load imbalance is outside the scope of this
paper but part of our future work.

Figure 12 presents our strong-scaling results. Here we use a
fixed global batch size of 24,576, which still sustains state-of-
the-art accuracy. The local batch size is scaled proportionally
with the number of GPUs. We use at least 96 GPUs in
this experiment to ensure sufficient memory. The performance
results show similar trends as weak scaling: our optimizations
improve performance by up to ∼19%. We experience a slight
drop in the image processing rate after 1,536 GPUs because
the local batch size becomes too small (i.e., ≤ 8) and the
communication time, which increases with the number of
GPUs, dominates the overall time.

B. Horovod-TOPO’s Performance on Other Neural Networks

Below we analyze the performance of Horovod-TOPO while
training a variety of neural networks.

1) Graph Parsing Overhead: As noted in Section IV-D,
Horovod-TOPO traverses the TensorFlow computation sub-
graph prior to the first execution of the subgraph to obtain

tensor dependencies and the tensor fusion model. To under-
stand how much impact the graph parsing has on the overall
performance of training various neural networks, we compute
the node and edge counts in the subgraph and measure the
graph traversal overhead, as shown in Table I.

TABLE I
COMPUTATION GRAPH CHARACTERISTICS AND HOROVOD-TOPO’S

GRAPH TRAVERSAL OVERHEAD. (THE OVERHEAD IS NOT INCLUDED IN
THE RESULTS IN SECTION V-A.)

CNN Name Node Count Edge Count Traversal Overhead
ms Percenta

ResNet18 1,714 2,565 32 0.18
ResNet34 2,866 4,325 86 0.37
ResNet50 3,988 6,042 159 0.04
ResNet101 7,558 11,499 594 1.49
ResNet152 11,128 16,956 1,274 2.33

AlexNet 655 893 6 0.02
GoogLeNet 3,499 4,970 182 0.89
Inception-v3 6,146 9,211 382 1.12

VGG16 1,091 1,479 17 0.03
aPercentage in the execution time of the complete ImageNet training on 12,288 GPUs.

As expected, the graph traversal time increases proportion-
ally with the node and edge counts. In most cases, the total
traversal overhead is a few tens or hundreds of milliseconds.
The overhead is the highest for ResNet152, which takes around
1.2 seconds for the graph traversal. To put this in perspective,
the overall execution time of the training runs is typically on
the order of tens of minutes to even hours. For ResNet152,
for example, our graph traversal overhead accounts for a mere
2.33% of the total execution time of a complete ImageNet
training. Thus, we conclude that Horovod-TOPO incurs an
insignificant amount of overhead for the graph parsing.

2) Weak-scaling Evaluation: Figure 13 illustrates the
image-processing rates and improvement percentage while
using TensorFlow/Horovod-TOPO compared with Tensor-
Flow/Horovod for various neural networks. For all the ex-
periments, the input pipeline is identical. For simplicity in
discussion, we define the term “load-imbalance susceptible
window” or “LIS window,” which refers to the period where
the graph scheduling component and the input pipeline are
both active but tensor transfers have not yet occurred. During
the LIS window, load imbalance has the highest impact on
the graph scheduling, which in turn has a direct impact on the
core neural network training on the GPUs. When the input
pipeline is not active, the load imbalance that is caused by the
Horovod background thread does not have a significant impact
on the graph scheduling because the cores are mostly free. In
our evaluation, for the ResNet networks, we observe 5–21%
performance gain. The smaller ResNets tend to achieve larger
improvement because the input pipeline computation amount
is fixed and thus smaller ResNet networks have a larger LIS
window (as a fraction of the total execution time) than the
larger networks. The LIS windows of ResNets 18, 34, 50,
101, and 152 are approximately 46%, 55%, 48%, 30%, and
23%, respectively.

Similar to ResNets, DNNs that have a large LIS window
tend to show better performance improvements. For example,
GoogLeNet, which has an LIS window of 56%, achieves the

CCGrid 2020 Melbourne, Australia



0

10

20

30

40

50

60

70

Ti
m
e	
(s
)

Number	of	GPUs

ncclAllReduce	time	
(idle	&	compute)

Memory	copy		time	
(idle)

Horovod	background	
thread	overhead	(idle)

Forward	&	backward	
pass	execution	time

0

10

20

30

40

50

60

70

Ti
m
e	
(s
)

Number	of	GPUs

Fig. 11. GPU time breakdown of ResNet50 training: (a) TensorFlow/Horovod; (b) TensorFlow/Horovod-TOPO.

0

5

10

15

20

25

30

35

0

100

200

300

400

500

96 192 384 768 1536 3072 6144 12288

Im
pr
ov
em

en
t	(
%
)

Th
ou

sa
nd

s	I
m
ag
es
/S
ec
on

d

Number	of	GPUs

TensorFlow/Horovod-GS	 improv TensorFlow/Horovod-NBCS	 improv
TensorFlow/Horovod-SCP	 improv TensorFlow/Horovod-TOPO	 improv
TensorFlow/Horovod TensorFlow/Horovod-GS
TensorFlow/Horovod-NBCS TensorFlow/Horovod-SCP
TensorFlow/Horovod-TOPO

Fig. 12. Strong-scaling results on ResNet50: image-processing rates (im-
ages/second) and percentage improvement in performance.

best performance improvement with an average improvement
of 25% and a maximum improvement of 35%. Inception-v3
has a slightly smaller LIS window of 42% and correspondingly
achieves a smaller performance gain of 10–18%. VGG16 has a
relatively small LIS window of 32%, limiting its performance
gain to 2–6%.

For AlexNet, Horovod-TOPO achieves slightly worse per-
formance (∼6%) than the original Horovod. This is because
the computation graph of AlexNet is very small (see Table I)
and the overhead associated with managing the tensor ordering
and fusion buffers hurts performance more than the benefit
of the reduced cache synchronization. While additional (engi-
neering) optimizations to Horovod-TOPO to improve how the
tensor ordering and fusion buffers are managed could be made,
they would simply bring the performance of Horovod-TOPO
in line with that of original Horovod.

VI. RELATED WORK

Allreduce communication has been well studied in the
past [3, 11, 14, 34, 35]. Our work, however, is different
from this existing literature in that it does not directly target
the Allreduce communication itself, but rather the imbalance
between the different processes that indirectly affects the
Allreduce communication. An approach that is similar to
Horovod-TOPO was proposed in [14]. Importantly, though,
this existing work does not directly handle tensor ordering—in
fact, it ignores tensor dependencies and forces tensor transfers
to be in the reverse order of the layers (i.e., assuming that
tensor transfers only happen in the backpropagation phase).

We believe that this approach is not applicable to many graph
structures. For example, such method would not work with
the synchronization of batch-normalization statistics in [35]
that takes place in both forward and backward passes and the
statistics have dependencies between each other. In contrast,
our work analyzes the actual dependency structure in the graph
and creates a tensor ordering schedule that would work for any
static graph.

There exist several communication protocols and libraries
that are developed and optimized for distributed DL. Ten-
sorFlow uses Google’s Remote Procedure Call (gRPC) [21],
which operates on top of TCP, for communication. However,
gRPC/TCP is not supported or performs poorly on most
supercomputers. On the other hand, MPI has been well op-
timized for a broad range of communication protocols for
supercomputing systems. Several DL frameworks [1, 8, 24]
adopt MPI as a native communication protocol. Because GPUs
are becoming the most popular accelerators for DL, various
GPU-aware MPI implementations also exist [5, 19].

Cray Programming Environment Machine Learning Plu-
gin [22] is built on top of MPI. Despite its impressive
scaling, however, its operations are blocking synchronous (as
opposed to Horovod’s nonblocking asynchronous operations),
making them susceptible to deadlock, and are invalid in
some computation graphs. Aluminum [10], an asynchronous
GPU-aware communication library, contains a novel latency-
optimized Allreduce algorithm to improve the performance of
communication that overlaps with computation.

MPI, NCCL, DDL, MLSL, and Gloo are low-level col-
lective communication libraries for which users have to per-
form tensor ordering before using them to prevent deadlock.
Horovod is a communication plugin that wraps around these
high-performance collective communication libraries to pro-
vide an efficient tensor ordering approach for DL frame-
works. Horovod has shown impressive performance in the
literature [17, 25]. However, its loss of scalability on large-
scale systems is well documented [33]. Kurth et al. [18]
utilized Horovod-MLSL (MLSL backend to Horovod) and
reported that it required additional thread binding to avoid
the background threads from monopolizing CPU cores.

Overall, to the best of our knowledge, our work is the first
to identify the contention between data-processing components
as a cause of TensorFlow/Horovod’s scalability limitation.

CCGrid 2020 Melbourne, Australia



0
5
10
15
20
25
30
35
40

0
1000
2000
3000
4000
5000
6000
7000

1 6 12 24 48 96 19
2

38
4

76
8

15
36

30
72

61
44

12
28
8

Im
pr
ov
em

en
t	(
%
)

Th
ou

sa
nd

s	I
m
ag
es
/S
ec
on

d

Number	of	GPUs

Improv	(%)
TensorFlow/Horovod
TensorFlow/Horovod-TOPO

(a) ResNet18

0
5
10
15
20
25
30
35
40

0

1000

2000

3000

4000

5000

6000

1 6 12 24 48 96 19
2

38
4

76
8

15
36

30
72

61
44

12
28
8

Im
pr
ov
em

en
t	(
%
)

Th
ou

sa
nd

s	I
m
ag
es
/S
ec
on

d

Number	of	GPUs

(b) ResNet34

0
5
10
15
20
25
30
35
40

0
500
1000
1500
2000
2500
3000
3500

1 6 12 24 48 96 19
2

38
4

76
8

15
36

30
72

61
44

12
28
8

Im
pr
ov
em

en
t	(
%
)

Th
ou

sa
nd

s	I
m
ag
es
/S
ec
on

d

Number	of	GPUs

(c) ResNet101

0
5
10
15
20
25
30
35
40

0

500

1000

1500

2000

2500

1 6 12 24 48 96 19
2

38
4

76
8

15
36

30
72

61
44

12
28
8

Im
pr
ov
em

en
t	(
%
)

Th
ou

sa
nd

s	I
m
ag
es
/S
ec
on

d

Number	of	GPUs

(d) ResNet152

-10 

0

10

20

30

40

0
500
1000
1500
2000
2500
3000
3500
4000

1 6 12 24 48 96 19
2

38
4

76
8

15
36

30
72

61
44

12
28
8

Im
pr
ov
em

en
t	(
%
)

Th
ou

sa
nd

s	I
m
ag
es
/S
ec
on

d

Number	of	GPUs

(e) AlexNet

0
5
10
15
20
25
30
35
40

0

1000

2000

3000

4000

5000

6000

1 6 12 24 48 96 19
2

38
4

76
8

15
36

30
72

61
44

12
28
8

Im
pr
ov
em

en
t	(
%
)

Th
ou

sa
nd

s	I
m
ag
es
/S
ec
on

d

Number	of	GPUs

(f) GoogLeNet

0
5
10
15
20
25
30
35
40

0
500
1000
1500
2000
2500
3000
3500
4000

1 6 12 24 48 96 19
2

38
4

76
8

15
36

30
72

61
44

12
28
8

Im
pr
ov
em

en
t	(
%
)

Th
ou

sa
nd

s	I
m
ag
es
/S
ec
on

d

Number	of	GPUs

(g) Inception-v3

0
5
10
15
20
25
30
35
40

0

500

1000

1500

2000

2500

1 6 12 24 48 96 19
2

38
4

76
8

15
36

30
72

61
44

12
28
8

Im
pr
ov
em

en
t	(
%
)

Th
ou

sa
nd

s	I
m
ag
es
/S
ec
on

d

Number	of	GPUs

(h) VGG16

Fig. 13. Weak-scaling results on various DNNs (image-processing rates and improvement percentage): (a) ResNet18; (b) ResNet34; (c) ResNet101; (d)
ResNet152; (e) AlexNet; (f) GoogLeNet; (g) Inception-v3; (h) VGG16. Note: the scale of the image-processing rate axis varies among graphs.

VII. CONCLUDING REMARKS

In this paper, we investigate the limitations in scaling deep-
learning frameworks to large-scale supercomputing systems.
Specifically, we analyze TensorFlow and Horovod—state-of-
the-art DL software frameworks—and identify resource con-
tention between data-processing components, which causes
load imbalance, as the root cause of their scaling limitations.
To address this scaling limitation, we propose four solutions
that efficiently tackle such load imbalance and demonstrate up
to 35% improvement in performance on 24,576 GPUs of the
Summit supercomputer at Oak Ridge National Laboratory.

REFERENCES

[1] M. Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems, 2015. Software available from tensorflow.org.

[2] M. Abadi et al. A Computational Model for TensorFlow: An Introduction. In
Proceedings of the 1st ACM SIGPLAN International Workshop on Machine Learning
and Programming Languages, pages 1–7. ACM, 2017.

[3] T. Akiba et al. Extremely Large Minibatch SGD: Training ResNet-50 on Imagenet
in 15 Minutes. arXiv preprint arXiv:1711.04325, 2017.

[4] D. Alistarh et al. QSGD: Communication-Efficient SGD via Gradient Quantization
and Encoding. In Advances in Neural Information Processing Systems, pages 1709–
1720, 2017.

[5] A. A. Awan et al. Scalable Distributed DNN Training using TensorFlow and
CUDA-Aware MPI: Characterization, Designs, and Performance Evaluation. In 2019
19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID), pages 498–507, May 2019.

[6] E. Azarkhish et al. Neurostream: Scalable and Energy Efficient Deep Learning
with Smart Memory Cubes. IEEE Transactions on Parallel and Distributed Systems,
29(2):420–434, 2017.

[7] M. S. Birrittella et al. Intel® Omni-path Architecture: Enabling Scalable, High
Performance Fabrics. In 2015 IEEE 23rd Annual Symposium on High-Performance
Interconnects, pages 1–9. IEEE, 2015.

[8] T. Chen et al. MXNET: A Flexible and Efficient Machine Learning Library for
Heterogeneous Distributed Systems. arXiv preprint arXiv:1512.01274, 2015.

[9] M. Cho et al. PowerAI DDL. arXiv preprint arXiv:1708.02188, 2017.
[10] N. Dryden et al. Aluminum: An Asynchronous, GPU-aware Communication

Library Optimized for Large-Scale Training of Deep Neural Networks on HPC
systems. 9 2018.

[11] P. Goyal et al. Accurate, Large Minibatch SGD: Training Imagenet In 1 Hour.
arXiv preprint arXiv:1706.02677, 2017.

[12] K. He et al. Deep residual learning for image recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.

[13] J. Hines. Stepping up to Summit. Computing in Science Engineering, 20(2):78–82,
Mar 2018.

[14] X. Jia et al. Highly Scalable Deep Learning Training System with Mixed-precision:
Training ImageNet in Four Minutes. arXiv preprint arXiv:1807.11205, 2018.

[15] A. Krizhevsky et al. ImageNet Classification with Deep Convolutional Neural
Networks. In F. Pereira et al, editors, Advances in Neural Information Processing
Systems 25, pages 1097–1105. Curran Associates, Inc., 2012.

[16] T. Kurth et al. Deep Learning at 15PF: Supervised and Semi-supervised Classifi-
cation for Scientific Data. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, page 7. ACM, 2017.

[17] T. Kurth et al. Exascale Deep Learning for Climate Analytics. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage,
and Analysis, SC ’18, pages 51:1–51:12, Piscataway, NJ, USA, 2018. IEEE Press.

[18] T. Kurth et al. TensorFlow at Scale: Performance and productivity analysis of
distributed training with Horovod, MLSL, and Cray PE ML. Concurrency and
Computation: Practice and Experience, 31(16):e4989, 2019.

[19] K. Manian et al. Characterizing CUDA Unified Memory (UM)-Aware MPI Designs
on Modern GPU Architectures. In Proceedings of the 12th Workshop on General
Purpose Processing Using GPUs, pages 43–52. ACM, 2019.

[20] S. Markidis et al. NVIDIA Tensor Core Programmability, Performance &
Precision. In 2018 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pages 522–531. IEEE, 2018.

[21] A. Mathuriya et al. Scaling GRPC TensorFlow on 512 Nodes of Cori Supercom-
puter. arXiv preprint arXiv:1712.09388, 2017.

[22] A. Mathuriya et al. CosmoFlow: Using Deep Learning to Learn the Universe at
Scale. In SC, 2018.

[23] K. Osawa et al. Large-Scale Distributed Second-Order Optimization Using
Kronecker-Factored Approximate Curvature for Deep Convolutional Neural Net-
works. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 12359–12367, 2019.

[24] A. Paszke et al. Automatic differentiation in PyTorch. In NIPS-W, 2017.
[25] A. Sergeev et al. Horovod: Fast and Easy Distributed Deep Learning in TensorFlow.

arXiv preprint arXiv:1802.05799, 2018.
[26] G. Shainer et al. The Development of Mellanox/NVIDIA GPUDirect over

InfiniBand a new model for GPU to GPU Communications. Computer Science-
Research and Development, 26(3-4):267–273, 2011.

[27] K. Simonyan et al. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[28] S. L. Smith et al. Don’t Decay the Learning Rate, Increase the Batch Size. arXiv
preprint arXiv:1711.00489, 2017.

[29] S. Sridharan et al. On Scale-out Deep Learning Training for Cloud and HPC. arXiv
preprint arXiv:1801.08030, 2018.

[30] C. Szegedy et al. Going deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1–9, 2015.

[31] C. Szegedy et al. Rethinking the Inception Architecture for Computer Vision. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2818–2826, 2016.

[32] R. Thakur et al. Optimization of collective communication operations in MPICH.
Int. J. High Perform. Comput. Appl., 19(1):49–66, February 2005.

[33] X. Wu et al. Performance, Energy, and Scalability Analysis and Improvement of
Parallel Cancer Deep Learning CANDLE Benchmarks. In Proceedings of the 48th
International Conference on Parallel Processing, page 78. ACM, 2019.

[34] M. Yamazaki et al. Yet Another Accelerated SGD: ResNet-50 Training on
ImageNet in 74.7 seconds. arXiv preprint arXiv:1903.12650, 2019.

[35] C. Ying et al. Image Classification at Supercomputer Scale. arXiv preprint
arXiv:1811.06992, 2018.

[36] Y. You et al. Scaling SGD Batch Size to 32k For Imagenet Training. arXiv preprint
arXiv:1708.03888, 6, 2017.

[37] Y. You et al. Imagenet Training in Minutes. In Proceedings of the 47th International
Conference on Parallel Processing, page 1. ACM, 2018.

[38] Y. You et al. Reducing BERT Pre-Training Time from 3 Days to 76 Minutes. arXiv
preprint arXiv:1904.00962, 2019.

[39] W. Zhang et al. Staleness-aware Async-SGD for Distributed Deep Learning. arXiv
preprint arXiv:1511.05950, 2015.

CCGrid 2020 Melbourne, Australia


